
AECOM

February 12, 2009

Ms. Arlene Furuseth Project Leader Minnesota Pollution Control Agency 714 Lake Avenue, Suite 220 Detroit Lakes, MN 56501

Subject: Limited Site Investigation Report for Leak 15,656 at Former Alex Exhaust; AECOM Project 04660027

Dear Ms. Furuseth,

The attached Limited Site Investigation Report Form (MPCA Guidance Document 4-06) was prepared by AECOM to document the findings of work requested by you in fiscal year 2009 for the above referenced site. This Report was prepared by AECOM under the Minnesota Pollution Control Agency (MPCA) Multi-Site Contract Work Order No. B22942.

AECOM recommends site closure for Leak #15,656. The recommendation for site closure is based on investigation and contaminated soil removal activities completed to date. No water well receptors were identified within 500 feet of the release source. There does not appear to be a risk to the municipal water supply from Leak 15,656 based on the well receptor survey data collected. No additional vapor intrusion characterization appears warranted. No free product or contaminated groundwater was identified migrating along the utility corridors. No surface soil contamination was identified in the upper 2 feet of the site soils.

AECOM has appreciated the opportunity to provide continued service on this release in FY09. If you have questions concerning the project, we welcome the opportunity to discuss these considerations with you. You may contact Tim Grape by calling 763-852-4218 during normal office hours, or by email at: tim.grape@aecom.com. It would be a pleasure to hear from you.

Respectfully,

Timothy J. Grape, PG Project-Manager

Kobert L. DeGroot, PG PE Principal Engineer

TJG/dn Encs.

Investigation Report Form

Guidance Document 4-06

Complete this form to document site investigation activities, including Limited Site Investigations (LSIs) and Remedial Investigations (RIs). Do not revise or delete any text or questions from this report form. Include any additional information that is important for making a site management decision. If only an LSI is necessary, some questions do not need to be answered and have been identified in the form. Highlighted text contains instructions and references to related guidance documents for that section or question. Refer to Minnesota Pollution Control Agency (MPCA) Guidance Document 1-01 *Petroleum Remediation Program General Policy* for the overall site investigation objectives and to other MPCA guidance documents for details on investigation requirements and methods.

MPCA Site ID: Leak0015,656

Date: February 5, 2009

Responsible Party Information

Name: Referred to Fund Financed on March 15, 2006 (MPCA Project Leader: Arlene Furuseth)

Phone #: (218) 846-0732

Mailing Address: 714 Lake Avenue, Suite 220

City: **Detroit Lakes** Zip Code: **56501**

Alternate Contact (if any) for Responsible Party: Phone #:

Leak Site Information

Leak Site Name: Former Alex Exhaust

lex Exhaust Property Owner: Mr. Ben Zacher

Phone #: (320) 760-1712

Leak Site Address: 905 - 3rd Avenue East

City: Alexandria Zip Code: 56308 County: Douglas

Environmental Professional Information

By signing this document, I/we acknowledge that we are submitting this document on behalf of and as agents of the responsible person or volunteer for this leak site. I/we acknowledge that if information in this document is inaccurate or incomplete, it will delay the completion of remediation and may harm the environment and may result in a reduction in Petrofund reimbursement. In addition, I/we acknowledge on behalf of the responsible person or volunteer for this leak site that if this document is determined to contain a false material statement, representation, or certification, or if it omits material information, the responsible person or volunteer may be found to be in violation of Minn. Stat. § 115.075 (2007) or Minn. R. 7000.0300 (Duty of Candor), and that the responsible person or volunteer may be liable for civil penalties.

MPCA staff are instructed to reject unsigned reports and reports that have been altered.

Name and Title of		
Report Author(s)	Signature	Date Signed
Timothy J. Grape, PG Project Manager	my Jone	<u>62/16/09</u>
Name and Title of		
Report Reviewer(s)	Signature	Date Signed
Robert L. DeGroot, PG PE Principal Engineer	Attack	2/16/08
Name(s) of Field Technician(s):	Ryan Doherty, Matt Beckman	
Company and Mailing Address:	AECOM 161 Cheshire Lane North, S Minneapolis, MN 55441	Suite 500
Project Manager E-mail Address:	tim.grape@aecom.com	
Phone:	(763) 852-4200	
Fax:	(763) 473-0400	

the surface water?

Emergency and High Priority Sites

A.	Is an existing drinking water well impacted or likely to be impacted within a two-year travel time?	Yes No
B.	Is a hydrogeologically sensitive aquifer impacted that is tapped by water wells that are within 500 feet from the release source? If <i>YES</i> , explain below.	Yes No
C.	Has the public water supply risk assessment concluded that the site is a high priority site with respect to a public water supply well (see Guidance Document 4-18 <i>Public Water Supply Risk Assessment at Petroleum Remediation Sites</i>)?	Yes 🗌 No
The public water supply system is identified as the City of Alexandria – North Well Field.		
D.	Is there an existing surface water impact as indicated by 1) a petroleum sheen on the surface water or 2) a petroleum sheen or volatile organic compounds in the part per million range observed in a ground water sample collected close to	Yes No

- **E.** Has free product been detected at the site? **If YES**, attach Guidance Document 2-03 *Free Product Recovery Report Worksheet* in Section 6.
- **F.** Are there any existing field-detectable vapor impacts (photoionization detector, explosimeter, odors, etc.) to a receptor?
- **G.** Did the vapor intrusion assessment detect contaminants in excess of acute intrusion screening values (see Guidance Document 4-01a Vapor Intrusion Assessments Performed during Site Investigations)?

If you answered **YES** to any of questions A through G above, describe below the actions taken to date to reduce or eliminate the risk posed by the release.

C. The site is considered a high priority site with respect to a public water supply (City of Alexandria). The site is located within a Drinking Water Source Management Area (DWSMA) and Source Water Protection Area (SWPA). The water supply for Alexandria is obtained from wells set in glacial deposits. The aquifer is considered to exhibit a high susceptibility to contamination due to the local geological setting. The release site is located down-gradient of the North Well Field for the City of Alexandria. It is unlikely that impacts from Leak #15,656 would contaminate the City wells based on the extent and magnitude of impacts at the site and its location (down-gradient) in regards to the City well field. The Source Water Assessment for Alexandria is attached in Appendix L.

 \Box Yes \boxtimes No

 \bigtriangledown Yes \square No

G. Benzene and ethylbenzene were detected above their respective acute intrusion screening values (ISVs) in two exterior soil gas samples (VP-1(3') and VP-2(8')) collected at the site. Benzene concentrations in samples VP-1 and VP-2 are 15,700 μ g/m³ and 33,500 μ g/m³, respectively. Ethylbenzene concentrations in VP-1 and VP-2 are 18,400 and 18,000, respectively. The acute ISV for benzene is 1,000 μ g/m³ and the acute ISV for ethylbenzene is 10,000 μ g/m³. Results of the soil gas sampling are summarized on Table 20. VP-2 was conducted in the former dispenser area approximately 30 feet south of the site building. VP-1 was conducted near the site building and the former UST basin area east of the site building. The existing site building is occupied on a limited basis (less than 8 hours a day) and used as a part-time automobile repair shop according to the property owner (Ben Zacher). The site building is slab-on-grade construction. No additional vapor intrusion assessment is recommended for this receptor based on the receptor usage as an auto repair facility, the limited occupancy of the building and the building construction.

Section 1: Site Assessment

Site and Release Information

Complete Guidance Document 1-03a *Spatial Data Reporting Form*, Guidance Document 2-05 *Release Information Worksheet* if 3-02 *General Excavation Report Worksheet* was not completed, and include in Section 6.

1.1 Describe the land use and pertinent geographic features (e.g., topographic changes, surface waters, etc.) within 1,000 feet of the site. Illustrate these features using the Site Location Map, aerial photographs, and Sanborn Fire Insurance Maps[™] for the various time periods they are available in Section 4.

Land use within 1,000 feet of the site consists of commercial properties to the west, commercial and residential properties to the south, a former trailer court, now vacant property, to the east and a railroad line directly north of the site beyond which lies a residential area. Lake Agnes is located approximately 2,000 feet northwest of the project site. The site location is illustrated on Figure 1.

The site building (formerly Alex Exhaust) was vacant in 2007 during investigation activities. The site building is currently occupied on a part-time basis (less than 8 hours a day) and utilized as an auto repair facility according to the property owner, Mr. Ben Zacher. The Lloyd's Café building located directly west of the release site property was vacant during the investigation activities conducted in 2007 but is currently operating as a café/restaurant.

1.2 Briefly describe the history of the site and any past site investigation work that may have been completed. If a Phase I or Phase II report has been prepared for this site, include a copy in Section 6.

The release site was operated as a Cenex service station up until the early 1960's according to the current property owner, Mr. Ben Zacher. A fuel distribution system consisting of four

underground storage tanks (USTs) was removed from the site on May 16, 1998 according to Mr. Dennis Stark, City of Alexandria Fire Marshal. No analytical testing or petroleum release documentation was collected during the UST removal to the best of Mr. Stark's knowledge.

The site was called in to the Minnesota State Duty Officer on February 25, 2004 based on evidence of petroleum contamination observed in a soil boring conducted at the site for the Minnesota Department of Transportation (Mn/DOT) TH-29/27 highway reconstruction project.

Approximately 1,200 cubic yards of petroleum contaminated soil was excavated from the Mn/DOT road right-of-way just south of the release site during the 2004-2005 construction seasons. The petroleum contaminated soil was land-spread at an MPCA approved land-spread facility. STS/AECOM prepared a Documentation Report dated December 30, 2005 documenting the excavation and disposal of petroleum contaminated soil near the release site. A copy of the STS/AECOM Documentation Report is attached in Appendix D.

STS/AECOM performed a Limited Site Investigation (LSI) at the site in February of 2007. The LSI consisted of six temporary well/soil borings (B-1 through B-6) and four soil vapor probes (VP-1 through VP-4). The full extent of the groundwater contamination was not defined by the 2007 LSI. Two additional soil borings (B-7 and B-8) were conducted east and southeast of the site respectively by STS/AECOM on February 27-28, 2008. A third boring (B-9) was conducted southwest of the site by STS/AECOM on December 12, 2008. The results of the three additional soil borings (B-7 through B-9) along with the initial LSI borings (B-1 through B-6) are included in this LSI Report.

1.3 List other potential petroleum sources within 500 feet of the site and identify them on the Potential Receptor Map in Section 4.

Two petroleum leak sites are located within 500 feet of the project site. Leak 2873 (Alexandria Tire and Auto) is located at 801 - 3rd Avenue East approximately 500 feet west of the site. Leak 2873 was closed by the MPCA on January 6, 1992. Leak 12940 (Geyer Rental) is located at 315 Nokomis Street approximately 500 feet southwest of the project site. Leak 12940 is an open MPCA petroleum leak site. In addition, Alexandria Concrete Co. (901 - 4th Avenue East) is located due south across 3rd Avenue (TH-27) from the release site. Alexandria Concrete Co. is a registered tank site (tank site #11717) with approximately seven active petroleum aboveground storage tanks (ASTs) and three removed petroleum underground storage tanks (USTs).

1.4 Describe the status of the tank system(s) including current and former tanks, piping, and dispensers. Summarize the status and characteristics of all past and present tanks in Table 1 and identify all components on a Site Map.

STS/AECOM contacted the City of Alexandria Fire Marshal (Mr. Dennis Stark) to determine if there were any records of UST removals from this property. Mr. Stark provided STS/AECOM with site photographs (Appendix N) documenting the removal of the USTs from the site property on May 16, 1988. The tanks consisted of one 2,000 gallon UST and three 3,000 gallon USTs according to Mr. Stark's records. There was no record as to the UST contents or if any evidence of leakage from the tanks or analytical testing was conducted at the time of the UST removals.

1.5 Briefly describe the known or suspected source(s) of the release and how it was discovered.

The suspected source of release is from a former UST fuel distribution system from a Cenex service station that, according to the current site owner (Mr. Ben Zacher), operated on the property up until the early 1960's. The release was discovered on February 25, 2004 during a Phase II ESA conducted for the Minnesota Department of Transportation (Mn/DOT) Trunk Highway 29/27 (TH-29/27) reconstruction project.

- **1.6** When did the release occur (if known)? **Unknown**
- 1.7 What was the volume and type(s) of petroleum product released (if known)?Unknown gallons Released product type(s): Petroleum unspecified

When a tank has been excavated, refer to Guidance Documents 3-01 *Excavation of Petroleum Contaminated Soil and Tank Removal Sampling* and 3-02 *General Excavation Report Worksheet* for reporting requirements. If a tank has been excavated or if contaminated soil was removed for offsite treatment prior to this investigation, include Guidance Document 3-02 in Section 6.

1.8 Was soil excavated for off-site treatment? \boxtimes Yes \square No

Date(s) soil was excavated: **Petroleum contaminated soil was excavated by Mn/DOT during TH-29/27 highway reconstruction activities during the 2004-2005 construction seasons.**

Total volume removed: Approximately 1,200 cubic yards

Volume of total soil removed that was petroleum saturated: 0 cubic yards

Soil treatment method:

\boxtimes	Land treatment
	Thermal treatment
	Composting/Biopiling
	Other ()
Na	me and location of treatment facility:

If you checked "Other", describe how the soil was treated and attach applicable documentation at the end of the reporting form.

Approximately 1,200 cubic yards of petroleum contaminated soil was excavated from the Mn/DOT road right-of-way directly south of the Alex Exhaust site building (see Figure 3). The contaminated soil was land-spread at an MPCA approved land-spread facility located in the SW ¼ of the NE ¼ of Section 12, Township 124 North, Range 38 West, Barsness

Township, Pope County, Minnesota. A copy of the MPCA Land Treatment Approval Letter dated October 7, 2005, a Land Treatment Site Location Diagram and the uniform load tally sheets for the contaminated soil hauled to the land treatment facility are included in the STS Documentation Report attached in Appendix D.

Site-Specific Geology and Hydrogeology

1.9 Discuss the soil borings drilled and provide rationale for their locations. Include boring logs in Section 6. Boring logs must include all the information required in Guidance Document 4-01 *Soil and Ground Water Assessments Performed during Site Investigations.*

At the time of the initial STS site investigation activities (February, 2007), no knowledge as to the exact location of former USTs or fuel distribution system components had been identified for this site. Therefore, soil boring locations were selected based upon the site layout and contaminated soil location information obtained from excavation activities for the Mn/DOT TH-29/27 reconstruction. It was later determined that the former UST basin was located east of the site building (Figure 3) based on site photographs obtained from the City Fire Marshall.

Soil boring B-1 was advanced in the suspected release "source area" near where heavy soil impacts were identified during the Mn/DOT highway reconstruction activities. This area is also a likely location for former gasoline dispensers based on the site layout and site building location. Soil boring B-3 was advanced southeast of the former UST basin area. Soil borings B-2 through B-9 were advanced around the release area to define the lateral extent of soil and groundwater contamination.

1.10 Indicate the locations and depths of soil samples submitted for grain size analysis.

Grain size analysis was conducted on the following soil samples:

- B-7 (16.5' to 18'),
- **B-8** (18'-20'),
- **B-9** (16'-18').

The grain size analysis results including a grain size curve are attached in Appendix I.

1.11 Discuss in detail the site geology based on soil boring data, grain size analyses, cross sections, geologic logs of nearby water wells, and available published information. Include detailed descriptions of more porous lenses or stringers within tighter soil types.

Soil types observed in the borings conducted consisted mainly of silty, sandy clay with trace gravel and 2 to 4 foot clayey sand layers at depths of 20 to 30 feet below ground surface. A review of local municipal well logs indicated similar stratigraphy with clay tills and intermittent layers of sand and gravel at depths of 75 to 100+ feet.

Bedrock underlying the quaternary soils in the area consists of meta-sedimentary rocks including greywacke, slate, conglomerate, quartzite, felsic-intermediate volcanoclastic rocks

and banded iron-formation (Geologic Map of Minnesota, Bedrock Geology, by P.K. Sims, 1970). The estimated depth to bedrock in the area is greater than 200 feet based on a review of local well logs and the Minnesota Geological Survey (MGS) Depth to Bedrock Map S-14 (Olsen and Mossler, 1982).

1.12 Discuss in detail the local and regional hydrogeology based on geologic logs of nearby water wells and available published information.

The aquifer utilized for drinking water (municipal wells and domestic wells) in and around the City of Alexandria is a Quaternary Buried Artesian Aquifer (QBAA). The Quaternary soils in the area are over 200 feet thick and are comprised primarily of interbedded clay and sand. The municipal and domestic wells in the area are generally less than 200 feet deep.

The bedrock hydrogeology in the area consists of Precambrian igneous and metamorphic rocks (MGS Bedrock Hydrogeology, by Roman Kanivetsky, 1978). This bedrock unit is generally not considered an aquifer except locally in faults and fractures.

1.13 Discuss site ground water flow direction using soil boring data, monitoring well data if collected, plume geometry, and available published information.

Groundwater depths observed in the temporary well soil borings completed by STS/AECOM ranged from approximately 25 feet in boring B-5 to 8 feet in boring B-9. The groundwater depths observed in the temporary well borings are likely not representative of the actual stabilized groundwater table elevation. Temporary wells TW-1 through TW-6 were left in overnight in an attempt to obtain stabilized groundwater readings, however the water levels did not appear to stabilize in the allotted 24 hour rest period, likely due to the low permeability of the clay soils present. Permanent monitoring wells are required to obtain an accurate groundwater flow direction at the project site.

Groundwater flow direction obtained from monitoring wells associated with Leak #12940 located approximately 500 feet southwest of the site indicate a shallow groundwater flow direction of southwest in the area.

1.14 Describe any evidence of a fluctuating water table or a seasonal high water table (e.g., mottling, saturated soil color or gleyed soils, monitoring well observations). Also, from other sources of information describe the range of natural water table fluctuations in the area.

No evidence of a fluctuating or seasonal high water table was observed during investigation activities. Water level elevation data for monitoring wells MW-1 through MW-3 associated with nearby Leak 12940 indicate a potential groundwater level fluctuation of up to 6 feet in the area.

Extent and Magnitude of Soil Contamination

1.15 Were soil borings conducted in or adjacent to the following source areas?

Dispensers	⊠yes □no □not present	Piping	⊠yes □no □not present
Transfer areas	□yes □no ⊠not present	Remote fill pipes	\Box yes \Box no \boxtimes not present
UST basins*	yes no not present	Valves	yes no Not present
AST basins	yes no Nnot present	Known spill areas	yes no Not present
		1 04 41 09 4	1 6 411 4

* The location of the UST basin was determined after the first round of soil borings was conducted. Soil borings B-1, B-3 and B-4 were conducted around the UST basin area.

- **1.16 Horizontal Definition**: Based on requirements described in Guidance Document 4-01, were a sufficient number of soil borings completed to define the horizontal extent of soil contamination in all directions? ⊠ *Yes* □ *No*
- **1.17 Vertical Definition:** Based on requirements described in Guidance Document 4-01, were all soil borings completed to the required depth? Xes No
- **1.18 Site Stratigraphy:** Based on requirements described in Guidance Document 4-01, was the stratigraphy boring completed to the required depth? \boxtimes *Yes** \square *No*

If you answered *NO* to any of the four previous questions, explain why the borings were not conducted in the required locations or to the required depths. See Guidance Document 4-01 *Soil and Ground Water Assessments Performed during Site Investigations* regarding exceptions and MPCA approval for depth of drilling.

*Soil boring B-1 was advanced to a depth of 40 feet. The deepest measured soil contamination at the site based on visual/olfactory and PID evidence of contamination was at 15 feet. Elevated (>10 PID units) PID readings were observed at depth in soil borings B-2 and B-3, however no visual or olfactory evidence of soil contamination was observed at depth for these samples. The PID readings observed at depth in borings B-2 and B-3 were likely false positives. The deepest soil sample with analytical impacts was the soil sample from boring B-4 collected at a depth of 13 feet.

1.19 Describe the vertical and horizontal extent and magnitude of soil contamination based on field observations, soil headspace measurements (Table 2), and soil analytical results (Tables 3 and 4). If non-petroleum contaminants are present, discuss the possible sources of these compounds. Provide a map and two cross sections that illustrate both soil headspace and laboratory analytical results in Section 4. Include laboratory analytical reports and soil sampling methodology in Section 6.

The vertical extent of soil contamination based on visual/olfactory and PID screening data was approximately 15 feet. An elevated PID reading of 45 was observed at a depth of 22.5 to 25 feet in boring B-2 and a PID reading of 21 was observed at a depth of 27.5 to 30 feet in boring B-3, however no visual or olfactory evidence of contamination was observed at either

of these locations. In addition, the deepest contamination observed in the analytical soil samples was at a depth of 13 feet in boring B-4.

The horizontal extent of soil contamination was limited to soil borings B-1, B-3, B-4 and B-5 based on visual/olfactory, PID headspace and analytical data. Soil sample B-1(6') had an ethylbenzene concentration of 10 mg/kg which is above the Tier 1 Soil Leaching Value (SLV) of 4.7 mg/kg. No other SLV or Tier 1 Soil Reference Values (SRVs) were detected in the soil samples collected from the soil borings. The horizontal extent of soil contamination is illustrated on Figure 5 attached. Soil sample laboratory analytical reports are attached in Appendix F. Soil sample analytical data is summarized on Tables 3 and 4.

1.20 Is contaminated soil in contact with ground water? \boxtimes *Yes* \square *No*

If *YES*, or if ground water contamination appears likely, then complete the **Aquifer Determination** section below.

If *NO*, complete question 1.21.

1.21 a) What is the distance separating the deepest contamination from the surface of the water table?

See question 1.20

- **b**) Was this distance measured during site activities, referenced from geologic information, or estimated based on professional opinion during a site visit?
- **c**) In your judgment, is there a sufficient distance separating the petroleum contaminated soil from the underlying aquifer to prevent contamination of the aquifer? \Box *Yes* \Box *No*

Please explain in detail. In your explanation, consider the site-specific geology, the data in this section, and the nature of the petroleum release (i.e., volume, age, released product type).

If YES, the Aquifer Determination is not necessary as part of the LSI.

If NO, complete the Aquifer Determination section below.

1.22 Is contaminated surface soil (0-2 feet) present at the site? \Box Yes \boxtimes No

If *YES*, delineate the extent of contaminated surface soil, identify the extent(s) of contaminated surface soil on a Site Map, and propose a corrective action in Section 3 to mitigate the impacts. If borings were used to define the extent, complete Table 5. See Guidance Document 3-01 *Excavation of Petroleum Contaminated Soil and Tank Removal Sampling* for more information regarding contaminated surface soil identification, delineation, and excavation.

Aquifer Determination

Complete this section if ground water has been contaminated or may become contaminated based on questions 1.20 and 1.21. Aquifer determination is made during the LSI. It is based upon the stratigraphy and a hydraulic conductivity measurement calculated from grain size analyses. The site stratigraphy gives the context within which the hydraulic conductivity measurement can be interpreted. Please refer to Guidance Document 4-01 *Soil and Ground Water Assessments Performed during Site Investigations* for methods and requirements. Provide the results of grain size analyses, calculations, and other information used for the determination of hydraulic conductivity in Section 6. Determine the aquifer thickness (b) from geologic logs of soil borings, water well logs, and available published information.

1.23 Calculate an average hydraulic conductivity value (K). $K = 10^{-5} \text{ cm/s} = 0.02835 \text{ ft/day}$

Indicate the calculation method (e.g. Hazen, Masch and Denny, Kozeny-Carmen, etc.).

Three grain size analysis tests were run on representative soils samples (B-7 (17.5'-20'), B-8 (20'-22.5') and B-9 (16'-18')) collected from the saturated zone of selected soil borings. The results of the grain size analyses confirmed that the typical site soils consist of sandy clay. The above referenced calculation methods cannot be effectively applied to clay soils. For example, the Hazen Approximation Method is only applicable for sandy soils where the percent passing the 200 sieve is less than 5 percent and the effective grain size (d_{10}) is between 0.1 mm and 0.3 mm. The percent passing the 200 sieve for the samples analyzed ranged from 36.6 percent to 56.2 percent. The average hydraulic conductivity was thus referenced from Applied Hydrogeology 3rd Edition by C.W. Fetter, 1994 based on an average soil type of sandy clay.

- **1.24** Calculate a range for aquifer transmissivity (T) using the equation T = Kb, where b is the thickness of the aquifer.
 - $T_{High} = 7.1 \text{ ft}^2/\text{day}$ (assuming an aquifer thickness (b) of 250 ft.)
 - $T_{Low} = 1.4 \text{ ft}^2/\text{day}$ (assuming an aquifer thickness (b) of 50 ft.)

If the transmissivity of a contaminated hydrogeologic unit is greater than 50 ft²/day, it is considered an aquifer for the purpose of the Petroleum Remediation Program. If the hydrogeologic unit meets the definition of an aquifer, then monitoring wells are required if any of the following conditions are met: 1) ground water is impacted at or above Minnesota Department of Health (MDH) Health Risk Limits (HRLs) or 1,000 μ g/L GRO or DRO; 2) ground water is impacted below the HRLs but levels are likely to reach the HRLs; or 3) there is an insufficient distance separating the petroleum contaminated soil (or an impacted non-aquifer) from an underlying aquifer. If monitoring wells were installed complete the **Aquifer Characterization** section below as part of an RI.

Aquifer Characterization

NO MONITORING WELLS WERE INSTALLED FOR LEAK 15,656

1.25 Discuss the drilling and installation of monitoring wells including the rationale for their locations. Summarize their construction in Table 9. Attach boring logs, well construction diagrams, and well logs in Section 6.

1.26	Is there a clean or nearly clean (below HRLs) down-gradient monitoring well located along the longitudinal axis of the contaminant plume (approximately 20 degrees plus or minus the axis)?)
1.27	Is there a worst case well completed through the source area(s) of the \Box Yes \Box Normalized Norm)
	If you answered <i>NO</i> to any of the above two questions, please explain why a well was not completed in the required location.	
1.28	Provide an estimate of the longitudinal length of the dissolved contaminant fee plume:	t

1.29 Calculate ground water flow velocity (based on Darcy's Law) using the average hydraulic conductivity (K), average horizontal hydraulic gradient (dh/dl), and effective porosity (n). Provide documentation and show calculations in Section 6.

Hydraulic conductivity (K) = ft/day (Method if different than that used in 1.23:) Porosity (n) = method/reference Average horizontal gradient (dh/dl) = (unitless) Calculated ground water velocity (v) = ft/day

1.30 Using the calculated ground water flow velocity from question 1.29, is there a receptor(s) located within a five-year travel time from the source area?

If *YES*, describe the location and type of receptor(s).

1.31 Were any deep monitoring wells completed at the site? \Box Yes \Box No

If *YES*, list them and indicate their depths:

Contact the MPCA project hydrologist before installing a deep monitoring well. A deep monitoring well **may** be necessary if: 1) contamination exists more than 10 feet below the water table or 2) the impacted aquifer is a drinking water aquifer or is hydraulically connected to the aquifer(s) presently used by a water supply well located within 500 feet of the release source.

If contamination is present at depth in the aquifer or in deeper aquifers, additional deep wells may be required. Provide the following information if deep wells were installed:

Vertical gradient (dv/dl) Inferred ground water flow direction Provide the following information for the deep aquifer unit if it appears to be hydrogeologically distinct from the upper unit.

Porosity (n): Hydraulic conductivity (K)

ft/day

Submit this RI report after completing a minimum of *two quarterly sampling events*. Quarterly ground water monitoring and sampling should continue until MPCA response is received.

Extent and Magnitude of Ground Water Contamination

1.32 Describe the extent and magnitude of ground water contamination based on the analytical results of samples collected as part of an LSI (Tables 6, 7, and 8) and, if applicable, monitoring well samples collected as part of an RI (Tables 10, 11, and 12). Provide Site Maps that illustrate both the laboratory analytical results and, if applicable, ground water gradients in Section 4.

Petroleum contamination was identified in groundwater samples collected from temporary well soil borings B-1, B-2, B-3, B-4, B-5 and B-8. No petroleum contamination was identified in groundwater samples collected from soil borings B-6, B-7 and B-9.

The worst case groundwater contamination was observed in groundwater samples TW-1 (B-1), TW-2 (B-2), TW-3 (B-3) and TW-4 (B-4). Benzene was detected above the Minnesota Department of Health (MDH) established Health Risk Limit (HRL) for this compound (5 μ g/l) in groundwater samples TW-1 (150 μ g/l), TW-2 (38 μ g/l), TW-3 (160 μ g/l) and TW-4 (26 μ g/l). Gasoline range organics (GRO) and diesel range organics (DRO) were detected above the MPCA established health based value (HBV) for total petroleum hydrocarbons of 200 μ g/l in groundwater samples TW-1 (11,000/2,800 μ g/l), TW-2 (3,900/1,000 μ g/l), TW-3 (5,800/1,200 μ g/l) and TW-4 (1,300/400 μ g/l). 1,3,5-trimethylbenzene was detected above the established HBV for this compound (300 μ g/l) in groundwater sample TW-1 (380 μ g/l). 1,2-dichloroethane was detected above the established HRL for this compound (4 μ g/l) in sample TW-1 (370 μ g/l).

Low level petroleum impacts indicative of the outer plume fringe were observed in groundwater samples TW-5 (B-5) and B-8. DRO was detected at 300 µg/l in TW-5 and 200 µg/l in B-8. No other compounds were detected in the groundwater samples from TW-5 and B-8. Boring B-5 was conducted approximately 80 feet northwest of the release area and boring B-8 was conducted approximately 200 feet southeast of the release area. The extent of horizontal groundwater impacts are illustrated on Figure 6. Groundwater laboratory analytical reports are attached in Appendix F. Groundwater analytical data is summarized on Tables 7 and 8.

1.33 If non-petroleum contaminants are present, discuss the possible sources of these compounds.

1,2-Dichlorobenzene was detected in groundwater sample TW-2. Possible sources of 1,2dichlorobenzene include: automobile body polish and cleaners, deodorants/air fresheners, drain pipe solvents and insecticides. 1,2-Dichloroethane (1,2-DCA) was detected in groundwater sample TW-1. 1,2-DCA was historically used as an anti-knock additive in leaded fuels.

1.34 Provide a discussion on QA/QC, including information on the samples collected and laboratory analyses performed. Include laboratory analytical reports and ground water sampling methodology in Section 6.

A field equipment rinsate blank was collected and analyzed for VOC, GRO and DRO for the February 8, 2007 investigation event. A blind duplicate, field equipment rinsate blank and trip blank were collected for the February 27-28, 2008 and December 12, 2008 monitoring events. Tetrahydrofuran was detected at a concentration of 12 μ g/l in the field blank collected during the February 8, 2007 investigation event. This compound was not detected in any of the other groundwater samples analyzed from this site. No other VOC, GRO or DRO compounds were detected in any of the other field equipment blanks or trip blanks analyzed. The blind duplicate analytical results correlated with the original sample results for B-7(W) and B-9(W).

1.35 Laboratory certification number: Northeast Technical Services = 027-137-157 Pace Analytical = 027-053-137

Evaluation of Natural Attenuation

Refer to the Guidance Document 4-03 *Assessment of Natural Attenuation at Petroleum Release Sites.* **Note**: Evaluation of natural attenuation is not required unless requested by MPCA staff.

NO EVALUATION OF NATURAL ATTENUATION WAS CONDUCTED

- **1.36** Discuss the results of the natural attenuation assessment (Table 13). Specifically, compare the concentrations of the inorganic parameters inside and outside the plume and whether the data indicate natural biodegradation is occurring at the site.
- **1.37** If active remediation is anticipated, discuss reasons why natural attenuation (including biodegradation) can not adequately remediate the contaminants to acceptable risk levels.

Extent and Recovery of Free Product

If free product is encountered during the investigation, include Guidance Document 2-03 *Free Product Recovery Report Worksheet* in Section 6. See Guidance Document 2-02 *Free Product: Evaluation and Recovery* for additional information.

NO FREE PRODUCT WAS ENCOUNTERED DURING INVESTIGATION ACTIVITIES

1.38 If free product was encountered during the site investigation, describe the work completed to delineate the extent of the free product zone and what efforts were or are being completed to recover it. Tabulate the volume of product recovered in Table 14. Illustrate the estimated horizontal extent of the free product zone on a Site Map in Section 4.

Section 2: Risk Assessment

Well Receptors

List all properties located within 500 feet of the site in Table 15. Identify all properties listed in Table 15 on the Potential Receptor Map in Section 4.

List all wells located within 500 feet of the site and any municipal or industrial wells within ½ mile in Table 16. All water wells within 500 feet of the release source must be listed even if construction information was not obtained or available. Include all available water supply well logs obtained from Minnesota Geological Survey, MDH, drillers, or county well management authorities, and any other well construction documentation in Section 6. Identify all wells listed in Table 16 on the Well Receptor Survey Map in Section 4.

2.1 Were all property owners within 500 feet of the site successfully contacted to $\forall Yes \square No$ determine if water wells are present?

If NO, please explain.

A walking well/potential receptor survey was conducted by STS on February 6, 2007 and a follow-up survey was conducted by STS/AECOM on December 12, 2008. For both survey events, the property owners within 500 ft. of the release source were contacted to determine if water wells, basements, or sumps were present on their property. The STS/AECOM personnel conducting the survey also conducted a visual observation of the properties for the presence of water wells. No water wells were identified within 500 feet of the release source during either of the surveys conducted.

A list of the properties surveyed within the 500 foot site radius is presented on Table 15 and illustrated on Figure 8.

2.2 Discuss any physical limitation to the inspection of properties within the 500-foot survey radius.

Property access for the Alexandria Concrete facility located at 924 - 3rd Avenue East directly south of the release site was not granted by the property owner. No wells were identified on the property based on a review of the County Well Index and the Site Manager (Mr. Larry Okerland) did not know of any wells on the property.

2.3 Discuss the results of the ground water receptor survey. Comment on the risks to water supply wells identified within 500 feet from the site as well as the risk posed by or to any municipal or industrial wells found within ½ mile. Specifically indicate whether identified water supply wells use the impacted aquifer. (Note: an impacted aquifer separated from another aquifer by a clay lens may not be considered a separate aquifer).

No water supply wells were identified within 500 ft. of the release source based on the walking well surveys conducted by STS/AECOM, a review of the Minnesota Department of Health

Guidance Document c-prp4-06: September 2008 Petroleum Remediation Program Minnesota Pollution Control Agency

(MDH) County Well Index (CWI) and a review of the MPCA Petroleum Remediation Program (PRP) Maps Online.

One municipal water well (City Well #7A – Unique #214756) was identified within 1/2 mile of the release site. The location of this well is illustrated on Figure 9 and the water well log is attached in Appendix K. City Well #7A was drilled to a depth of 129 feet and is set in the Quaternary Buried Artesian Aquifer. The well log does not indicate a record of stratigraphy or what depth the well screen section is set at. Leak 15,656 is located down-gradient of City Well #7A, there is no indication of vertical petroleum contaminant migration at the release site and it is unlikely that impacts associated with Leak 15,656 would contaminate City Well #7A based on the extent and magnitude of impacts identified, the location of the well in respect to the release site and the local groundwater flow direction (southwest).

2.4 If water samples were collected from nearby water wells, discuss the analytical results below and tabulate them in Tables 11 and 12.

No water samples were collected from nearby water wells. No water wells were identified within 500 feet of the release.

- **2.5** Is municipal water available in the area?
- **2.6** Based on the public water supply risk assessment, is the site located in a Source Water Assessment Area or Drinking Water Supply Management Area (see Guidance Document 4-18 *Public Water Supply Risk Assessment at Petroleum Remediation Sites*)?

If YES, provide the name of the area and include the required documentation in Section 6.

2.7 Are there any plans for ground water development in the impacted aquifer within ¹/₂ mile of the site or one mile down-gradient of the site if the aquifer is fractured?

Provide the name, title and telephone number of the person that was contacted for this information.

Name: Keith Avery Title: Water Plant Superintendent for Alexandria Light and Power Telephone: (320) 763-6501

Mr. Keith Avery was contacted by STS/AECOM on June 20, 2007 and again on January 23, 2009 to determine if there were any plans for groundwater development in the North Well Field area (within 1/2 mile of the release site). Mr. Avery indicated that there were currently no plans for groundwater development for the City of Alexandria municipal water supply and that City Well #7A was still being utilized as a capacity supply well. Mr. Avery also indicated that City Well #16 (Unique #749302) was installed in May of 2007 in the North well field area to replace City Well #11 and City Well #17 (Unique #762288) was installed in the North well

 \bigtriangledown Yes \Box No

 \bigtriangledown Yes \Box No

 \Box Yes \boxtimes No

field area to replace City Well #12. Both of these new wells are greater than 1/2 mile from the release site. The well logs for City Well #16 and City Well #17 are attached in Appendix K.

Surface Water Receptors

2.8 Are there any surface waters or wetlands located within $\frac{1}{4}$ mile of the site? \Box Yes \boxtimes No

If YES, list them along with their distance and direction from the site in Table 17.

Also, list below any potential pathways such as ditches, drain tiles, storm sewers, etc., that may lead to the identified surface water features.

2.9 If surface water is present down-gradient of the site, is there a clean down-gradient soil boring or monitoring well located between the site and the surface water?

If *YES*, identify the clean down-gradient boring or well, distance to the surface water feature, and discuss the contamination risk potential.

If *NO*, and ground water from a down-gradient boring or well is contaminated, we assume that contamination discharges to the surface water. Therefore, provide the following information:

Name of receiving water:	
Plume width, (W):	feet
Plume thickness, (H):	feet
Hydraulic conductivity, (K):	gal/day/ft ²
Horizontal gradient, (dh/dl):	(unitless)
Discharge, $(\mathbf{Q}) = \mathrm{H}^{*}\mathrm{W}^{*}\mathrm{K}^{*}(\mathrm{dh}/\mathrm{dl})/1440$	gal/min

Utilities and Subsurface Structures

2.10 Compare the relationship between the distribution of contaminant phases (soil, ground water, vapor, and non-aqueous phase liquid) to the location of all underground utility lines, utility service lines, and nearby basements and sumps. Include all identified utilities in Table 18. Show all utilities, utility service lines, and other subsurface structures on applicable cross sections in Section 4.

AECOM obtained a copy of the utility plan sheets from the City Engineer (Widseth Smith and Nolting (WSN)) for the release site area. Main utility lines including sanitary sewer, storm sewer and water along Trunk Highway 27 in the vicinity of the project site were replaced during Mn/DOT highway reconstruction activities in 2004 and 2005. Petroleum contaminated soil was generally encountered at depths of 5 to 12 feet below ground during the replacement of these utility lines. Contaminated soil encountered during the utility line replacements was excavated and disposed of off-site. Approximately 1,200 cubic yards of petroleum contaminated soil was excavated and disposed of from Mn/DOT right of way in

front of the former Alex Exhaust building. No free product was observed during the utility line replacements in the vicinity of the project site. Groundwater was not encountered in the excavations to a depth of approximately 12 feet during the utility replacement work near the project site. Groundwater levels encountered in the site soil borings generally indicate a depth to groundwater of 16 to 20 feet below ground surface. A copy of the Documentation Report for State Project 2102-50 TH 29/27 prepared by STS (dated 12/30/2005) is attached in Appendix D. Utility locations are shown on Figures 3, 7 and 7A.

2.11 Is there any evidence that free product or contaminated ground water may be \Box *Yes* \boxtimes *No* traveling off site within the utility corridors?

No free product was observed during investigation activities or during utility line replacements in the Mn/DOT right-of-way. The depth of the utility lines (8 to 12 feet) appears to be just above the site groundwater levels (16 to 20 feet).

If *YES*, a utility backfill investigation is required (refer to Guidance Document 4-01). Discuss the investigation rationale and results.

2.12 Is there a history of field-detectable vapor impacts in the vicinity of the site? \Box Yes \boxtimes No

If YES, describe:

Conduct a vapor survey if the vapor receptor survey and risk evaluation indicate a risk of vapor impact or an infiltration risk from contaminated ground water or free product to utilities or subsurface structures. See Guidance Document 4-02 *Potential Receptor Surveys and Risk Evaluation Procedures at Petroleum Release Sites*. Identify all vapor monitoring locations on the Vapor Survey Map by labeling each monitoring location with a number that corresponds to vapor monitoring locations listed in Table 19. Vapor monitoring methods, including instruments used, must be discussed in Section 6.

2.13 Provide a detailed description of each vapor monitoring location and indicate if vapors were detected.

The storm sewer manhole located approximately 50 feet southwest of the release area was monitored for vapors by STS/AECOM on February 8, 2007 with a PID meter. No PID readings above 1 PID unit were observed at the storm sewer manhole. The location of the vapor monitoring point is illustrated on Figure 4.

Vapor Intrusion Receptors

When vapor intrusion receptors are present, a preliminary vapor intrusion risk assessment must be completed (see Guidance Document 4-01a *Vapor Intrusion Assessments Performed during Site Investigations*). If completed, include the Vapor Intrusion Assessment Map in Section 4 that identifies all vapor intrusion samples and receptors at and within the 100-foot preliminary assessment area.

2.14 Was a preliminary vapor intrusion risk assessment completed? \square *Yes* \square *No*

If NO, explain why.

2.15 Do any of the soil gas samples from locations near inhabited buildings exceed the ISVs by ten times (10X) for petroleum related compounds?

Soil gas concentrations in soil vapor probes VP-1 and VP-2 conducted in the source area(s) and near the site building had vapor concentrations exceeding ten times the ISVs.

If you answered *YES*, is additional characterization of the vapor intrusion pathway needed for these buildings (e.g. sub-slab soil gas, an indoor building survey, or indoor air sampling)? **If** *YES*, complete question 3.4. **If** *NO*, explain why.

VOC exceedances of 100 times the Intrusion Screening Values (ISVs) were detected in two exterior soil gas samples (VP-1(3') and VP-2(8')) collected at the site. VP-2 was conducted in the former dispenser area approximately 30 feet south of the site building. VP-1 was conducted near the site building and the former UST basin area east of the site building. The VOC compounds detected above 100 times the ISVs in VP-1 and VP-2 were benzene, cyclohexane, n-hexane, 1,2,4- and 1,3,5-trimethylbenzene and total xylenes. Results of the soil gas sampling are summarized on Table 20. The existing site building is occupied on a limited basis (less than 8 hours a day) and used as a part-time automobile repair shop according to the property owner (Ben Zacher). The site building is slab-on-grade construction with garage bay doors.

No additional characterization of the vapor intrusion assessment is recommended for this receptor based on the receptor usage as an auto repair facility, the limited occupancy of the building (less than 8 hours a day) and the building construction (slab-on-grade, garage bay doors).

2.16 Have sufficient data been collected to propose a Conceptual Corrective Action Design for buildings that are likely to be impacted by petroleum vapors? □ *Yes* ≥ *No*

If YES, describe your justification for corrective action.

2.17 Based on the horizontal extent of impacted ground water or free product from the release, is additional soil gas sampling required beyond the 100-foot preliminary assessment area near inhabited buildings?

If YES, describe your proposal for additional vapor intrusion sampling.

If NO, explain why.

No free product has been identified from the release and the horizontal extent of groundwater

Guidance Document c-prp4-06: September 2008 Petroleum Remediation Program Minnesota Pollution Control Agency

 \bigtriangledown Yes \Box No

 \Box Yes \boxtimes No

 \Box Yes \boxtimes No

impacts is limited in extent. Elevated vapor concentrations were observed in the source area(s), however the vapor concentrations in the surrounding vapor probes (VP-3 and VP-4) had vapor concentrations less than ten times the ISVs.

2.18 Were recommended field sampling procedures and laboratory QA/QC from Section Wes* No Guidance Document 4-01a followed?

If NO, explain why and discuss implications on data quality.

* The vapor intrusion assessment was conducted in 2007 prior to the October, 2008 Guidance Document Revisions. The field sampling procedures and laboratory QA/QC was conducted in general accordance with Guidance Document 4-01a dated April, 2005.

Site Conceptual Model Discussion

2.19 Provide a detailed site conceptual model (SCM). The SCM should integrate site-specific geology, hydrogeology, and the contaminant distribution with respect to identified exposure pathways (well receptors, surface water receptors, utilities and subsurface receptors, and vapor intrusion receptors). For additional information on SCM development, see Guidance Document 1-01 *Petroleum Remediation Program General Policy*.

Well Receptors

No well receptors were identified within 500 feet of the release source based on the walking well surveys conducted and reviews of published well information including CWI and the MPCA PRP Maps Online. One municipal well (City Well #7A, Unique #214756) is located approximately 2,000 feet northwest of the release area in an up-gradient direction. This municipal well is drilled to a depth of 129 feet below ground surface, however no well construction information is available on the well log for this well. In general, the municipal wells for the City of Alexandria are set below 100 feet in a Quaternary Buried Artesian Aquifer. There does not appear to be a risk to City Well #7A from Leak 15,656 impacts based on the well distance and location from the source area and the lack of identified vertical contaminant migration at the site.

The upper 25 feet of saturated Quaternary soil where petroleum impacts from Leak 15,656 were observed does not constitute an aquifer based on the soil type observed in the soil borings (sandy, silty clay) and the results of the three grain size analysis performed from the saturated zone. The transmissivity value calculated for the upper saturated unit was less than 50 ft²/day and no water supply wells were identified within 500 feet of the release site.

Surface Water Receptors

No surface water receptors were identified within 1/4 mile of the release area. The likelihood of impacts associated with Leak 15,656 contaminating a surface water are minimal based on the extent and magnitude of groundwater impacts present, the lack of nearby surface waters, and the tight clay soils in the area which limit groundwater flow and contaminant migration.

Utilities and Subsurface Receptors

Soil contamination was observed around the subsurface utilities (storm sewer, sanitary sewer and watermain) during the Mn/DOT highway reconstruction work. Contaminated soil excavated to access utility lines and from immediately around the utility lines was removed and disposed of by Mn/DOT. Approximately 1,200 cubic yards of contaminated soil was removed from the Mn/DOT road right-of-way utility work. Imported sand backfill was placed around the utility lines and the remainder of the trench was backfilled with native onsite soils (clay). Residual soil contamination likely remains around the utility lines especially those running to the former Alex Exhaust facility that are outside the Mn/DOT road right-ofway.

No evidence of free product or contaminated groundwater migrating along utility lines was observed during investigation activities. The utility lines in the area are generally set above the groundwater table.

Vapor Intrusion Receptors

A receptor specific vapor probe (VP-1) conducted near the on-site building had exceedances of 100 times the established ISVs for VOC compounds. The site building is currently inhabited on a part-time (less than 8 hours a day) basis and is used as an automobile repair facility. The site building is slab-on-grade construction and has garage bay doors. No additional vapor intrusion characterization appears warranted for the on-site building receptor based on the building occupancy, usage and construction type.

Site usage as an automobile repair facility creates an interior source for petroleum vapors. Sampling of interior air would likely not be able to distinguish between vapor intrusion (subslab/exterior source) and interior vapors.

A soil vapor probe conducted adjacent to the Lloyd's Café building (903 - 3rd Avenue) showed no soil vapor results exceeding 100 times the ISVs. This building is of slab-on-grade construction with no basement.

2.20 Discuss any other site concerns not included in the above discussion

See above discussion in Section 2.19.

Section 3: Site Management Decision

The site management decision should be based on the Program's objectives described in Guidance Document 1-01 *Petroleum Remediation Program General Policy*.

3.1	Recommendation for site:	 site closure additional ground water monitoring additional field-detectable vapor monitoring additional soil gas/vapor intrusion investigation
		Corrective action

3.2 If closure is recommended, summarize significant investigative events and describe how site-specific exposure pathways identified in question 2.19 have been adequately addressed.

Site closure is recommended for Leak 15,656 based on site investigation and corrective action activities completed to date. The release source (UST fuel distribution system) was removed from the site in 1988. Approximately 1,200 cubic yards of petroleum contaminated soil associated with Leak 15,656 was removed from the Mn/DOT road right-of-way including utility lines. No water well receptors were identified within 500 feet of the release source. There does not appear to be a risk to the municipal water supply from Leak 15,656 based on the well receptor survey data collected. No free product or contaminated groundwater was identified migrating along the utility corridors. No additional vapor intrusion characterization appears warranted. No surface soil contamination was identified in the upper 2 feet of the site soils. No risk to surface water was identified.

Following is a brief history of significant site events:

•	May 16, 1988	Four gasoline USTs removed from site, no record of site impacts or removal documentation (Excavation Report),
•	February 5, 2004	Release discovered during soil boring for Mn/DOT TH 29/27 Highway reconstruction and called in to State Duty Officer,
•	Summer, 2005	Approximately 1,200 cubic yards of petroleum contaminated soil associated with Leak 15,656 was excavated and disposed of during Mn/DOT highway reconstruction activities,
•	February 7-8, 2007	STS/AECOM conducted Limited Site Investigation including six soil borings and four soil vapor probes,
•	February 27-28, 2008	STS/AECOM conducted two additional soil borings to define horizontal extent of contamination. STS/AECOM could not conduct all borings necessary for site definition due to property access issues,

• December 12, 2008 STS/AECOM conducted a single temporary well/soil boring (B-9) to define the down-gradient horizontal extent of groundwater impacts.

3.3 If additional ground water or field-detectable vapor monitoring is recommended, indicate the proposed monitoring locations, sampling frequency, and target analytes. Conduct quarterly ground water monitoring and sampling until the MPCA responds to this report.

No additional groundwater or vapor monitoring is recommended.

3.4 If additional vapor intrusion investigation is recommended, provide details of proposed activities such as completing an indoor building survey, sub-slab vapor sampling, indoor air sampling, or locations for additional soil gas sampling.

No additional vapor intrusion investigation is recommended.

3.5 If corrective action is recommended, provide a conceptual approach by completing Guidance Document 4-19 *Conceptual Corrective Action Design Worksheet* and include in Section 6. See Guidance Document 4-10 *Elements of the Corrective Action Design* for more information on the corrective action design process and other requirements. (Note: MPCA staff will review this report at a higher-than-normal priority to determine if corrective action is required.)

No corrective action is recommended.

Section 4: Figures

 \square

Attach the following figures in order of discussion in the text. All figures must include a north arrow, scale, and legend. Approximate scales are not acceptable.

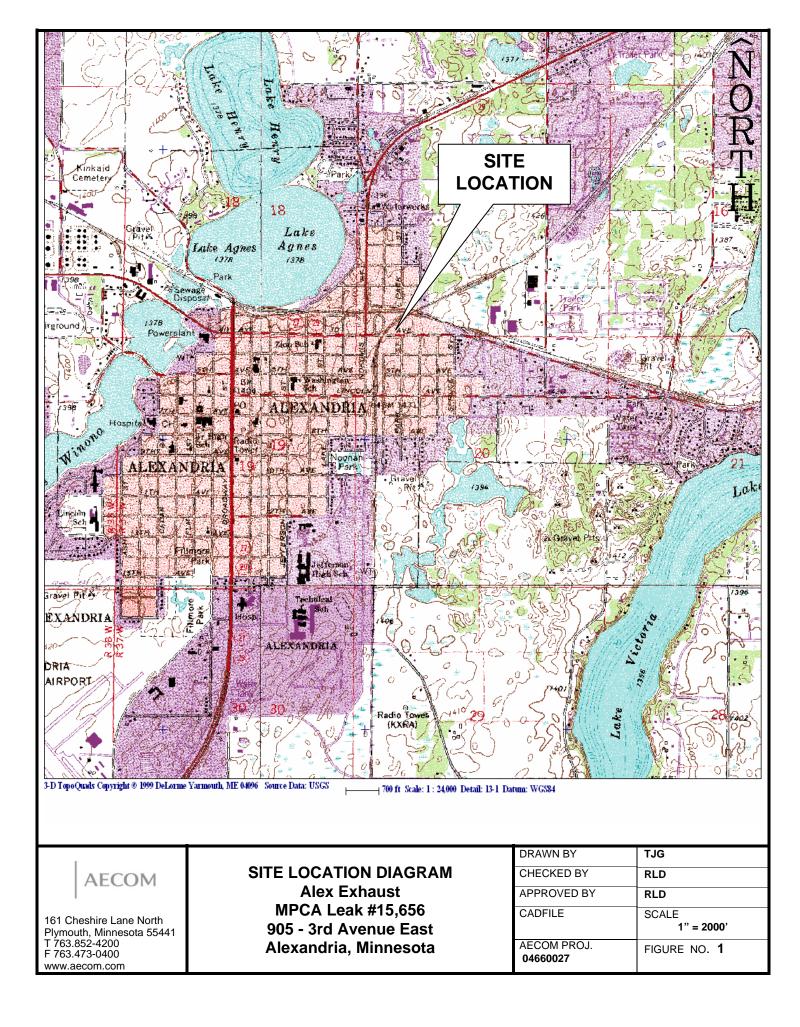
Figure 1 - Site Location Diagram - using a U.S. Geological Survey 7.5 minute quadrangle map.

Figure 2 - Aerial Photograph

One or more Site Maps showing:

- Figure 3 Soil Boring/Utility Location Diagram
- Figure 4 Soil Vapor Sampling Location Diagram
- Figure 5 Horizontal Extent of Soil Contamination
- Figure 6 Horizontal Extent of Groundwater Contamination

Figure 7 - Cross-Section Alignment Location Diagram
 Figure 7A - Cross Section Diagram A-A' & B-B'
 At least two (2) geologic cross sections depicting stratigraphy, soil headspace results, laboratory analytical results, water table elevation, and underground utilities.


Ground water gradient contour maps (for sites with monitoring wells) for each gauging event.

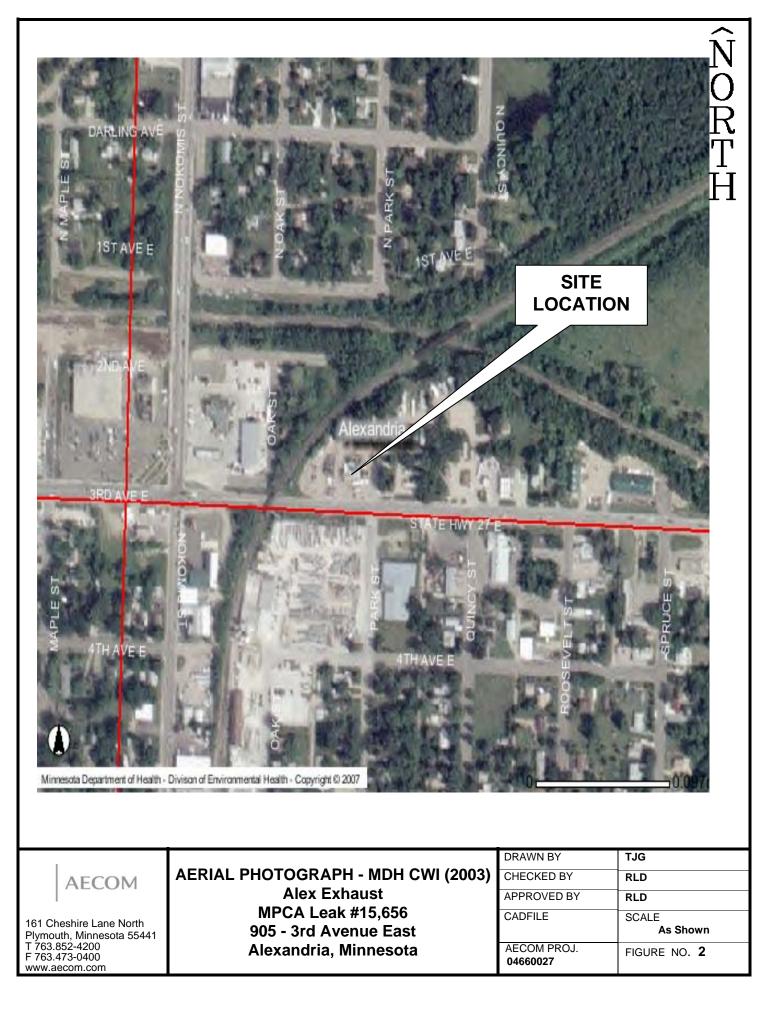

Figure 8 - **Potential Receptor Map** Potential Receptor Map (scale 1 inch = 50 to 100 feet), centered on the release area, showing property boundaries and roads, and potential receptors such as buildings, water wells, underground utilities (distinguish between water, storm sewer, and sanitary sewer), surface waters, ditches, and any other pertinent items within 500 feet of the release source.

Figure 9 - Potential Well Receptor Survey Well Receptor Survey Map showing ¹/₂-mile radius, 500-foot radius, water supply wells, and other potential sources of contamination on a U.S. Geological Survey 7.5 minute quadrangle map.

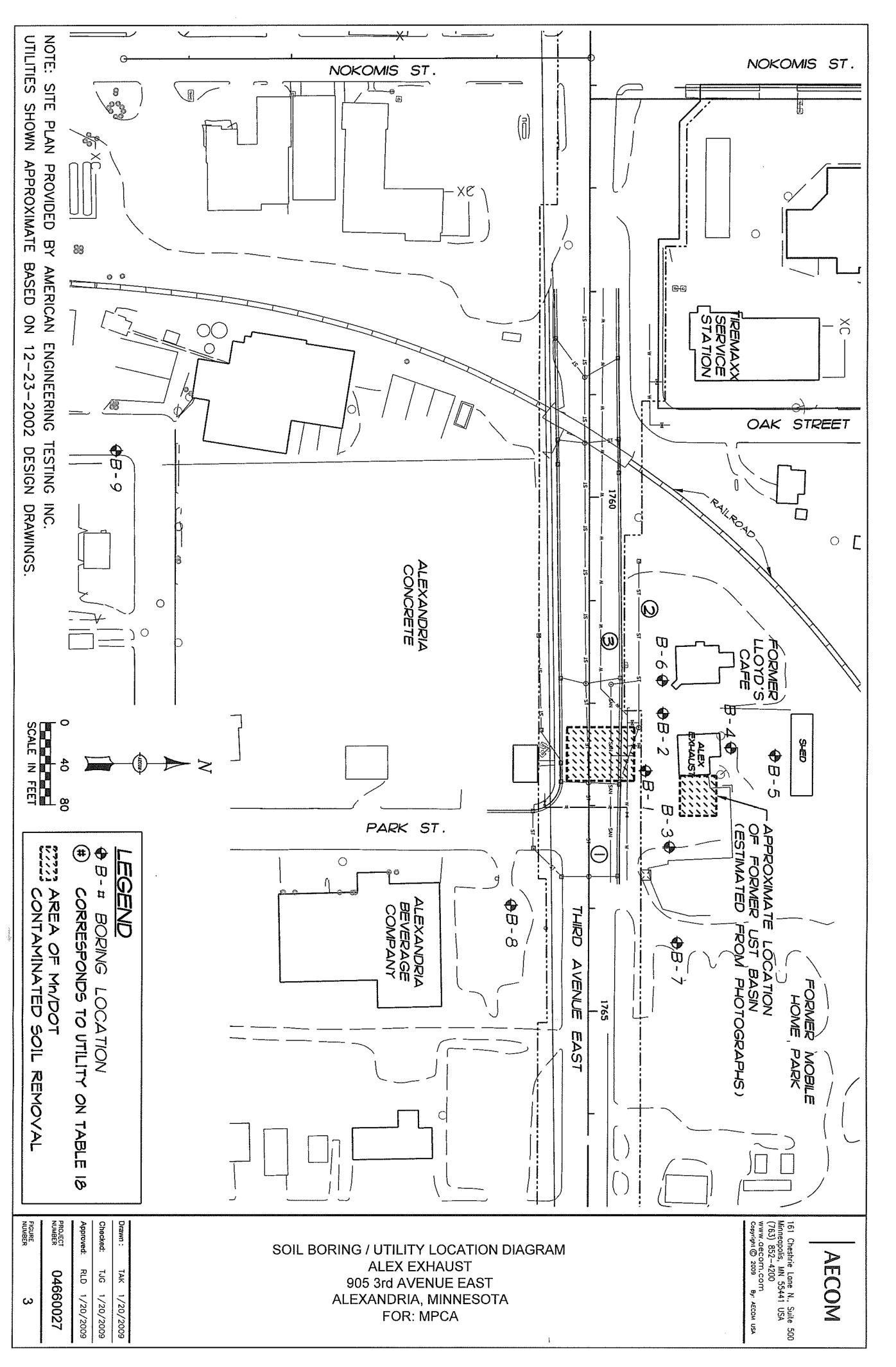
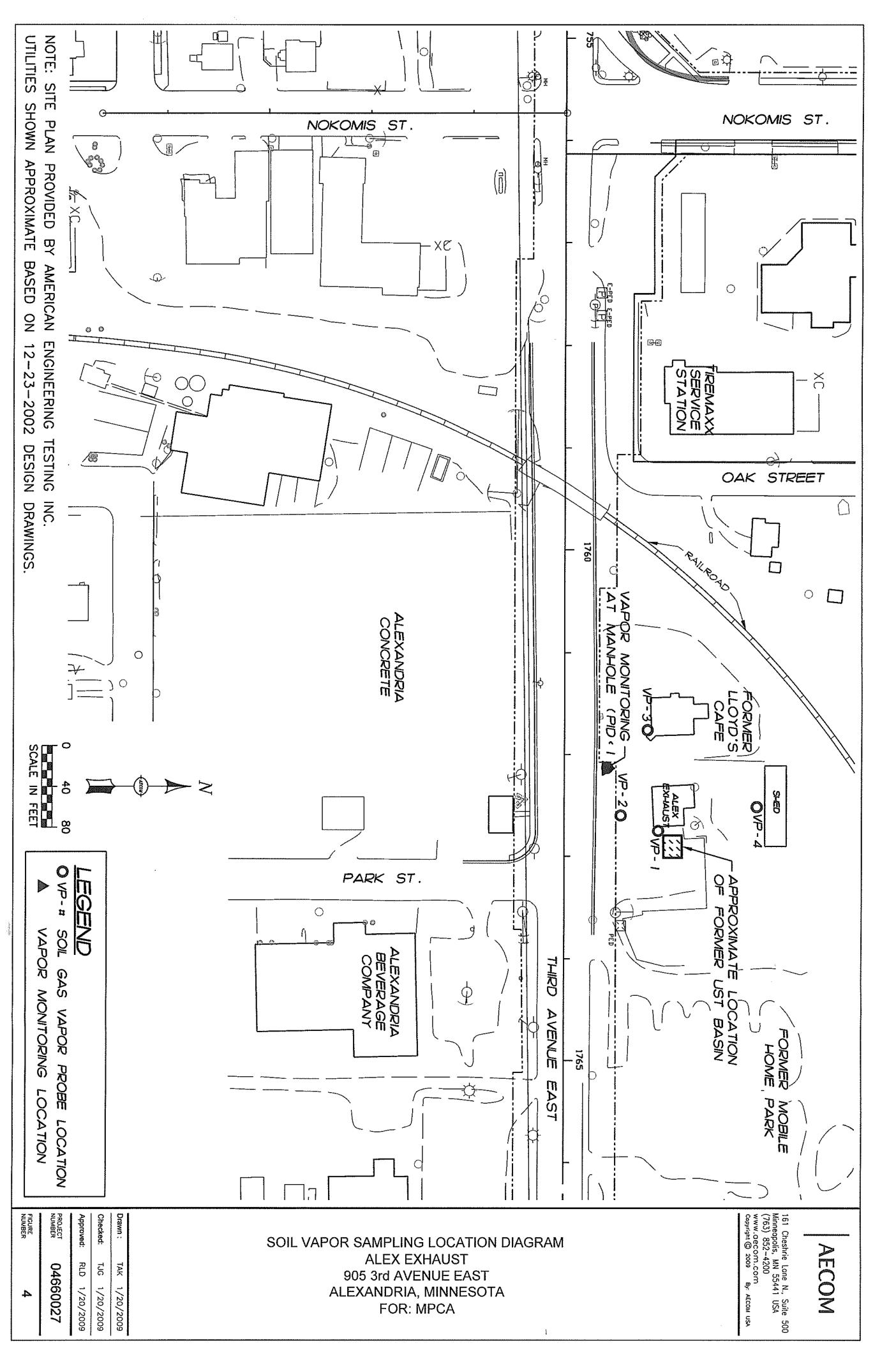
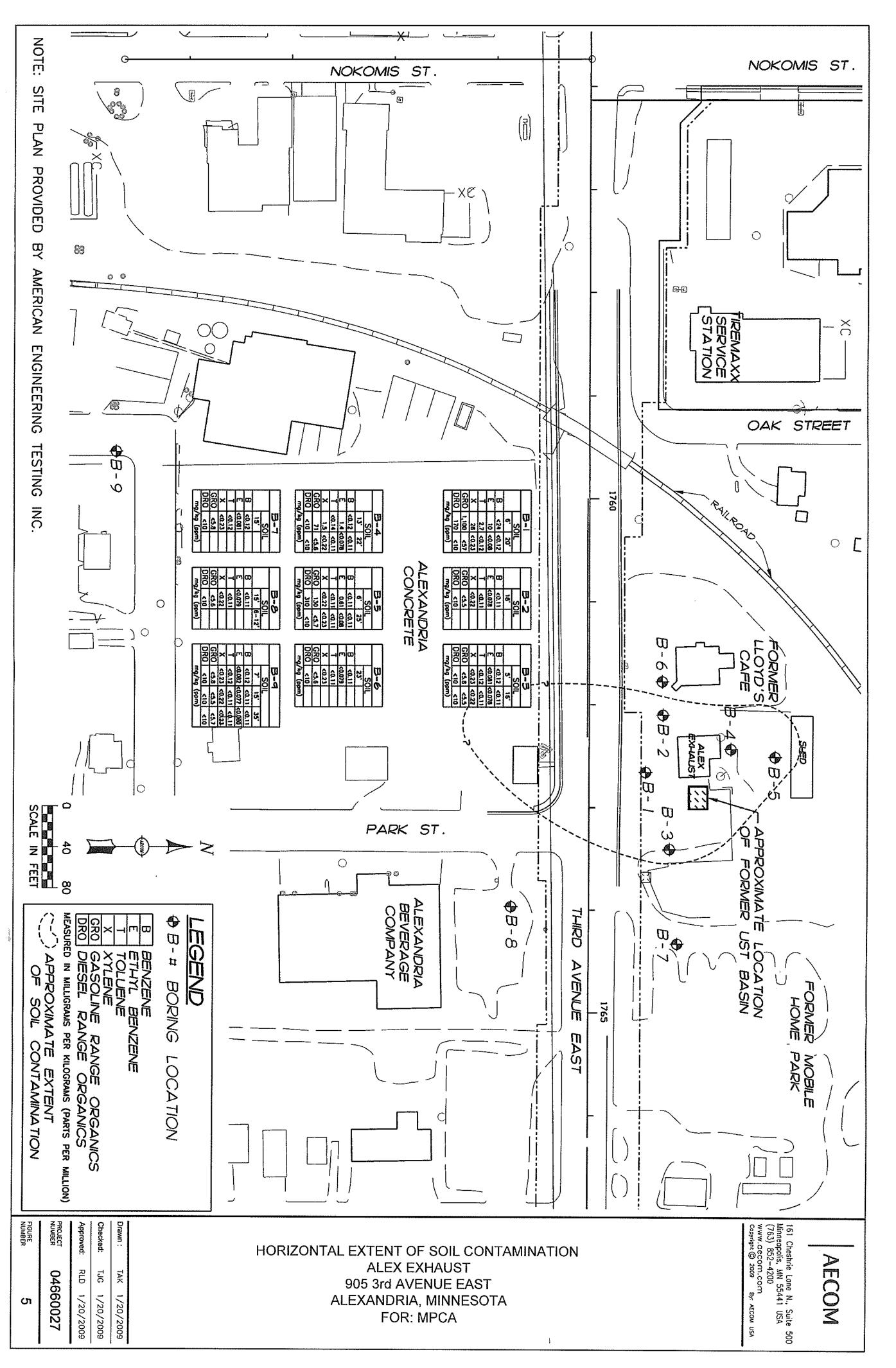
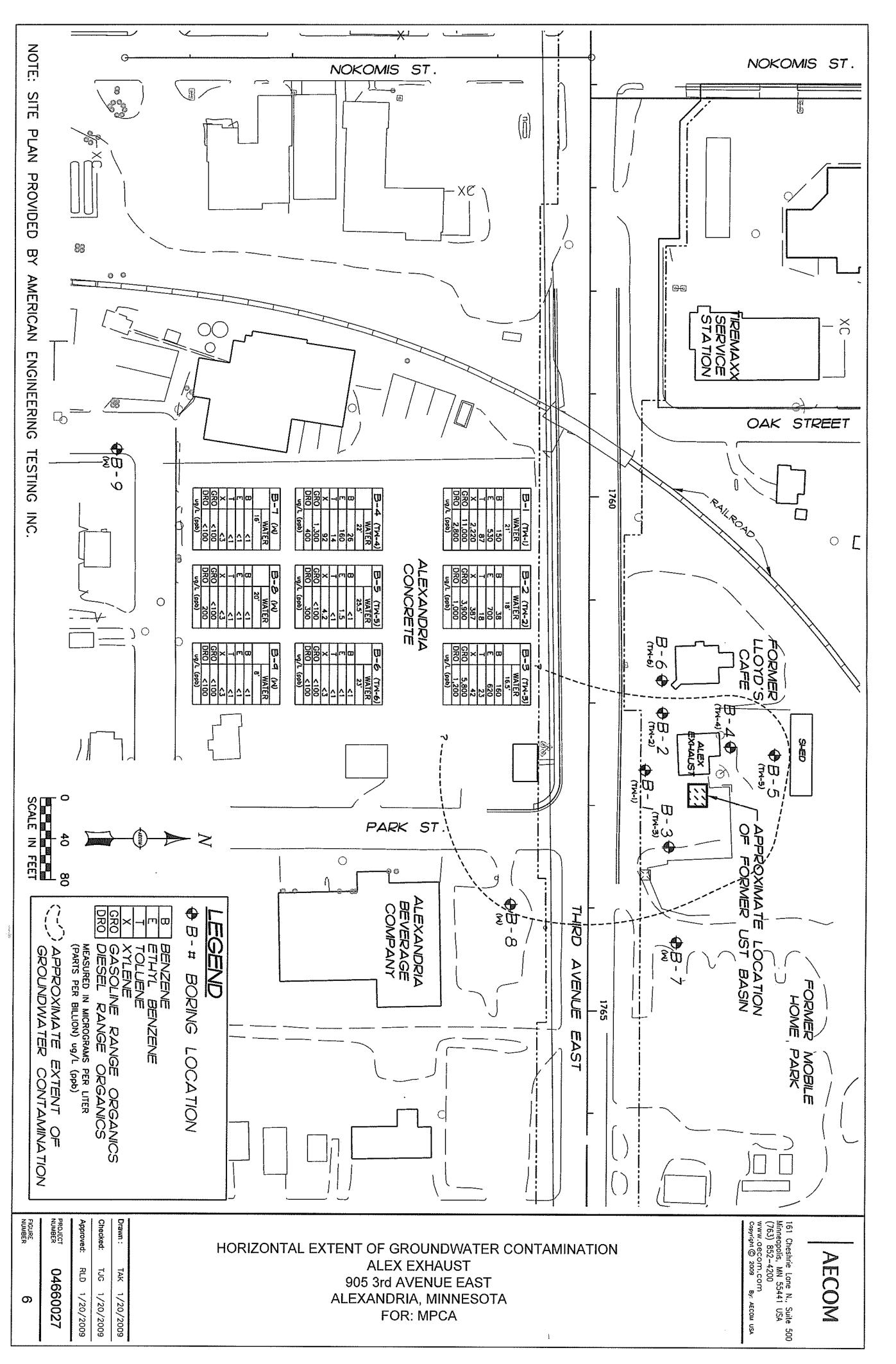
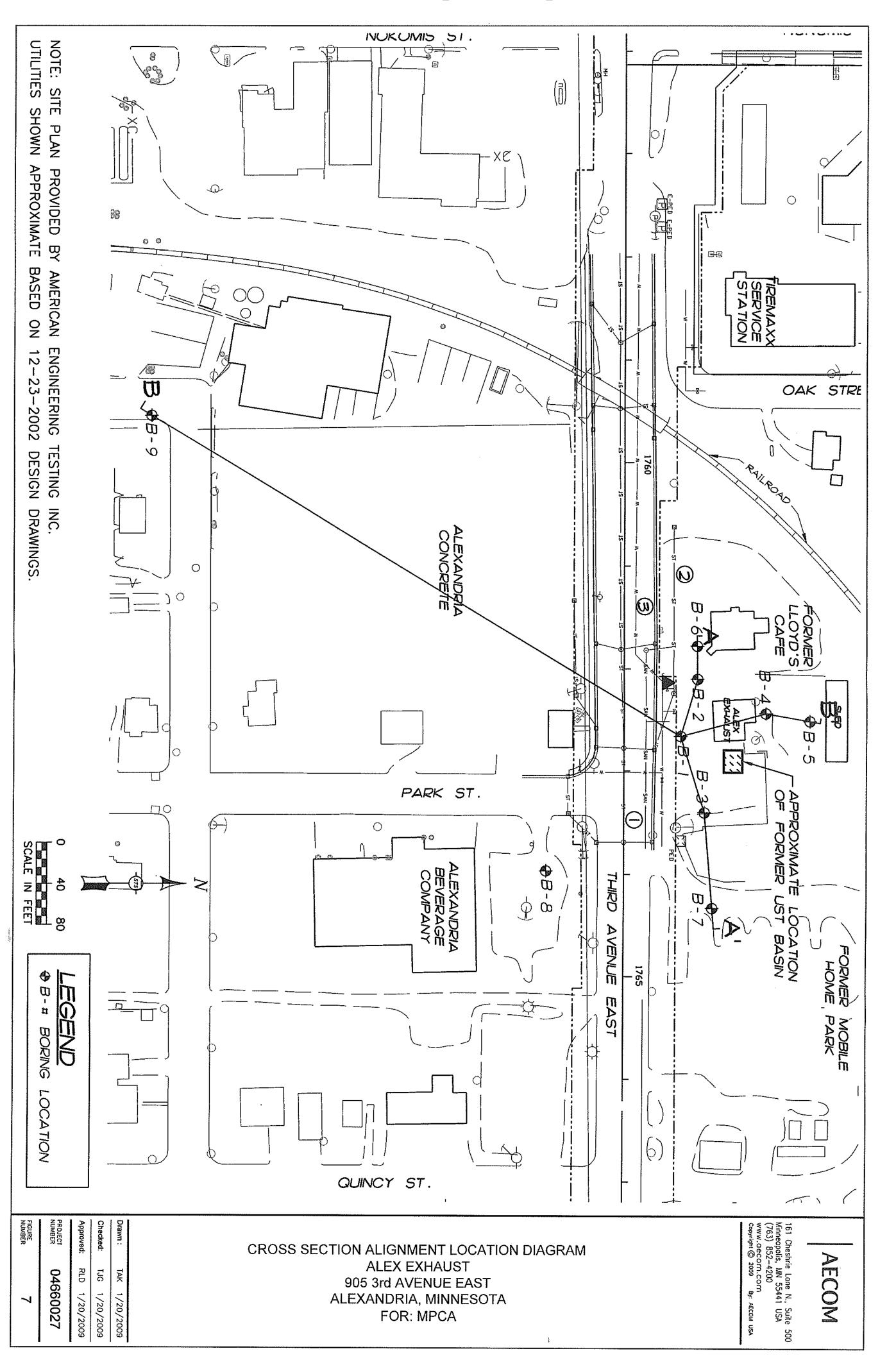

Vapor Survey Map showing utilities and buildings with basements and monitoring locations within 500 feet (if a survey was required). If the survey area has been expanded beyond 500 feet, adjust the map to encompass the entire surveyed area.

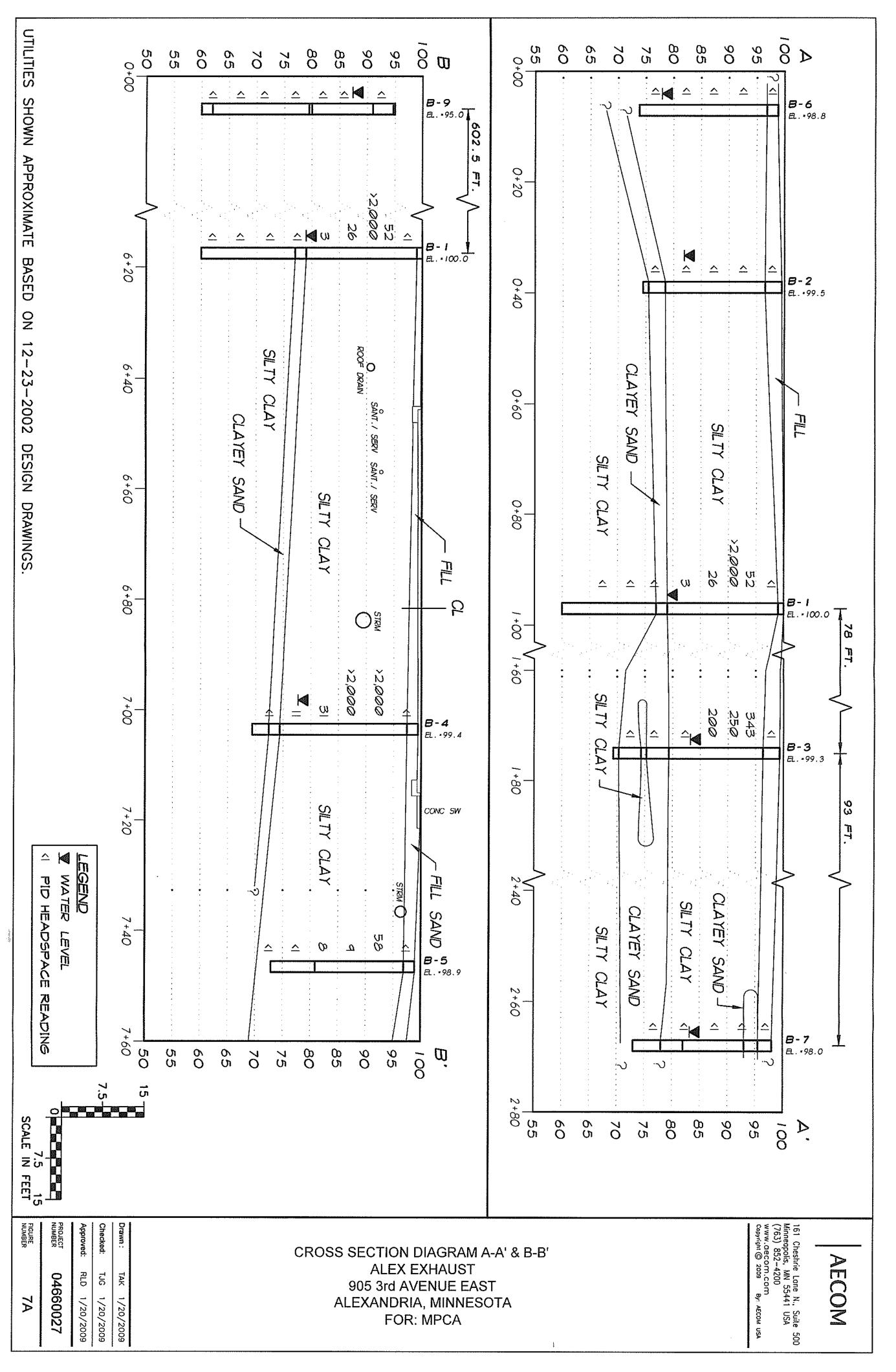
Figure 4 - Vapor Intrusion Assessment Map showing all vapor intrusion samples and receptors at and within the 100-foot preliminary assessment area. If the assessment area has been expanded beyond 100 feet, adjust the map to encompass the entire assessment area.

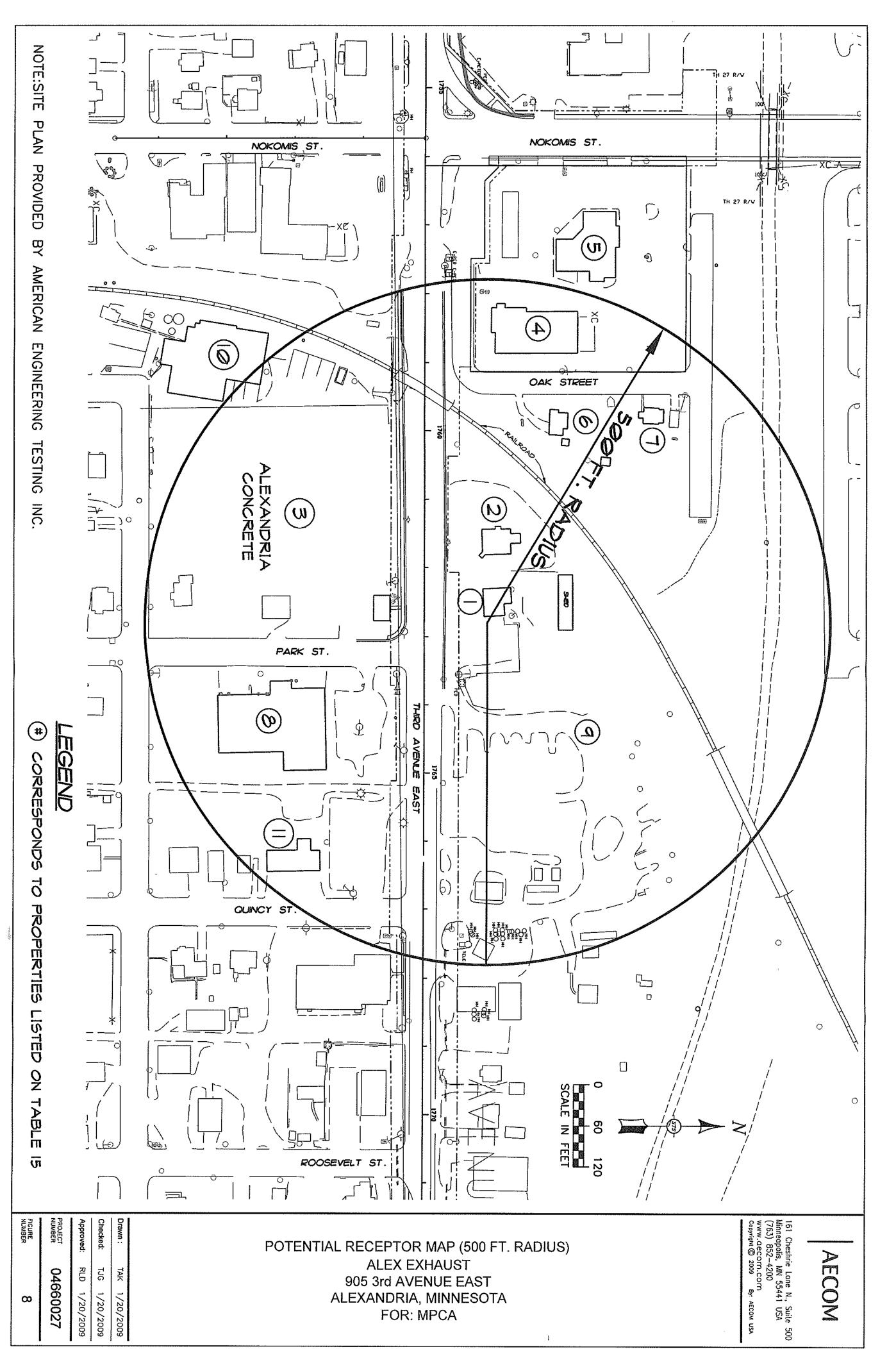


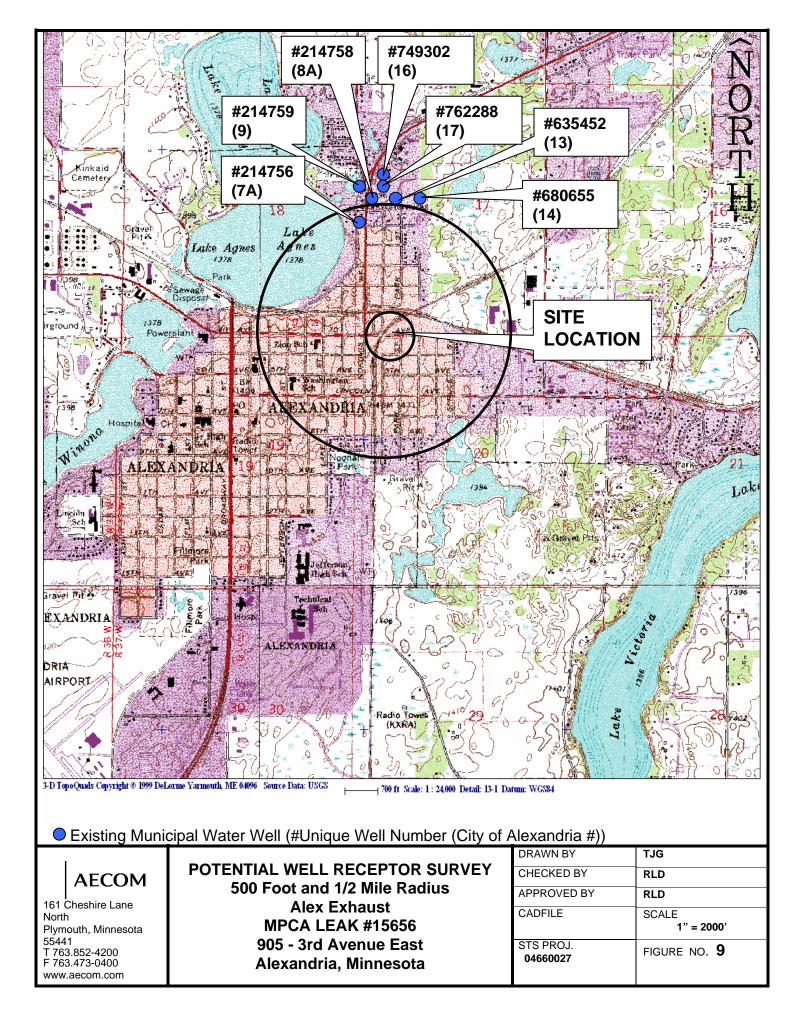

:\PROJECTS\04660027\G04660027-ENV-01.dwg, FIG.3, 2/4/2009 2:35:24 PM, STS_PLOTSTAMP, STS_PLOTSTAMP


:\PROJECTS\04660027\G04660027-ENV-01.dwg, FIG.4, 1/26/2009 4:47:30 PM, STS_PLOTSTAMP, STS_PLOTSTAMP


:\PROJECTS\04660027\G04660027-ENV-01.dwg, FIG.5, 1/26/2009 4:47:46 PM, STS_PLOTSTAMP, STS_PLOTSTAMP


:\PROJECTS\04660027\G04660027-ENV-01.dwg, FIG.6, 1/28/2009 11:13:57 AM, STS_PLOTSTAMP, STS_PLOTSTAMP


:\PROJECTS\04660027\G04660027-ENV-01.dwg, FIG.7, 1/26/2009 4:48:10 PM, STS_PLOTSTAMP, STS_PLOTSTAMP



:\PROJECTS\04660027\G04660027-ENV-01.dwg, FIG.7A, 2/4/2009 2:37:41 PM, STS_PLOTSTAMP, STS_PLOTSTAMP

:\PROJECTS\04660027\G04660027-ENV-01.dwg, FIG.8, 2/4/2009 2:34:25 PM, STS_PLOTSTAMP, STS_PLOTSTAMP

Leak 15,656 – Alex Exhaust AECOM Project 04660027 Page 26

Section 5: Tables

Guidance Document c-prp4-06: September 2008 Petroleum Remediation Program Minnesota Pollution Control Agency

Table 1
Tank Information

Tank #	Tank Material ¹	UST or AST	Capacity (gallons)	Contents (product type)	Year Installed	Tank Status ²	Tank Condition
1	S	UST	2,000	Unknown	Unknown	Removed (5/16/88)	Fair (see photographs in Appendix F)
2	S	UST	3,000	Unknown	Unknown	Removed (5/16/88)	Fair (see photographs in Appendix F)
3	S	UST	3,000	Unknown	Unknown	Removed (5/16/88)	Fair (see photographs in Appendix F)
4	S	UST	3,000	Unknown	Unknown	Removed (5/16/88)	Fair (see photographs in Appendix F)

Notes:

¹ "F" for fiberglass or "S" for steel

² Indicate; removed (date), abandoned in place (date), or currently in use.

Tank Information was obtained from the City of Alexandria Fire Marshall (Mr. Dennis Stark)

Table 2Results of Soil Headspace Screening
(PID Units)

Depth (ft.)				S	Soil Boring				
	B-1	B-2	B-3	B-4	B-5	B-6	B-7	B-8	B-9
0-2.5	<1	<1	<1	<1	<1	<1	<1	<1	<1
2.5-5	52	<1	343	<1	<1	<1	<1	<1	<1
5-7.5	>2000	<1	250	>2000	58	<1	<1	<1	<1
7.5-10	>2000	<1	205	>2000	55	<1	<1	<1	<1
10-12.5	26	<1	202	>2000	9	<1	<1	<1	<1
12.5-15	26	<1	200	>2000	8	<1	<1	<1	<1
15-17.5	3	<1	<1	31	8	<1	<1	<1	<1
17.5-20	3	<1	<1	29	<1	<1	<1	<1	<1
20-22.5	<1	<1	<1	11	<1	<1	<1	<1	<1
22.5-25	<1	45	<1	10	<1	<1	<1	<1	<1
25-27.5	<1	EOB = 25'	<1	<1	<1	EOB= 25'	EOB= 25'	<1	<1
27.5-30	<1		21	<1	EOB = 26'			<1	<1
30-32.5	<1		EOB = 30'	EOB = 30'				EOB = 30'	<1
32.5-35	<1								<1
35-37.5	<1								EOB = 35'
37.5-40	<1								
	EOB = 40'								

Notes:

EOB = End of Boring

BOLD = Elevated PID Headspace (greater than 10 PID units)

Boring ID	Sampled Depth (ft.)	Date Sampled	Benzene	Toluene	Ethyl- Benzene	Xylenes	GRO	DRO	Lab Type
B-1	6	02/08/07	<2.4	2.7	10	28	1100	170	Fixed
B-1	20	02/08/07	< 0.12	< 0.12	< 0.08	< 0.23	<57	<10	Fixed
B-2	18	02/07/07	< 0.11	< 0.11	< 0.078	< 0.22	<5.5	<10	Fixed
B-3	5	02/07/07	< 0.12	< 0.12	< 0.081	< 0.23	<5.8	<10	Fixed
B-3	16	02/07/07	< 0.11	< 0.11	< 0.078	< 0.22	<5.5	<10	Fixed
B-4	13	02/07/07	< 0.12	< 0.14	1.4	1.5	71	<10	Fixed
B-4	22	02/07/07	< 0.11	< 0.11	< 0.078	< 0.22	<5.6	<10	Fixed
B-5	6	02/07/07	< 0.11	< 0.11	0.61	< 0.22	130	310	Fixed
B-5	25	02/07/07	< 0.11	< 0.11	< 0.08	< 0.23	<5.7	<10	Fixed
B-6	23	02/07/07	< 0.11	< 0.11	< 0.079	< 0.23	<5.6	<10	Fixed
B-7	15	02/27/08	< 0.12	< 0.12	< 0.081	< 0.23	<5.8	<10	Fixed
B-8	15	02/27/08	< 0.11	< 0.11	< 0.079	< 0.22	<5.6	<10	Fixed
B-9	7	12/12/08	< 0.12	< 0.12	< 0.082	< 0.23	<5.8	<10	Fixed
B-9	15	12/12/08	< 0.11	< 0.11	< 0.077	< 0.22	<5.5	<10	Fixed
B-9	35	12/12/08	< 0.11	< 0.11	< 0.080	< 0.23	<5.7	<10	Fixed
SLV		June-05	0.034*	6.4	4.7	45	NE	NE	
SRV		May-07	6	107	200	45	NE	NE	

Table 3 Analytical Results of Soil Samples

(Results are in mg/kg)

Notes:

A less than (<) sign indicates the analytical result is below the lab's detection limit.

BOLD = Result is above detection limits.

= Compound detected above SLV

SLV = MPCA Tier 1 Soil Leaching Value.

SRV 1= MPCA Tier 1 (Chronic, Residential Property) Soil Reference Value.

NE = None established.

* = Laboratory reporting limits exceed SLV.

Table 4

Other Contaminants Detected in Soils (Petroleum or Non-petroleum Derived)¹

SOIL SAMPLES WERE ANALYZED FOR BTEX, GRO AND DRO ONLY

Boring ID	Sampled Depth	Date sampled	Naphthalene mg/kg	1,2,4-TMB mg/kg	1,3,5-TMB mg/kg	Lab Type
SLV						
SRV						

Notes:

Table 5Contaminated Surface Soil Results

NO SURFACE SOILS WITH A HEADSPACE GREATER THAN 10 PID UNITS WERE OBSERVED

Sample ID	Headspace 10 ppm or Greater ¹ (Y/N)	Petroleum Saturated (Y/N)

¹As measured with a photoionization detector (PID). Notes:

Table 6 Water Level Measurements and Depths of Water Samples Collected from Borings

		Soil Boring											
	B-1 (TW-1)	B-2 (TW-2)	B-3 (TW-3)	B-4 (TW-4)	B-5 (TW-5)	B-6 (TW-6)	B-7	B-8	B-9				
Static Water Level Depth ¹ (ft)	21	17.6	16.1	21.7	25.2	22.5	15.8	19.7	7.6				
Sampled Depth (ft.)	~21	~18	~16.5	~22	~25.5	~23	~16	~20	~8				
Sampling Method ²	Peristaltic Pump	Peristaltic Pump	Peristaltic Pump	Peristaltic Pump	Peristaltic Pump	Peristaltic Pump	Peristaltic Pump	Peristaltic Pump	Peristaltic Pump				

Notes:

Table 7 Analytical Results of Water Samples from Borings¹

(Analytical Results in µg/l)

Boring ID	Date Sampled	Sampled Depth (ft)	Benzene	Toluene	Ethyl Benzene	Xylenes	MTBE	GRO	DRO	Lab Type
B-1 (TW-1)	02/08/07	21	150	87	530	2,220	<20	11,000	2,800	Fixed
B-2 (TW-2)	02/07/07	18	38	18	700	387	<1	3,900	1,000	Fixed
B-3 (TW-3)	02/07/07	16.5	160	23	620	42	<10	5,800	1,200	Fixed
B-4 (TW-4)	02/07/07	22	26	14	160	92	<1	1,300	400	Fixed
B-5 (TW-5)	02/07/07	25.5	<1	<1	1.5	4.2	<1	<100	300	Fixed
B-6 (TW-6)	02/07/07	23	<1	<1	<1	<3	<1	<100	<100	Fixed
B-7(W)	02/27/08	16	<1	<1	<1	<3	<1	<100	<100	Fixed
B-77 (W) (Duplicate of B-7 (W))	02/27/08	16	<1	<1	<1	<3	<1	<100	<100	Fixed
B-8 (W)	02/28/08	20	<1	<1	<1	<3	<1	<100	200	Fixed
B-9 (W)	12/12/08	8	<1	<1	<1	<3	<1	<100	<100	Fixed
B-99 (W) Duplicate of B-9 (W)	12/12/08	8	<1	<1	<1	<3	<1	<100	<100	Fixed
Field Blank	02/08/07		<1	<1	<1	<3	<1	<100	<100	Fixed
Trip Blank	02/27/08		<1	<1	<1	<3	<1	<100	NA	Fixed
Field Blank	02/28/08		<1	<1	<1	<3	<1	<100	<100	Fixed
Trip Blank	12/12/08		<1	<1	<1	<3	<1	<100	NA	Fixed
Field Blank	12/12/08		<1	<1	<1	<3	<1	<100	<100	Fixed
HRL	07/01/07		5	1000	700	10,000	NE	NE	NE	per MDH,
HBV	03/25/05		NE	NE	NE	NE	70	200	200	MPCA

Notes:

A less than (<) sign indicates the analytical result is below the lab's quantitation limit shown

BOLD type indicates the sample concentration equals or exceeds the HRL/HBV

HRL = Minnesota Department of Health's "Health Risk Limit for drinking water"

HBV = Health Based Value, based on MPCA Drinking Water Criteria for "TPH"

NE = Not Established

Table 8 Other Contaminants Detected in Water Samples Collected from Borings (Petroleum or Non-petroleum Derived)

(Analytical Results in µg/l)

Well Number	Date Sampled	Sampled Depth (ft)	1,2,4- Trimethyl benzene	1,3,5- Trimethyl benzene	1,2- Dichlorobenzene	1,2- Dichloroethane	Naphthalene	n-Propylbenzene	lsopropylbenzene	p- Isopropyltoluene	sec- butylbenzene	Tetrahydrofuran
B-1 (TW-1)	02/08/07	21	1200	380	<20	370	210	180	61	<20	23	<100
B-2 (TW-2)	02/07/07	18	200	150	2.3	<2	77	83	38	1.9	4.2	<5
B-3 (TW-3)	02/07/07	16.5	<10	75	<10	<20	30	130	65	<10	12	<50
B-4 (TW-4)	02/07/07	22	53	21	<1	<2	18	19	9.2	1.2	1.8	<5
B-5 (TW-5)	02/07/07	25.5	8	2.5	<1	<2	<2	1.1	<1	<1	<1	<5
B-6 (TW-6)	02/07/07	23	<1	<1	<1	<2	<2	<1	<1	<1	<1	<5
B-7(W)	02/27/08	16	<1	<1	<1	<2	<2	<1	<1	<1	<1	<5
B-77 (W) (Duplicate of B-7 (W))	02/27/08	16	<1	<1	<1	<2	<2	<1	<1	<1	<1	<5
B-8 (W)	02/28/08	20	<1	<1	<1	<2	<2	<1	<1	<1	<1	<5
B-9 (W)	12/12/08	8	<1	<1	<1	<2	<2	<1	<1	<1	<1	<5
B-99 (W) Duplicate of B-9 (W)	12/12/08	8	<1	<1	<1	<2	<2	<1	<1	<1	<1	<5
Field Blank	02/08/07		<1	<1	<1	<2	<2	<1	<1	<1	<1	12
Trip Blank	02/27/08		<1	<1	<1	<2	<2	<1	<1	<1	<1	<5
Field Blank	02/28/08		<1	<1	<1	<2	<2	<1	<1	<1	<1	<5
Trip Blank	12/12/08		<1	<1	<1	<2	<2	<1	<1	<1	<1	<5
Field Blank	12/12/08		<1	<1	<1	<2	<2	<1	<1	<1	<1	<5
HRL	07/01/07		NE	NE	600	4	300	NE	300*	NE	NE	NE
HBV	03/25/05		NE	300	NE	NE	NE	NE	NE	NE	NE	100

Notes:

A less than (<) sign indicates the analytical result is below the lab's quantitation limit shown **BOLD** type indicates the sample concentration equals or exceeds the HRL/HBV

HRL = Minnesota Department of Health's "Health Risk Limit for drinking water"

HBV = Health Based Value, based on MPCA Drinking Water Criteria for "TPH"

NE = Not Established

Table 9

Monitoring Well Completion Information¹

NO MONITORING WELLS WERE INSTALLED FOR THIS RELEASE

Well Number	MDH Unique Well Number	Date Installed	Surface Elevation	Top of Riser Elevation	Bottom of Well (Elevation)	Screen Interval (Elev Elev.)	Well Stickup	Total Well Depth from Surface (ft)
1					0.0		0.00	
2					0.0		0.00	
3					0.0		0.00	
4					0.0		0.00	
5					0.0		0.00	
6					0.0		0.00	
7					0.0		0.00	
8					0.0		0.00	
9					0.0		0.00	
10					0.0		0.00	

¹ Include well construction diagrams and MDH well logs in Section 6. Notes: (location and elevation of benchmark)

Table 10Water Level Measurements in Monitoring Wells

NO MONITORING WELLS WERE INSTALLED FOR THIS RELEASE

Well Number (Unique Number)	Date	Depth to Water from Top of Riser	Product Thickness	Depth to Water Below Grade	Relative Groundwater Elevation	Water Level Above Screen (Y/N)
1						
2						
3						
4						

¹Describe the methods used to measure water levels in Section 6. Notes:

Table 11

Analytical Results of Water Samples Collected from Wells¹ (all units expressed in ug/l - ppb)

NO MONITORING WELLS WERE INSTALLED FOR THIS RELEASE

Well #	Date Sampled	Benzene	Toluene	Ethyl Benzene	Xylenes	MTBE	GRO	DRO	Lab Type ²
MW-1									
MW-2									
MW-3									
MW-4									
Trip Blank									
Field Blank									
Lab Blank									
HRL(ug/L)									

¹ Report results in ug/L. Use less than symbols to show detection limit. ² Indicate "mobile" or "fixed" in the lab type column.

Table 12 **Other Contaminants Detected in Water Samples Collected from Wells (Petroleum or Non-petroleum Derived)**

NO MONITORING WELLS WERE INSTALLED FOR THIS RELEASE

Well Number	Date Sampled	1,2 DCA	EDB		
MW-1					
MW-2					
MW-3					
Field Blank					
Trip Blank					
Lab Blank					
HRL (ug/L)					

¹ Report results in ug/L. Use less than symbols to show detection limit. ² Indicate "mobile" or "fixed" in the lab type column.

Table 13Natural Attenuation Parameters

NO MONITORING WELLS WERE INSTALLED FOR THIS RELEASE

Well Number	Sample Date	Temp. °C	рН	Dissolved Oxygen (mg/L)	Nitrate (mg/L)	(Fe II) (mg/L)	(H ₂ S, HS ⁻) (mg/L)
MW-1							
MW-2							
MW-3							
MW-4							

Describe the methods and procedures used in Section 6. Notes:

Table 14Free Product Recovery

NO FREE PRODUCT HAS BEEN ENCOUNTERED

Recovery		Pre-Recovery Measurements					Event Recovery ³		Cumulativ		
Location ID	Recovery Date	Depth to FP ¹ (ft)	Depth to GW ² (ft)	FP Thickness (ft)	FP Volume (gal)	Recovery Method	FP (gal)	GW (gal)	FP (gal)	GW (gal)	Comments
MW-1											
MW-2											
MW-3											
MW-4											

¹ FP = Free Product

 2 GW = Ground Water

³ Volume recovered during individual recovery event for that location.

⁴ Cumulative volume recovered at each recovery location (i.e., keep a running total for each recovery point).

Describe the methods and procedures used in Section 6. Add additional rows as needed.

Notes:

Table 15
Properties Located within 500 feet of the Release Source

		Distance		Water Supply Well		Public Wa	ter Supply			Possible	
Prop ID	Property Address	From Site (ft)	Well Present (Y/N)	How Determined	Well Use	Utilized (Y/N)	Confirmed by City (Y/N)	Basement (Y/N)	Sump (Y/N)	Petroleum Sources (Y/N)	Comments (including property use)
1	905 3rd Avenue East	0 - Project Site Address	N	Visual + Telephone Conversation with Property Owner	NA	NA	Y	N	N	Y	Former Service Station/Automobile Repair Shop
2	903 3rd Avenue East	~80' west	Ν	Visual + Telephone Conversation with Property Owner	NA	NA	Y	Ν	Ν	Ν	Lloyd's Café
3	924 3rd Avenue East	~140' south	Ν	Visual + Telephone Conversation with Site Manager	NA	NA	Y	Ν	N	Y	Alexandria Concrete Company, Inc.
4	801 3rd Avenue East	~400' northwest	Ν	Visual + Personal Contact	NA	NA	Y	Ν	N	Y	Alexandria Tire and Auto/TireMaxx Service Center
5	209 Nokomis Street	~500' northwest	Ν	Visual + Personal Contact	NA	NA	Y	Ν	N	Y	Gas Station/Burger King Restaurant
6	207 Oak Street	~250' northwest	Ν	Visual + Personal Contact	NA	NA	Y	Y	Ν	Ν	Single Family Residence
7	203 Oak Street	~380' northwest	Ν	Visual + Personal Contact	NA	NA	Y	Y	Ν	Ν	Single Family Residence
8	1102 3rd Avenue East	~200' southeast	Ν	Visual + Personal Contact	NA	NA	Y	Ν	N	Ν	Alexandria Beverage Company
9	1023 3rd Avenue East	~60' east	N	Visual + Telephone Conversation with Property Owner	NA	NA	Y	N	N	N	Former Mobile Home Park (vacant lot)
10	901 4th Avenue East	~500' southwest	N	Visual + Telephone Conversation with Site Manager	NA	NA	Y	N	N	Y	Morrelle London Aggregate, LLC
11	312 Quincy Street	~300' southeast	Ν	Visual + Personal Contact	NA	NA	Y	Ν	Ν	Ν	Alex Rubbish

Notes:

NA = Not applicable

Table 16Water Supply Wells Located Within 500 Feet of theRelease Source and Municipal or Industrial Wells Within ½ Mile

Property ID	MDH Unique Well Number		Total Depth (ft)	Base of Casing (ft)	Static Elevation	Aquifer	Use	Owner	Distance & Direction from source (ft)
City Well 7A*	214756	1405	129	No Record	1367	QBAA	Municipal		Approximately 2,500 feet north

Notes:

No water supply wells were identified within 500 feet of the release source

* This municipal well is located approximately 2,500 feet north of the release site

Table 17Surface Water Receptor Information

NO SURFACE WATERS WERE IDENTIFIED WITHIN 1/4 MILE OF THE RELEASE SITE

Map ID ¹	Name and Type ²	Distance and Direction from Plume Edge (ft)	Clean Boring/Well Between? ³ (Y/N)

¹ Map ID should correspond to a surface water feature ID on the Potential Receptor Map.

² Type includes, but is not limited to, lake, retention pond, infiltration pond, ditch, intermittent stream, river, creek, rain garden, etc.

³ If the surface water feature is up-gradient or cross-gradient from the site, indicate so with "NA" for not applicable. Notes:

Table 18 **Utility Receptor Information**

Utility ID	Description	Construction Material	Depth to Top of Structure	Diameter	Flow Direction (for liquids)	Year Installed	Backfill Material	Distance to Water Table
1	Sanitary sewer main between Park Street and Nokomis	PVC	8 ft	8 inch	East	2005	Imported Sand/Native soil	~16 feet
2	Storm Sewer Main between Park Street and Nokomis	Concrete	10 ft.	30 inch	East	2005	Imported Sand/Native soil	~16 feet
3	Watermain between Park Street and Nokomis	Copper	8ft.	12 inch	East	2005	Imported Sand/Native soil	~16 feet

Notes:

Utility ID # corresponds to Utility Location on Figure 3

Utility ID	Name, title, and telephone number for public entity contacted to obtain information or other source of information
1,2,3	Tim Schoonhoven, City Engineer (WSN), (320) 762-8149
Notes:	

Notes:

Table 19Vapor Survey Results

Location ID	Description	Monitoring Date	PID reading (PID units)	Percent of the LEL
VM-1	Storm Sewer Manhole	2/8/2007	<1	NA

Notes:

NA = Not Analyzed

Table 20Results of Soil Gas Sampling for Vapor Intrusion Screening
Results and ISV Standards are Reported in µg/m³

Sample ID	VI	P-1	VP-2 (W	orst Case)		VP-3		VP-4	Fiel	d Blank	
Date	2/8/2	2007	2/8/	2007	2/3	8/2007	2/3	8/2007	2/8	8/2007	100x
Depth (feet)	3	5		8		3		3	Ambient		Intrusion
PID (PID units)	>2,0	>2,000		>2,000		<1	136		NA		Screening Value
COMPOUNDS	Result	Report Limit	Result	Report Limit	Result	Report Limit	Result	Report Limit	Result	Report Limit	Vanac
Acetone	ND	312	ND	300	48.6	3.6	48.4	3.1	5.7	0.6	40,000
Benzene	15,700	422	33,500	406	29.1	0.98	21.9	4.2	ND	0.81	450
2-Butanone (MEK)	ND	390	ND	375	11	0.91	ND	3.9	1.7	0.75	500,000
Carbon Disulfide	ND	410	ND	394	3.7	0.95	6.8	4.1	ND	0.79	70,000
Chloromethane	ND	273	ND	262	ND	0.63	ND	2.7	0.83	0.52	6,000
Cyclohexane	1,080,000	4420	918,000	4250	98.5	1.0	27	4.4	ND	0.85	600,000
Dichlorodifluoromethane	ND	650	ND	625	29.7	1.5	ND	6.5	2.2	1.2	20,000
Ethylbenzene	18,400	572	18,000	550	15	1.3	7.2	5.7	ND	1.1	100,000
4-Ethyltoluene	4,050	1620	5,100	1560	11	3.8	ND	16.2	ND	3.1	NE
n-Heptane	288,000	5400	ND	519	36.2	1.3	21.1	5.4	ND	1.0	NE
n-Hexane	540,000	4680	829,000	4500	42.1	1.1	32.5	4.7	ND	0.9	200,000
Methylene Chloride	ND	462	ND	444	2.1	1.1	ND	4.6	ND	0.89	2,000
Naphthalene	ND	1760	ND	1690	4.3	4.1	ND	17.6	ND	3.4	900
Propylene	ND	228	ND	219	167	2.6	267	2.3	ND	0.44	300,000
Styrene	ND	556	ND	544	2.9	1.3	ND	5.7	ND	1.1	100,000
Tetrachloroethene	ND	910	ND	875	3.2	2.1	ND	9.1	ND	1.8	2,000
Toluene	4,100	500	3,740	481	39.1	1.2	25	5.0	ND	0.96	500,000
1,2,4-Trimethylbenzene	5,930	1620	6,970	1560	31.3	3.8	ND	16.2	ND	3.1	700
1,3,5-Trimethylbenzene	2,370	1620	4,190	1560	8.9	3.8	ND	16.2	ND	3.1	600
Xylenes (Total-m,o,p)	36,380	1712	31,360	1650	48.6	4.0	14.1	17.1	ND	3.3	20,000

Notes:

NA = Not Applicable

ND = Not Detected

NE = Not Established

=Concentration exceeds 100 times the ISV

Bold = Concentration detected above laboratory reporting limit

Section 6: Appendices

Attach all required or applicable appendices in the following order. Indicate those appendices that are included in this report by marking the check box. All reproduced data must be legible. Reports missing required documentation are subject to rejection.

	Appendix A	Guidance Document 3-02 General Excavation Report Worksheet.
\square	Appendix B	Guidance Document 1-03a Spatial Data Reporting Form.
\square	Appendix C	Guidance Document 2-05 Release Information Worksheet.
\square	Appendix D	Copy of the Documentation Report for Mn/DOT S.P. 2102-50, TH 29/27 prepared by STS, dated December 30, 2005
	Appendix E	Geologic Logs of Soil Borings, Including Construction Diagrams of Temporary and Permanent Wells, and Copies of the Minnesota Department of Health Well Record.
	Appendix F	Laboratory Analytical Reports for Soil, Soil Gas/Sub-slab Vapor/Indoor Air/Ambient Air, and Ground Water. Include laboratory QA/QC data, Chromatograms, and laboratory certification number.
	Appendix G	Methodologies and Procedures, Including Field Screening of Soil, Other Field Analyses, Soil Boring, Soil Sampling, Soil Gas/Sub-Slab/Indoor air/Ambient Air Sampling, Vapor Monitoring, Well Installation, and Water Sampling.
\square	Appendix H	Field or sampling data sheets (sampling forms, field crew notes, etc.).
\square	Appendix I	Grain Size Analysis, Hydraulic Conductivity Measurements, and Other Calculations.
	Appendix J	Guidance Document 2-03 Free Product Recovery Report Worksheet.
\square	Appendix K	Copies of Water Supply Well Logs with Legible Unique Numbers.
	Appendix L	Results of the Public Water Supply Risk Assessment. If the site is within a designated source water protection area, include a copy of the MDH Source Water Assessment and a map from the MPCA Petroleum Remediation Program Maps Online website.
	Appendix M	Guidance Document 4-19 Conceptual Corrective Action Design Worksheet.
\boxtimes	Appendix N	Site Photographs of the UST Removal – May 1988

APPENDIX A

No General Excavation Report Worksheet was Prepared for Leak 15,656 - USTs were removed in 1988

APPENDIX B

Guidance Document 1-03a – Spatial Data Reporting Form

Petroleum Remediation Program

Minnesota Pollution Control Agency

http://www.pca.state.mn.us/programs/lust_p.html

Spatial Data Reporting Form

Guidance Document 1-03a (For complete instructions, see Guidance Document 1-03.)

Part 1. Background

Has a site location data point been submitted for this site (circle/highlight)? **YES** or NO *If yes, you do not need to complete Part 2 of this form but should complete Part 3 if there are additional site features to report. This form can be submitted electronically if desired (e.g., as an e-mail attachment to the project manager).*

MPCA Site ID: LEAK00015,656 Site Name: Alex Exhaust Data Collection Date: February 6, 2007 and January 23, 2009 Name of Person Who Collected Data: Matt Beckman, Tim Grape Organization Name: STS /AECOM Organization Type: Environmental Consulting Firm

Part 2. Site Location (use one of the three spatial data reporting formats provided)

Point Description: Center of main site building – Alex Exhaust shopCollection Method: Digital Orthoquad interpolationDatum (circle/highlight):WGS841) Longitude (dd mm ss.ss):Latitude (dd mm ss.ss):2) Longitude (dd.dddddd): 95.364030Latitude (dd.dddddd): 45.8896123) UTM - X (Easting):UTM - Y (Northing):UTM Zone:UTM - Y (Northing):

Part 3. Other Site Features

Point Description: Soil Boring/Temporary Well B-1Collection Method: Handheld GPS Unit (Garmin Map 76)Datum (circle/highlight): WGS841) Longitude (dd mm ss.ss):Latitude (dd mm ss.ss):2) Longitude (dd.dddddd): 95.36395Latitude (dd.dddddd): 45.889513) UTM - X (Easting):
UTM Zone:UTM - Y (Northing):

Point Description: Soil Boring/Temporary Well B-2Collection Method: Handheld GPS Unit (Garmin Map 76)Datum (circle/highlight): WGS841) Longitude (dd mm ss.ss):2) Longitude (dd.dddddd): 95.364193) UTM - X (Easting):UTM Zone:

Point Description: Soil Boring/Temporary Well B-3Collection Method: Handheld GPS Unit (Garmin Map 76)Datum (circle/highlight):WGS841) Longitude (dd mm ss.ss):Latitude (dd mm ss.ss):2) Longitude (dd.dddddd): 95.36380Latitude (dd.dddddd): 45.889583) UTM - X (Easting):UTM - Y (Northing):UTM Zone:UTM - Y (Northing):

Point Description: Soil Boring/Temporary Well B-4Collection Method: Handheld GPS Unit (Garmin Map 76)Datum (circle/highlight):WGS841) Longitude (dd mm ss.ss):Latitude (dd mm ss.ss):2) Longitude (dd.dddddd): 95.36398Latitude (dd.dddddd): 45.889723) UTM - X (Easting):UTM - Y (Northing):UTM Zone:UTM - Y (Northing):

Point Description: Soil Boring/Temporary Well B-5Collection Method: Handheld GPS Unit (Garmin Map 76)Datum (circle/highlight):WGS841) Longitude (dd mm ss.ss):Latitude (dd mm ss.ss):2) Longitude (dd.dddddd): 95.36396Latitude (dd.dddddd): 45.889823) UTM - X (Easting):UTM - Y (Northing):UTM Zone:UTM - Y (Northing):

Spatial Data Reporting Form Page 3

Point Description: Soil Boring/Temporary Well B-6Collection Method: Handheld GPS Unit (Garmin Map 76)Datum (circle/highlight):WGS841) Longitude (dd mm ss.ss):Latitude (dd mm2) Longitude (dd.dddddd): 95.36419Latitude (dd.dddddd): 97.364193) UTM - X (Easting):UTM - Y (No

UTM Zone:

Latitude (dd mm ss.ss): Latitude (dd.ddddd): 45.88957 UTM - Y (Northing):

Point Description: Soil Boring/Temporary Well B-7Collection Method: Digital Orthoquad InterpolationDatum (circle/highlight):WGS841) Longitude (dd mm ss.ss):Latitude (2) Longitude (dd.dddddd): 95.363330Latitude (3) UTM - X (Easting):UTM - YUTM Zone:UTM - Y

Latitude (dd mm ss.ss): Latitude (dd.ddddd): 45.889554 UTM - Y (Northing):

Point Description: Soil Boring/Temporary Well B-8Collection Method: Digital Orthoquad InterpolationDatum (circle/highlight): WGS841) Longitude (dd mm ss.ss):2) Longitude (dd.dddddd): 95.3634853) UTM - X (Easting):UTM Zone:

Point Description: Soil Boring/Temporary Well B-9Collection Method: Digital Orthoquad InterpolationDatum (circle/highlight):WGS841) Longitude (dd mm ss.ss):Latitude2) Longitude (dd.dddddd): 95.364487Latitude3) UTM - X (Easting):UTMUTM Zone:UTM

Latitude (dd mm ss.ss): Latitude (dd.dddddd): 45.888105 UTM - Y (Northing):

APPENDIX C

Guidance Document 2-05 - Release Information Worksheet

Release Information Worksheet

Guidance Document 2-05

Petroleum Remediation Program

The Release Information Worksheet is necessary in order to meet the Public Record Provision of the Energy Policy Act of 2005. Complete the worksheet below to document tank and release information. This form may be included as an appendix in Guidance Document 4-06 or 4-08, or it may be submitted independently. Please type or print clearly. Do not revise or delete text or questions from this form.

Α.	General information				
	Site name/city: Alex Exhaust/Alexandria	IPCA Site ID#: LEAK000	15,656		
В.	Tank material (check all that apply): ⊠ Steel □ Fiberglass				
C.	Piping material (check all that apply):				
	Steel 🗍 Fiberglass 🗌 Flexible plastic 🗌 Copper 🗌 Other (sp	pecify):			
D.	 Identify the known or suspected source(s) of the release or contamination encountered (check all that apply): Piping Tank Dispenser Dubmersible turbine pump Delivery problem Other (specify): 				
E.	Identify the cause of the release (tank and/or piping) (check all th Overfill Mechanical or physical damage Other (specify):	Corrosion 🗌 Spill 🛛	Unknown		
F.	Identify how the release was detected (check all that apply):				
	□ Removal □ Line leak detection □ Tank leak detection □ Visua □ Other (specify):	, _	sment		
G.	Has the site ever stored E85 in any former or current tank?]Yes 🛛 No			
Н.	. Has the site ever stored leaded gasoline in any former or current tank? 🛛 Yes 🗌 No				
We	Web pages and phone numbers:				

MPCA staff:	http://www.pca.state.mn.us/pca/staff/index.cfm
MPCA phone:	651-296-6300 or 1-800-657-3864
Petroleum Remediation Program Web page:	http://www.pca.state.mn.us/programs/lust_p.html
MPCA Info. Request:	http://www.pca.state.mn.us/about/inforequest.html
MPCA VIC Program:	http://www.pca.state.mn.us/cleanup/vic.html
MPCA Petroleum Brownfields Program:	http://www.pca.state.mn.us/programs/vpic_p.html
PetroFund Web page:	http://www.state.mn.us/cgi-bin/portal/mn/jsp/content.do?id=-536881377&agency=Commerce
PetroFund phone:	651-215-1775 or 1-800-638-0418
State Duty Officer:	651-649-5451 or 1-800-422-0798

September 2008

APPENDIX D

Documentation Report Mn/DOT S.P. 2102-50, TH 29/27 by STS, dated December 30, 2005

1

STS CONSULTANTS, LTD.

Documentation Report -Mn/DOT S.P. 2102-50, TH 29/27 in Alexandria, Minnesota

Minnesota Department of Transportation St. Paul, Minnesota

STS Project 99473-XA

STS CONSULTANTS

STS Consultants, Ltd. 10900 - 73rd Ave. N., Suite 150 Maple Grove, MN 55369-5547 763-315-6300 Phone 763-315-1836 Fax

December 30, 2005

Ms. Nancy Radle Minnesota Department of Transportation 395 John Ireland Drive, Mail Stop 620 St. Paul, MN 55155-1899

Re: Documentation Report - Mn/DOT S.P. 2102-50, TH 29/27 in Alexandria, Minnesota; Mn/DOT Agreement No. 86381; STS Project 99473-XA

Dear Ms. Radle:

STS Consultants, Ltd. (STS) has completed the Documentation Report for the above referenced site. The work was completed under contract to the Minnesota Department of Transportation (Mn/DOT). STS provided soil monitoring for contaminated soil on a part-time, on-call basis.

Approximately 50 cubic yards of contaminated soil from the project site was disposed of at the Onyx FCR Landfill in Buffalo, Minnesota. Approximately 1,200 cubic yards of contaminated soil from the project site was land spread at a Minnesota Pollution Control Agency (MPCA) approved land spread facility located in the SW 1/4 of the NE 1/4 of Section 12, Township 124 North, Range 38 West, Barsness Township, Pope County, Minnesota.

STS recommends that Mn/DOT obtain documentation from the contractor, Riley Brothers Construction, after landfarm treatment has been completed. Specifically Mn/DOT should obtain MPCA Guidance Document 3-07 "Soil Monitoring Results for Land Treated Petroleum Contaminated Soil" (Form D) for the project records.

We appreciate having the opportunity to be of assistance to you on this project. If you have any questions please contact Bill Tepley at 763-315-6335 or Tim Grape at 763-315-6318.

Sincerely,

STS_CONSULTANTS, LTD.

Timothy J. Grape, PG/

Project Geologist

B. Tepley

William B. Tepley Senior Project Manager

TJG/dn Encs.

TABLE OF CONTENTS

1.0 INTRODUCTION	1
1.1 Project Description	1
1.2 Background Information	1
1.3 Scope of Work	2
1.4 Involved Parties	3
2.0 METHODS AND PROCEDURES	5
2.1 Soil Monitoring	5
2.2 Soil Chemical Sampling	5
3.0 DOCUMENTATION	6
3.1 Soil Monitoring and Chemical Sampling	6
4.0 CONTAMINATED SOIL MANAGEMENT	10
5.0 CONCLUSION	12
6.0 RECOMMENDATIONS	13
7.0 GENERAL QUALIFICATIONS	14

Mn/DOT TH-29/27 STS Project 99473-XA December 30, 2005

1.0 INTRODUCTION

1.1 Project Description

The Minnesota Department of Transportation (Mn/DOT) reconstructed approximately 1.5 miles of right-of-way property along Trunk Highway 29 and Trunk Highway 27 (Mn/DOT S.P. 2102-50, TH-29/27) in the City of Alexandria, Minnesota (see Figure 1) during the 2004 and 2005 construction season. Mn/DOT reconstructed the highway along the project site on TH-29 from Broadway Street to Nokomis Street and TH-27 from Nokomis Street East to McKay Avenue North.

The general contractor for the TH-29/27 reconstruction work was Riley Brothers Construction (Riley) out of Morris, Minnesota. The work included removal and disposal of the petroleum impacted soil.

STS was retained by Mn/DOT to perform soil monitoring to segregate petroleum contaminated soils, complete soil analytical sampling/testing and documentation reporting for the Mn/DOT S.P. 2102-50, TH-29/27 construction project in Alexandria, Minnesota. These services were provided to Mn/DOT under the scope of work outlined in Agreement Number 86381.

1.2 Background Information

American Engineering Testing, Inc. (AET) completed a limited Phase I Environmental Site Assessment (ESA) for Mn/DOT in June, 2003. The results of the Phase I ESA identified forty-eight sites with a potential to impact the highway reconstruction project. A follow-up drilling investigation (Drilling Investigation, AET #03-01630, dated June 5, 2003) was conducted by AET on the forty-eight sites identified in the Phase I ESA. The results of the drilling investigation identified petroleum impacts to the soil and groundwater at four specific areas of the project site. The four areas of concern described by AET were as follows:

Mn/DOT TH-29/27 STS Project 99473-XA December 30, 2005

Area 1: The intersection of Broadway Street and TH-27/29.
Area 2: North of the intersection of Broadway Street and TH-27/29.
Area 3: Northeast corner of the intersection of Nokomis Street and TH-27/29.
Area 4: Northwest corner of the intersection of Park Street and TH-27.

A fifth area (Area 5) of petroleum impacted soil was encountered during reconstruction activities located along TH-27 east of the railroad bridge between Nokomis Street and Park Street (Figure 3). This area was not identified in the AET Drilling Investigation.

AET recommended that petroleum impacted soils encountered during highway construction activities be excavated and disposed in accordance with Minnesota Pollution Control Agency (MPCA) guidelines. The four areas of concern identified by AET and the fifth area identified during reconstruction activities are shown on Figure 2 and Figure 3.

A copy of the AET Drilling Investigation Report cover page, conclusions and recommendations sections, soil/groundwater conditions and pertinent diagrams are included in Appendix A.

1.3 Scope of Work

STS was retained by Mn/DOT to perform monitoring and documentation services on a part-time, on-call basis during reconstruction activities on TH-29/27 during the 2004 and 2005 construction season. The scope of work and deliverables for the project are defined in Mn/DOT Agreement No. 86381. STS was contacted directly by the Mn/DOT Field Inspector (Mr. Jesse Miller) when the contractor was working in areas where petroleum impacts were identified by AET or when petroleum impacts were observed in the soil during reconstruction activities.

STS screened soils to segregate contaminated from non-contaminated soils during excavation through areas where contamination had been identified. STS was directed by the Mn/DOT project manager to collect soil samples for disposal evaluation purposes where required.

STS Daily Field Reports, contaminated soil management documentation, laboratory analytical reports and site photographs are attached in the Appendix.

1.4 Involved Parties

The parties involved with contaminated soil excavation and disposal included Mn/DOT, STS, Riley Brothers Construction (excavation contractor), Onyx FCR Landfill and West Central Environmental Consultants (WCEC) (consultant for Riley Brothers for land spreading and landfill soil disposal). Contacts for all the interested parties and their relationship to the project are presented below.

Minnesota Department of Transportation (Mn/DOT)

Mn/DOT was the state funding agency for construction. The contact for Mn/DOT is:

Minnesota Department of Transportation 395 John Ireland Boulevard, Mail Stop 620 St. Paul, MN 55155-1899 Ms. Nancy Radle 651-284-3781

STS Consultants, Ltd. (STS)

STS was the environmental consultant requested by Mn/DOT to conduct contaminated soil excavation monitoring for the project. The contact for STS is:

STS Consultants, Ltd. 10900 - 73rd Avenue North, Suite 150 Maple Grove, MN 55369-5547 Mr. Bill Tepley 763-315-6300

Riley Brothers Construction (Areas 1, 2, 3, 4 and 5)

Riley Brothers Construction (Riley) was the excavating contractor hired by Mn/DOT for the project. The contact for Riley is:

Riley Brothers P.O. Box 535 Morris, MN 56267 Mr. Joe Riley 320-589-2500

Onyx FCR Landfill (Areas 3 and 5)

Onyx FCR Landfill accepted approximately 50 cubic yards of petroleum impacted soil from the project site. The contact for Onyx FCR Landfill is:

Onyx FCR Landfill 175 County Road 37 NE Buffalo, MN 55315 Mr. John Gagliano 320-963-3158

West Central Environmental Consultants (Area 4)

West Central Environmental Consultants (WCEC) is the consulting firm for Riley and assisted in permitting and oversight for land spreading of petroleum impacted soil. The contact for WCEC is:

West Central Environmental Consultants 14 Green River Road P.O. Box 594 Morris, MN 56267 Ms. April Pilarski 320-589-2039

2.0 METHODS AND PROCEDURES

STS field scientist(s) screened soil for evidence of potential contamination and obtained soil samples for chemical analysis for characterization of contaminated soils at the direction of the Mn/DOT project manager. These services were provided to Mn/DOT on a part-time, "on-call" basis. The methods employed by STS personnel for soil screening and chemical soil sampling are discussed below.

2.1 Soil Monitoring

Soil samples were screened with a photoionization detector (PID) for indications of volatile organic compounds (VOCs) and observed for visual or olfactory evidence of contamination. The PID meter was equipped with a 10.6 eV lamp calibrated to isobutylene. Soil samples were screened with the PID meter in general conformance with the most current MPCA field screening procedures in effect at the time the work was completed. Soil with a PID headspace reading above 10 PID meter units and/or visual or olfactory evidence of petroleum contamination was segregated and managed for proper off-site treatment/disposal. The PID meter headspace readings, recorded in PID meter units, are presented in the STS Daily Field Reports in Appendix B. Site photographs obtained during the soil monitoring activities follow the figures in the Appendix.

2.2 Soil Chemical Sampling

Soil samples for chemical analysis were collected with clean disposable nitrile gloves and placed immediately into the sample containers provided by the analytical laboratory. Soil samples were collected in general accordance with the MPCA "Soil Sample Collection and Analysis Procedures" as described in MPCA Fact Sheet 3.22 dated February, 2001 or the most current MPCA sample collection procedures in effect at the time the work was completed. Samples were stored in coolers on ice until delivery to the analytical laboratory under chain of custody record. Laboratory analytical reports are included in Appendix C.

3.0 DOCUMENTATION

3.1 Soil Monitoring and Chemical Sampling

Area 1 – Intersection of Broadway Street and TH-29/27

STS completed soil monitoring at Area 1 on May 18, 19 and 20, 2004. No visual, olfactory or PID evidence of petroleum soil contamination was observed by STS during the excavation of the first area (Area 1) identified by AET as having petroleum impacts in the soil at depth. Area 1 is located near the intersection of Broadway Street and TH 29/27 (Figure 2). PID readings of the excavated material were below background levels, see STS Daily Field Reports dated 5/18/04, 5/19/04 and 5/20/04 in Appendix B. The location of Area 1 is shown on Figure 2.

No analytical samples were collected from Area 1 by STS, per the direction of the Mn/DOT project manager.

Area 2 – North of the Intersection of Broadway Street and TH-29/27

STS completed soil monitoring at Area 2 on May 19, 2004. No visual, olfactory or PID evidence of petroleum soil contamination was observed by STS during excavation of the second area (Area 2) identified by AET as having petroleum impacts in the soil. Area 2 was located north of the intersection of Broadway Street and TH 29/27 (Figure 2). PID readings of the excavated material were below background levels, see STS Daily Field Report dated 5/19/04 in Appendix B. The location of Area 2 is shown on Figure 2.

No analytical samples were collected from Area 2 by STS, per the direction of the Mn/DOT project manager.

Area 3 – Northeast Corner of the Intersection of Nokomis Street and TH-29/27

STS completed monitoring at Area 3 on August 14, 17 and 23, 2004. Petroleum contaminated soils were encountered between stations 1757+20 and 1757+00 near the

intersection of Nokomis Street and TH 29 on the south side of TH 29/27 (Figure 3). This area (Area 3) was near the third area identified by AET as having petroleum impacts in the soil. Soil headspace readings from the contaminated soil ranged from 10 to 50 PID units, see STS Daily Field Reports dated 8/14/04, 8/17/04 and 8/23/04 in Appendix B. Riley temporarily stockpiled approximately 25 cubic yards of contaminated soil identified by PID headspace readings at this location. The approximate location of petroleum impacted soil identified in Area 3 and the temporary stockpile location are shown on Figure 3. Site Photographs 1 and 2 in Appendix F document excavation of the contaminated soil at Area 3.

STS collected one soil sample (R-1) of the petroleum contaminated soil stockpiled from the material encountered between stations 1757+20 and 1757+00 on the south side of the road near the intersection of Nokomis Street and TH 29 on the south side of TH 29/27 (Area 3). Soil sample R-1 was submitted to Pace Analytical (Pace) on August 24, 2004 for analysis of benzene, toluene, ethylbenzene, and xylene (BTEX), gasoline and diesel range organic compounds (GRO/DRO) and lead.

No BTEX compounds were identified in soil sample R-1. GRO and DRO were identified at concentrations of 250 mg/kg and 1600 mg/kg, respectively. No Tier 1 SLV/SRV values have been established for GRO or DRO compounds. The analytical laboratory completed lead analysis on both the discrete sample and the composite sample submitted for R-1. Low concentrations of lead were identified in both the discrete sample (6.52 mg/kg) and the composite sample (9.8 mg/kg). Both concentrations were below established MPCA Tier 1 SLV/SRV values for lead. The analytical results for R-1 are summarized on Table 1 in the Appendix.

Contaminated soil management associated with Area 3 is discussed in Section 4.0 of this report.

Area 4 – Northwest Corner of the Intersection of Park Street and TH-27

STS completed monitoring at Area 4 on May 18, 19, 21, 23 and 31, 2005 and on June 1, 2005. Petroleum contaminated soil was encountered between stations 1762+28 and

1762+80 near the intersection of Park Street and TH-27 (Figure 3). This was the fourth area (Area 4) identified in the AET Drilling Investigation as having petroleum impacts in the soil. Soil headspace readings from the contaminated soil ranged from 100 to greater than 2000 PID units. PID headspace readings are documented on STS Daily Field Reports dated 5/18-19/05, 5/21/05, 5/23/05, 5/31/05 and 6/1/05 in Appendix B. Riley temporarily stockpiled approximately 1,200 cubic yards of contaminated soil identified by PID headspace readings. The stockpile from Area 4 was transferred to a location northeast of the site as shown on Figure 3. The approximate location of the petroleum impacted soil identified by STS is also shown on Figure 3. Site Photographs 3 and 4 in Appendix F show the excavation of contaminated soil and the covered stockpile for Area 4.

No analytical samples were collected from Area 4 by STS, per the direction of the Mn/DOT project manager.

Contaminated soil management associated with Area 4 is discussed in Section 4.0 of this report.

Area 5 – South Side of TH-27 between Nokomis Street and Park Street

Riley encountered petroleum contaminated soil on September 13, 2004 surrounding a 4-inch concrete drain line located near station 1759+75 east of the railroad bridge on TH 27 (see Figure 3). This area was not identified as an area of concern in the Drilling Investigation Report by AET. STS was not on site when the petroleum impacted soil was encountered. Riley temporarily stockpiled approximately 25 cubic yards of contaminated soil identified by staining and/or strong chemical odor at the site at the direction of the Mn/DOT field inspector.

STS arrived on site the following day (September 14, 2004) to collect soil headspace readings and analytical soil samples from the temporary stockpile. Soil headspace readings ranged from 40 to 100 PID units, see STS Daily Field Report dated 9/14/04 in Appendix B.

The approximate location of the petroleum impacted soil excavated by Riley and the temporary stockpile location are shown on Figure 3. Site Photographs 5 and 6 in Appendix F illustrate the 4-inch drain pipe area where contaminated soil was encountered and the temporary stockpile at Area 5.

STS collected a soil sample (R-2) from the contaminated soil stockpiled from the material surrounding the 4-inch concrete drain line located near station 1759+75 east of the railroad bridge on TH 27 (area not identified by AET) on September 14, 2004. Soil sample R-2 was submitted to Northeast Technical Services (NTS) for analysis of unknown petroleum compounds including volatile organic compounds (VOCs), GRO, DRO, polychlorinated biphenyls (PCBs) and the eight (8) Resource, Conservation and Recovery Act (RCRA) metals.

One VOC, 1,2,4-trimethylbenzene, was detected at a concentration of 1.7 mg/kg. GRO and DRO were identified at concentrations of 360 mg/kg and 1200 mg/kg, respectively. The results of the laboratory analysis were compared to the MPCA Soil Leaching Values (SLV) and Soil Reference Values (SRV). No Tier 1 SLV/SRV values have been established for GRO or DRO. No PCB compounds were detected in R-2. Arsenic, barium, total chromium and lead were identified below their respective Tier 1 SLV/SRV values at concentrations of 2.8 mg/kg, 102 mg/kg, 16.2 mg/kg and 8.2 mg/kg, respectively. The analytical results for R-2 and the SLVs/SRVs are summarized on Table 1 in the Appendix.

Contaminated soil management associated with Area 5 is discussed in Section 4.0 of this report.

4.0 CONTAMINATED SOIL MANAGEMENT

Area 1 –Intersection of Broadway Street and TH-29/27

No contaminated soil was identified by STS in Area 1 during highway reconstruction activities. Therefore, no contaminated soil management from this area was required.

Area 2 – North of the Intersection of Broadway Street and TH-29/27

No contaminated soil was identified by STS in Area 2 during highway reconstruction activities. Therefore, no contaminated soil management from this area was required.

Area 3 – Northeast Corner of the Intersection of Nokomis Street and TH-29/27

Soils were stockpiled on the site at the location shown on Figure 3. STS observed the removal of the stockpile on August 23, 2004. The soils were transported to a location owned by Riley in Morris, Minnesota. On December 2 and 3, 2004, the soil was transferred from the temporary stockpile location to Onyx FCR Landfill in Buffalo, Minnesota for final disposal. STS was not on site to observe the transfer of contaminated soil from the Riley temporary stockpile location in Morris, Minnesota to the Onyx Landfill facility in Buffalo, Minnesota.

Copies of the Onyx Industrial Waste Approval Letter, shipping manifests, load tickets and invoice summary for the contaminated soil are attached in Appendix D.

Area 4 – Northwest Corner of the Intersection of Park Street and TH-27

Approximately 1,200 cubic yards of petroleum impacted soil excavated from Area 4 was temporarily stockpiled northeast of the site (see Figure 3). The 1,200 cubic yards of impacted soil was hauled to an MPCA approved land spread facility on October 18 and 19, 2005. The land spread facility is located in the SW 1/4 of the NE 1/4 of Section 12, Township 124 North, Range 38 West, Barsness Township, Pope County, Minnesota (Figure 4).

Uniform Vehicle Load Tally Sheets completed by the Mn/DOT inspector for the contaminated material hauled to the land spread facility and a copy of the MPCA approval for the land spread facility (Pre-approval ID #PRE0632, dated October 7, 2005) are attached in Appendix E. STS was not on-site to observe the transfer of impacted material to the land spread facility.

Area 5 – South Side of TH-27 between Nokomis Street and Park Street

The approximately 25 cubic yards of contaminated soil encountered at Area 5 was stockpiled on the site at the location shown on Figure 3. After STS observed the stockpile on September 14, 2004, Riley hauled the soil to a location owned by Riley in Morris, Minnesota. On December 2 and 3, 2004, the soil was transferred from the temporary stockpile location to Onyx FCR Landfill in Buffalo, Minnesota for final disposal. STS was not on site to observe the transfer of contaminated soil from the site to the Riley site in Morris or from the Morris location to the Onyx Landfill facility in Buffalo, Minnesota.

Copies of the Onyx Industrial Waste Approval Letter, shipping manifests, load tickets and invoice summary for the contaminated soil are attached in Appendix D.

5.0 CONCLUSION

Contaminated soil was encountered in three areas during construction of the TH-29/27 project site. These areas included:

- Area 3 Northeast Corner of the Intersection of Nokomis Street and TH-29/27
- Area 4 Northwest Corner of the Intersection of Park Street and TH-27
- Area 5 South Side of TH-27 between Nokomis Street and Park Street

A total of approximately 1,250 cubic yards of petroleum impacted soil from the TH-29/27 project was excavated, transported off-site and landfilled or land applied for soil treatment.

Approximately 25 cubic yards of petroleum impacted soil removed from Area 3 was disposed of at the Onyx FCR Landfill in Buffalo, Minnesota. Approximately 1,200 cubic yards of petroleum impacted soil removed from Area 4 was land applied for treatment at an MPCA approved, 2.98 acres land spread facility located in the SW 1/4 of the NE 1/4 of Section 12, Township 124 North, Range 38 West, Barsness Township, Pope County, Minnesota. Approximately 25 cubic yards of petroleum impacted soil removed from Area 5 was disposed of at the Onyx FCR Landfill in Buffalo, Minnesota.

Impacted soils likely exist beyond the construction limits of the project based on the AET Drilling Investigation (June 5, 2003), PID headspace readings and visual/olfactory observations obtained by STS during reconstruction activities.

Mn/DOT is not responsible for the releases and therefore is not required to define the extent or address petroleum impacted soil outside the project construction limits, based on Minnesota Statute 115C.021 Division 3A. The responsible parties for the releases would be responsible for additional investigation of these areas, if required by the MPCA.

6.0 RECOMMENDATIONS

Approximately 1,200 cubic yards of petroleum contaminated soil from the TH-29/27 reconstruction project was land spread at an MPCA approved land spread facility in Barsness Township, Pope County, Minnesota (Figure 4).

STS recommends that Mn/DOT obtain documentation of completed soil land spread treatment from Riley. A copy of the MPCA Guidance Document 3-07 "Soil Monitoring Results for Land Treated Petroleum Contaminated Soil" (Form D) should be submitted to Mn/DOT upon successful completion of treatment of the contaminated soil spread at the site in Pope County.

7.0 GENERAL QUALIFICATIONS

The information presented in this report is based on the data obtained by STS at the specific locations screened for this report, the results of previous investigation activities completed by others and from other information discussed in this report. Therefore, if new information is disclosed or an alteration of the informal and verbal information occurs, it could result in the redirection of the conclusions presented in this report. STS was on-site on a part-time, on-call basis and our observations are limited to the time we were present on-site.

Variations in soil conditions can occur, as can variations in results of chemical analyses on the samples collected. This report was prepared using currently acceptable engineering practices to assist the client in the evaluation of this property. No warranty, expressed or implied, is made.

Figures

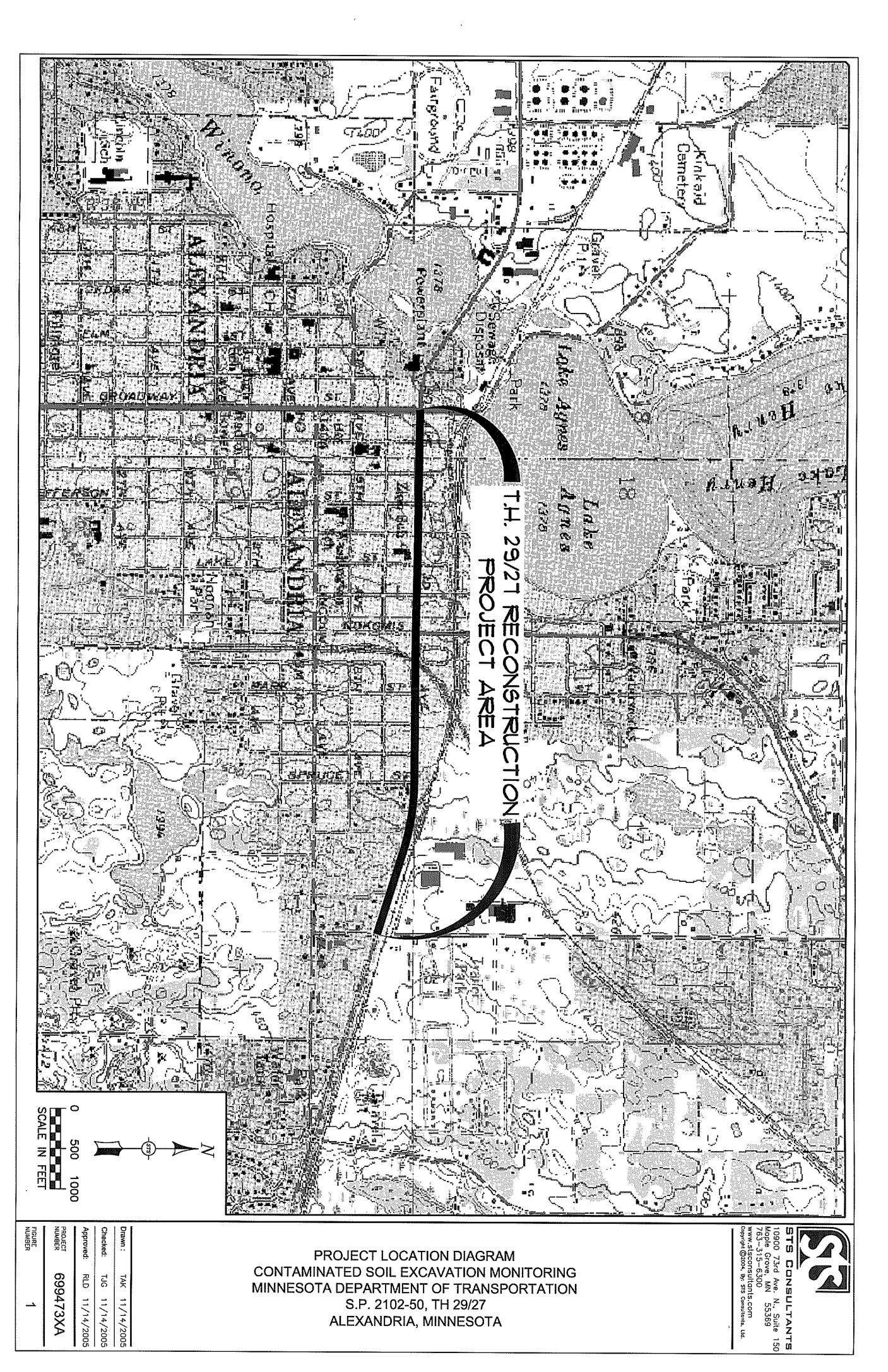
Figure 1 - Site Location Diagram Figure 2 - Area 1 and Area 2 Site Diagram Figure 3 - Area 3, Area 4 and Area 5 Site Diagram Figure 4 - Land Spread Site Location Diagram

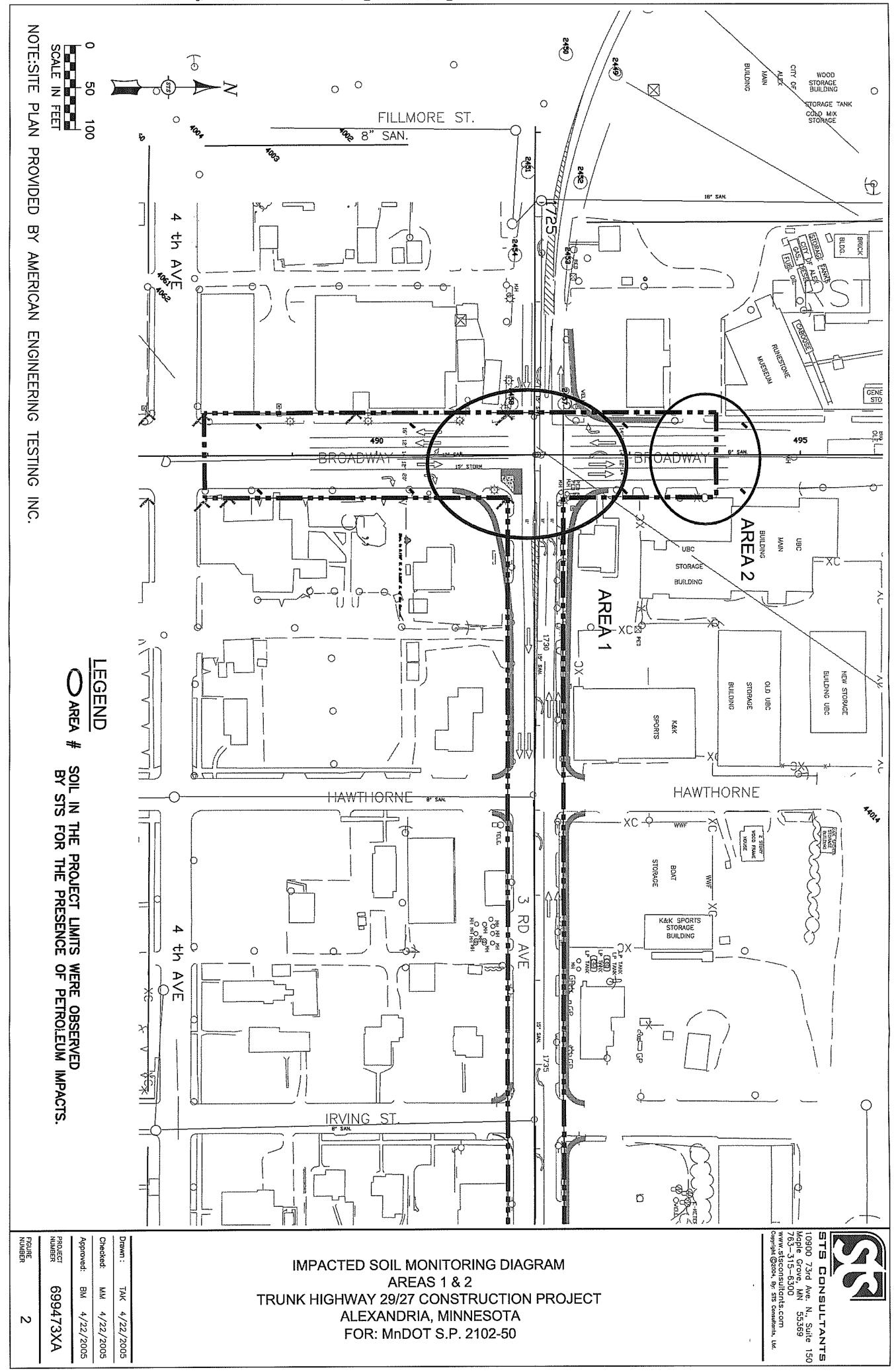
Photographs

•	Photograph 1	Excavation of petroleum contaminated soil at Area 3.
•	Photograph 2	Petroleum contaminated soil encountered at Area 3.
•	Photograph 3	Excavation of petroleum contaminated soil at Area 4 in front of Alex Exhaust.
•	Photograph 4	Covered stockpile of approximately 1,200 cubic yards of contaminated soil from Area 4.
•	Photograph 5	Four inch drain pipe identified during reconstruction activities in Area 5.
•	Photograph 6	Approximately 25 cubic yard stockpile of contaminated soil from Area 5.

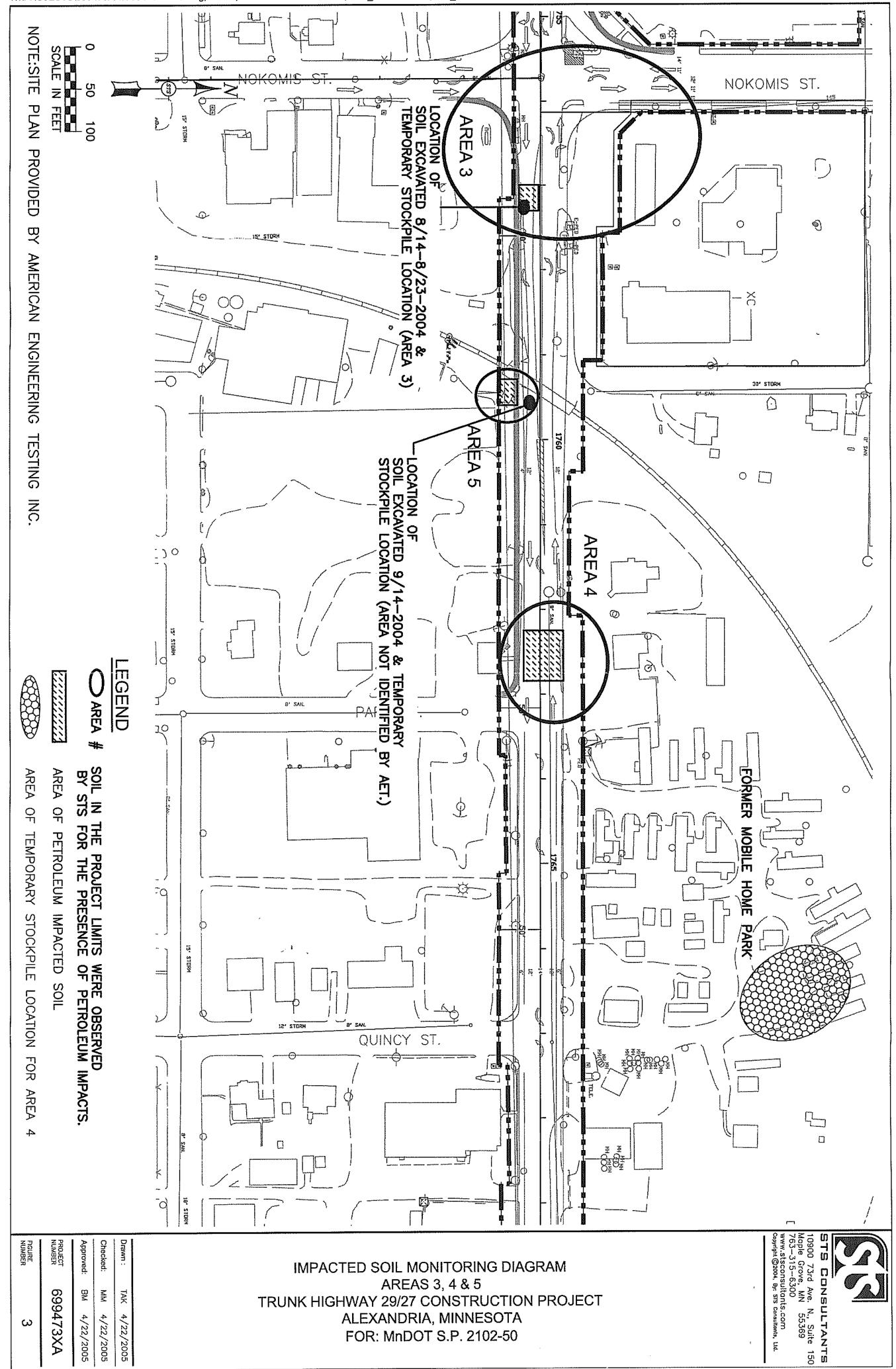
<u>Table</u>

Table 1 - Soil Sample Analytical data

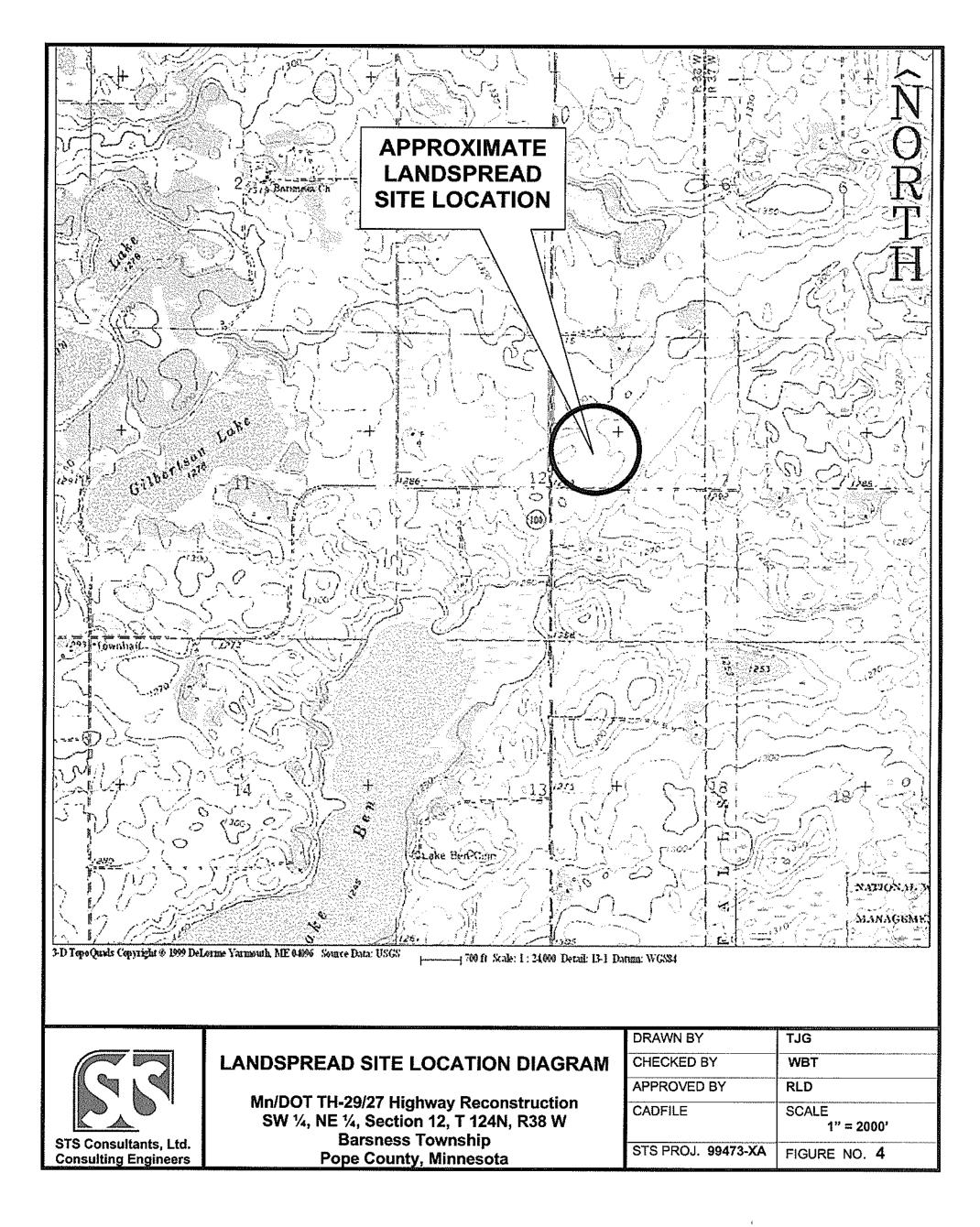



APPENDICES

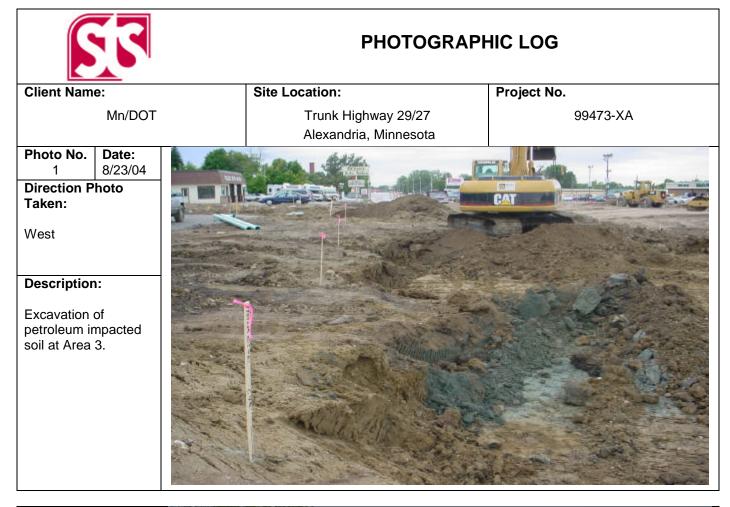
- Appendix A AET Drilling Investigation Excerpts (Drilling Investigation S.P. 2102-50, AET # 03-01630, dated June 5, 2003)
- Appendix B STS Daily Field Reports
- Appendix C Laboratory Analytical Reports
- Appendix D Contaminated Soil Disposal Documentation for FCR Landfill
 - FCR Industrial Waste Approval Letter
 - Shipping Manifests
 - Load Tickets
 - Invoice Summary
- Appendix E Land Spread Disposal Documentation
 - MPCA Approval Letter for Land Spreading Contaminated Soil
 - Uniform Vehicle Tally Sheets



FIGURES



X:\PROJECTS\699473XA\G99473XA-03.dwg, FIG. 2, 11/30/2005 12:05:18 PM, STS_PLOTSTAMP, STS_PLOTSTAMP



W:\PROJECTS\699473XA\G99473XA-03.dwg, FIG. 3, 12/21/2005 10:28:59 AM, STS_PLOTSTAMP, STS_PLOTSTAMP



PHOTOGRAPHS

Photo No. 2	Date: 8/23/04	
Direction Photo Taken:		MINNESOTA LIGHTING
South		
Description:		
This photograph		
illustrates contaminated soil		A CALLER IN THE REAL PROPERTY OF
encountered in Area 3, note the gray soil		
staining along the excavation base and		A MARTIN AND A MARTIN AND A MARTIN
sidewall.		

Photo No. Date: 4 5/31/05	
Direction Photo Taken:	
East	
Description:	
Covered temporary stockpile of approximately 1,200 cubic yards of contaminated soil from Area 4.	

Photo No.	Date:	
6	9/14/04	
Direction Photo		
Taken:		
East		
Description:		
Temporary stockpile		
of contamina	ated soil	
excavated f	rom Area	
5 around 4 i	nch drain	
pipe.		
		SED 11 2004
		OEP 14 2004
		「「「「「「「」」」」

TABLE

TABLE 1Summary of Soil Analytical ResultsMn/DOT S.P. 2102-50, Trunk Highway 29/27 in Alexandria, MinnesotaSTS Project 99473-XAConcentrations in mg/kg

	R-1	R-2	Methanol Blank	SLV	SRV
Volatile Organics Compounds - VOCs EPA 8260	(VOCs not analyzed)	(only compounds detected are shown)		Varies	Varies
1,2,4-Trimethylbenzene		1.7	ND	NE	8
Benzene, Toluene, Ethylbenzene, Xylenes - BTEX	(only compounds detected are shown)	(compounds not analyzed)		Varies	Varies
Gasoline Range Organics - GRO	250	360		NE	NE
Diesel Range Organics - DRO	1600	1200		NE	NE
Metals - EPA 6010	(Only metals detected are	listed)		Varies	Varies
Arsenic		2.8		15.1	5
Barium		102		842	1200
Chromium*		16.2		18	87***
Lead	6.52/9.8 * *	8.2		525	400
Polychlorinated Biphenyls - PCBs EPA 8082	(No detections for compounds analyzed)		Varies	Varies	

Notes:

R-1 = Stockpile sample collected from Area 3 on 8/23/04

R-2 = Stockpile sample collected from Area 5 on 9/14/04

* = denotes value for total chromium (chromium (III) + chromium (VI))

* * = 6.52/9.8 represent values for composite/discrete samples submitted

*** = Denotes SRV Value for Chromium VI

-- = compound not analyzed.

SLV = Soil Leaching Value - MPCA Tier 1, 1999

SRV = Soil Reference Value - MPCA Tier 1, 2005

NE = Not Established

Bold = Concentration above laboratory detection limits

APPENDICES

Appendix A

AET Drilling Investigation Excerpts (Drilling Investigation S.P. 2102-50, AET # 03-01630, dated June 5, 2003)

DRILLING INVESTIGATION

S.P. 2102-50

TH29/27 from Broadway Street to McKay Avenue Alexandria, Minnesota

AET #03-01630

,

4

Date:

s,

June 5, 2003

Prepared for:

Minnesota Department of Transportation (Mn/DOT) Office of Environmental Services, MS 620 395 John Ireland Boulevard St. Paul, Minnesota 55155-1899

,

,

4

Laboratory Analytical Methods

Select soil and/or groundwater samples were analyzed for the following parameters:

- X Diesel Range Organics (DRO) EPA 8015(mod)/WIDRO
- X Gasoline Range Organics (GRO) EPA 8015(mod)/WIGRO
- X Benzene, ethylbenzene, toluene and xylenes (BTEX) EPA 8260 Compound List by SW8260B
- X Lead EPA 6010

DRILLING INVESTIGATION RESULTS

Investigation Overview

Soil borings and sampling were conducted by AET from March 26 through April 8, 2003. A total of 75 push probes were planned and 77 push probes were completed for the project, numbered sequentially from GP-1 to GP-75 with GP-62B and GP-62C added during field activities, (Figures 2A to 2F).

The borings were completed to depths ranging from 16 to 20 feet borings.

Soil and Groundwater Conditions

The soil borings encountered fill, underlain by coarse alluvial sand in push probes GP-1 to GP-37, alternating layers of fine alluvium silt and coarse alluvial sand in push probes GP-38 to GP-39, and clay till with some layers of coarse alluvial sand in push probes GP-40 to GP-75. Groundwater was encountered in borings GP-2 to GP-9, GP-11 to GP-13 at 15 to 19 feet bgs. Groundwater was not encountered in the remaining borings.

Lead

The soil lead analytical results show all soil samples with concentrations below 100 mg/kg.

Groundwater Analytical Results

Based on the field screening results, the following groundwater samples were submitted for DRO, GRO and BETX analytical testing: GP-3 (16-20 feet), GP-4 (16-20 feet), GP-7 (16-20 feet) and GP-13 (17.5-20.5 feet). Table 4 summarizes the groundwater laboratory analytical results.

DRO

Concentrations of DRO were detected in groundwater samples collected from borings GP-3, GP-4, GP-7 and GP-13 ranging from 1.4 to 6.4 ug/L. The highest concentration (6.4 ug/L) was detected in boring GP-13.

GRO

Concentrations of GRO were detected in groundwater samples collected from borings GP-3, GP-4, GP-7 and GP-13 ranging from 2300 to 84,000 ug/L. The highest concentration (84,000 ug/L) was detected in boring GP-13.

BETX

Concentrations of BETX were detected in groundwater samples collected from borings GP-3, GP-4, GP-7 and GP-13.

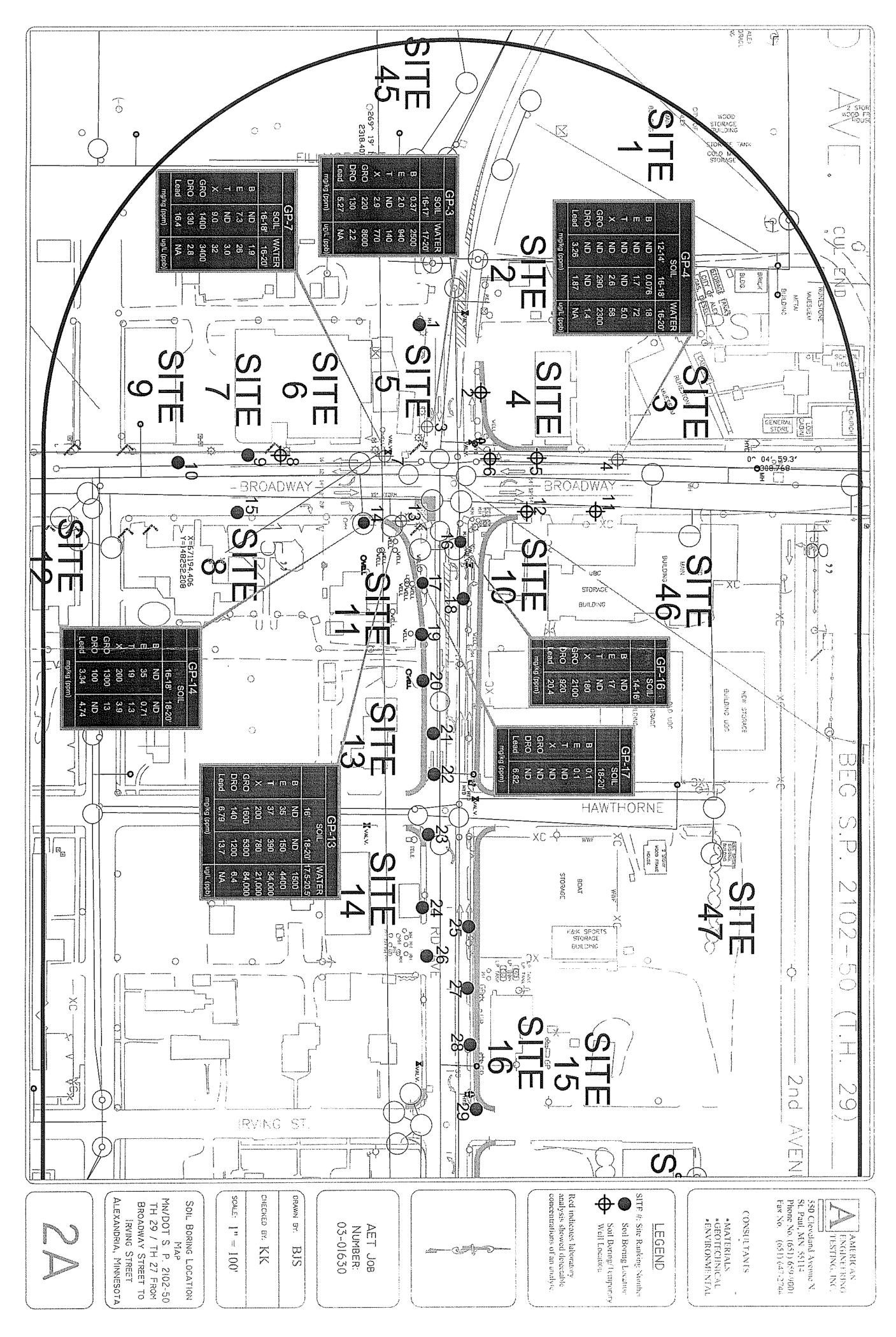
CONCLUSIONS

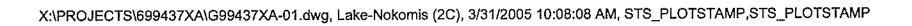
The results of the drilling investigation show petroleum impacts to the subsurface soil and groundwater in the project area. The impacts are located at four areas in the project area. The first area is located at the intersection of Broadway Street and TH29/27 and includes petroleum

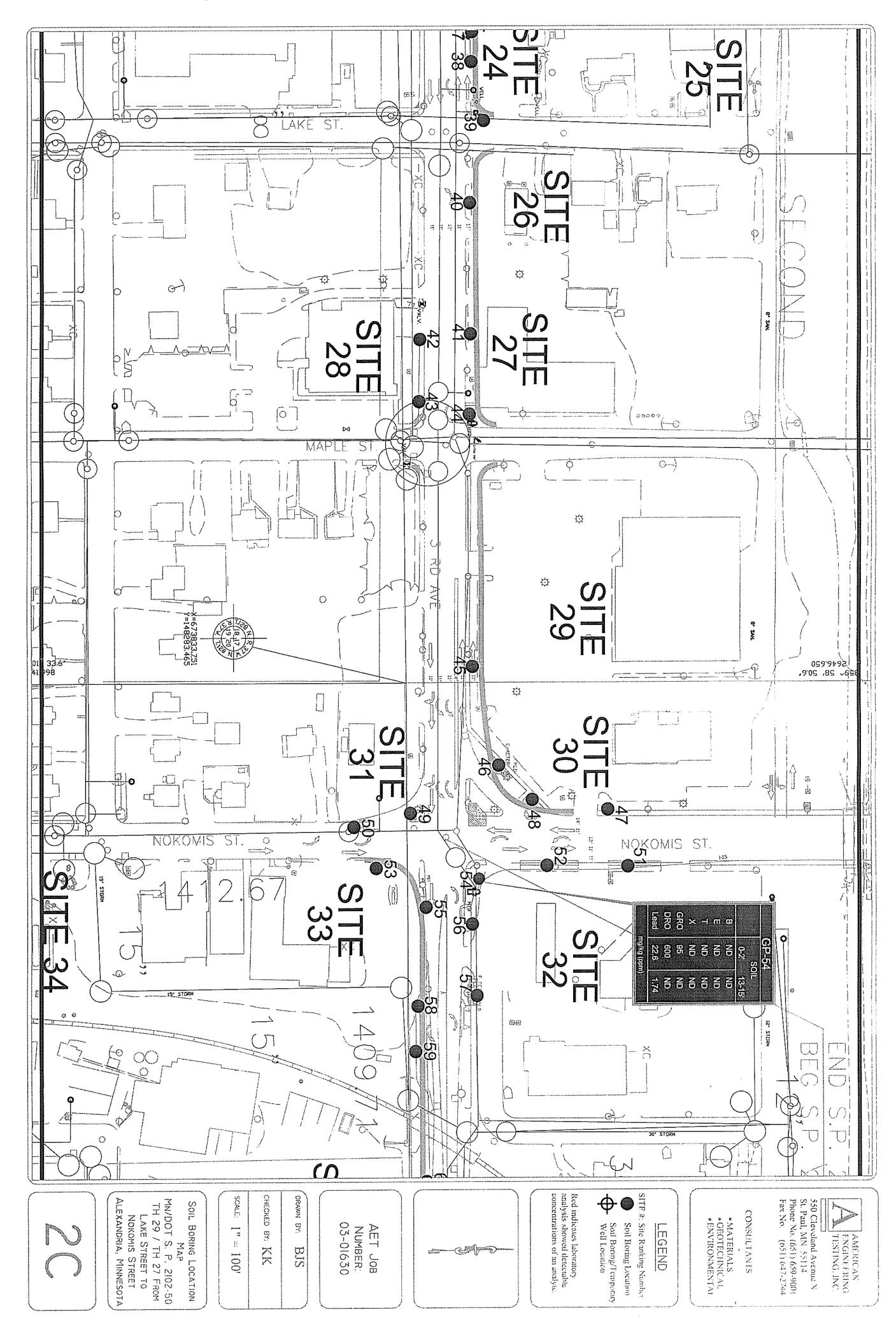
,

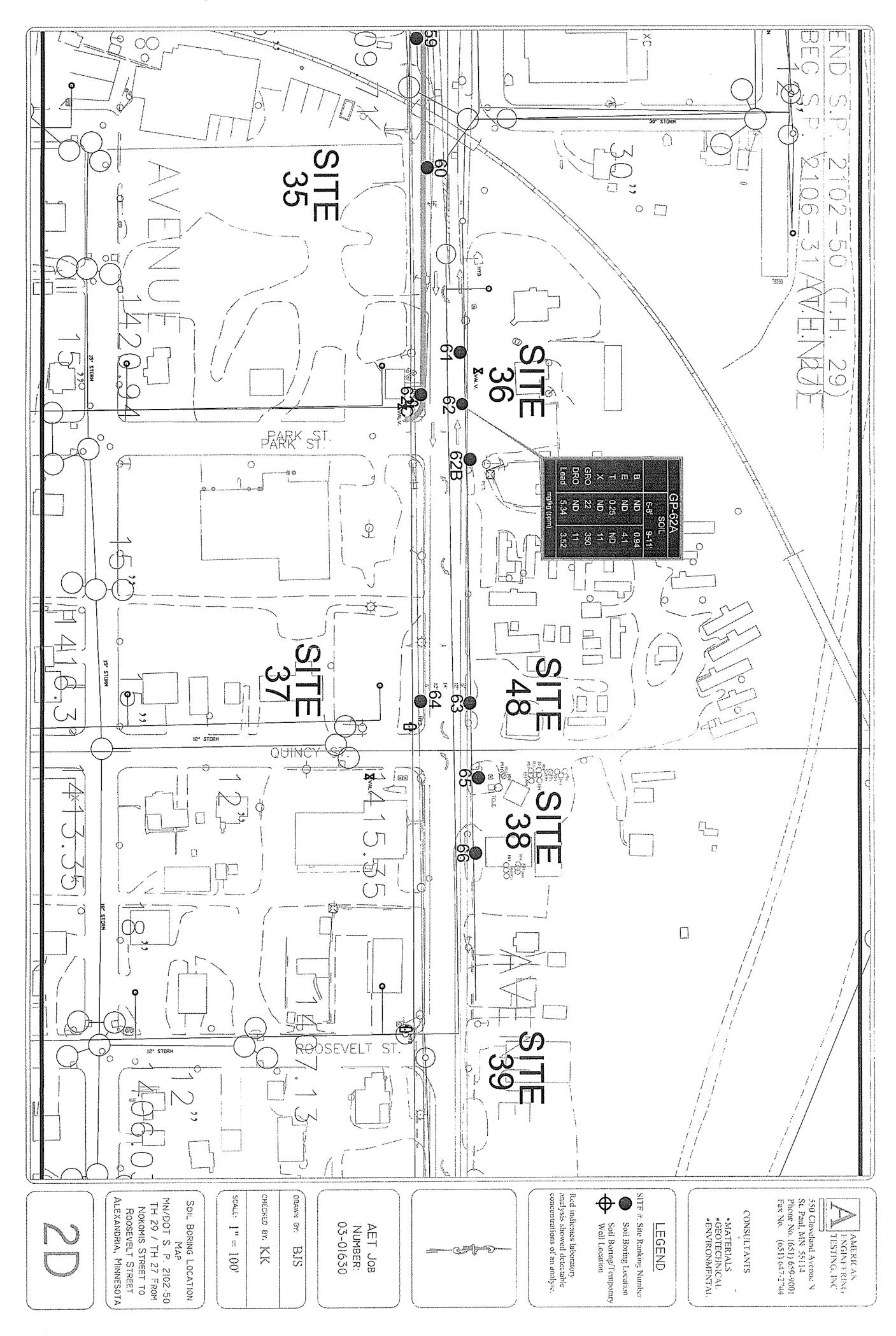
1

impacts identified in borings GP-3, GP-7, GP-13, GP-14, GP-16 and GP-17. The second area is located north of the intersection of Broadway and TH29/27 and includes petroleum impacts identified in boring GP-4. The third area is located at the northeast corner of the intersection of Nokomis Street and TH29/27 and includes petroleum impacts identified in boring GP-54. The fourth area is located at the northwest corner of the intersection of Park Street and TH27 and includes petroleum impacts identified in boring GP-54. The fourth area is located at the northwest corner of the intersection of Park Street and TH27 and includes petroleum impacts identified in boring GP-54. Figures 2A, 2C and 2D show the boring locations where petroleum impacts were encountered.


RECOMMENDATIONS


Based on the results and conclusions of this investigation, we recommend that no further assessment is necessary for the project area. We recommend the identified petroleum impacted soils be excavated and disposed according to MPCA guidelines during construction of the utilities.


CLOSURE


The services performed by American Engineering Testing, Inc. for this project have been conducted in a manner consistent with that level of skill and care ordinarily exercised by other members of the profession currently practicing in this area, under similar budgetary and time constraints.

If conditions differing from our original findings are identified, AET should be immediately contacted to review these conditions and determine if there are any material impacts on any of our conclusions and recommendations.

Appendix B

STS Daily Field Reports

STS Consultants, Lt	d.	Day/Date Uesday	5/18/04
ENVIRONMENTAL F	IELD REPORT	7	of
Project Name Location Contractor Riley Brothe	<u>De-Abrandria</u> <u>NN</u> <u>NS - Dennis</u>	Project Number <u>9949</u> Task Number Weather/Temp. <u>Sumy</u> Client <u>MN Dorf</u>	
Depart Job <u>1900</u> Project Hours on Job <u>11.0</u> Total Milea		Contractor Arrive Job Contractor Depart Job Contractor Hours on Job	
Summary of Technical and/or Engineering services perform	ned, including Field Test Data, Locations, E	levations and Depths are Estimated.	· · · · · · · · · · · · · · · · · · ·
No impachear /> Stadian 19257005 Called Anolous Nich Anolicus Said Le de asiled if we would	teplaced where a to court ride of wer line at first is 10 PTD units (cost des 1725+75 not - Min Datt- in form twered analytical cop	Detween Fillmore Handby time - ne Existing worter line Fillmos Riley b Unction easy of Fi was observed for	<u>Se</u> <u>w sonitory</u> <u>wos -</u> <u>esan</u> <u>Threve interse</u> <u>man</u>
Equipment and Supplies used: Photosoftee Print Name		elays:,	

Sample	Depth	511810 PID	Station Location	1 Soi) type/commente
(Surf.	6	1725+00	Soil +1/pc/comments fue-crs sand/sml
2	Surf	0	1725+10	J J
3	2'	6	1723 + 00	finic Same
4	21	6	1725+10	
6	41	0	1728+10	
Ç	6'	0	1725-110	
1	8	∂	1725-110	ANNA ANA KANANANANANA ISA ISA ISA SA S
<u>.</u>	2	0	1725+25	n da mahaga ang ang akar ayon ayon ayon ang ang ang ang ang ang ang ang ang an
9	4	0	1725+25	The first of the second state state of the second state of the sec
10	6	6	1725-25	n na hannan anna an anna an anna an anna an an
{	8	0	1125+25	
12	4,6,81	0	1725+35	na gala dalamatur alama (), ala suna ana isa dala dala dala dala dala dala dala da
13	4,6,8,	0	1723+40	
14	4,6,8	0	1725+45	ana na anala na kana na mana ana ana ana ana ana ana ana
<u> </u>	4,6,81	0	1725+50	· · · · · · · · · · · · · · · · · · ·
16	4,68	0	1705-1 55	τα τη αντική ματική δραθαίζεια 2 2
19.)	4.6.81	0	1725+60	and a second
14	4 4 8	Ó	1723+65	
19	46.8	0	1725 + 70	
20	4'6'8	\mathcal{O}	11725+10	
<u>)(</u>		i i TTI i i kata Ture i ana ka i kan		
20	1 . A Lock Summer Summer you would be a set of the s	مەر ئەرى يەر يەرىپەر مەرمەر يەرىپەر يەر	n an	ngene menereten som en gange ovor og gan og som en som en genereten som en genereten som en som en som en som e
<u></u>	an a	ಕ್ರಾರ್ಟ್ ಸೇರೆ ಗೋಹಿಸಿಕ್ ಪ್ರಾಂತಿ ಮಾಡಿದ್ದ ಸಂಗ್ರಾಮಕ್ಕಳು ಸಂಗ್ರಾಮಕ್ಕಳು ಸಂಗ್ರಾಮಕ್ಕಳು ಸಂಗ್ರಾಮಕ್ಕಳು ಸಂಗ್ರಾಮಕ್ಕಳು ಸಂಗ್ರಾಮ		······································
- 		an Maria da ana ang Kalimata na pangana ang kana na na na na na na	······································	n an
				1.1. 1.1. maan dhaanaa ah a
25	va · ···	·· · · ·	n de la companya de l	
20			5 6 1	
and here		n mananan ni saka shini na mayo nga	en afferen her of the second	*# ^{##} *### (1710) \$-\$1,074 \$-\$775 \$\$1,0733) \$233 *\$4.000 \$\$10.5550000\$\$2,5100.003500\$\$1.0000\$\$1.0000\$\$1.000\$\$1.000\$\$1.000\$\$1.000\$\$1.000\$\$1.000\$\$1.000\$\$1.0
5	an 🖛 San Dalaman Salaman Katalan da Salaman da pagang berang dengan		in a second	an an gu an
۹۹۹۹۹۰۰۰ ۲۰۰۰ کورکړ کې کورکو و د د د و ووو و د کې کورکو و کورکو و و و و و و و و و و و و و	**************************************		· · · · · · · · · · · · · · · · · · ·	ారాలు కార్యాల్లో
	·			· · · · · · · · · · · · · · · · · · ·
	·			
				,

STS Consultants, L	td.	Day/Date Wichnesday 5/19/04
ENVIRONMENTAL	FIELD REPORT	of
Project Name <u>Trunk Highway</u> Location <u>Alexandra</u> Contractor <u>Riley Brother</u>	MN	Project Number <u>99473-XA</u> Task Number <u> </u>
Depart Job <u>1030</u> Pro Hours on Job <u>11.5</u> Too Mil	ivel Time oject Coordination tal Chargeable Hours leage	Contractor Arrive Job Contractor Depart Job Contractor Hours on Job
Summary of Technical and/or Engineering services perf	ormed, including Field Test Data, Locations, E	Elevations and Depths are Estimated.
for san tany Sou Observed excan impacts - Visu readines a every PID reading an This Field Reporte Brod (mindor) n Dlaming on hours Site in Glenwag Gud interned him at reaffirmed his indent landdill Goility. Andrea from Budfald FCR a (Jould sottle the disp (ampleted Storm Scure X NO clevated PSD rea Equipment and Supplies used: Wals	Andrew Maderials /2 al/allocology as int D' depth at 51 inte a sumarized in a t formed method Joe in impacted Soil from of MM. I called : Av Doe's intentions for to have impacted soi I acted we to at pr ind E/K River Bundfill posal beached for im and E/K River Bundfill posal beached for im a to 'T' at star	ar presence of petroleium cll as PID headspain wals along statianny: able on the back Off e Riky (Riby Bros.) was m TH-29 to a land form relieve Nichall (MinDot) Impached Soil. Andrew i disposed of at a lincensed nee prote confirmation: the and Mat Jessy Miller spaceded sail With Soc Riley. than 1727+40- factory cuidence of Contamborha
Print Name Tipeothy 5-6	<u>repe</u> <u>PED JO. 6 el</u> D <u>Ver</u> <u>Technician</u>	Delays:

ENVDAILY.DOC

14-00 1/5	, M. 4.KA		5/19/04		EK.	Tom Joe -
nic 1n	uvs. 4:50				Rober	to Broadway - Tom/JOC-3-2 (952) 882-233 Cell # (612)
Sample	Depth	PTD	station			Cel (# (61≈)
l	4,6;8'	- 6	1725-180	۵ ۲ ۲ ۲ ۲ ۲ ۲ ۲		
2	4,6,8,10	0	15725185		generative land and a start from a start later to the start of the	9
3	4.6,8,10	- 0 `	725190		.,,,,	a ma a managero yen arra 166/au 1960 yelingaariaga a ma ay na dan na pamaangina ang na arra ya
Ц	4.6;810	000,1	1725+55	The support of the second s		nd mys an almana (12) all so is an endere any and a south of a second of a
5	46,8,10	-0 -	1726+00			
4		2,0,0,0	1726705	•••		a and the second of the second s
	4,6.810	-0.	17200110	and the state	м.	
4	4,6,40	-0-	1720+15			unina ya ni ina na kata kata kata kata kata kata kata
4	114,810		1720120			
lo	4,0,6,0	-0	1720+25			
	4.6,60	_0 -	1226-130	۲۰۰۵ (۲۰۰۰ - ۲۰۰۰) ۲۰۰۵ (۲۵۵۰) ۲۵۵۰ (۲۵۵۰) ۲۰۰۵ (۲۵۵۰) ۲۰۰۵ (۲۰۰۵ - ۲۵۵۰) ۲۰۰۱ (۲۰۰۵ - ۲۵۵۰) ۲۰۰۵ (۲۵۵۰) ۲۵۵۰ (۲۵۵۰)		анца и до станция и соци и станция с части и станция с части и станция с части и станция с части и станция с ч анца и подати и станции с части и станци
12	116810	_0 -	1926-35	مېر د د د د د د د د د د و د و مورد و و هم سرو و و رو و مورد و و مورد و و و و و و و و و و و و و و و و و و		ماسط کر بار مراجع کر مراجع می میکند. میکند میکند میکند میکند میکند کر میکند میکند میکند میکند میکند میکند. این
<u> </u>	46,00		12000 J	a izvito da constante su serence de la constante de la constante de la constante de la constante de la constant	r na historia and a star a A star a star	nagati kan disebangka anta Kanada di pana kana mana kana mana anta anta ya na anta ya na anta anta
14	46.00		1026745	ئ چىنەرى بىرىدر روپ مىسىمەرىم بىرىرىر ىرى دەرىسىرى	و سے	time transformation and a set of the set of
17	46.00	,	192670	:		
16	46610	<u>~0</u> .	1726+55	n to ben april 2 2000 (201 - 1 mail	ang dari 11 biy 11 bi gada nay na kana magang a sanayan I	
en andre and a second	2/ 6 810	0.	Contraction and the second		Nandrigani, and Angeles and a second se	
12	46.6.10		1726765			
19	468,00	6. ·	1726170	228222999241071993097777222888799999999		
(A)	4,6%,10	7-0-	1726+75			
21	4,6%,10	0	172@+60	······································	· · · · ·	
22	4.6.8.10	1	1726185	/2771/2777/2777/20177/201727/201727/2017777/2017777/2017777	1 1 1	An
27	1.6.8.10	_	1726+90	**************************************		al an
14	4,68,10	0	1-726195	ntengantapo de Victores de parte a composito de trape		
20	46.6.00	0	1-201100	A THE REAL AND IN THE REAL AND	че (
26	- 4/6 8,10	6	172740	an Walancing Ing an ang pang ting di Abba pang	<u>, , , , , , , , , , , , , , , , , , , </u>	<u>A 22 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999</u>
29	4.6.8.12	0	1-13-1410	محيي والمناهميني ورغياني معامير يتوري والارار والتر	999 <mark>- 2000 - 2000</mark>	
28	4,6,810	0	1727+15	יינער אפערייע איזאע איזאר איזידער איזאר איזאר איזאר איזאר איזאר איזיגעראיין איזיא איזיין איזיא איזאר איזיאראיי איזין איזיאראיז איזאראין איזיאראין איזיאראין איזיאראין איזיא איזיא איזיא איזיא איזיא איזיא איזיא איזיא איזיא איז	201 - 201 -	and the second
29	4,6,8,10	0	1727+20	ala a se de la Constante de La	428	91.99
	468,10,12	2 0	1729125	and and a second second and a second s	₩₩₽ [₩] ₽₩₩ [₩] ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	annin - Con, ag (an TC 70 Interplaced and an Annin Anni Annin - Con, ag (an TC 70 Interplaced and Annin Ann
30 31		مىرىمى بىرى بەر بىرىيە بىرىيە يەرىيە تەرىپىيە (يەر مىلايە بىرىيە سەر بىرىيە بىرىيە بىرىيە بىرىيە بىرىيە بىرىيە بىرىيە بىرىيە	1727/30	ویکی با اور در این بهر که رود در با به با	145 000 95997999999, An Andrigger Shaniyaya, Anfilinaeta	A 11/2 101 1 2 7
	4,6,8,10,10	1		Tang panjada karanta daram tahun sa		Non-2017-2017-2017-2017-2017-2017-2017-2017
32	4,6,8,10,1	20	1727+35		ana	77 4 1 197 197 197 197 197 197 197 197 197 1
33	6,8,10,12,14	4 0	17,27+40			

MNDOT FAY # -> 1320) 763-8442

STS Consultants, Ltd.	Day/Date Thursday 5/20/01
ENVIRONMENTAL FIELD REPORT	/
Project Name MNDOT AnnKHishway 29 Location Alexandra MNI Contractor Ribey Bros.	Project Number <u>977943-×A</u> Task Number <u>—</u> Weather/Temp. <u>Part by Sump/60°</u> Client <u>MADOT</u>
Arrive Job 0 700 Travel Time 2.0 Depart Job 1030 Project Coordination	Contractor Arrive Job Contractor Depart Job Contractor Hours on Job
12/2/	OF TH-29 approximately
<u>L'objected excavated Soils</u> <u>Gl petrolum imports and collect</u> randora on excavated Soil (so for DED readings).	of PID headspace
No elevated PID readings were a Nisual or officiality evidence of Was observed in the excavated	petroleum contamportion
Riby Bros. Stopped excaved in Same due to the presence of the Storm to Fillmore Street to the in Called Jessie Miller (MNDOT) to discuss onsite. Jessie Soid he didn't think ou Equipment and Supplies used: required for the remainder of the Photoxic PID 10.6eV Immo	Storm Second Storm Second the need for me r Services would be
Print Name <u>Timethy J.G. rape</u> Delays: Signature <u>Inverse Tenning</u> Title <u>Senior Environmental Technican</u> STS Consultants, Ltd.	, , , , , , , , , , , , , , , , , , ,

Scinitary Scover-from 14.29-South On Broadwy Mn Dor TH-29 Alkrandria, MN Alkrandria, MN 99473-XA 5/20/04 320 808-3669 Î I

Sumple	Depth	PID	Stootion	
<u></u>	8,10,12		1727+40	Brduy
	6.8.10.1214	0	1722448	Troduct
<u>~</u> 3	6,19,2,14		5' south	Tsrdu 1
 L_		0	10'south	J. oly
	G.K. (1, 2)	6		Prdu y
	6 5 10/12			<u>prov</u>
· · · ·	6,8,10,12	0	SC SOMA	
	6,6,10,10-	and the second	25 Seal	gen
	4,6,8,19,12		35 South	
10	4,6,8,10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	40' soch	
	4.6.8,10		4	n an
/ 2	4,68.0		۲ _.	ուս ու եւ հետրը՝ երկրու ու հատցիների բանչնատի պետբացիս հայուս հաս։ Դրանսու է հետու է հետ հանցիներին՝ բանչնատի պետբացիս հայուս հայու
	4,6,6,15	· · · · · · · · · · · · · · · · · · ·		
the second s	4. 6. 610		63	n na sen en se
and the second				(c)
16	- 6.3 0	· · - D		
17	46,8,10			
				an a
and a second	antes augusta antes a contractiva de la	an a		na na na sana ang ang ang ang ang ang ang ang ang
and the second			n alasan (maranasana)	en en feren
·				an far the second s
and the state of the		· · · · · · · · · · · · · · · · · · ·	*	ى ئى
े देखे का सुर रहत है	a an	z zym wynas i er sene i neu eryfrir en	ang ang ang pangkanan na sang pang na sa	an na an ann ann ann ann ann ann ann an
· · · · · · · · · · · · · · · · · · ·			<u> </u>	
L		2 		
· _ 			32 Augustus	₩2₩₩₩₽₽₩₩₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
		a ana ang ang ang ang ang ang ang ang an	a) A) Ayraa (de Seculationen al Albi Dada Dada)	
₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	and all the foregation was treed of the	ang sementing setting setting and the company of the	an water - an and the standard and the sta	
]			
		1		

ţ.

STS Consultants, Ltd.	Day/Date Saturday 8/14/09
ENVIRONMENTAL FIELD REPORT	ι of
Project Name <u>MNDOST 7H-29</u> - Alexandria Location <u>TH-29 & No Komis St. Intersection</u> Contractor <u>Riley Bros</u>	Project Number <u>99473-xA</u> Task Number <u></u> Weather/Temp. <u>Summy (60°</u> Client
Arrive Job 0830 Travel Time 40 Depart Job 0930 Project Coordination $$ Jours on Job 10 Total Chargeable Hours 50 Mileage 270	Contractor Arrive Job Contractor Depart Job Contractor Hours on Job
Stown Sever Service on No of TH-29 (intersection). La they had not absenced any while excavaling in the o	ples - no elevaded denna of pedverking 6 Damis (Rilling) and WIDST Su
2 <1 6' (

ENVDAILY.DOC

STS Consultants, Ltd.	Day/Date Tuesday Aug. 12, 2004
ENVIRONMENTAL FIELD REPORT	
Project Name <u>TH-29</u> <u>Alex Conduis</u> Location <u>East of TH-29</u> <u>Novanis intersection</u> Contractor <u>Billy</u> Bross Constr.	Project Number <u>99473-XA</u> Task Number Weather/Temp. <u>Summy</u> / 80° Client <u>MMDOT</u>
Arrive Job 1300 Travel Time 4.0 Depart Job V(630 Project Coordination 6.5 Hours on Job 3.5 Total Chargeable Hours 7.5 Mileage 250	Contractor Arrive Job Contractor Depart Job Contractor Hours on Job
Summary of Technical and/or Engineering services performed, including Field Test Data, Locations,	Elevations and Depths are Estimated.
facility Observed gray Soil clay - 20' South of coosing Cit approximately 4' below graved su area Consisted OF - 2' sand and Impoched area approximately 5' Soil Samples and screened with ranged from 10 to 40 PID in Observed Storm Server excavation Texaco between Averean Fire bor No cuidence al impacks ob screek	Sie While Excavations Starting in Lighting Starting in Brown enter line to a depth of where the to a depth of where the to a depth of where inter clay- where other clay- and solve other clay- where other clay- where other clay- adding the content of the clay- there of t
Spoke with Mart Johnson of WC The owner of minnesde lighting prop area failed to Glan from Shuth Equipment and Supplies used: HNU PID 10.201	E Molting -
Print Name <u>Timothy J. Grape</u> D Signature <u>Marcel Constructor</u> Title <u>Assistant Project Geologist</u> STS Consultants, Ltd.	elays:,
3/12/04	HUJOT ENVDAILY.DOC

		H-29 Ale	randmin 6	17/04
:	f	l.	1	ſ
Somple	Depith	PID	Soi) type	Conmends
6-1	0'-2'	30	Sound /Siv1	ador - Hond Staining
5-10	21-4'	26	Clery -Stor	oclar- Detal/Staining
5-2	0'-2'	25	Sand Bill Clevy Strong	adar - Retral / Staining
5-2A	2'-4	40		odar - Reted Staining
5-2	2-4	JØ	Cley-grey	Slight adar
5-4	6'.2'	<u> </u>	1 Clay - Brey	no Usual / dl Factory
<u>54</u> A	2'-4'	<u> </u>	Clay by. bik	
55	<u>0'-2'</u>	21	Clay - br	
5-5A	2'-4'	<1	Clay 105.6K	
5-6	6'2'	21	Clay-bu	an na han an a
<u>5-61</u>	9:41	<u> </u>	Clery/Grg. blk	and a second
5-7		23	Clo-1- DW	
5-73	al y	<1	Charlorr - bi2	مېرىمى يې
5-8	3'-4'	<	Clay by K	Septic/ methone ador
	4 1.1R494			مانىيە ئەركىيەتىر ئىلىرىمە ئىلىرىمەت بىرىمەت بىرىمەت بىرىمەت بىرىمەت بىرىمەت بىرىمەت بىرىمەت بىرىمەت بىرىمەت بى سىرىمەت بىرىمەت
	-ATTINS &			

	a y That Parks		n n n n n n n	
v. se	5 pr 104, 304, 104, 104, 104, 104, 104, 104, 104, 1			
A Contraction of the second seco	**************************************			

Impached and Sail Profile

6. Surface Clay . Sandford. Clay 2' Sicy clay L Clay

STS Consultants, Ltd.	Day/Date Monday 5/23/04
ENVIRONMENTAL FIELD REPORT	of
Project Name <u>T.H29 Mexandria</u> , MN Location Norans & TH-29	Project Number <u>99473-XA</u> Task Number
Contractor Ritey Bros Contractive	Weather/Temp. <u>Cloudy</u> 70° Client <u>MNDOT</u>
Arrive Job $\frac{1630}{2000}$ Travel Time $\frac{4.5}{200}$	Contractor Arrive Job
Hours on Job 3.5 Total Chargeable Hours 9.0 Mileage 250	Contractor Depart Job Contractor Hours on Job
Summary of Technical and/or Engineering services performed, including Field Test Data, Locations, Eleve	ations and Depths are Estimated.
4/22/AU	
Ob Noronis & TH-29 Intersect. Forcountered Stained Soil with pe Station 1757+20. + 1757+00 North DE Minnesoter Lighting Fro Called Andrews Hickels (MnDorr)+ disc Soil. Andrews requested STS Sample for BTEX, Gold, DRO and lead for PID reading Summonized on be Removed ~25 10 cy. Hrvek lond Material - hauled to Demitted lawn Marris, MN. Observed Subart Ahrough the e	Andleum Goler bedureen South Ende Of road oplace & Planning instad sampling impacted e the impacted soil normal taxnarawands Tak. S DS impacted Spread Sido in
Equipment and Supplies used: HNU PITD 10.2eV	
rint Name <u>Timothy J. Grape</u> Delays ignature <u>Timothy J. Grape</u> itle <u>Assistant Project Geologist</u>);

.

99473-×A 8/23/04

-

Ben (612)810-2672

\$

.

Sample JD	Depth	PJD	Locatron
Jun pa u o	W	30	
	31	<i>5</i> 9	
<u></u>	$\overline{T^{1}}$	25	
	B'	45	
	<u></u>	Kanal and the second	
τ.	31	20	
	1 (N 1999
*****	31	<,1	
aan aan ah		<1	
unantativa Porto y strato ange Mage	<i>F1</i>		
· · · · · ,··· , ··· · , ····· •·•· · ·····	31	21	
	Base (3)	<u> </u>	la din Place
	South Schwall	50	V
<u> </u>	(2)		
		an and a second and a second and a second program of	

STS Co	nsultants	, Ltd.		Day/Date Juesday 9/14/04
ENVIRO) N M E N T A	L FIELD RE	PORT	of
Project Name Location Contractor	MnDot Alexandre Riley Br	TH-29 Va., MN		Project Number <u>99473-×A</u> Task Number Weather/Temp. <u>Sump180</u> Client
Arrive Job Depart Job Hours on Job Summary of Technical	<u>/030</u> <u>1300</u> 2.5	Travel Time Project Coordination Total Chargeable Hours Mileage es performed, including Field Test D	4:5 1.0 5.0 245	Contractor Arrive JobContractor Depart JobContractor Hours on Job
	Apon and Apon and rown the to not observed here was a	il with petrale. Jul T collecto Stockpilled ma the 1/" pipe area beer red comme	1259+25 I Corrie Mar The reaction m adore a handless A handl	bec) and periodeum Inter Paror to my ~ 251030 cy. 2/Staining. acce Soil Samples and from 40 to 100 pJ Dang) with a slight petroleum pipe-fle Soil around
<u>Arechyfred</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>Soid</u> <u>So</u>	Pipe appare cars to be acrity. Alle process not to colle somple tran Sample = oplies used: Phritin to hand nited Gailin Monal Ons Simothy J. Grape	nthy ran to the <u>Commy from the</u> <u>Called Andrews</u> <u>OS calling the S</u> <u>At a water San</u> <u>Stockpile fer</u> <u>R-2 (voc.6RG D</u> <u>Mac PID</u> <u>Mac PID</u> <u>Mac PID</u> <u>Mac Cockp</u> <u>h</u> and <u>Stockp</u> <u>ife</u>	Stom Seu - South Nichell (1 State Duty p6 from NOC, 1 RO) R-	al (-25-220,) to still september from
Title Assistant Pr	oject Geologist STS Consultants, Lid		••••••••••••••••••••••••••••••••••••••	······································

SIS Consul	tants, Ltd.		Day/Date Wednesd	ay/May 18, 2
ENVIRON	MENTAL FIELD R	EPORT		of
	27 29 Alexandria DOT THE A/TH COST STATE Indria Minnesota ley Brothers	·····	Project Number <u>99</u> Task Number Weather/Temp. <u>Rain</u>	
)		Client <u>MnDOT</u>	
Arrive Job	Travel Time	4.75	_ Contractor Arrive Job	
Depart Job	Project Coordination	0.5	_ Contractor Depart Job)
Hours on Job	Total Chargeable Hou	ırs <u>5.25</u>	Contractor Hours on J	ob
	Mileage	32.0	-	
Summary of Technical and/or	Engineering services performed, including Field T	est Data, Locations, Eleva	ations and Depths are Estimated.	· · · · · · · · · · · · · · · · · · ·
Irove from was told with a	Virginia, Minnesota to be onsite at. PID.		ndria, Minhesot Norrow to sch	a. I e.en soil
				···· · · · · · · · · · · · · · · · · ·
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		······································		
				Mar 10
			······································	
uipment and Supplies u	sed (circle items used on-site):			· · · · · · · · · · · · · · · · · · ·
	evel Tape, Whale Pumps, Free Product	Indicator, Peristaltic	Pump, Stabilization Paramet	ers, GEM 500,
. 1	oment, Disposable Bailers,	Tubing (ft.),	Chemetrics -	QED Filters
olosimeter, Survey Equip				
nt Name <u>Gayle Bliz</u>	il Blivil	Delays:		

e until Monday and that the	Il contaminated. I took more of the stockpile. The stockpiles were not they were still moving and Riley Bras. that Bill Tepley (STS) sent 2 in Buffald as a re site I was told Bros.) that they wouldn'
Indria, Minnesota Brothers Construction Travel Time Project Coordination Total Chargeable Hours Mileage rgineering services performed, including Field Test Data, Locations, Eleve nose and eye that it was structions eleve nose and eye that it was structions to critical the site. In the excavation, and some soil before I left the site. The time of the photos because foil to them. I reminded Min Dot les would need to be covered. a From previous borings to CFI asal aption. Before I left the itch (Mn Dot) and Dennis (Riley e until Monday and that the	Task Number Weather/Temp. <u>fartly cloudy</u> / 65 Client <u>MnDOT</u> Contractor Arrive Job Contractor Depart Job Contractor Hours on Job Attions and Depths are Estimated. Il <u>contaminated</u> . <u>I</u> took more of the stockpile. The stockpiles were not they were still moving and Riley Bros. that Bill Tepley (STS) sent 2 in Buffald as a De site <u>I</u> was told Bros.) that they wouldn'
Brothers Construction Travel Time Project Coordination Total Chargeable Hours Mileage gineering services performed, including Field Test Data, Locations, Eleve nose and eye that it was structuring the excavation, and some soil before I left the site. time of the photos because in to them. I reminded Min DoT les would need to be covered. The structure of the periods to CFI asal aption. Before I left the itch (Mn DOT) and Nennis (Riley e until Monday and that the	Task Number Weather/Temp. <u>fartly cloudy</u> / 65 Client <u>MnDOT</u> Contractor Arrive Job Contractor Depart Job Contractor Hours on Job Attions and Depths are Estimated. Il <u>contaminated</u> . <u>I</u> took more of the stockpile. The stockpiles were not they were still moving and Riley Bros. that Bill Tepley (STS) sent 2 in Buffald as a De site <u>I</u> was told Bros.) that they wouldn'
Travel Time Project Coordination Total Chargeable Hours Mileage gineering services performed, including Field Test Data, Locations, Eleve nose and eye that it was structuring the excavation, and some soil before I left the site. e time of the photos because foil to them. I reminded Min DOT les would need to be covered. a from previous borings to CF/ asal aption. Before I left the itch (Mn DOT) and Dennis (Riley e until Monday and that the	Weather/Temp. <u>Partly cloudy</u> / 65 Client <u>MnDOT</u> Contractor Arrive Job Contractor Depart Job Contractor Hours on Job ations and Depths are Estimated. <u>Contaminated</u> . <u>I</u> took <u>more of the stockpile</u> <u>The stockpiles were not</u> <u>they were still moving</u> <u>and Riley Bros. that</u> <u>Bill Tepley (STS) sent</u> <u>Cin Butfald as a</u> <u>Rile I was told</u> <u>Bros.) that they wouldn</u>
Project Coordination Total Chargeable Hours Mileage project Coordination Mileage project Coordination Mileage project Coordination Mileage project Coordination Nose and eye that it was str nose and eye that it was str nose and eye that it was str it was str it was str soil before I left the site. The photos because foil to them. I reminded Min Dot les would need to be covered. a from previous borings to CFI asal option. Before I left the itch (Mn Dot) and Dennis (Riley e until Monday and that the	Client <u>MnDOT</u> Contractor Arrive Job Contractor Depart Job Contractor Hours on Job Ations and Depths are Estimated. Contaminated. <u>I</u> took more of the stockpile. The stockpiles were not they were still movino and Riley Bros. that Bill Tepley (STS) sent 2 in Buffald as a le site <u>I</u> was told Bros.) that they wouldn'
Project Coordination Total Chargeable Hours Mileage project Coordination Mileage project Coordination Mileage project Coordination Mileage project Coordination Nose and eye that it was str nose and eye that it was str nose and eye that it was str it was str it was str soil before I left the site. The photos because foil to them. I reminded Min Dot les would need to be covered. a from previous borings to CFI asal option. Before I left the itch (Mn Dot) and Dennis (Riley e until Monday and that the	Contractor Depart Job Contractor Hours on Job Ations and Depths are Estimated. <u>Il contaminated.</u> <u>I took</u> <u>more of the stockpile.</u> <u>The stockpiles were not</u> <u>they were still movino</u> <u>and Riley Bros. that</u> <u>Bill Tepley (STS) sent</u> <u>2 in Buffald as a</u> <u>ne site I was told</u> <u>Bros.) that they wouldn'</u>
<u>Mileage</u> <u>gineering services performed, including Field Test Data, Locations, Eleving</u> <u>nose and eye that it was structuring the excavation, and some</u> <u>soil before I left the site.</u> <u>e time of the photos because</u> <u>soil to them. I reminded Min Dot</u> <u>les would need to be covered.</u> <u>a from previous borings to CFI</u> <u>asal aption. Before I left the</u> <u>itch (MnDot) and Dennis (Riley</u> <u>e until Monday and that the</u>	Contractor Hours on Job ations and Depths are Estimated. <u>Il contaminated. I took</u> <u>more of the stockpile</u> <u>The stockpiles were not</u> <u>they were still moving</u> <u>and Riley Bros. that</u> <u>Bill Tepley (STS) sent</u> <u>2 in Buffald as a</u> <u>1e site I was told</u> <u>Bros.) that they wouldn'</u>
Mileage regineering services performed, including Field Test Data, Locations, Elevi nose and eye that it was structuring the excavation, and some soil before I left the site. e time of the photos because foil to them. I reminded Min Dot les would need to be covered. a from previous borings to CFI asal option. Before I left the itch (Mn Dot) and Dennis (Riley e until Monday and that the	ations and Depths are Estimated. <u>Il contaminated. I took</u> <u>more of the stockpile</u> <u>The stockpiles were not</u> <u>they were still moving</u> <u>and Riley Bros. that</u> <u>Bill Tepley (STS) sent</u> <u>E in Buffald as a</u> <u>re site I was told</u> <u>Bros.) that they wouldn'</u>
nose and eye that it was structuring the excavation, and some soil before I left the site. e time of the photos because that it would need to be covered. a from previous borings to CFI as a aption. Before I left the fite the fite the covered. a from previous borings to CFI as a aption. Before I left the fite the fite the fite the fite the covered. a from previous borings to CFI as a aption. Before I left the fite the fore the fore the fite the fite the fite the fite the fite the fite the fore the fite the fite the fore the fore the fite the fore the fore the fite the fite the fore the fore the fite the fite the fore the fore the fore the fite the fore	Il contaminated. I took more of the stockpile The stockpiles were not they were still moving and Riley Bros. that Bill Tepley (STS) sent 2 in Buffald as a re site I was told Bros.) that they wouldn'
nose and eye that it was str using the excavation, and some soil before I left the site. e time of the photos because oil to them. I reminded Min DOT les would need to be covered. a from previous borings to CFI asal aption. Before I left the itch (Mn DOT) and Dennis (Riley e until Monday and that the	Il contaminated. I took more of the stockpile The stockpiles were not they were still moving and Riley Bros. that Bill Tepley (STS) sent 2 in Buffald as a re site I was told Bros.) that they wouldn'
iring the excavation, and some soil before I left the site. e time of the photos because oil to them. I reminded Min DOT les would need to be covered. a from previous borings to CFI asal aption. Before I left the itch (Mn DOT) and Dennis (Riley e until Monday and that the	more of the stockpile The stockpiles were not they were still moving and Riley Bros. that Bill Tepley (STS) sent 2 in Buffald as a re site I was told Bros.) that they wouldn'
n Grape (STS) on Saturday to e needed Monday. I left the S.	let us Know what site and drove
vel Tape, Whale Pumps, Free Product Indicator, Peristaltic nent, Disposable Bailers, Tubing (ft.),	Pump. Stabilization Parameters, GEM 500, Chemetrics - QED Filters
2	

4 ,

STS Consultants, Ltd.	Day/Date Thursday/ May 19,200
ENVIRONMENTAL FIELD REPORT	of
Project Name <u>MnDOT TH 37/TH 509 Virginia</u> Location <u>Nirginia</u> Minnesota	473 Project Number <u>99</u> 2-XA Task Number
Contractor <u>Riley Brothers</u>	Weather/Temp. Fog / 55° Client <u>MnDOT</u>
Arrive Job 0700 Travel Time 2.25	Contractor Arrive Job
Depart Job <u>1630</u> Project Coordination <u>0.25</u> Hours on Job <u>9.0</u> Total Chargeable Hours <u>165</u>	Contractor Depart Job
Hours on Job <u>9.0</u> Total Chargeable Hours <u>1.5</u> Mileage <u>132.0</u>	Contractor Hours on Job
Summary of Technical and/or Engineering services performed, including Field Test Data, Locations, Elevati	ons and Depths are Estimated.
in the post Riley Broiners had gotten a perm Morris until they brought it to the land-fill. MnDOT is paying for the disposal, and they showing how much was haved off-ite. It soun to continue doing it the same way. They c from just past of Park ST toward the ar possible contamination. North of London Bould stopped excavation when they hit grey/arean petrol screened it with a FID and it was 240, son	<u>T</u> found out that have scale tickets ds like they would like continued excalating westward ea where they expected ler (current site office) they eum smelling foil. <u>T</u>
soil below it also had a reading of 100. I the soil needed to be separated from the they continued excavating it was visually appare	instructed Rilby that non-impacted soil. As int the contamination was
at least 15' deep and virtually crossed the 1:30'	hole N+S. There was a w and then, but it
uipment and Supplies used (circle items used on-site):	
D (16.2 eV lamp)) Water Level Tape, Whale Pumps, Free Product Indicator, Peristaltic P plosimeter, Survey Equipment, Disposable Bailers, Tubing (ft.),	ump, Stabilization Parameters, GEM 500, Chemetrics - QED Filters
nt Name <u>Gayle Blizil</u> Delays:	

Print Name	Gayle Blizil	
Signature	Gaule Blinit	
Title	Assistant Project Engineer, EIT	•
	STS Consultants, Ltd.	•

· / ·

,

÷

STS Project Number:

Date: <u>5/19/05</u>

Sample I.D.	Depth	PID Headspace	Location	Description
SD-1		2.5		
SP-2		. 15		Brn silty sand. t-clay AK brn clayey, silty sland
Water Baggie		0.5		
5-1	A 10	240	S side 3rd / 1. From of London For Ider	+ Grandarey silty sound metro
5-2	~15	100	6	4. brn silty sand sofre
<u>S-3</u>	~10	150	15 W of above	t Grn/arey silty sand petro 4. brn silty sand petro brn/grey silty sand potro
				757 7
			·	······································
			····	
			, , , , , , , , , , , , , , , , ,	
			····	
			· · · · · · · · · · · · · · · · · · ·	
	·····			
-				
· · · · ·				
			· · · ·	
			······	
		·····		
			······	······································
i		I		

	isultants,			Day/Date Saturday/May 21,
ENVIR	ONMENT	TAL FIELD RE	PORT	o
Project Name	MnDOT TH 27	/TH 29		Project Number99473-XA
Location	<u>Alexandria, Min</u>	inesota		Task Number
Contractor	_Riley Brothers (Construction	·····	Weather/Temp. Sprinkling / 60
				Client <u>MnDOT</u>
Arrive Job	0700	Travel Time	4.0	Contractor Arrive Job
Depart Job	0800	Project Coordination	0.5	Contractor Depart Job
Hours on Job	1.0	Total Chargeable Hours	5.5	Contractor Hours on Job
		Mileage		
Summary of Technic	al and/or Engineering s	ervices performed, including Field Test	Data, Locations, Eleval	tions and Depths are Estimated.
I aot	the PID	and drove to A	lexandria.	Yesterday I was to
by Jesse	Miller (M	nDOT) that they	1 1	re at 0700 today. I
	onsite at		me was	there. I called Jesse
and he		would call Bra		1 i 12 i i
r 2 - 1	back and	-		•
site ar				as on his way to t r directions on whet
1	· · · · · · · · · · · · · · · · · · ·			
		I asked when		ould need us if the
were no	1 4		said prob	
<u>shoul</u>			1	e I waited for Mit
spoke	with De	enny (Riley Brothe	s) and h	ie told me he had
sent al	<u>l</u> of his	gluys home for	the day.	I waited for Mitch
anyway	to confir	m there would	be no w	ork today, and to
confirm	the tiv	ne on Monday.	Mitch	said 0800 Monday
morning	, so I	returned to	<u>STS.</u>	
	.10			
			······································	
				- An Andrew Strange Control of Co
·····				
quipment-and S	upplies used (circ	le items used on-site):		
F	`		dicator Peristaltic	Pump, Stabilization Parameters, GEM 50
xplosimeter, Sur		Disposable Bailers,	Tubing (ft.),	Chemetrics - OED Filters
	<u></u>		<u>1 401115 (16.).</u>	Chemenies - QED Fillers
		a anna an anna an anna an anna an anna an an		
anat Rissan -				
0	Jayle Blizil	2 0	Delays:	
ignature	ayle Bilzii Ayle Bi Assistant Project Ei	lizif	Delays:	

÷

	Day/Date Monday May 23, 200.
ENVIRONMENTAL FIELD REPORT	
Project Name <u>MnDOT TH 27/TH 29</u>	Project Number99473-XA
Location <u>Alexandria, Minnesota</u>	Task Number
Contractor <u>Riley Brothers Construction</u>	Weather/Temp. <u>Sunny /70°</u> Client <u>MnDOT</u>
Arrive Job <u>0800</u> Travel Time <u>4.0</u>	Contractor Arrive Job
Depart Job <u>1845</u> Project Coordination <u>0.25</u>	Contractor Depart Job
Hours on Job <u>10.25</u> Total Chargeable Hours <u>14.5</u> Mileage <u>252.0</u>	Contractor Hours on Job
Summary of Technical and/or Engineering services performed, including Field Test Data, Locations, Elevat	ions and Depths are Estimated.
Picture #17 5/23/05 morning, #18 end of	- contamination 5 side 3rd Al
Note C 7 1 AUT 1 (14) (at fars of moving W)	S. side of 3rd AVE a s make sure they were d they would move to installed one more manhole. lity of thin-speading the ney started excavating the They hit contamination almost

Print Name	Gayle Blizil	Delays:
Signature _	Loyle Plink	L'olays,
Title	Assistant Project Engineer, EIT	······································
	STS Consultants, Ltd.	

STS Project Number:

Date: <u>5/23/05</u>

		Denth	PID		Decerintian]
	Sample I.D.	Depth	Headspace	Location	Description	
	<u>S-10</u>		1.5	 	Lt brn clay	
	<u>S-11</u> S-12		2.5	20° W, London Boulde		- Truck <
Iside 3rd+ Park	5-13	~ 41	2.0	120 W, London Bould building (Sside 3rdA Center of intersection	4E)	HH HT
	S-14	24'	2.0 5	edge of London Boulder	Brn silty sand	-++++- 11
	5-15	~41	, O	London Boulder		-
	5-16	261	35	11	Green/gray sitty sand, petro o	gor
· F	S-17 S-14	-70	75	Center of London Boulder	×+ /	-1
ŀ		28'	2	20° W of London gould er	Brn waray specks silty sand	1
-						
			1]
E			·			
-						
					· · · · · · · · · · · · · · · · · · ·	
					· · · · · · · · · · · · · · · · · · ·	
					-	
			<u> </u>		· · ·	
	.* .					
	· · ·					
0 5T @1700 150-900 yd 2					· · · · · · · · · · · · · · · · · · ·	
o br	· · · · · · · · · · · · · · · · · · ·					
150-Y00 7"						
					-	
					· · · · · · · · · · · · · · · · · · ·	
5344		<u> </u>				
a 1515 1	ster Sside Brd AVE		# 20	D.21 Pile		
3 ····	- 15' 3rd ATE					
					4	
×	38					
רבו						

1

•

STS Consultants, Ltd.	Day/Date These 5/31/15
ENVIRONMENTAL FIELD REPORT	of
Project Name <u>TH-29</u> Alcycondija Location <u>Alcycondija</u> MN Contractor <u>Film</u> Bros	Project Number <u>994>3-XA</u> Task Number Weather/Temp. <u>Survy</u> /60 ² Client <u>MWDOT</u>
Arrive Job $\underbrace{05600}_{1600}$ Travel Time $\underbrace{4.5}_{0.5}$ Depart Job $\underline{1600}$ Project Coordination $\underline{0.5}$ Hours on Job $\underbrace{6.0}$ Total Chargeable Hours $\underline{13.0}_{245}$ Mileage $\underline{245}$	Contractor Arrive Job Contractor Depart Job Contractor Hours on Job ms and Depths are Estimated.
The Stock ple area Inrated North between Quincy & Park Street. Riley a depth of ~ 15' for the wader man Side of TH-29/27 (SelfAve) in Front and Sand blooding building a Stadrin A total of approximately 26 - 15 c petroleum imported Soil Greve handled a location from the Water main excavat Stadion 1762428 and 1263400.	aled u 5 - 15 cy. truckbod decem adar Soil do of TH-29/27 Was excavating to an dire name on dire name 1762+28 to 1763+00 N. loods of to the Scorkpile ran between
Jason Said the was working on permits for impacted Soil for Riley Bross. (320)589-20, (alled Andrew Nichols @ to update him on Equipment and Supplies used: Dhotoke PID 10,6eV	39 - WCEC#
rint Name <u>Timothy J. Grape</u> Delays: ignature	

TH-29 Alexandria

STS Project Number: <u>99473-XA</u> Date: <u>5/31/05</u>

		PID	Steethida /	
Sample I.D.	Depth	Headspace	Location	Description
ł	~ 5 -	130	1762+30	Gray Soundy Clay-odos
2	~6'	160		
	~ 8' ~10'	103		
2 4	-110'	103 >2000		
5	~5	95	1702+50	
2 7 	~ \$	110		
<u> </u>	~ 9	175		
	~11	>2,000	<u>v</u>	
9	<u>~5</u>	220	1762+75	
U I	~ 7	314		
()	~9	450		
12	-11	670	V	
14	<u>~51</u> ~91	300	1762+80	
	<u></u>	470		
15	<u>~ 6</u>	516		
10	- 111 ~ 51	690	<u></u>	
174		<u> </u>	1762+00	
1.74	~ 10'	٤(1762+00	1 1/
······································				
· · · · · · · · · · · · · · · · · · ·		<u></u>		
		· · · · · · · · · · · · · · · · · · ·		
			·	
· · /			·····	
			· · · · · · · · · · · · · · · · · · ·	n i takanna internationa internationa internationa internationalista
				······································
	[·			
	ľ		······	

of ~ 15 cy loads of importal soil Remained of islackplan

4

-HIT-HA- HAH- HAH- I

STS Consultants, Ltd.	Day/Date Wednesday 6/1/05
ENVIRONMENTAL FIELD REPORT	
Project Name <u>TH-29</u> - <u>Alcxandria</u> Location <u>Alcxandria</u> <u>MN</u> Contractor <u>Filey Bross</u>	Project Number <u>99473-XA</u> Task Number <u> </u>
Arrive Job 1300 Travel Time 4.0 Depart Job 1630 Project Coordination $$ Iours on Job 3.5 Total Chargeable Hours 7.5 Mileage 240	Contractor Arrive Job Contractor Depart Job Contractor Hours on Job
ummary of Technical and/or Engineering services performed, including Field Test Data, Locations, Elevation	ons and Depths are Estimated.
that total amount of stockpilled	
uipment and Supplies used: Phathance PZD - 10.6 oV 10	man - Legger - Sharry
nt Name <u>Timothy J. Grape</u> Delays: nature <u>Timothy J. Grape</u> e <u>Assistant Project Geologist</u>	
STS Consultants, Ltd.	

MNDOT - TH-29 Alexandria

,

1

STS Project Number: 95473 XA

Date: 6/1/05

		PID	Station	
Sample I.D.	Depth	Headspace	Location	Description
	2	21	1762+28	Brn Sandy Clay (CL)
2	4	<u> </u>	<u> </u>	
5		<1		
4	<u>8</u>	<u> </u>	<u> </u>	
<u> </u>	10	<1	<u> </u>	
4 5	24	<u> </u>	1762415	
	4	<u> </u>	}	
<u> </u>	¥ ×	<u> </u>		
10	10	<u> </u>		
{1	2	<1	1742+00	
12	4	<u> </u>		
13	6	<u> </u>		
14	8			
15	10	٤٢	¥	
·				
			<u></u>	
				· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·	
			<u></u>	
·				
	Ì			
<u></u>				
				•

Mn/DOT TH-29/27 STS Project 99473-XA

Appendix C

Laboratory Analytical Reports

Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

September 07, 2004

Mr. Tim Grape STS Consultants.Ltd. 10900 73rd Ave. North Suite 150 Maple Grove, MN 55369

RE: Lab Project Number: 1093998 Client Project ID: TH-29 ALEXANDRIA MNDOT

Dear Mr. Grape:

Enclosed are the analytical results for sample(s) received by the laboratory on August 24, 2004. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report please feel free to contact me.

Sincerely,

Diane J. Anderson Diane.Anderson@pacelabs.com Project Manager

Minnesota Certification #: 027-053-137

Wisconsin Certification #: 9999407970

Illinois Certification #: 200011

Enclosures

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

Lab Project Number: 1093998 Client Project ID: TH-29 ALEXANDRIA MNDOT

Solid results are reported on a dry weight basis

Lab Sample No: 105982797			Project Sample	Number: 109399	8-001	Date Collected: 08/23/04 18:00
Client Sample ID: R-1				Matrix: Soil		Date Received: 08/24/04 15:05
Parameters			_ <u>Report Limit</u>	Analyzed	By	CAS_NoQualRegLmt
Metals						
Percent Moisture	Method:					
Percent Moisture	15.2	×		08/25/04	U01	
Metals, Trace ICP	Prep/Method:	EPA 3050 /	EPA 6010			
Lead	9.80	mg/kg	0.266	09/01/04 21:59	BDA	7439-92-1
Date Digested	08/31/04			08/31/04		
GC Semivolatiles						
WI DRO in Soil	Prep/Method:	TPH DRO WI	extraction /	TPH DRO Wiscons	in	
Diesel Range Organics	1600	mg/kg	95.	08/31/04 04:09	KSK	1
Date Extracted	08/25/04			08/25/04		
GC Volatiles						
WI GRO and PVOC. soil	Prep/Method:	TPH GRO/PV	OC WI ext. / T	PH GRO/PVOC WI		
Benzene	ND	mg/kg	0.059	09/03/04 12:29	KAL	71-43-2
Ethylbenzene	ND	mg/kg	0.059	09/03/04 12:29	KAL	100-41-4
Toluene	ND	mg/kg	0.059	09/03/04 12:29	KAL	108-88-3
Xylene (Total)	ND	mg/kg	0.18	09/03/04 12:29	KAL	1330-20-7
Gasoline Range Organics	250	mg/kg	5.9	09/03/04 12:29	KAL	
a,a,a.Trifluorotoluene (S)	117	ž		09/03/04 12:29	KAL	98-08-8
Lab Sample No: 105982805			Project Sample	Number: 109399	8-002	Date Collected: 08/23/04 18:15
Client Sample ID: R-1 COMP			- •	Matrix: Soil		Date Received: 08/24/04 15:05
Parameters	Results	Units	Report Limit	Analyzed	By	<u>CAS No. Qual RegLmt</u>
Metals						
Percent Moisture	Method:					
Percent Moisture	12.6	ž		08/25/04	U01	
Metals, Trace ICP	Prep/Method:	EPA 3050 /	EPA 6010			
Lead	6.52	mg/kg	0.254	09/01/04 22:04	BDA	7439-92-1
Date Digested	08/31/04			08/31/04		

Date: 09/07/04

Page: 1 of 7

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

Lab Project Number: 1093998 Client Project ID: TH-29 ALEXANDRIA MNDOT

PARAMETER FOOTNOTES

- ND Not detected at or above adjusted reporting limit
- NC Not Calculable
- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit
- MDL Adjusted Method Detection Limit
- (S) Surrogate
- [1] Low boiling point components are present in sample.

Date: 09/07/04

Page: 2 of 7

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

Lab Project Number: 1093998 Client Project ID: TH-29 ALEXANDRIA MNDOT

QC Batch: 114922 QC Batch Method: TPH DRO WI ex Associated Lab Samples:	traction 105982797		alysis Metho s Descriptic			in			
METHOD BLANK: 105986368 Associated Lab Samples: 10	5982797								
Parameter Diesel Range Organics	<u>Units</u> mg/kg	Blank <u>Resul</u> ND		<u>Footn</u>	otes				
LABORATORY CONTROL SAMPLE & LC	SD: 105986376	10598638	34						
<u>Parameter</u> Diesel Range Organics	<u>Units</u> mg/kg	Spike <u>Conc.</u> 200.00	LCS <u>Result</u> 121.5	LCSD <u>Result</u> 140.6	LCS <u>* Rec</u> 61	LCSD <u>% Rec</u> 70	<u>RPD</u> 15	<u>Footnotes</u> 1,2	

Date: 09/07/04

Page: 3 of 7

1

Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

Lab Project Number: 1093998 Client Project ID: TH-29 ALEXANDRIA MNDOT

QC Batch: 115279		Analysis Method: TPH GRO/PVOC WI
QC Batch Method: TPH GRO/PVOC W	II ext.	Analysis Description: WI GRO and PVOC, soil
Associated Lab Samples:	105982797	

METHOD BLANK: 106006570 Associated Lab Samples: 105982797

Blank Reporting Parameter <u>Units</u> Result Limit Footnotes Benzene 0.050 mg/kg ND Ethylbenzene mg/kg ND 0.050 Toluene mg/kg 0.050 ND Xylene (Total) mg/kg ND 0.15 Gasoline Range Organics mg/kg ND 5.0 a,a,a-Trifluorotoluene (S) 2 94

LABORATORY CONTROL SAMPLE & LCSD: 106006588 106006596

		Spike	LCS	LCSD	LCS	LCSD		
Parameter	<u>Units</u>	Conc	<u>Result</u>	<u>Result</u>	<u>% Rec</u>	<u>% Rec</u>	<u>RPD</u>	<u>Footnotes</u>
Benzene	mg/kg	5.000	4.543	4.494	91	90	1	
Ethylbenzene	mg/kg	5.000	4.576	4.555	92	91	0	
Toluene	mg/kg	5.000	4.707	4.694	94	94	0	
Xylene (Total)	mg/kg	15.00	14.45	14.35	96	96	1	
Gasoline Range Organics	mg/kg	50.00	51.32	49.96	103	100	3	
a.a.a-Trifluorotoluene (S)					99	94		

Date: 09/07/04

Page: 4 of 7

Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

Lab Project Number: 1093998 Client Project ID: TH-29 ALEXANDRIA MNDOT

QC Batch: 114938		Analys	is Method:			
QC Batch Method:		Analysis De	scription:	Percent	Moisture	
Associated Lab Samples:	105982797	105982805				
METHOD BLANK: 105986996						
Associated Lab Samples:	105982797 10)5982805				
		Blank	Reportin	g		
Parameter	<u>Units</u>	Result	Limit	Footno	<u>otes</u>	
Percent Moisture	ž	0	1.			
SAMPLE DUPLICATE: 105987002	2					
		105985527	DUP			
Parameter	Units	<u>Result</u>	Result	RPD	<u>Footnotes</u>	
Percent Moisture	ž	19.10	19.20	1		
SAMPLE DUPLICATE: 105987010	,					
		105983613	DUP			
Parameter	Units	Result	Result	<u></u> <u>RPD</u>	<u>Footnotes</u>	
		14.90	14.90	0		

Date: 09/07/04

Page: 5 of 7

1

Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

Lab Project Number: 1093998 Client Project ID: TH-29 ALEXANDRIA MNDOT

QC Batch: 115237		Analy	sis Method:	EPA 601	0			
QC Batch Method: EPA 3050		Analysis D	escription:	Metals,	Trace ICP			
Associated Lab Samples:	105982797	105982805						
METHOD BLANK: 106004443								
Associated Lab Samples:	105982797	105982805						
		Blank	Reporti					
Parameter	<u>Units</u>	<u>Result</u>	<u>Limit</u>	<u>Footn</u>	<u>otes</u>			
Lead	mg/kg	ND	0.3	00				
LABORATORY CONTROL SAMPLE: 1	06004450							
		Spike	LCS L	cs				
Parameter	<u>Units</u>	<u>Conc.</u> R	<u>esult %</u>	<u>Rec</u> <u>Foo</u>	<u>tnotes</u>			
Lead	mg/kg	1.000	0.9175	92				
MATRIX SPIKE & MATRIX SPIKE	DUPLICATE: 106	007974 10600	7982		····			
		105990485	Spike	MS	MSD	MS MSD		
<u>Parameter</u>	<u>Units</u>	<u>Result</u>	<u>Conc.</u>	Result	Result	<u>% Rec</u> <u>% Rec</u>	<u>RPD</u>	<u>Footnotes</u>
Lead	mg/kg	7.326	57.34	51.59	41.38	77 78	22	
SAMPLE DUPLICATE: 106007990								
		105990477	DUP					
Parameter	<u>Units</u>	Result	Result	<u>RPD</u>	<u>Footnotes</u>			
Lead	mg/kg	3.960	3.860	2				

Date: 09/07/04

Page: 6 of 7

1

Lab Project Number: 1093998 Client Project ID: TH-29 ALEXANDRIA MNDOT

QUALITY CONTROL DATA PARAMETER FOOTNOTES

Consistent with EPA guidelines, unrounded concentrations are displayed and have been used to calculate % Rec and RPD values.

- LCS(D) Laboratory Control Sample (Duplicate)
- MS(D) Matrix Spike (Duplicate)
- DUP Sample Duplicate
- ND Not detected at or above adjusted reporting limit
- NC Not Calculable
- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit
- MDL Adjusted Method Detection Limit
- RPD Relative Percent Difference
- (S) Surrogate
- [1] The LCS recovery is outside of laboratory control limits. Since sample volume received was insufficient for reanalysis, the sample results for this QC batch were accepted based on LCSD recovery.
- [2] Confirmed by second analysis and/or re-extraction.

Date: 09/07/04

Page: 7 of 7

CHAIN OF CL	USTODY RECOR	RD	Nº 34826	NN 0 9	
Contact Person <u>TiVM</u> C Phone No. <u>(L2)からそろそろ</u> Project No. <u>99473-XA</u> Project Name <u>TH-29 M</u>	Gregoe Defice (o (mpls) Mexandria MMDGT	Special Handling Rush	Request Laboratory Contact Persor Phone No. Results Due	ECORD NUMBER 1 2000 Aveloces	тнвоиен
Sample I.D. Date Time	Grab Composite No. of Containers Sample Type (Water, soil, sir, studge, etc.) ≤ Preservation ≥	Special Cond.	Analysis Request	Comments on Sample (Include Major Contaminants)	ample uminants)
R-1 6123 1800 R-1 Commo 8/3/815	X Z SS:1 2 2 2 		rex, GRO, DRO	defected above	82.805 2805
Collected by: Tim Graps		Time Mawe	Delivery by: STS		Time / SO
	Date	Time	K	121-	Time 1500
Received by: Received by:	Date Date	Time	Relinquished by: Bry W Herry Relinquished by:	Date 8/24/04	<u>Time</u> ار <i>ج حرح</i> Time
Received for lab by:	Date	Time	Relinquished by:		Time
Laboratory Comments Only:	Seals Intact Upon Receipt?	□Yes □No □			
Final Disposition:			Comments (Weather Conditions, Pre- S.c.m. p. b. w. w. C. L.	Precautions, Hazards): .	
Distribution: Original and Green - Labora	Distribution: Original and Green - Laboratory Yellow - As needed Pink - Transporter Goldenrod - ST	Dorter Goldenrod - STS Project File	broject File		

STS Consultants Ltd. Consulting Engineers

"Solutions for Technical Concerns"

MDH Laboratory # 027-137-157

Sample ID Client: Study: Descript: Location:	S042601435 Pr STS Consultants Consultant 99473-XA MNDOT R-2	oject #: 4930 TTH-29	Status: NTS COC No	:9/14/2004	Matr	e: Grab ix: Soil
Notes:						
DRO extrac	ction date: 09/16/04					
	Analyte	Analysis Date	Result	Units	RL	Method
DRO, Soil		9/20/2004	1200	mg/Kg	200	WI Method
GRO, Soil		9/18/2004	360	mg/Kg	100	WI Method
PCB, Solid		10/1/2004	# 9999	See Report	0.01	Method 8082
Percent To	otal Solids	9/16/2004	87	%	0.01	SM 2540G
VOC, Soil		9/24/2004	# 9999	See Report	0.5	SW846 8021B

Approved By:

Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Thursday, October 14, 2004

NTS Laboratory Data Base System

Page 1 of 3

"Solutions for Technical Concerns"

MDH Laboratory # 027-137-157

Sample ID:S042601440Client:STS ConsultantsStudy:ConsultantDescript:99473-XA MNDOLocation:R-2 Comp RCRA	Status NTS COC No Sampleo	Sampler: Client Type: Status: Normal Matrix NTS COC No: 43982 Sampled: 9/14/2004 12:15 PM Completed: 10/14/2004				
Notes:						
Analyte	Analysis Date	Result	Units	RL	Method	
Arsenic, Solid	10/4/2004	2,8	mg/Kg	0.3	7060A	
Barium, Solid	10/4/2004	102	mg/Kg	2.5	6010B	
Cadmium, Solid	10/4/2004	<2.3	mg/Kg	2.3	7131	
Chromium, Solid	10/4/2004	16.2	mg/Kg	2.5	6010B	
Lead, Solid	10/4/2004	8.2	mg/Kg	4.6	7421	
Mercury, Solid	9/22/2004	< 0.2	mg/Kg	0.2	7471	
Percent Total Solids	9/23/2004	86	%	0.01	SM 2540G	
Selenium, Solid	10/4/2004	< 0.3	mg/Kg	0.3	7740	
Silver, Solid	10/4/2004	< 5	mg/Kg	5	6010B	

Approved By:

Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Thursday, October 14, 2004

NTS Laboratory Data Base System

Page 2 of 3

"Solutions for Technical Concerns"

MDH Laboratory # 027-137-157

Sample ID: Client: Study: Descript: Location:	S042601442 STS Consultant Consultant 99473-XA MNI Trip Blank	-	Statu NTS COC N Sample	er: Client s: Normal lo: 43982 ed: 9/14/2004 ed: 09/28/2004		ə: Grab ix: Soil
Notes:						
	Analyte	Analysis Date	Result	Units	RL	Method
VOC, Soil		9/24/2004	# 9999	See Report	0.5	SW846 8021B

Approved By:

Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Thursday, October 14, 2004

NTS Laboratory Data Base System

Page 3 of 3

÷

Northeast Technical Services, Inc.

315 Chestnut Street, P.O. Box 1142, Virginia, Minnesota 55792, (218) 741-4290

Analytical Report

Lab Number: Sample Description: COC #: NTS Project #: Matrix: Soil	S042601435 STS MDOT TH-29 R-2 43982 4930			Date Collected Date Received Date VOC An Date Reported Reported By: VOC QC Pack	l: alyzed: 1: k:	09/14/2004 09/16/2004 09/24/2004 09/28/2004 CSD 2-092404-1 027-137-157
Parameter		Units	DF	Result	RL	MDL
Allyl Chloride			20	< 3000	3000	38
Bromobenzene		ug/Kg	20 20	< 3000 < 1000	1000	5.9
Bromochloromethane		ug/Kg ug/Kg	20 20	< 1000	1000	5.9 1.1
Bromodichloromethane		ug/Kg ug/Kg	20 20	< 1000 < 1000	1000	0.8
Bromoform		ug/Kg ug/Kg	20 20	< 2000	2000	9.2
Bromomethane		ug/Kg ug/Kg	20 20	< 4000	4000	82
Carbon Tetrachloride		ug/Kg ug/Kg	20	< 1000	1000	1.2
Chlorobenzene		ug/Kg ug/Kg	20	< 1500	1500	35
Chloroethane		ug/Kg	20	< 3000	3000	74
Chloroform		ug/Kg	20	< 1000	1000	1.4
Childroloum		ug ng	20	• 1000	1000	K , T
Chloromethane		ug/Kg	20	< 6500	6500	159
2-Chlorotoluene		ug/Kg	20	< 1000	1000	1.6
4-Chlorotoluene		ug/Kg	20	< 1000	1000	2.8
Dibromochloromethane		ug/Kg	20	< 1000	1000	0.8
1,2-Dibromo-3-chloropi	ropane	ug/Kg	20	< 2000	2000	48
1,2-Dibromoethane	•	ug/Kg	20	< 1000	1000	0.8
Dibromomethane		ug/Kg	20	< 1000	1000	0.9
1,2-Dichlorobenzene		ug/Kg	20	< 1000	1000	10
1,3-Dichlorobenzene		ug/Kg	20	< 1000	1000	1.8
1,4-Dichlorobenzene		ug/Kg	20	< 1000	1000	7.5
Dichlorodifluoromethan	ie	ug/Kg	20	< 7000	7000	165
1,1-Dichloroethane		ug/Kg	20	< 1200	1200	0.9
1,2-Dichloroethane		ug/Kg	20	< 1000	1000	0.9
1,1-Dichloroethylene		ug/Kg	20	< 3000	3000	62
Cis-1,2-Dichloroethyler	ie	ug/Kg	20	< 1500	1500	28
Trans-1,2-Dichloroethy	lene	ug/Kg	20	< 2000	2000	27
Dichlorofluoromethane		ug/Kg	20	< 2000	2000	40
1,2-Dichloropropane		ug/Kg	20	< 1000	1000	0.9
1,3-Dichloropropane		ug/Kg	20	< 1000	1000	1.0
2,2-Dichloropropane		ug/Kg	20	< 2500	2500	54

,

315 Chestnut Street, P.O. Box 1142, Virginia, Minnesota 55792, (218) 741-4290

Analytical Report

Lab Number: Sample Description: COC #: NTS Project #: Matrix: Soil	S042601435 STS MDOT TH-29 R-2 43982 4930			Date Collected Date Received Date VOC An Date Reported Reported By: VOC QC Pack WDH Labora	l: alyzed: d: k:	09/14/2004 09/16/2004 09/24/2004 09/28/2004 CSD 2-092404-1 027-137-157		
Parameter		Units	DF	Result	RL	MDL		
1,1-Dichloropropene		ug/Kg	20	< 1000	1000	10		
Cis-1,3-Dichloropropen	e	ug/Kg	20	< 1000	1000	9.3		
Trans-1,3-Dichloroprop	ene	ug/Kg	20	< 1000	1000	3.5		
Hexachlorobutadiene		ug/Kg	20	< 2000	2000	40		
Methylene Chloride		ug/Kg	20	< 2000	2000	25		
1,1,1,2-Tetrachloroetha	ne	ug/Kg	20	< 1000	1000	1.1		
1,1,2,2-Tetrachloroetha	ne	ug/Kg	20	< 2500	2500	55		
Tetrachloroethylene		ug/Kg	20	< 1000	1000	2.7		
1,2,3-Trichlorobenzene		ug/Kg	20	< 2000	2000	13		
1,2,4-Trichlorobenzene		ug/Kg	20	< 2000	2000	1.8		
1,1,1-Trichloroethane		ug/Kg	20	< 1200	1200	1.1		
1,1,2-Trichloroethane		ug/Kg	20	< 1000	1000	1.0		
Trichloroethylene		ug/Kg	20	< 2500	2500	56		
Trichlorofluoromethane		ug/Kg	20	< 3000	3000	69		
1,2,3-Trichloropropane		ug/Kg	20	< 1000	1000	4.4		
1,1,2-Trichlorotrifluoro	ethane	ug/Kg	20	< 3000	3000	65		
Vinyl Chloride		ug/Kg	20	< 5000	5000	118		
Acetone		ug/Kg	20	< 30,000	30,000	129		
Benzene		ug/Kg	20	< 1000	1000	4.9		
n-Butylbenzene		ug/Kg	20	< 1000	1000	5.0		
sec-Butylbenzene		ug/Kg	20	2400	1000	5.1		
tert-Butylbenzene		ug/Kg	20	< 1000	1000	4.1		
Isopropylbenzene (Cum	ene)	ug/Kg	20	< 1000	1000	2.1		
Ethyl Benzene		ug/Kg	20	< 1000	1000	0.4		
Ethyl Ether		ug/Kg	20	< 2000	2000	6.2		
p-Isopropyltoluene		ug/Kg	20	< 1000	1000	2.5		
Methyl Ethyl Ketone		ug/Kg	20	< 16,000	16,000	93		
Methyl Isobutyl Ketone		ug/Kg	20	< 10,000	10,000	35		
Methyl tert-butyl ether		ug/Kg	20	< 1000	1000	6.7		
n-Propylbenzene		ug/Kg	20	< 1000	1000	0.8		

а

,

315 Chestnut Street, P.O. Box 1142, Virginia, Minnesota 55792, (218) 741-4290

Analytical Report

Lab Number: S042601435 Sample Description: STS MDOT TH-29 R-2]	Date Collecter Date Received Date VOC An Date Reporter Reported By:	l: alyzed:	09/14/2004 09/16/2004 09/24/2004 09/28/2004 CSD		
COC #:	43982		1	VOC QC Pac	k:	2-092404-1		
NTS Project #:	4930							
Matrix: Soil			I	MDH Labora	tory #	027-137-157		
Parameter		Units	DF	Result	RL	MDL		
Naphthalene		ug/Kg	20	< 2000	2000	26		
Styrene		ug/Kg	20	< 3000	3000	4.2		
Tetrahydrofuran		ug/Kg	20	< 2500	2500	54		
Toluene		ug/Kg	20	< 1000	1000	1.6		
1,2,4-Trimethylbenzene	l i	ug/Kg	20	1700	1000	0.7		
1,3,5-Trimethylbenzene		ug/Kg	20	< 1000	1000	1.1		
m-Xylene & p-Xylene		ug/Kg	20	< 2000	2000	2.3		
o-Xylene		ug/Kg	20	< 1000	1000	2.0		
Fluorobenzene (Surrogate Recovery)		%		99				
1,4-Dichlorobutane (Su	rrogate Recovery)	%		98				
Moisture		%		13				

* Note: Heavy hydrocarbons detected.

VOCs analyzed according to SW846 8021 (MDH 465 Compound List). MDL = Method Detection Limit RL = Reporting Limit (Practical quantitation limit) DF = Dilution Factor

Report approved by:	γ	Analytical Chemist
		-

Northeast Technical Services, Inc., makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties, either expressed or implied.

,

315 Chestnut Street, P.O. Box 1142, Virginia, Minnesota 55792, (218) 741-4290

Analytical Report

Lab Number: Sample Description: COC #: NTS Project #: Matrix: Soil	S042601442 STS MDOT TH-29 Trip Blank 43982 4930]]] ?	Date Collected Date Received Date VOC An Date Reported Reported By: VOC QC Pac MDH Labora	09/14/2004 09/16/2004 09/24/2004 09/28/2004 CSD 2-092404-1 027-137-157		
Parameter		Units	DF	Result	RL	MDL
Allyl Chloride		ug/Kg	1.0	< 150	150	38
Bromobenzene		ug/Kg	1.0	< 50	50	5.9
Bromochloromethane		ug/Kg	1.0	< 50	50	1.1
Bromodichloromethane		ug/Kg	1.0	< 50	50	0.8
Bromoform		ug/Kg	1.0	< 100	100	9.2
Bromomethane		ug/Kg	1.0	< 200	200	82
Carbon Tetrachloride		ug/Kg	1.0	< 50	50	1.2
Chlorobenzene		ug/Kg	1.0	< 75	75	35
Chloroethane		ug/Kg	1.0	< 150	150	74
Chloroform		ug/Kg	1.0	< 50	50	1.4
Chloromethane		ug/Kg	1.0	< 330	325	159
2-Chlorotoluene		ug/Kg	1.0	< 50	50	1.6
4-Chlorotoluene		ug/Kg	1.0	< 50	50	2.8
Dibromochloromethane		ug/Kg	1.0	< 50	50	0.8
1,2-Dibromo-3-chloropr	opane	ug/Kg	1.0	< 100	100	48
1,2-Dibromoethane		ug/Kg	1.0	< 50	50	0.8
Dibromomethane		ug/Kg	1.0	< 50	50	0.9
1,2-Dichlorobenzene		ug/Kg	1.0	< 50	50	10
1,3-Dichlorobenzene		ug/Kg	1.0	< 50	50	1.8
1,4-Dichlorobenzene		ug/Kg	1.0	< 50	50	7.5
Dichlorodifluoromethan	e	ug/Kg	1.0	< 350	350	165
1,1-Dichloroethane		ug/Kg	1.0	< 60	60	0.9
1,2-Dichloroethane		ug/Kg	1.0	< 50	50	0.9
1,1-Dichloroethylene		ug/Kg	1.0	< 150	150	62
Cis-1,2-Dichloroethylen	e	ug/Kg	1.0	< 75	75	28
Trans-1,2-Dichloroethyl	ene	ug/Kg	1.0	< 100	100	27
Dichlorofluoromethane		ug/Kg	1.0	< 100	100	40
1,2-Dichloropropane		ug/Kg	1.0	< 50	50	0.9
1,3-Dichloropropane		ug/Kg	1.0	< 50	50	1.0
2,2-Dichloropropane		ug/Kg	1.0	< 130	125	54

,

315 Chestnut Street, P.O. Box 1142, Virginia, Minnesota 55792, (218) 741-4290

Analytical Report

Lab Number: Sample Description: COC #: NTS Project #: Matrix: Soil	S042601442 STS MDOT TH-29 Trip Blank 43982 4930	STS MDOT TH-29 Frip Blank 13982			d: i: ialyzed: d: k: k:	09/14/2004 09/16/2004 09/24/2004 09/28/2004 CSD 2-092404-1 027-137-157		
Parameter		Units	DF	Result	RL	MDL		
1,1-Dichloropropene		ug/Kg	1.0	< 50	50	10		
Cis-1,3-Dichloropropen	e	ug/Kg	1.0	< 50	50	9.3		
Trans-1,3-Dichloroprop	ene	ug/Kg	1.0	< 50	50	3.5		
Hexachlorobutadiene		ug/Kg	1.0	< 100	100	40		
Methylene Chloride		ug/Kg	1.0	< 100	100	25		
1,1,1,2-Tetrachloroetha	ne	ug/Kg	1.0	< 50	50	1.1		
1,1,2,2-Tetrachloroethar	ne	ug/Kg	1.0	< 130	125	55		
Tetrachloroethylene		ug/Kg	1.0	< 50	50	2.7		
1,2,3-Trichlorobenzene		ug/Kg	1.0	< 100	100	13		
1,2,4-Trichlorobenzene		ug/Kg	1.0	< 100	100	1.8		
1,1,1-Trichloroethane		ug/Kg	1.0	< 60	60	1.1		
1,1,2-Trichloroethane		ug/Kg	1.0	< 50	50	1.0		
Trichloroethylene		ug/Kg	1.0	< 130	125	56		
Trichlorofluoromethane		ug/Kg	1.0	< 150	150	69		
1,2,3-Trichloropropane		ug/Kg	1.0	< 50	50	4.4		
1,1,2-Trichlorotrifluoroe	ethane	ug/Kg	1.0	< 150	150	65		
Vinyl Chloride		ug/Kg	1.0	< 250	250	118		
Acetone		ug/Kg	1.0	< 1500	1500	129		
Benzene		ug/Kg	1.0	< 50	50	4.9		
n-Butylbenzene		ug/Kg	1.0	< 50	50	5.0		
sec-Butylbenzene		ug/Kg	1.0	< 50	50	5.1		
tert-Butylbenzene		ug/Kg	1.0	< 50	50	4.1		
Isopropylbenzene (Cum	ene)	ug/Kg	1.0	< 50	50	2.1		
Ethyl Benzene		ug/Kg	1.0	< 50	50	0.4		
Ethyl Ether		ug/Kg	1.0	< 100	100	6.2		
p-Isopropyltoluene		ug/Kg	1.0	< 50	50	2.5		
Methyl Ethyl Ketone		ug/Kg	1.0	< 800	800	93		
Methyl Isobutyl Ketone		ug/Kg	1.0	< 500	500	35		
Methyl tert-butyl ether		ug/Kg	1.0	< 50	50	6.7		
n-Propylbenzene		ug/Kg	1.0	< 50	50	0.8		

а

,

315 Chestnut Street, P.O. Box 1142, Virginia, Minnesota 55792, (218) 741-4290

Lab Number: S042601442 **Date Collected:** 09/14/2004 Sample Description: STS **Date Received:** 09/16/2004 MDOT TH-29 Date VOC Analyzed: 09/24/2004 **Trip Blank** Date Reported: 09/28/2004 **Reported By:** CSD **COC** #: 43982 VOC QC Pack: 2-092404-1 NTS Project #: 4930 Matrix: Soil MDH Laboratory # 027-137-157 Parameter Units DF RL MDL Result Naphthalene ug/Kg 1.0 < 100 100 26 Styrene ug/Kg 1.0 < 150 150 4.2 Tetrahydrofuran ug/Kg 1.0 < 130 125 54 Toluene ug/Kg < 50 1.0 50 1.6 1,2,4-Trimethylbenzene ug/Kg < 50 50 0.7 1.0 1,3,5-Trimethylbenzene ug/Kg 1.0 < 50 50 1.1 m-Xylene & p-Xylene ug/Kg 1.0 < 100 100 2.3 o-Xylene 50 2.0 ug/Kg 1.0 < 50 Fluorobenzene (Surrogate Recovery) % 100 1,4-Dichlorobutane (Surrogate Recovery) 98 %

Analytical Report

VOCs analyzed according to SW846 8021 (MDH 465 Compound List). MDL = Method Detection Limit RL = Reporting Limit (Practical quantitation limit) DF = Dilution Factor

Report approved by:	T &	Analytical Chemist

Northeast Technical Services, Inc., makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties, either expressed or implied.

,

MINNESOTA VALLEY TESTING LABORATORIES, INC.

RENEE STONE NORTHEAST TECHNICAL SERVICES PO BOX 1142 VIRGINIA MN 55792-1142

Project Number: 4930 Sample Description: S042601435 R-2

MANTA

Page: 1 of 1

Report Date: 6 Oct 04 Lab Number: 04-N5807 Work Order #:22-0246 Account #: 022015 Sample Matrix: SOIL Date Sampled: 14 Sep 04 Date Received: 17 Sep 04 PO #: 43982 Chain of Custody Number: 43982 Temp at Receipt: 3.0 C

	As Rece: Result	ived	Method RL	Method Reference	Date Analyzed	Analyst
608/8081/8082 Extraction				**************	27 Sep 04	JAD
PCB-1016	< 40	ug/Kg	40	SW8082	1 Oct 04	JG
PCB-1221	< 40	ug/Kg	40	SW8082	1 Oct 04	JG
PCB-1232	< 40	ug/Kg	40	SW8082	1 Oct 04	JG
PCB-1242	< 40	ug/Kg	40	SW8082	1 Oct 04	JG
PCB-1248	< 40	ug/Kg	40	SW8082	1 Oct 04	JG
PCB-1254	< 30	ug/Kg	30	SW8082	1 Oct 04	JG
PCB-1260	< 20	ug/Kg	20	SW8082	1 Oct 04	JG
PCB-1262	< 30	ug/Kg	30	SW8082	1 Oct 04	JG
PCB-1268	< 30	ug/Kg	30	SW8082	1 Oct 04	JG

2,4,5,6-TETRACHLORO-m-XYLENE (SURROGATE) RECOVERY: 67 %

DECACHLOROBIPHENYL (SURROGATE) RECOVERY: 87 %

Approved by:	R. Dan O'Connell, Organic Laboratory Manager New Ulm, MN
RL = Reporting Lim	ít

Elevated "Less Than Result" (<): @ = Due to sample matrix # = Due to sample concentration ! = Due to sample quantity + = Due to extract volume CERTIFICATION: MN LAB # 027-015-125 WI LAB # 999447680 ND MICRO # 1013-M ND WW/DW # R-040 IA LAB #: 132

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

QUALITY ASSURANCE REPORT: VOLATILE ORGANIC COMPOUNDS

Sample I.D.: S042611727

Date: 09/24/04 QC Pack: 2-092404-1

,

4

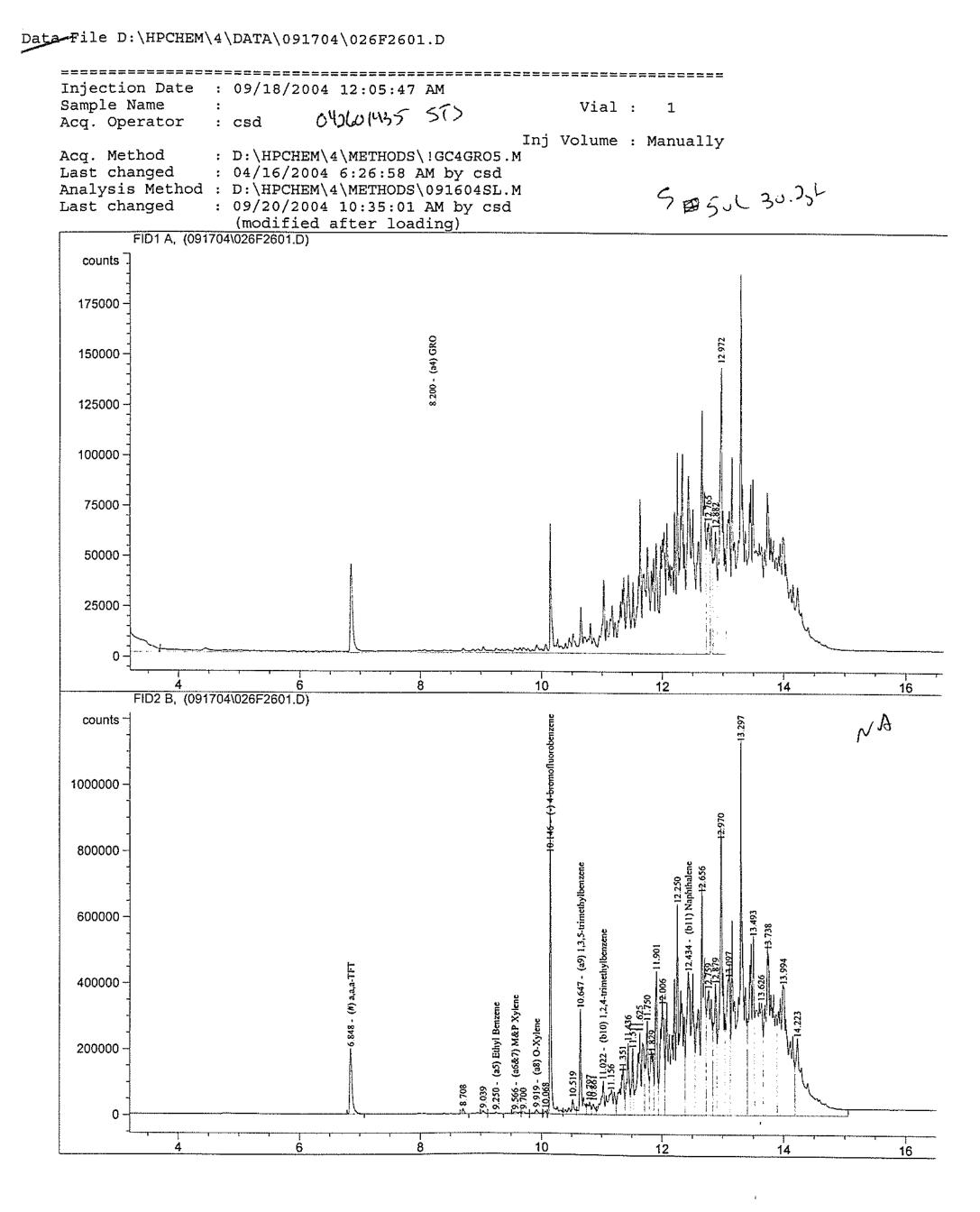
Sample CCV 1 CCV 2 Matrix Matrix Spike % Rec DF % Rec RPD % Conc ug/Kg Spike % Duplicate (%) Allyl Chloride 1.0 < 150 100 102 104 103 0.7 Bromobenzene 1.0 < 50 103 101 102 101 0.8 Bromochloromethane 1.0 < 50 101 101 103 101 2.1 Bromodichloromethane 1.0 < 50 104 102 102 102 0.3 Bromoform 1.0 < 100 97 102 103 98 5.3 Bromomethane 1.0 < 200 96 105 102 103 1.2 Carbon Tetrachloride 1.0 < 50 108 104 106 105 1.2 Chlorobenzene 1.0 < 75 104 102 102 102 0.6 Chloroethane 1.0 < 150 99 99 104 104 0.6 Chloroform 1.0 < 50 104 102 103 103 0.7 Chloromethane 1.0 < 330 102 96 98 100 2.7 2-Chlorotoluene 1.0 < 50 102 100 98 96 2.5 4-Chlorotoluene 1.0 < 50 107 100 107 100 7.4 Dibromochloromethane 1.0 < 50 102 102 104 98 5.2 1,2-Dibromo-3-chloropropane 1.0 < 100 91 98 104 91 12.6 1,2-Dibromoethane 1.0 < 50 101 98 108 96 11.3 < 50 Dibromomethane 1.0 102 98 104 99 5.1 < 50 1,2-Dichlorobenzene 1.0 102 101 101 100 1.1 1,3-Dichlorobenzene 1.0 < 50 103 101 102 101 0.8 1,4-Dichlorobenzene 1.0 < 50 105 101 99 98 1.7 Dichlorodifluoromethane 1.0 < 350 101 93 95 100 4.8 1.1-Dichloroethane 1.0 < 60 105 104 106 103 3.4 1,2-Dichloroethane 1.0 < 50 100 99 101 99 2.8 1,1-Dichloroethylene 1.0 < 150 108 102 104 103 1.1 Cis-1,2-Dichloroethylene 1.0 < 75 105 102 103 102 0.5 Trans-1,2-Dichloroethylene < 100 1.0 106 102 103 103 0.4 Dichlorofluoromethane 1.0 < 100 107 101 104 104 0.5 1,2-Dichloropropane < 50 1.0 106 101 104 103 1.0 1,3-Dichloropropane < 50 1.0 102 101 102 100 1.9 < 130 2,2-Dichloropropane 1.0 90 110 112 110 1.6 1,1-Dichloropropene < 50 1.0 106 103 104 103 0.7 Cis-1,3-Dichloropropene < 50 1.0 99 102 104 102 1.7 Trans-1,3-Dichloropropene < 50 1.0 97 101 101 100 1.1 Hexachlorobutadiene 1.0 < 100 101 104 107 107 0.1 Methylene Chloride 1.0 < 100 103 103 104 104 0.5 1,1,1,2-Tetrachloroethane < 50 1.0 100 100 102 101 0.4 1,1,2,2-Tetrachloroethane 1.0 < 130 82 95 95 92 3.2 Tetrachloroethylene 1.0 < 50 107 103 105 104 1.1 1,2,3-Trichlorobenzene < 100 1.0 98 98 101 99 1.7 1,2,4-Trichlorobenzene 1.0 < 100 99 99 102 101 1.1

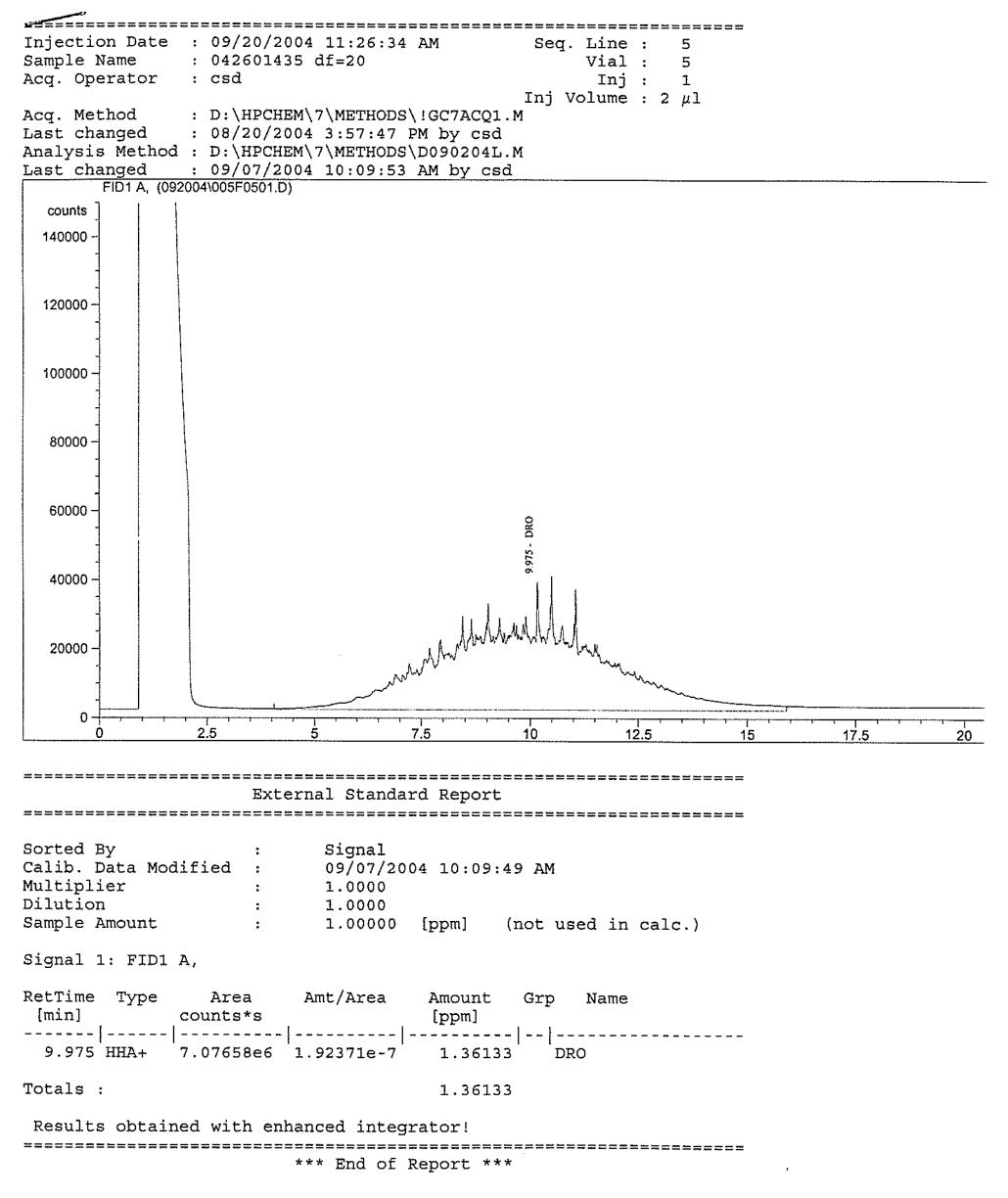
QUALITY ASSURANCE REPORT: VOLATILE ORGANIC COMPOUNDS

Sample I.D.: **S042611727**

Date: 09/24/04 QC Pack: 2-092404-1

,


. .


	Sample	CCV 1	CCV 2	Matrix	Matrix Spike	
						RPD %
					104	0.8
					100	3.2
		118	103	104	103	0.5
	·····	109	105	108	107	1.0
		97	99	100	96	3.9
1.0	< 150	103	103	104	104	0.3
1.0	< 250	107	103	108	110	1.4
1.0	< 1500	170	131	117	101	14.4
1.0	< 50	105	102	104	103	0.5
1.0	< 50	102	101	106	105	1.1
1.0	< 50	105	103	105	105	0.6
1.0	< 50	106	103	105		1.0
1.0	< 50	105	104	104		1.0
1.0	< 50	106	103			0.7
1.0	< 100	99	99	99	98	1.4
1.0	< 50	104	102	105		0.5
1.0	< 800	111	107	129		10.0
1.0	< 500	98	102	101	99	2.0
1.0	< 50	98	98	97	97	0.7
1.0	< 50	105	103	105		0.7
1.0	< 100	96	98	97	95	1.9
1.0	< 150	106	102	101	100	0.9
1.0	< 130	97	97	92		1.3
1.0	< 50	108	104	102		0.9
1.0	< 50	104	102	103		0.5
1.0	< 50	107	104	107		0.5
1.0	< 100	105	103	104	103	0.5
1.0	< 50	105	102	103		1.1
	$ \begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

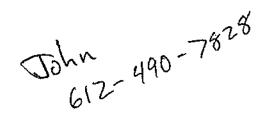
Northeast Technical Services, Inc. Data Qualifier List

b	Analyte detected in the method blank.
C	Elevated Reporting Limit.
d	Analyte value from diluted sample.
f	Surrogate results not within control limits.
h	Extraction or Analysis performed past hold time.
j	Estimated value. The analyte has been detected above the detection limit and below
	the reporting limit.
n	Matrix Spike recovery not within control limits.
p	pH > 2. Analysis performed past 7 day hold time.
a	Laboratory Control Spike not within control limits.
r	Duplicate analysis not within control limits.
е	Estimated value. Sample result above calibration range.

,

N= 34873 4930 P.	RECORD NUMBER 2 THROUGH 1 NTS Bron Revee Stare	Comments on Sample (Include Major Contaminants)	* Hold for ROH =	T. Gregre. 00 h	Date 9/15/04 Time 1645 Comp	1/15/04 Time		(Weather Conditions, Precautions, Hazards):	6/99cp10k	STS Consultants Ltd.
N : 54	Special Handling Request Rush Laboratory Rush Contact Person Verbal Phone No. other Results Due	a Special Cond. Analysis Request	VOC, DRO, GRO Lead VOC		Mexy Delivery by: NTS Relinquished by: Have I	Relinquished by: Re. V.	┼╲┤└	NO LIN/A Comments	Goldenrod - STS Project File tain green copy.	
STODY KECORD	Evrere E Office & Limply I PO No.	Composite Composite No. of Containers Sample Type (Water, soll, alt, studge, etc.) Z Preservation PH PH	K Soil - 1 Meolt 1 - 1		- Date 9/14/04 Time Date Time Date		-Date 9/15/04 Time		Yellow - As needed Pink - Transporter d original to STS with analytical results. Re	
CHAIN UF CU	Contact Person 1 M Gw Phone No. 23)3/5-6318 Project No. 99493-XA Project Name MMCOT	Sov 200	1435 R-2 9/14 1200 × 14/1 1200 × 14/2 12/14/22 COMP 9/14 12/5		Collected by: AM Grave Received by:	Received by: Received by:	or lab by: Lo U	Final Disposition:	Distribution: Original and Green - Laboratory Instructions to Laboratory: Forward complete	

Mn/DOT TH-29/27 STS Project 99473-XA


Appendix D

Contaminated Soil Disposal Documentation for FCR Landfill

- FCR Industrial Waste Approval Letter
- Shipping Manifests
- Load Tickets
- Invoice Summary

FCR LANDFILL, INC. 175 County Rd 37 NE Buffalo, MN 55313

Fax Cover Sheet

Date:	1/6/05	Time Sent:		
To:	Jessey Miller, MN DOT	From:	Toni Kopponen	
Fax No.:	320-589-7310	Telephone: Fax No.:	320/963-3158 320/963-3051	. <u></u>
Re:	Special profile #04-0478-33A prof	ile sheet & acceptance	e letter	
Pages:	3		·	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Total Number of Pages Transmitted (including cover)

Message:

	Please see the following. These are our legal documents when we approve
the	waste for disposal at our landfill. Please see the profile sheet as submitted
and	approved. As shown, the contact for this generating location is Andrew Nichols
wit	th MN DOT. Please call Andrew Nichols with any questions. Thank you.
	•

If you do not receive all of these pages, please call (320)963-3158 as soon as possible.

IMPORTANT! The accompanying message is intended only for the use of the individual or entity to which it is addressed and may represent attorney-client communication or otherwise contain information that is privileged, confidential and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution or copying or otherwise use of this communication is strictly prohibited. If you receive the communication in error, please notify us immediately by telephone. Thank you.

1161)8:4 7a	11000	gagliano						
	11-29-'0	14 10:19 r	Onyx F	CR Landfill		8-963-3051)-895-	1892	000 /00	p. á
	باعر منتخب مرابع		•			•		1-102	P02/02	V-913
			\sim			18 33A				6 m
	~~~ <i>C</i>	MUZ,	🔨 S _i	pecial V	Naste	Profile :	Sheet		PROF	
	<b>M</b>					· · · · ·			Origin: Accen	al Submitted Nicotion
	Designated P	achity: ONY	CFCR Landiii	l, Inc. E	Sales Aepre					ne project
	A. Generat				8. 8i	inn:				
	Name Site Address	Minneso TH 29	<u>Departmen</u>	t of Transpa	<u>riati</u> on	Name	Minnesot	a Depa	riment of	F(4nspart:
	Oity, State, Zi	o Alexandri	A. MN 56308			Site Address City, State, Zip				
	Comact Phone	Andraw A (651) 284				Contect	Den Kunn		<b>L</b>	ser
	Fax	(651) 284				Phone Fax	(320) 589- (320) 589-	7307 7310	150°	~ .\\`
	County	Douglas						<u></u>		Ser line
	C. Descript	ion of Wasi	le le							<u>、 う</u> *
	Name of Was Estimated Vol	ie <u>Petroleun</u> Ume 1 <b>08 Y</b> ar	<u>Conteminat</u>	ed Soil		Precose Gener	oting Wasie	Road (	Construct	<u>ba</u>
	Frequency NA									
ļ	Physical State Flash Point (*	Solid F) NA		Colo			Free Liquid	s <u>No</u>		
-	D. Other Wa						otal Solide <u>N</u>	<u></u>		
Ĩ	USTS ( E, Sample in Check all that p	Xeviously cor Iormation	due to suépea velned clieset f	hel and pasol	inę.	orage tanks,	f) Mai	iorial Se	efely Oata (	Sheet Subr
c t	USTS ( E, Sample in Check all that p	xeviously cor lormation apply: obmitted with ne: <u>Pace An</u>	n profile alvtical Servi	inal and pasol (X) Laboral Res. Ioc.	ine. , iony Analysi Samuta O					Sheet Subn <u>A:3 and A</u>
( [ 	USTS ( E, Sample in) Check all that ( ) Sample a aboratory (Nan C Generator	Vertification	n prolike alvtical Servi Theast Techr	iki and pasol (X) Laboral <u>ces. Inc.</u> <u>jical Service</u> :	ine. , iony Analyai Sampic O	batilmdva 6 6 <u>6-99.</u> :0#	and 9-14-64	! Sa	mpla i <b>()</b> ;	
۲ ۲ ۲ ۲ ۲	USTs ( E. Sample in) Check all that p ) Sample a aboralory Nan Generator This wasta This wasta	veriously con lormation apply: obmitted with ne: <u>Pace An</u> <u>and Noi</u> Certificallo is not a haza does not con	n profile <u>aivtical Servi</u> <u>Theast Techr</u> Mas rdous waste a tain regulated	(X) Laboral ( <u>X) Laboral</u> <u>ces. Inc.</u> <u>usal Service</u> : 2 delined in M	ine. Jony Analysi Samete D Samete D	9 submilited 9310: <u>06-28-09</u> 9410: Chapter 70	and 9-14-64	! Sa	mpla i <b>()</b> ;	
C L L F 1 2 3 4	USTS ( E. Semple in Check all there ) Sample s aboralory Nan . Generator . This waste . This waste . This waste . This waste . This waste . This waste	veriously con lormation apply: obmitted with ne: <u>Pace An</u> <u>and Non</u> Certification is not a have does not con does not con	n profile <u>alvtical Servi</u> <u>theast Techr</u> ons rdous waste a tain regulated tain regulated	ixi and pasol (X) Laboral <u>res. Inc.</u> <u>visal Services</u> s delined in N quantities of i quantities of i	ine. Sample O Sample O Sample A POBs. horbickles c	a submitted sto: <u>08-29-04</u> juics Chapter 70 prosticides.	and 9-14-64 245 or 40 CF	5a A 261.	mpla <b>ið</b> :	<u> A:3 and A</u>
C L F 1 2 3 4	USTS ( E. Semple in) Check all there ) Sample a aboratory Name . Generator . This waste . This waste . This waste . This waste . This waste . This waste . All informati	veriously con lormation apply: obmitted with ne: <u>Pace An</u> <u>and Non</u> <u>and Non</u> for a haze does not con does not con does not con on submitted	teined cliesel i alvtical Servi theast Techr ons rdous waste a tain regulated tain regulated tain regulated tain regulated	(X) Laboral <u>Res. Inc.</u> <u>ical Services</u> s defined in M quantities of I quantities of I wasten as de efformed in M	ine. Sample O Sample O Sinnecote A PCBs. horbickles c lined in Mir	a submitted sto: <u>06-28-04</u> Jules Chapter 70 pr pesticides, inesola Rules C	and 9-14-64 945 or 40 CF Shapler,	- Sa A 261.	mple i <b>b</b> :	<u>A:2 and A</u>
C L F 1 2 3 4	USTS ( E. Semple in) Check all there ) Sample a aboralory Nan Generator This waste This waste This waste All informat sample sub	teviously con lormation apply: ubmitted with ne: <u>Pace An</u> <u>and Not</u> Certification is not a haze does not con does not con does not con does not con does not con does not con at consubmitted mitted is repr ethod. All rel	telned cliesel i alvtical Servi meast Techr meast Techr mous waste a tain regulated tain regulated tain regulated tain infectious i in this and all esentative as	(X) Laboral <u>Ces. Inc.</u> <u>tical Services</u> s delined in k quantities of i quantities of i wester as de attached doc definent in An	ine. Sample D Sample D Sample D S Minecola P PCBs. horbickles c lined in Min when is cor	9 submilited 9sto: <u>06-29-09</u> 9ulcs Chapter 70	And 9-14-64 145 or 40 CF Chapter. Accurate day	A 261.	s of this w	<u>A:3 and A</u>
C L F 1 2 3 4	USTS ( E. Sample in) Check all that p Check all that p Sample a aboralory Name Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Constants Con	Actionaly con lormation apply: wbmitted with ne: <u>Pace An</u> <u>and Noi</u> Certificalic is not a haze does not con does not con	telned cliesel i alvtical Servi meast Techr meast Techr mous waste a tain regulated tain regulated tain regulated tain infectious i in this and all esentative as	(X) Laboral <u>Ces. Inc.</u> <u>tical Services</u> s delined in k quantities of i quantities of i wester as de attached doc definent in An	ine. Sample O Sample O POBs. horbickles c lined in Mir whents cor CFR 281 — known or a	e submitted esto: <u>06-28-00</u> bules Chapter 70 or posticides, inesota Rules C vains true and e Appendiz 1 and buspected hazer	And 9-14-64 945 or 40 Ci ihapter. accurate das I was obtain rus in the po	R 261. R 261. Inteription of by u	s of this w	<u>A:3 and A</u>
C L F 1 2 3 4	USTS ( E. Semple in Check all that is beck al	Actionsition apply: abmitted with the: <u>Pace An</u> <u>and Not</u> Certificallo is not a haza does not con does not con	telned cliesel i alvtical Servi meast Techr meast Techr mous waste a tain regulated tain regulated tain regulated tain infectious i in this and all esentative as	(X) Laboral <u>Res. Inc.</u> <u>ical Services</u> s defined in N quantities of i quantities of i wastes as de attached doc defined in 40 Son regarding <u>Radi</u>	ine. Jony Analysi Sampte D Sampte D Sampto D POBS. horbickles c lined in Mir uments cor CFR 281 - i known or s	e submitted esto: <u>06-28-06</u> fulce Chapter 70 pr posticides. inesola Rules C vains true and e	And 9-14-04 HS or 4D CF hapter. Accurate das 1 was obtain rds in the po	R 261. R 261. Sector ul Sector ul	s of this w	<u>A:3 and A</u>
	OSTS E. Semple in Check all that p Check all that p Bample s Booralory Name Constant Constant Constant Sample sub Sample sub Sample sub Sample sub Sample sub Sample sub Sample sub Sample sub	Actional constraints apply: abmitted with the: <u>Pace An</u> <u>and Noi</u> <u>Certificalic</u> is not a hase does not con does not con	n profile aivtical Servi meast Technology regulated tain regulated tain regulated tain infectious in this and all esentative as evant information	(X) Laboral <u>Res. Inc.</u> <u>ical Services</u> s defined in N quantities of i quantities of i wastes as de attached doc defined in 40 Son regarding <u>Radi</u>	ine. Jony Analysi Sampte D Sampte D Sampto D POBS. horbickles c lined in Mir uments cor CFR 281 - i known or s	e submitted esto: <u>06-29-00</u> pules Chapter 70 pr posticides, inesota Rules C vains true and e Appendiz 1 and buspected hazed Title <u>Hydro</u>	And 9-14-04 HS or 4D CF hapter. Accurate das 1 was obtain rds in the po	R 261. R 261. Sector ul Sector ul	s of this w	<u>A:3 and A</u>
	USTa ( E. Semple in Check all that p Check all that p Check all that p Check all that p Check all that p Sample s Sample sub Sample sub Samb	Actionsition apply: abmitted with the: <u>Pace An</u> <u>and Not</u> Certification is not a haze does not con does not con	A profile aivtical Servi meast Technology rdous waste a tain regulated tain regulated tain regulated tain infectious in this and all esentative as evant informative Vancy P	(X) Laboral <u>ces. Inc.</u> <u>tical Services</u> s defined in M quantities of i quantities of i quantities of i wasten as de attached doc defined in 40 ion regarding <u>Rau</u>	ine. Jony Analysi Sample D Sample D Sample D PCBs. horbickles of lined in Mir whents cor CFR 281 - i known o'r s	a submitted ato: <u>06-28-04</u> Jules Chapter 70 ar pesticides. Inesola Rules C Vains true and e Appendiz 1 and Juapected hazed This <u>Hydro</u> pase <u>AGU</u> .	And 9-14-04 HS or 40 CF inapter. accurate des I was obtain rds in the po 2920 Log / 24, 20	A 261. cription ed by u seeseip	s of this we sing this or n of the gc	<u>R:1 and R</u> Sate. Any an equival noral or hes
	USTS ( E. Semple in) Check all that p Check all that p Bample a Booralory Nan Generator This waste This waste This waste This waste All informati sample sub sampling m boon disclor Print Name	Actionsition apply: abmitted with the: <u>Pace An</u> <u>and Not</u> Certification is not a haze does not con does not con	A profile aivtical Servi meast Technology rdous waste a tain regulated tain regulated tain regulated tain infectious in this and all esentative as evant informative Vancy P	(X) Laboral <u>ces. Inc.</u> <u>tical Services</u> s defined in M quantities of i quantities of i quantities of i wasten as de attached doc defined in 40 ion regarding <u>Rau</u>	ine. Jony Analysi Sample D Sample D Sample D PCBs. horbickles of lined in Mir whents cor CFR 281 - i known o'r s	e submitted esto: <u>06-29-00</u> pules Chapter 70 pr posticides, inesota Rules C vains true and e Appendiz 1 and buspected hazed Title <u>Hydro</u>	And 9-14-04 HS or 40 CF inapter. accurate des I was obtain rds in the po 2920 Log / 24, 20	A 261. cription ed by u seeseip	s of this we sing this or n of the gc	<u>R:1 and R</u> Sate. Any an equival noral or hes
	USTa ( E. Semple in Check all that p Check all that p Check all that p Check all that p Check all that p Sample s Sample sub Sample sub Samb	Actionsition apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply: apply:	A profile aivtical Servi meast Technology rdous waste a tain regulated tain regulated tain regulated tain infectious in this and all esentative as evant informative Vancy P	(X) Laboral <u>ces. Inc.</u> <u>tical Services</u> s defined in M quantities of i quantities of i quantities of i wasten as de attached doc defined in 40 ion regarding <u>Rau</u>	ine. Jony Analysi Sample D Sample D Sample D PCBs. horbickles of lined in Mir whents cor CFR 281 - hnown or s	a submitted ato: <u>06-28-04</u> Jules Chapter 70 ar pesticides. Inesola Rules C Vains true and e Appendiz 1 and Juapected hazed This <u>Hydro</u> pase <u>AGU</u> .	And 9-14-04 HS or 40 CF inapter. accurate des I was obtain rds in the po 2920 Log / 24, 20	A 261. cription ed by u seeseip	s of this we sing this or n of the gc	<u>R:1 and R</u> Sate. Any an equival noral or hes
	Sample in Check all that p Check all that p Check all that p Sample c Sample c Sample y Check all that p Sample y Check all that p Sample y Sample	Actionation apply: abmitted with the: Pace An and Nor Certification to a haza does not condoes	A profile aivtical Servi meast Technology rdous waste a tain regulated tain regulated tain regulated tain infectious in this and all esentative as evant informative Vancy P	(X) Laboral <u>ces. Inc.</u> <u>tical Services</u> s defined in M quantities of i quantities of i quantities of i wasten as de attached doc defined in 40 ion regarding <u>Rau</u>	ine. ine. iony Analysi Sample O Minnecola P PCBs. horbickles o ined in Min whents cor CFR 281 known or a presentaliv	a submitted sto: 08-29-04 sto:	And 9-14-04 HS or 40 CF inapter. accurate des I was obtain rds in the po 2920 Log / 24, 20	A 261. cription ed by u seeseip	s of this we sing this or n of the gc	<u>R:1 and R</u> Sate. Any an equival noral or hes
C L LF12345	USTa ( E. Semple in) Check all that p Check all that p Check all that p Check all that p Check all that p Sample s Sample s Chis wasts This wasts This wasts This wasts This wasts This wasts All informati Sample sub Sample sub Sa	veriously con lormation apply: ubmitted with ne: <u>Pace An</u> <u>and Non</u> Certificallo is not a haza does not con does not con	aivrical Servi meast Technors rdous waste a tain regulated tain regulated tain infectious i in this and all esentative as evant informat Vancy F	(X) Laboral <u>res. Inc.</u> <u>uical Services</u> s defined in M quantities of i quantities of i wasten as de attached doc defined in 40 ion regarding <u>Rau</u> <u>Rau</u> <u>Rau</u> <u>Rau</u>	ine. iony Analysi Sample O Minnecola A PCBs. horbickles o lined in Min whents cor CFR 281 known or a prosentaliv	a submitted a submitted also: <u>06-29-00</u> also: <u>06-29-00</u> <u>06-29-00</u> <u>06-29-00</u> <u>06-29-00</u> <u>06-29-00</u> <u>06-29-00</u> <u>06-29-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-00</u> <u>06-</u>	and 9-14-04 HS or 40 CF inapter. accurate des i was obtain rds in the po 2920Log/ 244, 200 r malerial se 1/2 S	A 261. A	s of this we sing this or n of the ge	<u>R:1 and R</u> Sate. Any an equival noral or hes
C L LF12345	Sample in Check all that p Check all that p Deck all that p De	veriously con lormation apply: ubmitted with ne: <u>Pace An</u> <u>and Non</u> Certificallo is not a haza does not con does not con	aivrical Servi meast Technors rdous waste a tain regulated tain regulated tain infectious i in this and all esentative as evant informat Vancy F	(X) Laboral <u>res. Inc.</u> <u>uical Services</u> s defined in M quantities of i quantities of i wasten as de attached doc defined in 40 ion regarding <u>Rau</u> <u>Rau</u> <u>Rau</u> <u>Rau</u>	ine. iony Analysi Sample O Minnecola A PCBs. horbickles o lined in Min whents cor CFR 281 known or a prosentaliv	a submitted a submitted ato: <u>08-29-04</u> aules Chapter 70 ar pesticides. inesola Rules C vains true and e Appendiz 1 and buspected hazer 78% <u>Hydra</u> pake <u>Aov</u> . a sample and/or Date	and 9-14-04 HS or 40 CF inapter. accurate des i was obtain rds in the po 2920Log/ 244, 200 r malerial se 1/2 S	A 261. A	s of this we sing this or n of the gc	<u>R:1 and R</u> Sate. Any an equival noral or hes

.

•

r .

•

,

UT-00- 00 11:30 FRUM-UNYX FUR LANGIIII

320-963-3051

T-504 P03/03 U-455

Onyx FCR Landfill, Inc.

175 County Road 37 NE

Buffalo, MN 55313

FAX (320) 963-3051

(320) 963-3158



### INDUSTRIAL WASTE APPROVAL LETTER

December 9, 2004

Andrew Nichols MNDOT TH 29 Alexandria, MN 56308

Generator:

Material: Petroleum Contaminated Soil Profile#: 04-0478-33A

MNDOT

Dear Mr. Nichols:

Re:

Please be advised that the above-described materials are acceptable for disposal at Onyx FCR Landfill, Inc. as per the parameters of our Minnesota Pollution Control Agency approved-Industrial Waste Management Plan.

Onyx FCR Landfill takes pride in its responsible waste management practices. For this reason, we reserve the right, as a condition for acceptance for disposal of any customer's waste stream, to conduct random sampling of those waste streams, at our sole expense. Samples collected under our random sampling procedure are obtained by certified laboratory, using established sampling protocols. Samples are analyzed by a state certified lab; results are made available to the customer upon receipt. In order to obtain truly representative samples of certain waste streams, it may be necessary for the laboratory technician to obtain access to the customer facility. Onyx will at all times remain sensitive to customer concerns regarding our sampling procedures.

Acceptance is subject to the following conditions:

- 1. The materials are petroleum contaminated soil as submitted on the waste profile sheet.
- 2. The material will be absent of free liquids.
- 3. A waste manifest with the correct profile ID will accompany each shipment to Onyx FCR Landfill.
- 4. All hauling shall be in compliance with State and Federal D.O.T. regulations.

Thank you for thinking of Onyx FCR Landfill, Inc., we appreciate and need your business. If at any time you have questions, please feel free to call me at (612) 490-7828.

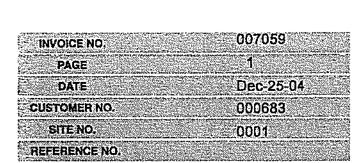
Sincerely,

John P. Gagliano Industrial Waste Consultant



TO:

Onyx FCR Landfill, Inc. JAN 5 200 175 Cty. Rd. 37 N.E. Buffalo, MN 55313 Phone 320-963-3158 / 1-800-963-3158




INVOICE NO.	007059
PAGE	1
DATE	Dec-25-04
CUSTOMER NO.	000683
SITE NO.	0001
REFERENCE NO.	

MN DOT RR 3 BOX 333 MORRIS, MN 56267-

SERVICE DATE	CODE	DESCRIPTI	DN	REFERENCE	QTY.	AMOUNT
		Balance forward				\$0.00
		(0001) MN DOT MORRIS / ALEXANDRIA, RR 3 BOX 333, MORRIS MN	MN			
02 Dec	C7	C-SOIL Contract: 04047833A	\$12.00	G1149993 0	15.30 TN	\$183.60
02 Dec	C7	C-SOIL Contract: 04047833A	\$12.00	G1150117 0	16.41 TN	\$196.92
03 Dec	C7	C-SOIL Contract: 04047833A	\$12.00	G1150184 0	20.35 TN	\$244.20
03 Dec	C7	C-SOIL Contract: 04047833A	\$12.00	G1150276 0	20.51 TN	\$246.12
23 Dec	PF	PROFILE FEE PROFILE FEE FOR ID #04047833A NSWM TAX IND WST	\$60.00	2858	1.00	\$60.00 \$33.38
		Material Summary C-SOIL			72.57 TN	 \$870.84
Account	Status	Payment due upon receipt of this invoice. 1.5% per u over 30 days from date of invoice. Payments received after invoice date are not reflected To ensure proper credit, please include your account portion of this invoice. When making payment on m numbers and the amounts of payment.	ed. t number on your check and include the bot	TOTAL tom THIS I	NVOICE	\$964.22
синне \$964.2		31 - 60 DAYS         61 - 90 DAYS           \$0.00         \$0.00	OVER 90 DAYS \$0.00		ASE PAY TH DUNT	IIS \$964.22

We reserve the right to suspend service without notice on any past due account.



Please remit to:

Onyx FCR Landfill, Inc 175 Cty. Rd. 37 N.E. Buffalo, MN 55313

PLEASE RETURN THIS PORTION WITH REMITTANCE

AMOUNT OF

REMITIANCE

REMARKS

WE APPRECIATE YOUR BUSINESS.

 ONYX
 FCR LANDFILL, INC.
 6
 G1

 175
 COUNTY RD 37
 37
 BUFFALO, MN 55313
 2
 December 2004
 1:59 pm

 DERMIT # SW 60
 2
 December 2004
 1:59 pm
 2
 December 2004
 1:59 pm

 Ticket:
 150117
 2
 December 2004
 1:59 pm

 000683 - 00
 01
 MN
 DOT
 MORRIS / ALEXANDRIA, MN
 71,120.00

 Reference:
 71,120.00
 Stored
 Tare
 38,300.00
 LB

Vehicle: RE336 Net Weight 32,820.00 LB 16.41 TN RILEY BROTHERS CONSTRUCTION/7 AXLES

Contract: 04047833A 04047833A 04047833A 04047833A 16.41 TN C7 [DD] C-Soil/33A,Pet-Ldd Gas

۰.

Net Amount:

THANK YOU FOR YOUR BUSINESS !!!

.

٠.

•

Weighmaster: CH Driver

Signature:

۲

1

S.

11-30-'04 16:41 FROM-Onyx FCR Landfill	320-963-3051 T-194 P04/05 U-956
<b>VONYX</b> WA	NON-HAZARDOUS STE MANIFEST
	#: Site:
GENERATOR	
Name MN Department of Transportation	Generating Location TH 29
Address 610 South Hwy 9	Alexandria, MN 56308
Morris, MN 56267 Attn: Dan Kuhn	Attn: Andrew Nichols
Phone No. 320-589-7307	Profile No. $0 4 - 0 4 7 8 - 3 3 A$
CODES: D - DRUM WASTE CODE W	ASTE DESCRIPTION QUANTITY UNITS
B-BAG C-CARTON Y Petroleum Conta	minated Soil (total) approx. 50. yards
P POUNDS Y YARDS	6000 total
T-TCNS O-OTHER	
I hereby certify that the above listed material(s), is (are) not a ha each waste has been properly described, classified and packag tions.	zardous waste as defined by 40 CFR Part 261 or any applicable state law. That ed, and is in proper condition for transportation according to applicable regula-
Jason Kirwin 11-3	30-04
AUTHORIZED AGENT'S NAME (PRINT) DATE	SIGNATURE
CONTRACTOR/CONSULTANT/AGENT Name Jason Kirwin - WCEC Address PO Box 594 Morris, MN 56267	Phone No. 320-589-2039
TRANSPORTER	
Name Riley Brothers Construction	Phone No. 320-589-2500
Address <u>46369 - 208th Street</u>	
	Vehicle's No 336
facility fisted below.	the Generator site listed above and delivered without incident to the disposal
12-2-04 SHIPMENT DATE DRIVER'S SIGNATURE	DELIVERY DATE DRIVER'S SIGNATURE
DISPOSAL FACILITY	
Site Name Onyx FCR Landfill, Inc.	Phone No. 800-963-3158
Address 175 Co. Rd. 37 N.E., Buffalo, MN 55313	
Permit No SW60	· · ·
I hereby certify that the above material has been accepted and that <u>Ampanki</u> <u>12-</u> NAME <u>DATE</u>	
White Copy – Generator retains at time of loading Yellow Copy – Hauter retains after delivery to landfill Pink Copy – Landfill retains Gold Copy – Facility mails to customer	Ticket No. 130.117 Tons 16.41 Yards

~

ONYX FCR LANDFILL, INC. 6 G1 175 COUNTY RD 37 BUFFALO, MN 55313 PERMIT # SW 60 2 December 2004 8:38 am 2 December 2004 8:53 am 2 December 2004 8:53 am

Reference: 68,900.00 of Lading: Tare Weight 38,300.00 LB Vehicle: RE336 Net Weight 30,600.00 LB 15.30 TN RILEY BROTHERS CONSTRUCTION/7 AXLES

Contract: 04047833A 04047833A Quantity Unit Description Rate Tax Total 15.30 TN C7 [DD] C-Soil/33A,Pet-Ldd Gas

THANK YOU FOR YOUR BUSINESS !!! Weighmaster: CH Driver

Net Amount: Bignature: 1100 Englis

*.* 

.

۰.

•

11-30-	04 16:41	FROM-Or	NYX FUR I	-x41 K41 1 1 1	320-96	2 2021		1-194	P04/05	U-95	D
[ ]		•	AT .		NON-HAZ	•••••••••••••••••••••••••••••••••••••••	US				
	ON	$\boldsymbol{\Sigma}$			<b>STE MAN</b> #683 si						
GENERA	TOR									- -	
Name <u>MN</u> I	Departmen	t of Tr	ransport	ation	Gene	rating Locat	ion_TH 29	)			
•	0 South H			•	A		a, MN 56	•			
	rris, MN		Attn:	Dan Kuhn		tn: And	rew Nicho	ols			
Phone No	320-589-	7307		······	Profile	No. 0	4 – 0	4.	7 8 -	3	3
<u>CODES:</u> D - DRUM	WASTE	CODE		W	ASTE DESCR	PTION			QUANTITY	,	······································
B – BAG C – CARTON	ч <u> </u>		Petrole	······································	minated So	······································	stal)	<u> </u>	prox. 5		VNIT
P-POUNDS	<b></b>			<u></u>						···· ····	yaru:
Y - YAHDS T - TONS				···			id total	_ /			
O -OTHER			······		• • • • • • • • • • • • • • • • • • •			<del>/</del>			4-
I hereby certify the each weste has tions.	hat the above been properly	listed mate described	erial(s), is ( d, classified	are) not a ha I and packag	izardous waste led, and is in p	as defined roper condit	by 40 CFR 7	art 261 o portation	r any applic according_t	cable sta o applic	ate law. able re
Jason Kir	win			11	· ·		/  ·				
	** *						1 1 1	A			
AUTHORIZED A CONTRAC Name Jas	COR/CO	DNSUL	С	DATE AGENT		320	NATURE	- <u>s</u> 9		1	•
CONTRAC Name Jas Address PO	COR/CO On Kirwin Box 594	DNSUL	TANT/	DATE AGENT		320				7	•
CONTRAC	COR/CO On Kirwin Box 594	DNSUL	TANT/	DATE AGENT		320					· · · · · · · · · · · · · · · · · · ·
CONTRAC Name Jas Address PO	COR/CO On Kirwin Box 594	DNSUL 1 – WCEX MOI	C Tris, M	DATE AGENT N 56267	Phone	No		9		7	· · · · · · · · · · · · · · · · · · ·
CONTRAC Name Jas Address PO	CON Kirwin Box 594 DRNER y Brother	DNSUL MOI S Const	TANT/	DATE AGENIT N 56267	Phone	No320	- <u>589-203</u> - <u>589-250</u>	9 9 0 0	•		
CONTRAC Name Jas Address PO DRANSPO Name Rile Address 463	CON Kirwin Box 594 DRNER y Brother	DNSUL n - WCEA Mon s Const h Stree	TANT/	DATE AGENIT N 56267	Phone Phone Phone Phone Phone	No320	- <u>589-203</u> - <u>589-250</u>	9 9 0 0	•		
CONTRAC Name Jas Address PO IIRANSPO Name Rile Address 463 Mor	CIOR/CO on Kirwin Box 594 DRTER y Brother 69 - 208t ris, MN at the above	DNSUL Moi S Const h Stree 56267	TANT/	DATE AGENT N 56267	Phone Phone Phone Driver's Vehicle'	No320	-589-203 Janey Janey 336	9 9 0 £y3	Ta:	ent to th	e disp
CONTRAC Name Jas Address PO IRANSPO Name Rile Address 463 Mor I hereby certify th facility fisted below	CIOR/CO on Kirwin Box 594 DRTER y Brother 69 - 208t ris, MN at the above	DNISUL A - WCEX Mos S Const h Stree 56267 named ma	TANT/	DATE AGENT N 56267	Phone Phone Phone Driver's Vehicle' Ihe Generator	No No No Name s No site listed a	-589-203 Janey Janey 336	9 9 0 £y3	Ta:	ent to th	e disp
CONTRAC Name Jas Address PO IIRANSPO Name Rile Address 463 Mor I hereby certify th facility fisted below 12-2-64	CON Kirwin Box 594 DRIER y Brother 69 - 208t ris, MN at the above w	DNSUL Mor Mor S Const h Stree 56267 named ma	truction	DATE AGENT N 56267	Phone	No No No Name s No site listed a	-589-2500 $\overline{54}$ $ey$ 336 above and del	9 $E_{yS}$ ivered wi	Ta:	ent to th	e dispo
CONTRAC Name Jas Address PO IIRANSPO Name Rile Address 463 Mor I hereby certify th facility listed below 12-2-64 SHIPMENT DATE	CIOR/CO on Kirwin Box 594 DRIER y Brother 69 - 208t ris, MN at the above w.	DNISUL Mon Mon S Const h Stree 56267 named ma LER'S SIG	truction	DATE AGENT N 56267	Phone	No No No Name s No site listed a	-589-2500 $\overline{54}$ $ey$ 336 above and del	9 9 0 £y3	Ta:		e disp
CONTRAC Name Jas Address PO IIRANSPO Name Rile Address 463 Mor I hereby certify th facility fisted below 12-2-64	CIOR/CO on Kirwin Box 594 DRIER y Brother 69 - 208t ris, MN at the above w.	DNISUL Mon Mon S Const h Stree 56267 named ma LER'S SIG	truction	DATE AGENT N 56267	Phone	No No No Name s No site listed a	-589-2500 $\overline{54}$ $ey$ 336 above and del	9 $E_{yS}$ ivered wi	Ta:		e disp
CONTRAC Name Jas Address PO IRANSPO Name Rile Address 463 Mor I hereby certify th facility listed below 12-2-04 SHIPMENT DATE DISPOSAL	CIOR/CO on Kirwin Box 594 DETER y Brother G9 - 208t ris, MN at the above w. DRIV FACILL	DNISUL Mon Mon S Const h Stree 56267 named ma LER'S SIG TY	TANT/	DATE AGENT N 56267	Phone	No No No s No site listed a -2-04 ERY DATE	-589-2500 $\overline{J}4 n^{ey}$ 336 above and del $\overline{DRIV}$	9 $E_{yS}$ ivered wi	Ta:		e díspa
CONTRAC Name Jas Address PO IIRANSPO Name Rile Address 463 Mor I hereby certify th facility listed below 12-2-64 SHIPMENT DATE DISPOSAL Site Name Ony	CIOR/CO on Kirwin Box 594 DRIER y Brother 69 - 208t ris, MN at the above w. DRIV DRIV	DNISUL Mon Mon S Const h Stree 56267 named ma AMA ER'S SIG ITY	TANT/	DATE AGENT S 56267 picked up at Mcd	Phone	No No No Name s No site listed a	-589-2500 $\overline{J}4 n^{ey}$ 336 above and del $\overline{DRIV}$	9 $E_{yS}$ ivered wi	Ta:	ent to th	e dispo
CONTRAC Name Jas Address PO IIRANSPO Name Rile Address 463 Mor I hereby certify th facility fisted below 12-2-64 SHIPMENT DATE DISPOSAL Site Name Ony Address 175	Co. Rd. 37 f	DNISUL Mon Mon S Const h Stree 56267 named ma AMA ER'S SIG ITY	TANT/	DATE AGENT S 56267 picked up at Mcd	Phone	No No No s No site listed a -2-04 ERY DATE	-589-2500 $\overline{J}4 n^{ey}$ 336 above and del $\overline{DRIV}$	9 $E_{yS}$ ivered wi	Ta:		e dispo
CONTRAC Name Jass Address PO IIRANSPO Name Rile Address 463 Mor I hereby certify th facility fisted below 12-2-04 SHIPMENT DATE DISPOSAL Site Name Ony Address 175 Permit No. SW6	Co. Rd. 37 1	DNISUL Mon S Const h Stree 56267 named ma ER'S SIGA	TANT/	DATE AGENT	Phone	No No Name s No site listed a -2-04 ERY DATE	-589-203 -589-2500 $\overline{J} 4 n^{ey}$ 3 3 6 above and del $\overline{DRIV}$ 33-3158	9 $E_{y}S$ ivered wi	Ta:	· ·	e dispo
CONTRAC Name Jas Address PO IIRANSPO Name Rile Address 463 Mor I hereby certify th facility fisted below 12-2-64 SHIPMENT DATE DISPOSAL Site Name Ony Address 175	Co. Rd. 37 1	DNISUL Mon S Const h Stree 56267 named ma ER'S SIGA	TANT/	DATE AGENT	Phone	No No Name s No site listed a -2-04 ERY DATE	-589-203 -589-2500 $\overline{J} 4 n^{ey}$ 3 3 6 above and del $\overline{DRIV}$ 33-3158	9 $E_{y}S$ ivered wi	Ta:	· ·	
CONTRAC Name Jass Address PO IIRANSPO Name Rile Address 463 Mor I hereby certify th facility fisted below 12-2-04 SHIPMENT DATE DISPOSAL Site Name Ony Address 175 Permit No. SW6	Co. Rd. 37 1	DNISUL Mon S Const h Stree 56267 named ma ER'S SIGA	TANT/	DATE AGENT	Phone	No. 320 No. 320 Name s No site listed a -2-04 ERY DATE to. 800-96	-589-2500 -589-2500 $\overline{)}$ 4 n ey 3 3 6 above and del DRIV $\overline{)}$ 3-3158 3-3158	9 $E_{y}S$ ivered wi	Ta:	· ·	
CONTRAC Name Jass Address PO IIRANSPO Name Rile Address 463 Mor. I hereby certify the facility listed below 12-2-64 SHIPMENT DATE DISPOSAL Site Name Ony Address 175 Permit No. SWG I hereby certify the NAME	Co. Rd. 37 1 DRIVE X FCR Land Co. Rd. 37 1 MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK MARK M	DNISUL Mon Mon S Const h Stree 56267 named ma ER'S SIG IN HIL, Inc. N.E., Buff haterial has	Tris, M c rris, M truction aterial was aterial was KATURE falo, MN & s bsen acco	DATE AGENT	Phone	No	-589-2500 -589-2500 $\overline{J} 4 n ey$ 3 3 6 above and del $\overline{DRIV}$ 3 3 -58 3 -3158 3 -3158 3 -3158	9 $E_{y}S$ ivered wi	Ta:	· ·	
CONTRAC Name Jas Address PO IIRANSPO Name Rile Address 463 Mor I hereby certify the facility fisted below 12-2-64 SHIPMENT DATE DISPOSAL SHIPMENT DATE DISPOSAL Site Name Ony Address 175 Permit No. SWE I hereby certify the NAME A	Co. Rd. 37 1 Co. Rd. 37 1 Co	DNSUL Mon Mon S Const h Stree 56267 named ma ER'S SIGA ITY MER'S SIGA ITY M.E., Buff haterial has defined has haterial has	Tris, M c rris, M truction at aterial was aterial was AATURE NATURE	DATE AGENT	Phone	No	-589-2500 -589-2500 $\overline{)}$ 4 n ey 3 3 6 above and del DRIV $\overline{)}$ 3-3158 3-3158	9 $E_{y}S$ ivered wi	Tax Tax ithout incide iNATURE e and accu fan 1 3 Tons	<pre> rate. 3 </pre> s _/5	e díspo , 37
CONTRAC Name Jass Address PO IIRANSPO Name Rile Address 463 Mor. I hereby certify the facility listed below 12-2-64 SHIPMENT DATE DISPOSAL Site Name Ony Address 175 Permit No. SWG I hereby certify the NAME	Co. Rd. 37 1 DRIV A FCR Land Co. Rd. 37 1 Co. Rd. 37 1	DNISUL DNISUL MOI MOI SCONST h Stree 56267 named ma AFR'S SIG IN ER'S SIG IN ER'S SIG IN Attime of tarterial has at time of tarterial has	Tris, M c rris, M truction at aterial was aterial was AATURE NATURE	DATE AGENT	Phone	No	-589-2500 -589-2500 $\overline{J} 4 n ey$ 3 3 6 above and del $\overline{DRIV}$ 3 3 -58 3 -3158 3 -3158 3 -3158	9 $E_{y}S$ ivered wi	Ta:	<pre> rate. 3 </pre> s _/5	e díspo

1			X NON-HAZAF		C-194 P04/05 U-	000
			VASTE MANIF			
	ONY					
GENERA			ust. #: <u>68.3</u> Site: <u>1</u>			
	an na palana na manana na manana na 1995 tang ang man		<u> </u>	-		
	Department of !	Transportation	Generating	Location TH 29	•	
	0 South Hwy 9	7	_	ndria, MN 56		
	rris, MN 5626 320-589-7307	7 Attn: Dan K		Andrew Nicho		
Phone No		· · · · · · · · · · · · · · · · · · ·	Profile No.	0 4 - 0	4. 7 8 – 3	][3][
D-DRUM	WASTE CODE		WASTE DESCRIPTIC	DN .	QUANTITY	UNI
B - BAG C - CARTON	Y	Petroleum Con	ntaminated Soil	(total)	approx. 50	yard
P - POUNDS Y - YARDS				Load total		
T - Tons O - Other			· ·	/		
I hereby certify the	hat the above listed m	aterial(s), is (are) not	a hazardous waste as d	lefined by 40 CFR Pai	rt 261 or any applicable	e state la
tions.		ed, classified and par	ckaged, and is in proper	r condition for transpo	ortalion according to ap	plicable
Jason Kir		1	1-30-04	14	Lifts	
AUTHORIZED A	GENT'S NAME	(PRINT) D	ATE	SIGNATURE	· · · · · · · · · · · · · · · · · · ·	······································
	on Kirwin - WC Box 594 M	orris, MN 562		320-589-2039		
TRANSPO	BTER		A start of the second second			
NameRile	y Brothers Con	struction	Phone No	320-589-2500		
Address 463	<u> 69 – 208th Str</u>	et		E GORDON SCR.		
	ris, MN 56267		Vehicle's No.			· · · · · · · · · · · · · · · · · · ·
				- 3 50/12		
I hereby certify th facility listed being	at the above named a	naterial was picked u	p at the Generator site		rered without incident to	o the dis
acialy isted below	at the above named $I$ N. $\mathcal{M} \cap \mathcal{M}$	naterial was picked u	p at the Generator site	listed above and deliv	rered without incident to	o the disp
I hereby certify the facility listed below <u>1213104</u> . SHIPMENT DATE	N. Ylft	l.		listed above and deliv	rered without incident to	o the dist
12/3/04 . SHIPMENT DATE	DRIVER'S SI	l.	p at the Generator site $x  z 3 $	listed above and deliv	rered without incident to William - R'S SIGNATURE	o the dist
DISPOSAL	TACILITY	GNATURE	p at the Generator site	listed above and deliv	rered without incident to	o the dist
I 2/3/04 SHIPMENT DATE DISPOSAL Site Name Ony	TRIVER'S SI	GNATURE	p at the Generator site $x  z 3 $	listed above and deliv	rered without incident to <u>UUUU</u> R'S SIGNATURE	o the dist
12/3/04         SHIPMENT DATE         DISPOSAL         Site Name Ony         Address 175	The second secon	GNATURE	p at the Generator site	listed above and deliv	rered without incident to	o the dist
I 2/3/04         SHIPMENT DATE         DISPOSAL         Site Name       Ony         Address       175         Permit No.       SW6	THE	GNATURE	p at the Generator site          A       12/3(         DELIVERY         Phone No	listed above and deliv u Y DATE DRIVER	HULL R'S SIGNATURE	
I 2/3/04         SHIPMENT DATE         DISPOSAL         Site Name       Ony         Address       175         Permit No.       SW6	The second secon	GNATURE	p at the Generator site	listed above and deliv u Y DATE DRIVER	HULL R'S SIGNATURE	
I 2/3/04         SHIPMENT DATE         DISPOSAL         Site Name       Ony         Address       175         Permit No.       SW6	The second secon	GNATURE	p at the Generator site          A       12/3(         DELIVERY         Phone No	listed above and deliv u Y DATE DRIVER	HULL R'S SIGNATURE	
I 2 3 0 4 SHIPMENT DATE DISPOSAL Site Name Ony Address 175 Permit No. SWE I hereby certify the NAME White Copy – Gen	The above material for	GNATURE	p at the Generator site          A       12/3(         DELIVERY         Phone No	Isted above and deliv U Y DATE DRIVER	HULL R'S SIGNATURE	
I2I3/04         SHIPMENT DATE         DISPOSAL         Site Name Ony         Address 175         Permit No. SWE         I hereby certify the         NAME         White Copy - Gen         Yellow Copy - Hat         Pink Copy - Land	The above material for	GNATURE	p at the Generator site          A       12/3(         DELIVERY         Phone No	Isted above and deliv U Y DATE DRIVER 300-963-3158 nted on this flocument SIGNATURE	HULL R'S SIGNATURE	

÷.

ONYX FCR LANDFILL, INC. V G1 175 COUNTY RD 37 BUFFALD, MN 55313 PERMIT # SW 60 3 December 2004 8:37 am Ticket: 150184 3 December 2004 8:37 am 000683 - 00 01 MN DOT MORRIS / ALEXANDRIA, MN

Reference: 79,000.00 of Lading: Stored Tare Weight 38,300.00 LB Vehicle: RE336 Net Weight 40,700.00 LB 20.35 TN RILEY BROTHERS CONSTRUCTION/7 AXLES

Contract: 04047833A 04047833A Quantity Unit Description Rate Tax Total 20.35 TN C7 [DO] C-Soil/33A,Pet-Ldd Gas

**'**.

Net Amount:

.

, ,

THANK YOU FOR YOUR BUSINESS !!!

Weighmaster: CH Driver

~

•

Signature: _/

11-30-'04 16:41 FROM-Onyx FCR Landfill	320-963-3051	T-194 P04/05 U-956
	N-HAZARDOUS	
WASTI	E MANIFEST	
······································	Site:	
GENERATOR		
Name MN Department of Transportation	Generating Location TH 29	) · .
Address 610 South Hwy 9	Alexandria, MN56	
Morris, MN 56267 Attn: Dan Kuhn	Attn: Andrew Nicho	
Phone No. 320-589-7307	Profile No. 0 4 - 0	4. 7 8 3 3 3
D - DRUM WASTE CODE WASTE		
B-BAG C-CARTON Y Petroleum Contamina		QUANTITY UNITS
P POUNDS Y YARDS		approx. 50 yards
T-TONS	Load total	
O -OTHER	/	
I hereby certify that the above listed material(s), is (are) not a hazardo each waste has been properly described, classified and packaged, a tions.	nd is in proper condition for transp	int 261 or any applicable state law. That
Jason Kirwin	/ . /	
AUTHORIZED AGENT'S NAME (PRINT) DATE	4 SIGNATURE	-21+
CONTRACTOR/CONSULTANT/AGENT	SIGILATORE	
	<u></u>	
Name Jason Kirwin - WCEC	Phone No. 320-\$89-2039	}
Address PO Box 594 Morris, MN 56267	•	
TRANSPORTER		
Name Riley Brothers Construction		
Address 46369 - 208th Street	Phone No. 320-589-2500	
Morris, MN 56267	Vehicle's No. 328(13	CRIVENER
I hereby certify that the above named material was picked up at the G facility fisted below.		Pred without incident to the diseased
	1	un A
SHIPMENT DATE DRIVER'S SIGNATURE	X 12/07 X	aldle
		R'S SIGNATURE
DISPOSAL FACILITY		
Site Name Onyx FCR Landfill, Inc.	Phone No. 800-963-3158	
Address 175 Co. Rd. 37 N.E., Buffalo, MN 55313		
Permit No. SW60	•	
I hereby certify that the above material has been accepted and that infor	mation presented on this document	are true and accurate.
A Aanganky 2-3-	-04 K	F
NAME DATE	SIGNATURE	
White Copy – Generator retains at time of loading Yellow Copy – Hauler retains after delivery to landfill	Ticket No. $150$	276 Tons 20.51
Pink Copy – Landfill retains Gold Copy – Facility mails to customer		Yards

ONYX FCR LANDFILL, INC. V G1 175 COUNTY RD 37 BUFFALO, MN 55313 PERMIT # SW 60 3 December 2004 2:17 pm Ticket: 150276 3 December 2004 2:17 pm 000683 - 00 01 MN DOT MORRIS / ALEXANDRIA, MN

1

Reference: 79,320.00 of Lading: Stored Tare Weight 38,300.00 LB Vehicle: RE336 Net Weight 41,020.00 LB 20.51 TN RILEY BROTHERS CONSTRUCTION/7 AXLES

Contract: 04047833A04047833AQuantity UnitDescriptionRate20.51TNC7 [DD]C-Soil/33A, Pet-LddGas

•

THANK YOU FOR YOUR BUSINESS !!!

Weighmaster: CH Driver

1

-

۰.

•

٠

Net Amount: Signature: M. M.

,



Mn/DOT TH-29/27 STS Project 99473-XA

#### Appendix E

Land Spread Disposal Documentation

- MPCA Approval Letter for Land Spreading Contaminated Soil
- Uniform Vehicle Tally Sheets

88 - N



ENVIRONMENTAL CONSULTANTS

I4 Green River Road, P. O. Box 594 Morris, MN 56267-0594
320-589-2039 or 800-422-8356 (320) 589-2814 (Fax)

### FAX TRANSMITTAL COVER SHEET

DATE:	11-7-05	PAGES:	З	(With Cover Sheet)
TO:	Tim	FAX #:	71.5	3-315-1836
Company:	Sts Consultants		1.0	<u> </u>
FROM:	April Pilarski			
RE:	- Ritcy Bros. Land Fa	(m		
PLEASE CA	LL IF ALL PAGES ARE NOT RE			
HARD COPY	Y TO FOLLOW: YES	<u>×</u> N	C	
MESSAGE:				
·				
				<u></u>
		·····		

The information contained in this facsimile message is privileged and confidential information intended only for use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible to deliver it to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this communication is strictly prohibited. If you have received this communication in error, please immediately notify us by telephone, and return the original message to us at the above address via the U.S. Postal Service.

Equal Opportunity Employer

MCEC

<u>[</u>7

,

RECEIVED OCT 1 1 2005

CAPA 510 ILK

**Minnesota Pollution Control Agency** 

October 7, 2005

Mr. Thomas Lundberg, Project Manager Minnesota Department of Transportation 1000 Highway 10 West Detroit Lakes, MN 56501

Mr. Joe Riley Riley Brothers Construction, Inc. 46369 208th Street Morris, MN 56267

RE: Land Treatment of Petroleum Contaminated Soil/Soil Corrective Action Plan Approval Land Treatment Site: Riley Brothers Construction, Inc., Joe Riley, consisting of approximately 2.98 acres in the SW¼ of the NE¼ of Section 12, T 124 N, R 38 W, Barsness Township, Pope County. Preapproval ID#: PRE0632 Leak Site: Alex Exhaust Site ID#: LEAK000015656

Dear Mr. Lundberg and Mr. Riley:

The application dated September 20, 2005, to land treat approximately **1,500 cubic yards** of petroleum contaminated soil using **2.80 acres** from the above-referenced leak site at the above-referenced land treatment site is hereby approved by the Minnesota Pollution Control Agency (MPCA). This approval is based upon the MPCA staff's understanding that the appropriate county and local officials have been notified of the proposed land treatment of this soil and is subject to the conditions indicated below. The portions of Minn. R. ch. 7037 referenced in this letter are summarized in the MPCA Guidance Document 3-03 *Land Treatment of Petroleum Contaminated Soil* (April 2005). Minn. R. ch. 7037 indicates that the land treatment site owner and operator are to be responsible for the requirements listed below. However, the generator of the soil is not relieved from responsibility under Minn. Stat. § 115.061 to ensure the proper treatment of petroleum contaminated soil.

- 1. If soil is to be stored prior to spreading, then the conditions and limitations indicated in Minn. R. 7037.0810 must be followed for soil storage.
- 2. Soil must be spread to a thickness of no more than 4.0 inches and incorporated into the top four to six inches of native soil in accordance with Minn. R. 7037.2300. All other land treatment procedures and limitations described in Minn. R. 7037.2500 must be followed.
- 3. The MPCA Guidance Document 3-06 Notification of Spreading Petroleum Contaminated Soil at a Land Treatment Site (Form C) (April 2005) must be submitted to the MPCA within ten days following spreading (Minn. R. 7037.2600).

7678 College Road, Suite 105; Baxter, Minnesota 56425; Voice (218) 828-2492; Fax (218) 828-2594; TTY (651)-282-5332 St. Paul • Duluth • Brainerd • Detroit Lakes • Marshall • Rochester • Mankato • Willmar; Web Site www.pca.state.mn.us Equal Opportunity Employer • Printed on recycled paper containing at least 20% fibers from paper recycled by consumers.

WCEC

Mr. Thomas Lundberg, Project Manager Mr. Joe Riley Page 2 October 7, 2005

- 4. The land treated soil must be sampled and reports must be submitted in accordance with Minn. R. 7037.2700 until analyses indicate 10 parts per million total petroleum hydrocarbons or lower. The MPCA Guidance Document 3-07 Soil Monitoring Results for Land Treated Petroleum Contaminated Soil (Form D) (April 2005) must be used for reporting.
- 5. The MPCA's approval of this application does not release you from any duty to comply with county or local ordinances.
- 6. The preapproval for spreading of petroleum contaminated soil at this land treatment site expires November 1, 2006.

We believe these actions will provide treatment of the excavated petroleum contaminated soil from this leak site. The MPCA reserves the right to require additional work if this is determined to be necessary to protect public health and the environment. This letter does not release any person from liability for this contamination. In addition, this letter does not address the adequacy of cleanup or investigative work completed or yet to be completed at the leak site.

In addition, the owner and operator of the land treatment site must comply with all other procedural and operational requirements established in Minn. R. ch. 7037.

Please note that this approval applies only to the process of land treatment of the petroleum contaminated soil. This approval should not be construed to constitute a finding that the volume of contaminated soil excavated at the above-referenced leak site was appropriate.

Please contact me at (218) 828-6072, if you have any questions.

Sincerely,

String & Pa

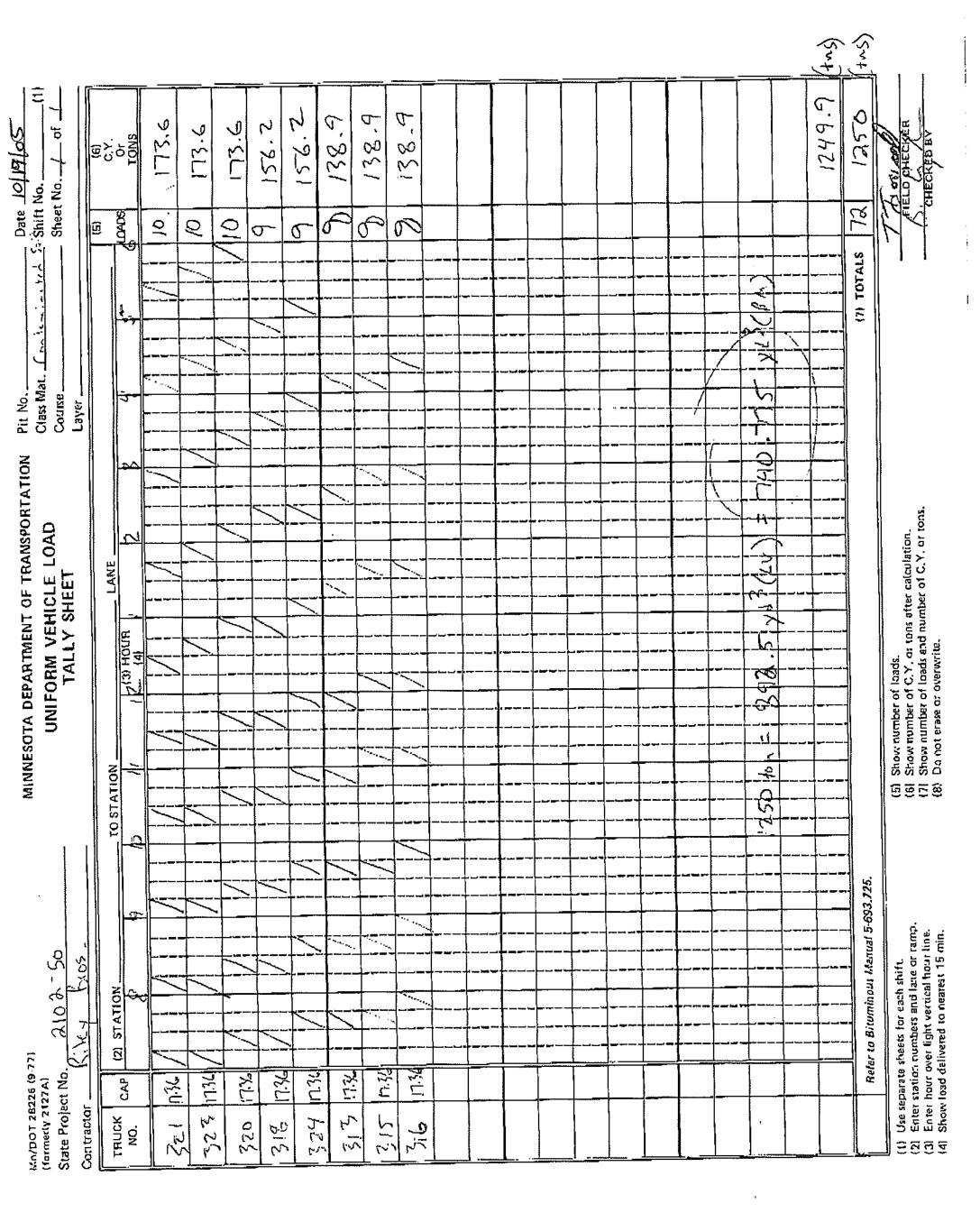
Steven J. Palzkill, PG Project Manager Brainerd Office Remediation Division

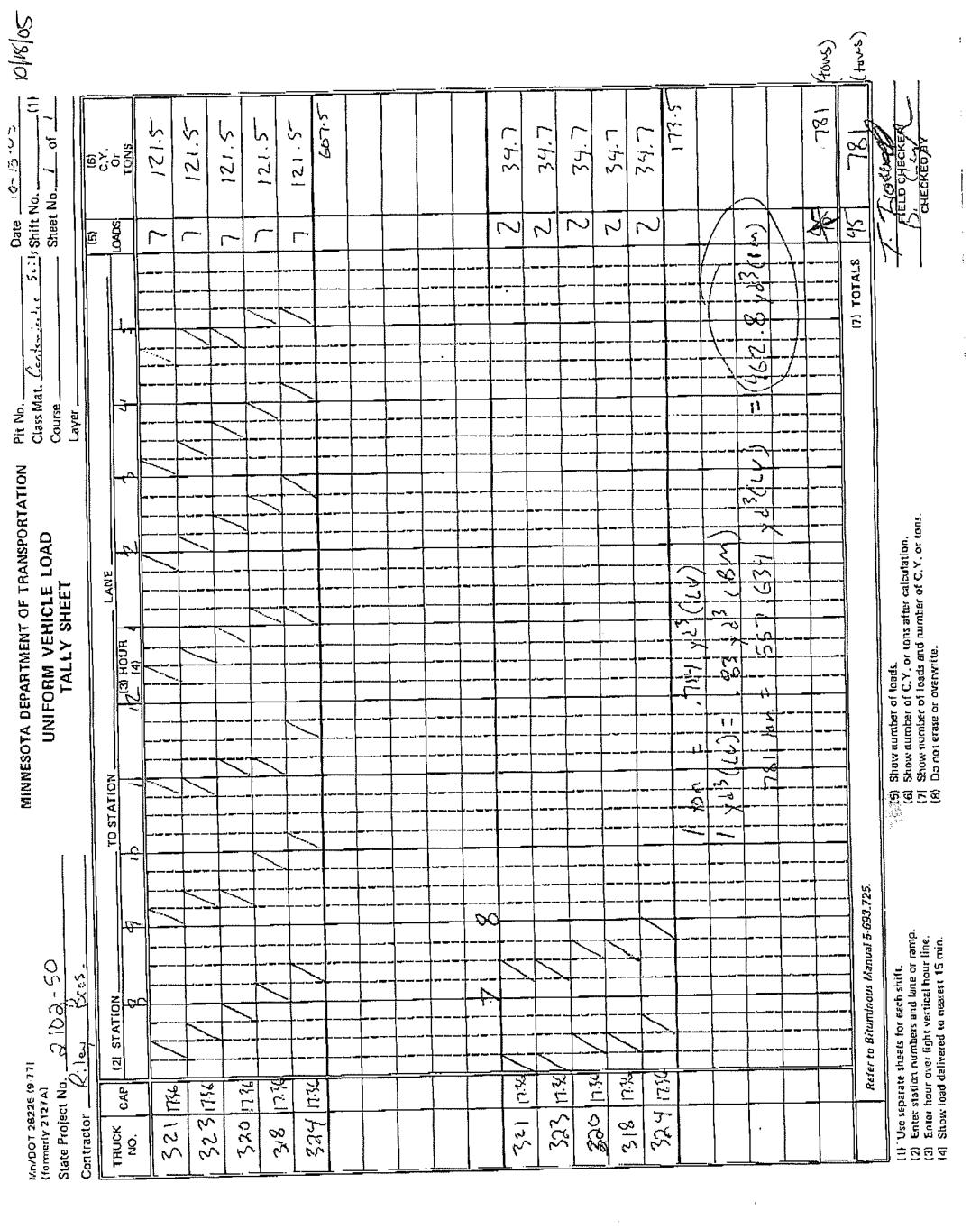
SJP:vms

cc: Paul Anderson, Barsness Township, Starbuck Steve Lawrence, Pope County Environmental Services Director, Glenwood April Pilarski, West Central Environmental Consultants, Morris Petrofund, Minnesota Department of Commerce, St. Paul Nancy Hennen, MPCA, Marshall File

## MINNESOTA DEPARTMENT OF TRANSPORTATION




# MORRIS, MINNESOTA


#### FACSIMILE TRANSMITTAL

DATE: 12-5-2005	NUMBER OF PAGES:
	FAX NO .: 763-315-1836
COMPANY: STS	· · · · · · · · · · · · · · · · · · ·
FROM: BRAD CEGLA	MYDOT FAX NO.: <u>320-589-7310</u> PHONE: <u>320-589-</u>
ITEM SENT: Q - Uni For-	- Loid Tally Sheets
NOTES:	
•	
	• • • • • •

P.001/003

10:763 315 1836





P.002/003

DEC-02-5002 10:53 LKOM:MUDD1 MORRIS

Leak 15,656 – Alex Exhaust AECOM Project 04660027

#### APPENDIX E

Geologic Logs of Soil Borings

	EC	$\mathbf{n}$	A		Mir	DWNER Minnesota Pollution Control Agency PROJECT NAME										LOG O	FBOR	ING NU	MBER		B-1					
			<b>.</b>			JECT N X EX			Leak	: # 1	5,65	6				ARCHI								·····		
SITE LO			a, I	Vli	nne	esota												ŝ	-O-UNCONFINED COMPRESSIVE STREE							
DEPTH(FT) ELEVATION(FT)		SAMPLE TYPE	SAMPLE DISTANCE					DESCRIPTION OF MATERIAL					rY WT.	PHOTO-IONIZATION DETECTOR READING (PPM)	PL/ LIN		<u>-</u>		3 TER ENT % 9 — -		5 LIQUID JMIT % 					
	SAMPLE NO.	SAMPL	MPL	RECOVERY		REACI				+10			ed local				UNIT DRY WT. LBS./FT. ³	HOTO-		+ ⊗			H ARD RATION	BLOW		
			Ĩ			V1.0			GRA					۱ ۰			55	άö		10 1	20		80 T	40	50	
		MC		Ш			S	ilty C	LAY, I					l, dark t	prown	-		<1								
5.0-	2						U	L-ML	-									52								
	3	мс																>2000								
10.0	4																	>2000								
	5	мс																26						8		
15.0	6																	26								
	7	мс																3								
20.0	8					21.0												3								
·····	9	MC			///	23.0	Fi	ne to	coars	e Cla	ayey S	SAND	), light	brown -	SC			<1		<u> </u>						
25.0	10						Si	lty C	LAY, ti	race	Sand	and	Gravel	, grey -	browr	1-		<1					· · · ·		_	
	11	мс																<1								
30.0	12																	<1				1				
	13	мс																<1								
35,0	14																	<1								
·····		мс																<1		÷						
40.0	16					40.0	<b>-</b>		have	101		]+- ¹ -						<1								
VL.							Wil Ma wil ge he Dc un an an an Bo	th Ho acro ( neral adsp cum its. S alysis d DR see s	Ilow si Core s accor ace sc ent 4-( Sample s of the O. Gr amplir	tem a ampl amp danc reen 04. I e take e folle round ig inf led w	er. S photo e with ing as Backo an at owing water ormat	and s soil sa bioniz n MP( s outli ground 6 and 1 para r enco tion fo	samples mples ation c CA pol- ined in d PID I 20 fee meters buntere brm.	d to full ad with { were s letector yethylen Guidar levels a et for la BTE2 ed at 21	5 foot creen (PID) ne bag nce t 0-1 borato (/GRC .0 fee	ed in g pry C										
	The s	strati	fica	atic	on lin	ies rep	ores	ent t	ne app	proxin	nate i	oound	lary lin	es betw	een s	ioil typ	bes: ir	n situ, t	he tra	nsitio	n ma	y be	e grad	ual.		
21.0										во	RING S	STARTE	ED 2/7/	/0 <b>7</b>				DFFICE					Area ·			
VL. ₩L		BORING COMPLETED 2/8/07									1	RED BY			EET NO	-										
/L											FORE	:MAN	Valnes	/Kevin			APP'E	BY		STS	S JOB	NO.	46600	27		

ł

1					WNER			LOG	IG OF BORING NUMBER B-2										
		<b>^</b> »					Control Agency						A						
AE		Uľ	VI	F	ROJECT NA	ME		ARC	HITECT	ENGINE	ER								
1					Alex Exh	aust, Leak #	<i>‡</i> 15,656	AE	СОМ										
SITE LO							· · · · · · · · · · · · · · · · · · ·	I			-O-U	NCONFI	NED CO	MPRESS	VE STR	ENGTH			
Alex	xan	dria	1, I	Viir	nnesota					W d		DNS/FT.		3 4	4	5			
DEPTH(FT) ELEVATION(FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	/ЕRҮ		DESCRI	PTION OF MATERIAL		UNIT DRY WT. BS JET 3	PHOTO-IONIZATION DETECTOR READING (PPM)	PLAS LIMI >	т% ←——	CONT	TER ENT % •	LIM 	2UID 11T % A 50			
	SAMPI	SAMPI	SAMPI	RECOVERY	SURFACE	ELEVATION +	99.5 Assumed local	UNIT DRY	HOTO DETEC		<u>ک</u>	STANDA	ATION E						
			T			Silty SAND, d					10	0 2	20 3	0 4	0 t	50 T			
	1	MC			3.0					<1									
	2					Silty CLAY, tra	ace Sand, light brown	- CL-ML		<1									
	3	мс								<1									
10:0	4									<1									
	5	мС								<1									
15.0	6									<1		:							
	7	MC								<1									
20:0	8				21.0					<1									
		мс				Fine to coarse	Clayey SAND, light b	rown - SC		<1						•••••			
-25.0	-10			Ę	24.0	Silty CLAY tra	ce Sand and Gravel,			45									
						with Hollow ste Macro Core sa with 10.6 eV la general accord headspace scr Document 4-04 units. Sample analysis of the and DRO. Gro - see sampling	25 feet. Boring drilled em auger and sampled mpler. Soil samples of mp photoionization de lance with MPCA poly eening as outlined in 6 4. Background PID le taken at 18 feet for la following parameters: oundwater encountered information form. ed with high solids ber on.	d with 5 foot were screened etector (PID) in ethylene bag Guidance evels at 0-1 boratory BTEX/GRO d at 17.6 feet											
 	 The «	L strati		atio	n lines ren	resent the ann	oximate boundary line	e batucon coll	l wnee:										
WL							BORING STARTED												
<u>17.6</u> WL							2/7/0 BORING COMPLETED 2/8/0	7						OF					
WL.							RIG/FOREMAN			MJB D BY		STS J	IOB NO.		1				
						771/1/1/1	Valnes/ł	VEALU					0	466002	7				

.

					WNER Minnesota Pollution Control Agency	F BORING NUMBER <b>B-3</b>								
AECOM				F	ROJECT NAME	TECT-ENGINEER OM								
SITE LOC Ale:			i, I		nnesota			PHOTO-IONIZATION DETECTOR READING (PPM)	-O-UNCONFINED COMPRESSIVE STRE TONS/FT. ² 1 2 3 4 5					ENGTH
DEPTH(FT) ELEVATION(FT)	NO.	YPE	SAMPLE DISTANCE	۲۲.	DESCRIPTION OF MATERIAL				PLAST LIMIT X	%		TER TER ENT %	LIM	; 2UID IIT % А
DEPT	SAMPLE	SAMPLE TYPE	MPLE C	COVER			unit dry wt. LBS./FT. ³	PHOTO-ION DETECTOR	10		20 : STAND/	30 4 +	0	50 1
$\times$	SA	NS.	- SAI	Ĩ	SURFACE ELEVATION +99.3 Assumed local		UNI	PHO	8 10			RATION E		FT. 50
·····	1	мс			Silty SAND, little Gravel, dark brown			<1						
5.0	2				Silty CLAY, trace Sand, light brown - CL-ML									
<u></u>	3	мс						343 250						
<del>10.0</del>	4							205						
	5	мс						202						
15.0	6							200						
	7	мс						<1						
20.0	8				20.0			<1						
	9	мС			Fine to coarse Clayey SAND, light brown - SC			<1						
25.0	_10_				25.0 Silty CLAY, trace Sand and Gravel, grey - CL-M			<1						
	11	мс			Sandy CLAY, saturated, grey - SC			<1						
30,0					<ul> <li>Silty CLAY, trace Sand and Gravel, grey - CL-M</li> <li>End of boring 30 feet. Boring drilled to full deptr with Hollow stem auger and sampled with 5 foot Macro Core sampler. Soil samples were screen with 10.6 eV lamp photoionization detector (PID general accordance with MPCA polyethylene ba headspace screening as outlined in Guidance Document 4-04. Background PID levels at 0-1 units. Sample taken at 5 and 16 feet for laborate analysis of the following parameters: BTEX/GR and DRO. Groundwater encountered at 16.1 feet - see sampling information form.</li> <li>Boring backfilled with high solids bentonite grout upon completion.</li> </ul>	n hed ) in lig ory O et		21						
<u> </u>	The :	strati	 fica	 atio	n lines represent the approximate boundary lines between s	 soil typ	es: i	n situ. tl	ne trans	ition	 mav b	e gradu	al.	
16.1					BORING STARTED	STS OFFICE				Minneapolis Area - 06				
L					BORING COMPLETED 2/8/07		ENTERED BY MJB			SHEET NO. OF 1				
L.					RIG/FOREMAN Valnes/Kevin		APP'(	) BY		STS		466002	7	

•

			A		WNER Winnesota Pollution Control Agency	LOG O	FBOR	ING NUN	MBER	3-4		
		vi	/[		ROJECT NAME Alex Exhaust, Leak # 15,656	ARCHI AEC		ENGINE	R	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
SITE LO					, , , , , , , , , , , , , , , , , , ,				-O-UNCON	FINED CO	MPRESSIN	E STRENGTH
Ale	xan	dria I	<b>I, I</b>	Vii i	inesota			(M94)	TONS/F	2	3 4	5
DEPTH(FT) ELEVATION(FT)	40.	ГҮРЕ	SAMPLE DISTANCE	۲	DESCRIPTION OF MATERIAL		WT.	PHOTO-IONIZATION DETECTOR READING (PPM)	PLASTIC LIMIT %		TER ENT %	Liquið Limit % - — — — — — —
DEPT	SAMPLE NO.	SAMPLE TYPE	PLE [	RECOVERY			UNIT DRY WT. LBS./FT. ³	T0-10	10	20 STAND	30 40 + +	50
$\triangleleft$	SAN	SAN	SAN	R E C E C	SURFACE ELEVATION +99.4 Assumed local		UNIT DR' LBS./FT. ³	PHO	8 10	PENET	ATION B	
	1	мс			Silty SAND, little Gravel, brown - SM			<1				
	2				Silty CLAY, trace Sand, light brown - (	CL-ML			·			
5.0								<1				
	3	мс						>2000				
10.0	4							>2000				
	5	мс							ľ			
	6							>2000				
15.0	<u> </u>							>2000				
	7	MC						31				
20.0	8							29				
	9	мс		Τ								
	10							11				
<del>25.0</del>	10				Fine to coarse Clayey SAND, light bro			10				
	11	мс			27.0 Silty CLAY, trace Sand and Gravel, gr			<1				
30.0	12				CL-ML CL-ML	ey - biown -		<1	c			
					End of boring 30 feet. Boring drilled to with Hollow stem auger and sampled w Macro Core sampler. Soil samples we with 10.6 eV lamp photoionization dete general accordance with MPCA polyet headspace screening as outlined in Gi Document 4-04. Background PID lev units. Sample taken at 13 and 22 feet laboratory analysis of the following par BTEX/GRO and DRO. Groundwater e at 21.7 feet - see sampling informatio Boring backfilled with high solids bento upon completion.	with 5 foot ere screened ector (PID) in hylene bag uidance els at 0-1 for ameters: encountered on form.						
L 21.7		strat	ific	atio	on lines represent the approximate boundary lines BORING STARTED 2/7/07 BORING COMPLETED 2/8/07		STS	n situ, t OFFICE ERED BY	Mir	on may t	s Area - ( OF	)6
٧L					RIG/FOREMAN			MJB D BY		S JOB NO	1	1
					Valnes/Ke	vin					0466002	7

		<b>U</b> Þ	А		Minnesota Pollution Control Agency	OG OF	BORI	NG NUN	/BER	B-:	5			
	C	Ur	A I					NGINE	ĒR					
SITE LOO Alex			1, I		nnesota			(Mq		ONFIN IS/FT. ² 2	ED CO	MPRESS		ENGTH
DEPTH(FT) ELEVATION(FT)	NO.	ТҮРЕ	SAMPLE DISTANCE	RY	DESCRIPTION OF MATERIAL		r wF.	PHOTO-IONIZATION DETECTOR READING (PPM)	PLAST LIMIT	%		TER ENT % 0 — — 30 4	Lin 	UID 11Т % А
	SAMPLE NO	SAMPLE TYPE	MPLE	RECOVERY			UNIT DRY WT. LBS./FT. ³	PHOTO-ION DETECTOR		+	STAND	+		-+
$\bowtie$	<i>8</i>		∂ T		SURFACE ELEVATION +98.9 Assumed local		5 9	표명	10	2(				50 T
	1	MC			Silty CLAY, trace Sand and Gravel, dark brown -	-		_<1						
5.0	2				CL-ML			<1						
	3	мс	Π					50						
	4	 	╢					58						
<del>- 10,0</del>				Π				55						
	5	мс						9						
<u>15.0</u>	6							8						
	7	мс						8						
	8			Ŧ	18.0 Silty CLAY, trace Sand and Gravel, grey - CL-ML	-								
20.0	9	мс		T				<1						
								<1						
<u>25.0</u> 26	10			Щ	26.0			<1						
					End of boring 26 feet. Boring drilled to full depth with Hollow stem auger and sampled with 5 foot Macro Core sampler. Soil samples were screened with 10.6 eV lamp photoionization detector (PID) general accordance with MPCA polyethylene bag headspace screening as outlined in Guidance Document 4-04. Background PID levels at 0-1 units. Sample taken at 6 and 25 feet for laborato analysis of the following parameters: BTEX/GRC and DRO. Groundwater encountered at 25.15 fe - see sampling information form. Boring backfilled with high solids bentonite grout upon completion.	ed in J pry D eet								
	The	strat	 ific	atio	on lines represent the approximate boundary lines between s	oil type	es: i	n situ, t	he trans	ition	may b	e grad	ual.	
WL 25.2	2				BORING STARTED 2/7/07		STS	OFFICE	ſ	Minne	apolis	s Area -	06	
WL					BORING COMPLETED 2/8/07		ENTE			SHEE	T NO.	0F 1	1	
wi.					RIG/FOREMAN Valnes/Kevin		APP'[			STS J	OB NO.	0466002	_	

BORING_LOG_200606839.GPJ_STS.GDT_1/27/09

				17	OWNER	Tiogo			UDED		~			
		~-			Minnesota Pollution Control Agency			NG NUI	NDER	В	-6			
AE	:Ú	UN	M		PROJECT NAME	ARCH	TECT-F	INGINE	FR					
					Alex Exhaust, Leak # 15,656	AEC								
SITE LO				- <b>I</b>				 		CONF	NED CON	<b>IPRESS</b>	IVE STR	ENGTH
Ale	xan	dria	a, 1	Vli	nnesota			Ŵ	U то 1	NS/FT	NED CON 2 2	3	4	5
								PHOTO-IONIZATION DETECTOR READING (PPM)			•		:	1
DEPTH(FT) ELEVATION(FT)			NS.					NOL	PLAS LIMIT		WA' CONTI			UID IT %
(FT)	o.	μ	STA		DESCRIPTION OF MATERIAL		Ŀ.	REA	×			<b>)</b> — — ·		Δ
DEPTH(FT)	Ž	н Ш		L E R			۸ ۲. ۲۳.	NO RO	10	1	20 3	0 4	0 5	50
	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY			UNIT DRY WT. LBS./FT. ³	PHOTO-IONIZATION DETECTOR READING			STANDA			
$\bowtie$	ŝ	တ်	တ်	盗			E E	ΞH	8 10		PENETR 20 3			FT. 50
	1	мс			상학: Silty SAND, brown - SM									
			Ħ	Ħ	Silty CLAY, little Sand, light brown - CL-ML			<1						
5.0	2			Ш				<1						
	5	мс	П	İΤ										
	3	MC		Ц				<1						
	4													
<u>   10:0    </u>				4				<1						
	5	мс						<1						
			Н	H										
15.0	6							<1						
	7	мс		Π										
	•							<1						
20.0	8													
<del>20:0</del>								<1						
	9	MC						<1						
	10													
-25.0	10		Щ		25.0			<1						
					End of boring 25 feet. Boring drilled to full de with Hollow stem auger and sampled with 5 for Macro Core sampler. Soil samples were scre with 10.6 eV lamp photoionization detector (P	ot ened						:		
					general accordance with MPCA polyethylene headspace screening as outlined in Guidance	bag								
					Document 4-04. Background PID levels at 0 units. Sample taken at 23 feet for laboratory	-1								
					analysis of the following parameters: BTEX/C	RO								
					and DRO. Groundwater encountered at 20.9 - see sampling information form.	feet								
ľ					Boring backfilled with high solids bentonite gro upon completion.	out								
					apon competion.									
									E I					
									į					
[														
	<u> </u> Th-	l						<u>_</u>	<u> </u>			1		
	i ne	strat	шC	ati	on lines represent the approximate boundary lines betwee	n soil ty	/pes: i	n situ, t	he tran	sition	may b	e gradi	Jal.	
WL 20.9	)				BORING STARTED 2/7/07		STS	OFFICE		Minn	eapolis	Area -	06	
WL					BORING COMPLETED		ENTE	RED BY		,	ET NO.	OF		
WL.								MJB		<u> </u>			1	
*75					KIG/FOREMAN Valnes/Kevin		APP	1 R X		STS	JOB NO. 0	466002	7	

					WNER MPCA		LOG O	FBORI	NG NUI	MBER	B-7			
AE	=C	Uľ	M		ROJECT NAME Alex Exhaust		ARCHI		NGINE	ER				
SITE LO			a, I						(W		NFINED CO FT. ² 2	MPRES	SIVE ST	RENGTH
DEPTH(FT) ELEVATION(FT)	Ģ	YPE	SAMPLE DISTANCE	<u>بر</u>	DESCRIPT	TION OF MATERIAL		WT.	PHOTO-IONIZATION DETECTOR READING (PPM)	PLASTIC LIMIT % X	+ W	ATER TENT %	Ľ	IQUID MIT %
ELEV	SAMPLE NO.	SAMPLE TYPE	AMPLE [	RECOVERY				UNIT DRY WT. LBS./FT. ³	IOTO-IOI	10 ————————————————————————————————————	20 STANE		40	50
	0 -	3	Г П	Ē	SURFACE ELEVATION +9 Brown silty CLA	8.0 Assumed local Y (CL) with trace sand and gr	ravel	59	Нd	10	20	RATION	40	5/F1. 50
	1	AS			2.5				<1					
5.0	2	мс			Brown, clayey S	SAND (SC) with trace coarse s	sand		<1					
	3	мс				CLAY (CL) with fine sand se	ams		<1					
10.0	4	мс							<1	-		777 AM		
	5	мс							<1	•				
15.0	6	мс							<1		-			
	7	MC			16.0 Grey/brown CLA	NY (CL)			<1					
20.0	8	мс			20.0 Grey sandy clay	(CL) moint			<1					
	9	мс			Grey sandy day	(CL), moist			<1					
25.0	10	мс			25.0	25 feet. Drilled to full depth v			<1					
					hollow stem aug photoionization of accordance with headspace scree Document 4-04. well and set at 2 encountered at 1	er. Soil samples screened wi detector (PID) in general MPCA polyethylene bag ening as outlined in Guidance Installed 2 inch PVC tempora 5.58 feet. Groundwater 15.80 feet.	ary							
					Boring backfilled upon completion	with high solids bentonite gro	but							
	 The	strati	fic	atic	n lines represent the oppres	vimate houndary lines haters							L	ļ 
wL 15.8						kimate boundary lines betwee	n soll ty		DFFICE		on may l nneapoli			
15.d	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					2/27/08 BORING COMPLETED 2/27/08		ENTE	RED BY		IEET NO.	0F	1	
WL.						RIG/FOREMAN Truck Mount/Todd		APP'E		51	S JOB NO		27	

BORING LOG 200705844.GPJ STS.GDT 1/27/09

	-				OWNER MPCA		LOG O	FBORI	NG NUI	MBER	B-8			
A			V[	- 1	PROJECT NAME Alex Exhaust				NGINE	ER				
SITE LO Ale		on Idria	a, I	MI	N		- I		(M		ONFINED	COMPRE 3	SSIVE S	TRENG
T) DN(FT)			ANCE						PHOTO-IONIZATION DETECTOR READING (PPM)	PLASTI LIMIT 9	с К	WATER		LIQUID
DEPTH(FT) ELEVATION(FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	VERY	DESCRIF	TION OF MATERIAL		UNIT DRY WT. LBS./FT. ³	PHOTO-IONIZATION DETECTOR READIN	10		- — <b>@</b> — - 30	40	<u>-</u> ∆ 50
	SAMP	SAMP	SAMP	RECO				UNIT DRY LBS./FT. ³	PHOTC DETEC	<b>X</b>		ANDARD NETRATIO 30	N BLOW	/S/FT. 50
· · · · · · · · · · · · · · · · · · ·	1	AS			organics	AY (CL-ML) with fine sand, tr.			<1					
	2	мс			2.5 Brown silty CL	AY (CL) with trace fine sand			-				_	
5.0									<1					
· · · · · · · · · · · · · · · · · · ·	3	мс							<1					
10.0	4	мс			10.0				<1					
10.0	5	мс				SAND (SC) with trace silt								
									<1					
15.0	6	MC			15.0				<1					
	7	мс			Brown CLAY (	CL) with sand lenses			<1	-				
	8	мс					1							
20.0									<1					
	9	мс			23.0				<1		-			
25.0	10	мс			Grey sandy CL	AY (CL)			<1					
	11	мс												
	12								<1					
30.0	12				30.0 End of boring a	t 30 feet. Drilled to full depth w	ith		<1					
		ил 2			hollow stem au photoionization accordance wit headspace scre Document 4-04	ger. Soil samples screened wil detector (PID) in general MPCA polyethylene bag eening as outlined in Guidance Installed 2 inch PVC tempora 25.05 feet. Groundwater	th				* * ********			
					Boring backfille upon completio	d with high solids bentonite gro n.	ut							
						· · · · · · · · · · · · · · · · · · ·								
VL.		strati		atic	on lines represent the appro	BORING STARTED	n soil typ	1	SITU, T					
19.7 VL						2/27/08 BORING COMPLETED 2/28/08			RED BY		SHEET N	olis Area		
VL.						RIG/FOREMAN Truck Mount/Todd		APP'D			STS JOB			

-----


		<b>^</b> b	A	ľ	WNER			LOG C	F BORI	NG NUI	MBER	B	-9	5		
AE		UN	71		ROJECT N		, , , , , , , , , , , , , , , , , , ,	ARCHI	TECT-E	NGINE	ER					
SITE LO			. N	<u> </u>						()		INCONF		MPRES	SIVE S	TRENG
4(FT)					I 		· · · · · · · · · · · · · · · · · · ·			PHOTO-IONIZATION DETECTOR READING (PPM)	PLA	1 STIC	w	3 ATER TENT %	<del>(</del> L	.IQUID
DEPTH(FT) ELEVATION(FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY		DESCF	IPTION OF MATERIAL		UNIT DRY WT, LBS./FT. ³	PHOTO-IONIZATION DETECTOR READIN	>	<b>≁</b>	20	30	40	MIT %
	SAMF	SAMF	SAMF	S E C	SURFACE		+95.0 Assumed Local		UNIT DRY LBS./FT. ³	PHOT( DETEC		8	STANE PENET 20	ARD RATION 30	I BLOW 40	S/FT. 50
	1				0.3	Asphalt Brown fine to	o medium SAND (SP) with	trace gravel		<1					-	1
	2	мс					SAND (SP) with trace clay									
5.0	3			T	4.0	Brown silty C	CLAY (CL)			<1						_
		мс								<1						
	5									<1						
10.0	6	мс		H						<1				2		
	ъ 7			H						<1						
15.0				H						<1						
		MC				0.5" fine to m 15.5'	aed SAND (SP) seam at 1	5.0' and		<1						
	9									<1				-		
20.0		мс								<1						
	11									<1						
25.0		мс								<1						
V.V	13	MC		LĮ						<1						
			┯┝							<1						
30.0	14	мс		LĮ						<1						
										<1						
35.0	15	мс			33.0	Grey silty CL	AY (CL)									
	ни на				~~~ <u>~</u>	geoprobe. So photoionizatio accordance w headspace so Document 4-0 well. Ground	at 35 feet. Drilled to full of bil samples screened with on detector (PID) in genera- vith MPCA polyethylene ba- creening as outlined in Gui 04. Installed 1 inch PVC to water encountered at 7.64 led with high solids bentor ion.	al ag idance emporary feet.		<1						
							ring units									
77	The s	strati	fica	tior	n lines rep	present the app	BORING STARTED	oetween soil ty			ne trar					
7.64 VL							BORING STARTED 12/12/08 BORING COMPLETED		STS C				eapoli: ET NO.	OF		
VL							RIG/FOREMAN		APP'D	RED BY			JOB NO.	1	1	

Leak 15,656 – Alex Exhaust AECOM Project 04660027

# APPENDIX F

Laboratory Analytical Reports for Soil, Groundwater and Soil Vapor

Page 1 of 14



r ,

# Northeast Technical Services

315 Chestnut Street PO Box 1142 Virginia, MN 55792 Phone: 218-741-4290 Fax: 218-742-1010

MDH Certification: 027-137-157

RECEIPTION WITH 1 3 LONG

NTS COC: 84629 Received: 2/29/2008 Client: 0605 e-mail - STS Consultants Project: 4930 - 200705844/Alex Exhaust Sampled By: Client Report Date: 3/11/2008 Rec'd Temperature: 4 °C

Approved by:

Renee Stone

NTS Sample: 244235 Description: B-7 (W) Sample Date: 2/27/2008 12:35:00 PM

STS Consultants

Attn: Tim Grape 10900 73rd Ave. N.

Maple Grove, MN 55369

Suite 150

Matrix: Aqueous Sample Type: Grab

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
DRO	<0.1	mg/L	0.1	1	WI(95) DRO	3/3/2008	MES
GRO	<0.1	mg/L	0.1	1	WI(95) GRO	2/29/2008	MES
1,1,1,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1,1-Trichloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1,2,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1,2-Trichloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1,2-Trichlorotrifluoroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1-Dichloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1-Dichloropropene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,2,3-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
1,2,3-Trichloropropane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
1,2,4-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
1,2,4-Trimethylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,2-Dibromo-3-chloropropane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
1,2-Dibromoethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,2-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,2-Dichloroethane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
1,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES

This report may not be reproduced, except in full, without written consent of NTS laboratory.

Results apply only to the sample received. Results for solid matrices are based on dry weight, unless noted. Analysis was performed in accordance with methods approved by the US EPA and the Minnesota Department of Health, where applicable, unless noted in the report. NTS Sample: 244235 Description: B-7 (W) Sample Date: 2/27/2008 12:35:00 PM

× . .

Matrix: Aqueous Sample Type: Grab

NTS COC: 84629 Client: 0605 e-mail - STS Consultants Project: 4930 - 200705844/Alex Exhaust Sampled By: Client Report Date: 3/11/2008

1,3.5-Trimethybenzene       <1       µg/L       1       1       EPA 8280B       3/6/2008       MES         1,3-Dichlorobenzene       <1       µg/L       1       1       EPA 8280B       3/6/2008       MES         1,4-Dichlorobenzene       <1       µg/L       1       1       EPA 8280B       3/6/2008       MES         2,2-Dichlorobropane       <1       µg/L       1       1       EPA 8280B       3/6/2008       MES         2,2-Dichlorobropane       <1       µg/L       1       1       EPA 8280B       3/6/2008       MES         2,Chlorobluene       <1       µg/L       1       1       EPA 8280B       3/6/2008       MES         Acatone       <20       µg/L       1       1       EPA 8280B       3/6/2008       MES         Bromodenzene       <1       µg/L       1       1       EPA 8280B       3/6/2008       MES         Bromodichloromethane       <1       µg/L       1       1       EPA 8280B       3/6/2008       MES         Bromodichloromethane       <1       µg/L       1       1       EPA 8280B       3/6/2008       MES         Bromodichloromethane       <1       µg/L       1       1 </th <th>Analyte</th> <th>Result</th> <th>Units</th> <th>RL</th> <th>DIL</th> <th>Method</th> <th>Analysis Dat</th> <th>Analyst</th>	Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
1.3-Dichloropropane       <1	1,3,5-Trimethylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1.4-Dichlorophanzene $\mu g \Lambda$ 1       EPA 8260B       3/6/2008       MES         2.2-Dichlorophopane $\mu g \Lambda$ 1       1       EPA 8260B       3/6/2008       MES         2.2-Dichlorophopane $\mu g \Lambda$ 1       1       EPA 8260B       3/6/2008       MES         2Chlorobluene $\mu g \Lambda$ 1       1       EPA 8260B       3/6/2008       MES         Acatone        20 $\mu g \Lambda$ 1       EPA 8260B       3/6/2008       MES         Acatone        20 $\mu g \Lambda$ 1       EPA 8260B       3/6/2008       MES         Bromobenzene $\mu g \Lambda$ 1       1       EPA 8260B       3/6/2008       MES         Bromodenthane $\mu g \Lambda$ 1       1       EPA 8260B       3/6/2008       MES         Bromodenthane $\mu g \Lambda$ 1       1       EPA 8260B       3/6/2008       MES         Bromodenthane $\mu g \Lambda$ 1       1       EPA 8260B       3/6/2008       MES         Chlorobenzene $\mu g \Lambda$ 1       1       EPA 8260B       3/6/	1,3-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
2.2-Dickloropropane       4       µg/L       1       EPA 8220B       3/6/2008       MES         2-Chlorotoluene       1       µg/L       1       1       EPA 8220B       3/6/2008       MES         4-Chlorotoluene       1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Acetone       <20	1,3-Dichloropropane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
2-Chlorotoluene         1         1         EPA 8250B         36/2008         MES           4-Chlorotoluene	1,4-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
4-Chlorotoluene       <1	2,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Acetone         <20         µg/L         20         1         EAA 8260B         30/2003         MES           Allyl Chloride         <1	2-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Altyl Chloride       4       µg/L       1       1       FPA 8260B       3/6/2008       MES         Benzene       <1	4-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Benzene111EPA 8260B3/6/2008MESBromobenzene1 $\mu g/L$ 11EPA 8260B3/6/2008MESBromochloromethane1 $\mu g/L$ 11EPA 8260B3/6/2008MESBromochloromethane1 $\mu g/L$ 11EPA 8260B3/6/2008MESBromoform1 $\mu g/L$ 11EPA 8260B3/6/2008MESBromoform1 $\mu g/L$ 11EPA 8260B3/6/2008MESBromoform1 $\mu g/L$ 11EPA 8260B3/6/2008MESCarbon Tetrachloride1 $\mu g/L$ 11EPA 8260B3/6/2008MESChlorobenzene1 $\mu g/L$ 11EPA 8260B3/6/2008MESChlorotom1 $\mu g/L$ 11EPA 8260B3/6/2008MESChlorotom1 $\mu g/L$ 11EPA 8260B3/6/2008MESChlorotom1 $\mu g/L$ 11EPA 8260B3/6/2008MESChlorotomthane1 $\mu g/L$ 11EPA 8260B3/6/2008MESDibromothoromethane1 $\mu g/L$ 11EPA 8260B3/6/2008MESDibromothoromethane1 $\mu g/L$ 11EPA 8260B3/6/2008MESDibromothoromethane1 $\mu g/L$ 11EPA 8260B3/6/2008MESDibromothoromethane1 $\mu g/L$ 1<	Acetone	<20	µg/L	20	1	EPA 8260B	3/6/2008	MES
Bromobenzene       4 $\mu g/L$ 1       1       EPA 8260B       3/6/2008       MES         Bromodichloromethane       1 $\mu g/L$ 1       1       EPA 8260B       3/6/2008       MES         Bromodichloromethane       1 $\mu g/L$ 1       1       EPA 8260B       3/6/2008       MES         Bromodichloromethane       1 $\mu g/L$ 1       1       EPA 8260B       3/6/2008       MES         Bromodichloromethane       2 $\mu g/L$ 1       1       EPA 8260B       3/6/2008       MES         Carbon Tetrachloride       2 $\mu g/L$ 1       1       EPA 8260B       3/6/2008       MES         Chlorobenzene       1 $\mu g/L$ 1       1       EPA 8260B       3/6/2008       MES         Chloroform       1 $\mu g/L$ 1       1       EPA 8260B       3/6/2008       MES         Chloromethane       1 $\mu g/L$ 1       1       EPA 8260B       3/6/2008       MES         Chloromethane       1 $\mu g/L$ 1       1       EPA 8260B       3/6/2008       MES         Dibromomethane       1 $\mu g/L$ 1	Allyl Chloride	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Bromochloromethane       1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Bromodichloromethane       1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Bromodichloromethane       1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Bromodichloromethane       2       µg/L       1       1       EPA 8260B       3/6/2008       MES         Carbon Tetrachloride       1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Chlorobenzene       1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Chloroform       <1	Benzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Bromodichloromethane       1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Bromoform       <1	Bromobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Bromoform       1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Bromomethane       2       µg/L       2       1       EPA 8260B       3/6/2008       MES         Carbon Tetrachloride       1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Chlorobenzene       1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Chlorobenzene       1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Chloroform       <1	Bromochloromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Bromomethane          2         µg/L         2         1         EAR 62008         3/6/2008         MES           Carbon Tetrachloride         <1	Bromodichloromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Carbon Tetrachloride	Bromoform	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Chlorobenzene       1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Chloroethane       1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Chloroform       1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Chloroform       1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Chloromethane       1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Cis-1,2-Dichloroethylene       1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Dibromochloromethane       1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Dibromochloromethane       <1	Bromomethane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
Chloroethane       <1	Carbon Tetrachloride	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Chloroform<1 $\mu g/L$ 11EPA 8260B $3/6/2008$ MESChloromethane<1	Chlorobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Chloromethane       <1	Chloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Cis-1,2-Dichloroethylene       <1	Chloroform	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Cis-1,3-Dichloropropene       1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Dibromochloromethane       1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Dibromochloromethane       1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Dibromomethane       2       µg/L       2       1       EPA 8260B       3/6/2008       MES         Dichlorofluoromethane       2       µg/L       1       1       EPA 8260B       3/6/2008       MES         Dichlorofluoromethane       -1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Ethyl Benzene       -1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Ethyl Ether       -2       µg/L       2       1       EPA 8260B       3/6/2008       MES         Isopropylbenzene       <1	Chloromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Dibromochloromethane<1 $\mu g/L$ 11EPA 8260B $3/6/2008$ MESDibromomethane<1	Cis-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Dibromomethane       <1	Cis-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Dichlorodifluoromethane         <2         µg/L         2         1         En A 6260B         3/6/2008         MES           Dichlorofluoromethane         1         µg/L         1         1         EPA 8260B         3/6/2008         MES           Ethyl Benzene         <1	Dibromochloromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Dichlorofluoromethane       <1	Dibromomethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Ethyl Benzene       <1	Dichlorodifluoromethane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
Ethyl Ether       <2	Dichlorofluoromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Hexachlorobutadiene       <2	Ethyl Benzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Isopropylbenzene       <1	Ethyl Ether	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
Methyl Ethyl Ketone       <10	Hexachlorobutadiene	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
Methyl Isobutyl Ketone         <10         10         1         EPA 8260B         3/6/2008         MES           Methyl Tert-butyl Ether         <1	lsopropylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Methyl Tert-butyl Ether       <1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Methylene Chloride       <1	Methyl Ethyl Ketone	<10	µg/L	10	1	EPA 8260B	3/6/2008	MES
Methylene Chloride         <1         µg/L         1         1         EPA 8260B         3/6/2008         MES           Naphthalene         <2	Methyl Isobutyl Ketone	<10	µg/L	10	1	EPA 8260B	3/6/2008	MES
Naphthalene         <2 µg/L         2         1 EPA 8260B         3/6/2008         MES           n-Butylbenzene         <1 µg/L	Methyl Tert-butyl Ether	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Naphthalene         <2 μg/L         2         1 EPA 8260B         3/6/2008         MES           n-Butylbenzene         <1 μg/L	Methylene Chloride	<1	µg/L	1	1	EPA 8260B	3/6/2008	
n-Butylbenzene <1 µg/L 1 1 EPA 8260B 3/6/2008 MES	Naphthalene	<2	µg/L	2	1	EPA 8260B	3/6/2008	
	n-Butylbenzene	<1	µg/L	1	1	EPA 8260B		
	n-Propylbenzene			1	1	EPA 8260B		

NTS Sample: 244235 Description: B-7 (W) Sample Date: 2/27/2008 12:35:00 PM Matrix: Aqueous Sample Type: Grab

NTS COC: 84629 Client: 0605 e-mail - STS Consultants Project: 4930 - 200705844/Alex Exhaust Sampled By: Client Report Date: 3/11/2008

ι.

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
p-Isopropyltoluene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
sec-Butylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Styrene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
tert-Butylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Tetrachloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Tetrahydrofuran	<5	µg/L	5	1	EPA 8260B	3/6/2008	MES
Toluene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Trans-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Trans-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Trichloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Trichlorofluoromethane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
Vinyl Chloride	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Xylene, M&P	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
Xylene, O	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Surrogate 1,2-Dichloroethane-d4	101	%	1	1	EPA 8260B	3/6/2008	MES
Surrogate Bromofluorobenzene	99.8	%	1	1	EPA 8260B	3/6/2008	MES
Surrogate Toluene-d8	99.4	%	1	1	EPA 8260B	3/6/2008	MES

NTS Sample: 244236 Description: B-77 (W) Sample Date: 2/27/2008 12:50:00 PM Matrix: Aqueous Sample Type: Grab

DRO         <0.1	Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
1,1,2-Tetrachloroethane       <1	DRO	<0.1	mg/L	0.1	1	WI(95) DRO	3/4/2008	MES
1,1-Trichloroethane       <1 $\mu g/L$ 1       EPA 8250B $306/2008$ MES         1,1,2-Trichloroethane       <1	GRO	<0.1	mg/L	0.1	1	WI(95) GRO	2/29/2008	MES
1,1,2,2-Tetrachloroethane       <1	1,1,1,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1,2-Trichloroethane       <1	1,1,1-Trichloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1.2-Trichloroteithane       <1	1,1,2,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1.1-Dichloroethane       <1	1,1,2-Trichloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1.1-Dichloroethylene       <1	1,1,2-Trichlorotrifluoroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1-Dichloropropene<1 $\mu g/L$ 11EPA 8280B3/6/2008MES1,2,3-Trichlorobenzene<2	1,1-Dichloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,2,3-Trichlorobenzene2 $\mu g/L$ 21EPA 8260B3/6/2008MES1,2,3-Trichloropropane-2 $\mu g/L$ 21EPA 8260B3/6/2008MES1,2,4-Trimethylbenzene-2 $\mu g/L$ 11EPA 8260B3/6/2008MES1,2-Liromos-S-chloropropane-2 $\mu g/L$ 11EPA 8260B3/6/2008MES1,2-Diromos-S-chloropropane-2 $\mu g/L$ 11EPA 8260B3/6/2008MES1,2-Diromos-S-chloropropane-2 $\mu g/L$ 11EPA 8260B3/6/2008MES1,2-Diromos-thane-2 $\mu g/L$ 11EPA 8260B3/6/2008MES1,2-Dichlorobenzene-1 $\mu g/L$ 11EPA 8260B3/6/2008MES1,2-Dichlorophane-1 $\mu g/L$ 11EPA 8260B3/6/2008MES1,3-Dichlorophane-1 $\mu g/L$ 11EPA 8260B3/6/2008MES1,3-Dichlorophane-1 $\mu g/L$ 11EPA 8260B3/6/2008MES1,3-Dichlorophane-1 $\mu g/L$ 11EPA 8260B3/6/2008MES1,2-Dichlorophane-1 $\mu g/L$ 11EPA 8260B3/6/2008MES1,2-Dichlorophane-1 $\mu g/L$ 11EPA 8260B3/6/2008MES1,2-Dichlorophane-1 $\mu g/L$ 11EPA 8260B3/6/2008MES2,2-Dicholophane-1 $\mu g/L$	1,1-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,2,3-Trichloropropane       -2       µg/L       2       1       EPA 8260B       3/6/2008       MES         1,2,4-Trinethylbenzene       -2       µg/L       2       1       EPA 8260B       3/6/2008       MES         1,2-Libiromo-3-chloropropane       -2       µg/L       1       1       EPA 8260B       3/6/2008       MES         1,2-Dibiromo-3-chloropropane       -2       µg/L       1       1       EPA 8260B       3/6/2008       MES         1,2-Dichlorobenzene       -1       µg/L       1       1       EPA 8260B       3/6/2008       MES         1,2-Dichlorobenzene       -1       µg/L       1       1       EPA 8260B       3/6/2008       MES         1,2-Dichlorobenzene       -1       µg/L       1       1       EPA 8260B       3/6/2008       MES         1,3-Dichlorobenzene       -1       µg/L       1       1       EPA 8260B       3/6/2008       MES         1,3-Dichlorobenzene       -1       µg/L       1       1       EPA 8260B       3/6/2008       MES         1,3-Dichloropropane       -1       µg/L       1       1       EPA 8260B       3/6/2008       MES         1,4-Dichloropropane       -1 <t< td=""><td>1,1-Dichloropropene</td><td>&lt;1</td><td>µg/L</td><td>1</td><td>1</td><td>EPA 8260B</td><td>3/6/2008</td><td>MES</td></t<>	1,1-Dichloropropene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,2,4-Trichlorobenzene2 $\mu g/L$ 21EPA 8260B3/6/2008MES1,2,4-Trimethylbenzene<1	1,2,3-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
1,2,4-Trimethylbenzene       <1	1,2,3-Trichloropropane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
1,2-Dibromo-3-chloropropane $<2 \mu g/L$ 2       1       EPA 82608 $3/6/2008$ MES         1,2-Dibromoethane $<1 \mu g/L$ 1       1       EPA 8260B $3/6/2008$ MES         1,2-Dichlorobenzene $<1 \mu g/L$ 1       1       EPA 8260B $3/6/2008$ MES         1,2-Dichlorobenzene $<1 \mu g/L$ 1       1       EPA 8260B $3/6/2008$ MES         1,2-Dichloropopane $<1 \mu g/L$ 1       1       EPA 8260B $3/6/2008$ MES         1,3-Dichlorobenzene $<1 \mu g/L$ 1       1       EPA 8260B $3/6/2008$ MES         1,3-Dichlorobenzene $<1 \mu g/L$ 1       1       EPA 8260B $3/6/2008$ MES         1,3-Dichlorobenzene $<1 \mu g/L$ 1       1       EPA 8260B $3/6/2008$ MES         1,4-Dichlorobenzene $<1 \mu g/L$ 1       1       EPA 8260B $3/6/2008$ MES         2,2-Dichloropopane $<1 \mu g/L$ 1       1       EPA 8260B $3/6/2008$ MES         2,2-Dichloropopane $<1 \mu g/L$ 1       1       EPA 8260B $3/6/2008$ MES <t< td=""><td>1,2,4-Trichlorobenzene</td><td>&lt;2</td><td>µg/L</td><td>2</td><td>1</td><td>EPA 8260B</td><td>3/6/2008</td><td>MES</td></t<>	1,2,4-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
1,2-Dibromoethane       <1	1,2,4-Trimethylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,2-Dichlorobenzene<1 $\mu g/L$ 11EPA 8260B3/6/2008MES1,2-Dichloropthane<2	1,2-Dibromo-3-chloropropane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
1,2-Dichloroethane       <2	1,2-Dibromoethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,2-Dichloropropane       <1	1,2-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,3,5-Trimethylbenzene       <1	1,2-Dichloroethane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
1,3-Dichlorobenzene       <1	1,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,3-Dichloropropane       <1	1,3,5-Trimethylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,4-Dichlorobenzene       <1	1,3-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
2,2-Dichloropropane       <1	1,3-Dichloropropane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
2-Chlorotoluene       <1	1,4-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
4-Chlorotoluene       <1	2,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Acetone       <20	2-Chiorotoluene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Allyl Chloride       <1	4-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Benzene       <1	Acetone	<20	µg/L	20	1	EPA 8260B	3/6/2008	MES
Bromobenzene       <1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Bromochloromethane       <1	Allyl Chloride	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Bromochloromethane       <1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Bromodichloromethane       <1	Benzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Bromodichloromethane         <1         μg/L         1         1         EPA 8260B         3/6/2008         MES           Bromoform         <1	Bromobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Bromoform         <1         μg/L         1         1         EPA 8260B         3/6/2008         MES           Bromomethane         <2	Bromochloromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Bromomethane         <2         μg/L         2         1         EPA 8260B         3/6/2008         MES           Carbon Tetrachloride         <1	Bromodichloromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Carbon Tetrachloride         <1 µg/L         1         1 EPA 8260B         3/6/2008         MES           Chlorobenzene         <1 µg/L	Bromoform	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Chlorobenzene         <1 μg/L         1         1 ΕΡΑ 8260B         3/6/2008         MES	Bromomethane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
	Carbon Tetrachloride	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Chloroethane <1 µg/L 1 1 EPA 8260B 3/6/2008 MES	Chlorobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
	Chloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES

NTS Sample: 244236 Description: B-77 (W) Sample Date: 2/27/2008 12:50:00 PM

Matrix: Aqueous Sample Type: Grab NTS COC: 84629 Client: 0605 e-mail - STS Consultants Project: 4930 - 200705844/Alex Exhaust Sampled By: Client Report Date: 3/11/2008

Chloroform         <1	Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
Cie-1,2-Dichlorosthylene         ci         µg/L         1         EPA 2250B         3/6/2008         MES           Cie-1,3-Dichloropropene         -1         µg/L         1         1         EPA 2250B         3/6/2008         MES           Dibromochloromethane         -1         µg/L         1         1         EPA 2250B         3/6/2008         MES           Dichlorodifluoromethane         -1         µg/L         1         1         EPA 8250B         3/6/2008         MES           Dichlorodifluoromethane         -1         µg/L         1         1         EPA 8260B         3/6/2008         MES           Ethyl Banzene         -1         µg/L         1         1         EPA 8260B         3/6/2008         MES           Ethyl Etner         -2         µg/L         2         1         EPA 8260B         3/6/2008         MES           Isopropylbenzene         -1         µg/L         1         1         EPA 8260B         3/6/2008         MES           Methyl Isobutyl Ketone         -10         µg/L         1         1         EPA 8260B         3/6/2008         MES           Methyl Isobutyl Ketone         -10         µg/L         1         1         EPA 8260B <td< td=""><td>Chloroform</td><td>&lt;1</td><td>µg/L</td><td>1</td><td>1</td><td>EPA 8260B</td><td>3/6/2008</td><td>MES</td></td<>	Chloroform	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Cis-1.3-Dichloropropene         <1         µg/L         1         1         EPA 8260B         3/6/2008         MES           Dibromochlaromethane         <1	Chloromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Dibromochloromethane         I         µg/L         I         I         EPA 8260B         3/6/2008         MES           Dibromomethane         I         µg/L         I         I         EPA 8260B         3/6/2008         MES           Dichlorodifluoromethane         I         µg/L         I         I         EPA 8260B         3/6/2008         MES           Ethyl Benzene         I         µg/L         I         I         EPA 8260B         3/6/2008         MES           Ethyl Benzene <i< td="">         µg/L         I         I         EPA 8260B         3/6/2008         MES           Ethyl Benzene         <i< td="">         µg/L         I         I         EPA 8260B         3/6/2008         MES           Isopropylenzene         <i< td="">         µg/L         10         I         EPA 8260B         3/6/2008         MES           Methyl Isobulyl Ketone         &lt;10</i<></i<></i<>	Cis-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Dibromomethane         I         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L <thl< th="">         L         L         &lt;</thl<>	Cis-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Dichlorodifiuoromethane         4         byt         1         EPA 8260B         3/6/2008         MES           Dichlorofiluoromethane         1         µg/L         1         1         EPA 8260B         3/6/2008         MES           Ethyl Benzene         <1	Dibromochloromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Dichlorofluoromethane         <1         µg/L         1         EPA 8260B         36/2008         MES           Ethyl Banzene         <1	Dibromomethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Ethyl Banzene         i         i/g/L         1         I         EPA 8260B         3/6/2008         MES           Ethyl Ether         -2         µg/L         2         1         EPA 8260B         3/6/2008         MES           Hexachlorobutadiene         -2         µg/L         2         1         EPA 8260B         3/6/2008         MES           Isopropylbenzene         -1         µg/L         1         1         EPA 8260B         3/6/2008         MES           Methyl Ethyl Ketone         -10         µg/L         10         1         EPA 8260B         3/6/2008         MES           Methyl Filyl Ketone         -10         µg/L         10         1         EPA 8260B         3/6/2008         MES           Methyl Filyl Ketone         -1         µg/L         1         1         EPA 8260B         3/6/2008         MES           Naphthalane         -2         µg/L         1         1         EPA 8260B         3/6/2008         MES           Naphthalane         -2         µg/L         1         1         EPA 8260B         3/6/2008         MES           P-lsopropyltoluene         -1         µg/L         1         1         EPA 8260B         3/6/2008	Dichlorodifluoromethane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
Ethyl Ether         2         µg/L         2         1         EPA 8280B         3/6/2008         MES           Hexachlorobutadiene         -2         µg/L         2         1         EPA 8280B         3/6/2008         MES           Isopropylbenzene         -1         µg/L         1         1         EPA 8280B         3/6/2008         MES           Methyl Ethyl Ketone         -10         µg/L         10         1         EPA 8280B         3/6/2008         MES           Methyl Isobutyl Ketone         -10         µg/L         10         1         EPA 8280B         3/6/2008         MES           Methyl Sobutyl Ketone         -10         µg/L         1         1         EPA 8260B         3/6/2008         MES           Methyl Isobutyl Ketone         -1         µg/L         1         1         EPA 8260B         3/6/2008         MES           Naphthalene         -2         µg/L         1         1         EPA 8260B         3/6/2008         MES           n-Proyblenzene         -1         µg/L         1         1         EPA 8260B         3/6/2008         MES           Slyrene         -1         µg/L         1         1         EPA 8260B         3/6/2008	Dichlorofluoromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Hexachlorobutadiene         2         µg/L         2         1         EPA 8260B         3/6/2008         MES           Isopropylbenzene         1         µg/L         1         1         EPA 8260B         3/6/2008         MES           Methyl Ethyl Ketone         10         µg/L         10         1         EPA 8260B         3/6/2008         MES           Methyl Ethyl Ketone         10         µg/L         10         1         EPA 8260B         3/6/2008         MES           Methyl Isobutyl Ketone         10         µg/L         10         1         EPA 8260B         3/6/2008         MES           Methylen Chloride         1         µg/L         1         1         EPA 8260B         3/6/2008         MES           Naphthalene         <2	Ethyl Benzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Isopropylbenzene         cl         i         IPA 2005         MES           Methyl Ethyl Ketone         <10	Ethyl Ether	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
Methyl Ethyl Ketone         <10         µg/L         10         1         EPA 8260B         3/6/2008         MES           Methyl Isobutyl Ketone         <10	Hexachlorobutadiene	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
Methyl Isobutyl Ketone         <10         µg/L         10         1         EPA 8260B         3/6/2008         MES           Methyl Tert-butyl Ether         <1	Isopropylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Methyl Tert-butyl Ether       <1	Methyl Ethyl Ketone	<10	µg/L	10	1	EPA 8260B	3/6/2008	MES
Methylene Chloride         <1         µg/L         1         1         EPA 8260B         3/6/2008         MES           Naphthalene         <2	Methyl Isobutyl Ketone	<10	µg/L	10	1	EPA 8260B	3/6/2008	MES
Napithalene         -2         µg/L         2         1         EPA 8260B         3/6/2008         MES           n-Butylbenzene         -1         µg/L         1         1         EPA 8260B         3/6/2008         MES           n-Propylbenzene         -1         µg/L         1         1         EPA 8260B         3/6/2008         MES           p-Isopropyltoluene         -1         µg/L         1         1         EPA 8260B         3/6/2008         MES           sec-Butylbenzene         -1         µg/L         1         1         EPA 8260B         3/6/2008         MES           Styrene         -1         µg/L         1         1         EPA 8260B         3/6/2008         MES           tert-Butylbenzene         -1         µg/L         1         1         EPA 8260B         3/6/2008         MES           tert-Butylbenzene         -1         µg/L         1         1         EPA 8260B         3/6/2008         MES           Tetrachloroethylene         -1         µg/L         1         1         EPA 8260B         3/6/2008         MES           Trans-1,2-Dichloroethylene         -1         µg/L         1         1         EPA 8260B         3/6/2008	Methyl Tert-butyl Ether	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
n-Butylbenzene       <1	Methylene Chloride	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
n-Propylbenzene       <1	Naphthalene	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
p-Isopropyltoluene       <1	n-Butylbenzene	<1	μg/L	1	1	EPA 8260B	3/6/2008	MES
sec-Butylbenzene          I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <thi< th="">         I         <thi< th="">         &lt;</thi<></thi<>	n-Propylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Styrene       <1	p-Isopropyltoluene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
tert-Butylbenzene       <1	sec-Butylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Tetrachloroethylene       <1	Styrene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Tetrahydrofuran       <5	tert-Butylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Toluene       <1	Tetrachloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Trans-1,2-Dichloroethylene       <1	Tetrahydrofuran	<5	µg/L	5	1	EPA 8260B	3/6/2008	MES
Trans-1,3-Dichloropropene       <1	Toluene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Trichloroethylene       <1       μg/L       1       1       EPA 8260B       3/6/2008       MES         Trichlorofluoromethane       <2	Trans-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Trichlorofluoromethane       <2       µg/L       2       1       EPA 8260B       3/6/2008       MES         Vinyl Chloride       <1	Trans-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Vinyl Chloride       <1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Xylene, M&P       <2	Trichloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Xylene, M&P       <2       µg/L       2       1       EPA 8260B       3/6/2008       MES         Xylene, O       <1	Trichlorofluoromethane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
Xylene, O       <1       µg/L       1       1       EPA 8260B       3/6/2008       MES         Surrogate 1,2-Dichloroethane-d4       101       %       1       1       EPA 8260B       3/6/2008       MES         Surrogate Bromofluorobenzene       96.9       %       1       1       EPA 8260B       3/6/2008       MES	Vinyl Chloride	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Surrogate 1,2-Dichloroethane-d4         101 %         1         1         EPA 8260B         3/6/2008         MES           Surrogate Bromofluorobenzene         96.9 %         1         1         EPA 8260B         3/6/2008         MES	Xylene, M&P	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
Surrogate Bromofluorobenzene 96.9 % 1 1 EPA 8260B 3/6/2008 MES	Xylene, O	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
	Surrogate 1,2-Dichloroethane-d4	101	%	1	1	EPA 8260B	3/6/2008	MES
Surrogate Toluene-d8 99.3 % 1 1 EPA 8260B 3/6/2008 MES	Surrogate Bromofluorobenzene	96.9	%	1	1	EPA 8260B	3/6/2008	MES
	Surrogate Toluene-d8	99.3	%	1	1	EPA 82608	3/6/2008	MES

NTS Sample: 244237 Description: Trip Blank Sample Date: 2/21/2008 12:00:00 PM Matrix: Aqueous Sample Type: Grab

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analys	t
GRO	<0.1	mg/L	0.1	1	WI(95) GRO	2/29/2008	MES	
1,1,1,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
1,1,1-Trichloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
1,1,2,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
1,1,2-Trichloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
1,1,2-Trichlorotrifluoroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
1,1-Dichloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	'n
1,1-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
1,1-Dichloropropene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
1,2,3-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES	h
1,2,3-Trichloropropane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES	h
1,2,4-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES	h
1,2,4-Trimethylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
1,2-Dibromo-3-chloropropane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES	h
1,2-Dibromoethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
1,2-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
1,2-Dichloroethane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES	h
1,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
1,3,5-Trimethylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
1,3-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
1,3-Dichloropropane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
1,4-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
2,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
2-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
4-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Acetone	<20	µg/L	20	1	EPA 8260B	3/6/2008	MES	h
Allyl Chloride	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Benzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Bromobenzene	<1	µg/L	4	1	EPA 8260B	3/6/2008	MES	h
Bromochloromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Bromodichloromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Bromoform	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Bromomethane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES	h
Carbon Tetrachloride	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Chlorobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Chloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Chloroform	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Qualifier Description h Extraction or Analysis perform	ed past hold time	<b>2</b> ,			Note			

NTS Sample: 244237 Description: Trip Blank Sample Date: 2/21/2008 12:00:00 PM

Matrix: Aqueous Sample Type: Grab

NTS COC: 84629 Client: 0605 e-mail - STS Consultants Project: 4930 - 200705844/Alex Exhaust Sampled By: Client Report Date: 3/11/2008

Chloromethane	Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analys	t
Cis-1,3-Dichloropropene       <1	Chloromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Dibromochloromethane         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I<	Cis-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Dibromomethane         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <thi< th="">         I         I         &lt;</thi<>	Cis-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Dichtorodifiuoromethane         4         yg/L         2         1         EPA 5260B         36/2008         MES         n           Dichtorofluoromethane         1         yg/L         1         1         EPA 5260B         36/2008         MES         n           Ethyl Benzene         1         yg/L         1         1         EPA 5260B         3/6/2008         MES         n           Ethyl Ether         22         yg/L         2         1         EPA 5260B         3/6/2008         MES         n           Hexachlorobutadiene         -2         yg/L         2         1         EPA 5260B         3/6/2008         MES         n           Hexachlorobutadiene         -1         yg/L         1         1         EPA 5260B         3/6/2008         MES         n           Methyl Ethyl Ketone         -10         yg/L         10         1         EPA 8260B         3/6/2008         MES         n           Methyl Ethyl Ketone         -1         yg/L         1         1         EPA 8260B         3/6/2008         MES         n           Methyl Isobutyl Ketone         -1         yg/L         1         1         EPA 8260B         3/6/2008         MES         n	Dibromochloromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Dichlorofluoromethane       4       µg/L       1       1       EPA 82808       3/6/2008       MES       h         Ethyl Benzene       <1	Dibromomethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Ethyl Benzene1 $\mu g/L$ 11EPA 2260B $3/6/2008$ MEShEthyl Ether $< 2$ $\mu g/L$ 21EPA 2260B $3/6/2008$ MEShHexachlorobutadiene $< 2$ $\mu g/L$ 11EPA 2260B $3/6/2008$ MEShIsopropylbenzene $< 1$ $\mu g/L$ 101EPA 2260B $3/6/2008$ MEShMethyl Ethyl Ketone $< 10$ $\mu g/L$ 101EPA 2260B $3/6/2008$ MEShMethyl Ethyl Ketone $< 10$ $\mu g/L$ 101EPA 2260B $3/6/2008$ MEShMethyl Ethyl Ketone $< 10$ $\mu g/L$ 101EPA 2260B $3/6/2008$ MEShMethyl Ether $< 1$ $\mu g/L$ 11EPA 2260B $3/6/2008$ MEShNaphthalene $< 2$ $\mu g/L$ 11EPA 2260B $3/6/2008$ MEShn-Propylbenzene $< 1$ $\mu g/L$ 11EPA 2260B $3/6/2008$ MEShstyrene $< 1$ $\mu g/L$ 11EPA 2260B $3/6/2008$ MEShter-Sulylbenzene $< 1$ $\mu $	Dichlorodifluoromethane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES	h
Ethyl Ether2 $\mu g/L$ 21EPA 8260B3/6/2008MEShHexachlorobutadiene<2	Dichlorofluoromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Hexachlorobutadiene       <2	Ethyl Benzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Isopropylbenzene       c1       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i	Ethyl Ether	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES	h
Methyl Ethyl Ketone         <10         µg/L         10         1         EPA 8260B         3/6/2008         MES         n           Methyl Isobutyl Ketone         <10	Hexachlorobutadiene	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES	h
Methyl isobutyl Ketone       10       10       1       EPA 8260B       3/6/2008       MES       n         Methyl Tert-butyl Ether       <1	Isopropylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Methyl Tert-butyl Ether       <1	Methyl Ethyl Ketone	<10	µg/L	10	1	EPA 8260B	3/6/2008	MES	h
Methylene Chloride       <1	Methyl Isobutyl Ketone	<10	µg/L	10	1	EPA 8260B	3/6/2008	MES	h
Naphthalene       <2	Methyl Tert-butyl Ether	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
n-Butylbenzene       1       1       1       EPA 8260B       3/6/2008       MES       h         n-Propylbenzene       1       1       EPA 8260B       3/6/2008       MES       h         p-lsopropyltoluene       1       µg/L       1       1       EPA 8260B       3/6/2008       MES       h         sec-Butylbenzene       1       µg/L       1       1       EPA 8260B       3/6/2008       MES       h         sec-Butylbenzene       1       µg/L       1       1       EPA 8260B       3/6/2008       MES       h         Styrene       <1	Methylene Chloride	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
n-Propylbenzene       1       µg/L       1       1       EPA A260B       3/6/2008       MES       h         p-Isopropyltoluene       1       µg/L       1       1       EPA 8260B       3/6/2008       MES       h         sec-Butylbenzene       1       µg/L       1       1       EPA 8260B       3/6/2008       MES       h         Styrene       <1	Naphthalene	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES	h
p-Isopropyltoluene       <1	n-Butylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
sec-Butylbenzene       <1	n-Propylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Styrene       <1	p-Isopropyitoluene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
tert-Butylbenzene<1µg/L11EPA 8260B3/6/2008MEShTetrachloroethylene<1	sec-Butylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Tetrachloroethylene       <1	Styrene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Tetrahydrofuran       <5	tert-Butylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Toluene       <1	Tetrachloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Trans-1,2-Dichloroethylene<1µg/L11EPA 8260B3/6/2008MEShTrans-1,3-Dichloropropene<1	Tetrahydrofuran	<5	µg/L	5	1	EPA 8260B	3/6/2008	MES	h
Trans-1,3-Dichloropropene       <1	Toluene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	ħ
Trichloroethylene<1µg/L11EPA 8260B3/6/2008MEShTrichlorofluoromethane<2	Trans-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Trichlorofluoromethane       <2	Trans-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Vinyl Chloride       <1	Trichloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Xylene, M&P       <2       µg/L       2       1       EPA 8260B       3/6/2008       MES       h         Xylene, O       <1	Trichlorofluoromethane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES	ħ
Xylene, O       <1 µg/L       1       1 EPA 8260B       3/6/2008       MES       h         Surrogate 1,2-Dichloroethane-d4       103 %       1       1 EPA 8260B       3/6/2008       MES       h         Surrogate Bromofluorobenzene       99.1 %       1       1 EPA 8260B       3/6/2008       MES       h	Vinyl Chloride	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	h
Xylene, O       <1       µg/L       1       1       EPA 8260B       3/6/2008       MES       h         Surrogate 1,2-Dichloroethane-d4       103       %       1       1       EPA 8260B       3/6/2008       MES       h         Surrogate Bromofluorobenzene       99.1       %       1       1       EPA 8260B       3/6/2008       MES       h         Surrogate Bromofluorobenzene       99.1       %       1       1       EPA 8260B       3/6/2008       MES       h	Xylene, M&P	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES	h
Surrogate 1,2-Dichloroethane-d4         103 %         1         1 EPA 8260B         3/6/2008         MES         h           Surrogate Bromofluorobenzene         99.1 %         1         1 EPA 8260B         3/6/2008         MES         h	Xylene, O	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES	
Surrogate Bromofluorobenzene 99.1 % 1 1 EPA 8260B 3/6/2008 MES h	Surrogate 1,2-Dichloroethane-d4	103	%	1	1	EPA 8260B	3/6/2008	MES	
	Surrogate Bromofluorobenzene	99.1	%	1	1	EPA 8260B	3/6/2008		
	Surrogate Toluene-d8	99.8	%	1	1	EPA 8260B	3/6/2008	MES	h

Qualifier Description Note Extraction or Analysis performed past hold time. h

Ļ

.

NTS Sample: 244238 Description: Field Blank Sample Date: 2/27/2008 2:05:00 PM Matrix: Aqueous Sample Type: Grab

NTS COC: 84629 Client: 0605 e-mail - STS Consultants Project: 4930 - 200705844/Alex Exhaust Sampled By: Client Report Date: 3/11/2008

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
DRO	<0.1	mg/L	0.1	1	WI(95) DRO	3/4/2008	MES
GRO	<0.1	mg/L	0.1	1	WI(95) GRO	2/29/2008	MES
1,1,1,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1,1-Trichloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1,2,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1,2-Trichloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1,2-Trichlorotrifluoroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1-Dichloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1-Dichloropropene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,2,3-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
1,2,3-Trichloropropane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
1,2,4-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
1,2,4-Trimethylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,2-Dibromo-3-chloropropane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
1,2-Dibromoethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,2-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,2-Dichloroethane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
1,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,3,5-Trimethylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,3-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,3-Dichloropropane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,4-Dichlorobenzene	<1	µg/L	4	1	EPA 8260B	3/6/2008	MES
2,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
2-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
4-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Acetone	<20	µg/L	20	1	EPA 8260B	3/6/2008	MES
Allyl Chloride	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Benzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Bromobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Bromochloromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Bromodichloromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Bromoform	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Bromomethane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
Carbon Tetrachloride	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Chlorobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Chloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES

i

NTS Sample: 244238 Description: Field Blank Sample Date: 2/27/2008 2:05:00 PM

Matrix: Aqueous Sample Type: Grab

NTS COC: 84629 Client: 0605 e-mail - STS Consultants Project: 4930 - 200705844/Alex Exhaust Sampled By: Client Report Date: 3/11/2008

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
Chloroform	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Chloromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Cis-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Cis-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Dibromochloromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Dibromomethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Dichlorodifluoromethane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
Dichlorofluoromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Ethyl Benzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Ethyl Ether	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
Hexachlorobutadiene	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
Isopropylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Methyl Ethyl Ketone	<10	µg/L	10	1	EPA 8260B	3/6/2008	MES
Methyl Isobutyl Ketone	<10	µg/L	10	1	EPA 8260B	3/6/2008	MES
Methyl Tert-butyl Ether	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Methylene Chloride	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Naphthalene	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
n-Butylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
n-Propylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
p-IsopropyItoluene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
sec-Butylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Styrene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
tert-Butylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Tetrachloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Tetrahydrofuran	<5	µg/L	5	1	EPA 8260B	3/6/2008	MES
Toluene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Trans-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Trans-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Trichloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Trichlorofluoromethane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
Vinyl Chloride	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Xylene, M&P	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
Xylene, O	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Surrogate 1,2-Dichloroethane-d4	103	%	1	1	EPA 8260B	3/6/2008	MES
Surrogate Bromofluorobenzene	100	%	1	1	EPA 8260B	3/6/2008	MES
Surrogate Toluene-d8	101	%	1	1	EPA 8260B	3/6/2008	MES

NTS Sample: 244239 Description: B-8 (W) Sample Date: 2/28/2008 9:10:00 AM

Matrix: Aqueous Sample Type: Grab

NTS COC: 84629 Client: 0605 e-mail - STS Consultants Project: 4930 - 200705844/Alex Exhaust Sampled By: Client Report Date: 3/11/2008

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
DRO	0.2	mg/L	0.1	1	WI(95) DRO	3/4/2008	MES
GRO	<0.1	mg/L	0.1	1	WI(95) GRO	3/1/2008	MES
1,1,1,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1,1-Trichloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1,2,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1,2-Trichloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1,2-Trichlorotrifluoroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1-Dichloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,1-Dichloropropene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,2,3-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
1,2,3-Trichloropropane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
1,2,4-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
1,2,4-Trimethylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,2-Dibromo-3-chloropropane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
1,2-Dibromoethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,2-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,2-Dichloroethane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
1,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,3,5-Trimethylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,3-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,3-Dichloropropane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
1,4-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
2,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
2-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
4-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Acetone	<20	µg/L	20	1	EPA 8260B	3/6/2008	MES
Allyl Chloride	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Benzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Bromobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Bromochloromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Bromodichloromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Bromoform	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Bromomethane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
Carbon Tetrachloride	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Chlorobenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Chloroethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES

NTS Sample: 244239 Description: B-8 (W) Sample Date: 2/28/2008 9:10:00 AM

Matrix: Aqueous Sample Type: Grab

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
Chloroform	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Chloromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Cis-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Cis-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Dibromochloromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Dibromomethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Dichlorodifluoromethane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
Dichlorofluoromethane	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Ethyl Benzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Ethyl Ether	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
Hexachlorobutadiene	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
lsopropylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Methyl Ethyl Ketone	<10	µg/L	10	1	EPA 8260B	3/6/2008	MES
Methyl Isobutyl Ketone	<10	µg/L	10	1	EPA 8260B	3/6/2008	MES
Methyl Tert-butyl Ether	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Methylene Chloride	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Naphthalene	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
n-Butylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
n-Propylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
p-Isopropyltoluene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
sec-Butylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Styrene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
tert-Butylbenzene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Tetrachloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Tetrahydrofuran	<5	µg/L	5	1	EPA 8260B	3/6/2008	MES
Toluene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Trans-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Trans-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Trichloroethylene	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Trichlorofluoromethane	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
Vinyl Chloride	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Xylene, M&P	<2	µg/L	2	1	EPA 8260B	3/6/2008	MES
Xylene, O	<1	µg/L	1	1	EPA 8260B	3/6/2008	MES
Surrogate 1,2-Dichloroethane-d4	100	%	1	1	EPA 8260B	3/6/2008	MES
Surrogate Bromofluorobenzene	98.1	%	1	1	EPA 8260B	3/6/2008	MES
Surrogate Toluene-d8	100	%	1	1	EPA 8260B	3/6/2008	MES

NTS Sample: 244240 Description: B-7 (15) Sample Date: 2/27/2008 1:05:00 PM

•

Matrix: Non-Aqueous Sample Type: Grab

NTS COC: 84629 Client: 0605 e-mail - STS Consultants Project: 4930 - 200705844/Alex Exhaust Sampled By: Client Report Date: 3/11/2008

:

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
DRO	<10	mg/Kg	10	1	WI(95) DRO	3/6/2008	MES
Benzene	<120	µg/Kg	120	1	EPA 8021	3/4/2008	MES
Ethyl Benzene	<81	µg/Kg	81	1	EPA 8021	3/4/2008	MES
GRO	<5.8	mg/Kg	5.8	1	WI(95) GRO	3/4/2008	MES
Toluene	<120	µg/Kg	120	1	EPA 8021	3/4/2008	MES
Xylene, Total	<230	µg/Kg	230	1	EPA 8021	3/4/2008	MES
Solids, Total (TS)	87.2	%	1	1	SM 2540G, Mod	3/3/2008	ТЕМ

NTS Sample: 244241 Description: Soil Trip Bla Sample Date: 2/27/2008			latrix: Non-A ample Type:	•			5 e-mail - STS Consu 30 - 200705844/Alex B r: Client	
Analyte	Result	Units		RL	DIL	Method	Analysis Dat	Analyst
Benzene	<100	µg/Kg		100	1	EPA 8021	3/4/2008	MES
Ethyl Benzene	<70	µg/Kg		70	1	EPA 8021	3/4/2008	MES
GRO	<5	mg/Kg		5	1	WI(95) GRO	3/4/2008	MES
Toluene	<100	µg/Kg		100	1	EPA 8021	3/4/2008	MES

200

1 EPA 8021

3/4/2008

MES

1

<200 µg/Kg

Xylene, Total

NTS Sample: 244242 Description: B-8 (15) Sample Date: 2/27/2008	2:25:00 PM		Matrix: Non-Aqueous Sample Type: Grab	5		5 e-mail - STS Consu 30 - 200705844/Alex 7: Client	
Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
DRO	<10	mg/Ko	9 10	1	WI(95) DRO	3/6/2008	MES
Benzene	<110	µg/Kg	110	1	EPA 8021	3/4/2008	MES
Ethyl Benzene	<79	µg/Kg	79	1	EPA 8021	3/4/2008	MES
GRO	<5.6	mg/Kg	5.6	1	WI(95) GRO	3/4/2008	MES
Toluene	<110	µg/Kg	110	1	EPA 8021	3/4/2008	MES

220

1

<220 µg/Kg

89.5 %

Xylene, Total

Solids, Total (TS)

1 EPA 8021

1 SM 2540G, Mod

3/4/2008

3/3/2008

MES

TEM

n

#### **Control Limits**

#### Date: 03/06/08 QC Pack: 9-030608-1

LCS	MS	RPD
LIMITS	LIMITS	Limits
70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30
50-150	50-150	0-30
70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30
50-150	50-150	0-30
80-120	70-130	0-30

50-150	50-150	0-30
70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30

50-150	50-150	0-30
70-130	70-130	0-30
70-130	70-130	0-30
80-120	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30
50-150	50-150	0-30
80-120	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30

70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30

Allyl Chloride Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform

Chloromethane 2-Chlorotoluene 4-Chlorotoluene Dibromochloromethane 1,2-Dibromo-3-chloropropar 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene

Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethylene Cis-1,2-Dichloroethylene Trans-1,2-Dichloroethylene Dichlorofluoromethane 1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane

I,1-Dichloropropene Cis-1,3-Dichloropropene Trans-1,3-Dichloropropene Hexachlorobutadiene Methylene Chloride I,1,1,2-Tetrachloroethane I,1,2,2-Tetrachloroethane Tetrachloroethylene I,2,3-Trichlorobenzene I,2,4-Trichlorobenzene

			Lat	Blank	LCS	Matrix	MSD	
	Units	DF		ne ug/L	% Rec	Spike %	(%)	RPD %
	ug/L	1.0	<	1.0	92	100	103	3.5
	ug/L	1.0	<	1.0	105	112	113	1.1
	ug/L	1.0	<	1.0	104	112	112	0.4
	ug/L	1.0	<	1.0	101	108	109	0.6
	ug/L	1.0	<	1.0	102	105	109	3.9
	ug/L	1.0	<	2.0	80	88	93	4,7
	ug/L	1.0	<	1.0	102	118	117	1.4
	ug/L	1.0	<	1.0	102	114	112	2.0
	ug/L	1.0	<	1.0	90	102	108	5.6
	ug/L	1.0	<	1.0	99	108	110	1.2
	ug/L	1.0	<u> </u>	1.0	91	95	108	12.5
	ug/L	1.0	·	1.0	106	115	116	1.2
	ug/L	1.0		1.0	104	I13	114	0.7
	ug/L	1.0		1.0	101	106	105	0.7
ane	ug/L	1.0	<	2.0	97	103	103	0.3
	ug/L	1.0	<	1.0	102	106	106	0.1
	ug/l	1.0		1.0	102	109	109	0.0
	ug/L	1.0	<	1.0	104	111	112	0.8
	ug/L	1.0		1.0	103	113	113	0.1
	ug/L	1.0	<	1.0	102	114	113	0.4
	ug/L	1.0		2.0	78	93	81	13.6
	ug/L	1.0		1.0	96	106	106	0.6
	ug/L	1.0		2.0	95	98	104	5.7
	ug/L	1.0		1.0	97	108	113	5.0
	ug/L	1.0		1.0	100	110	112	1.8
;	ug/L	1.0		1.0	97	109	111	1.8
	ug/L	1.0		1.0	96	110	114	4.1
	ug/L	1.0		1.0	96	104	104	0.4
	ug/L	1.0		1.0	102	107	107	0.2
	ug/L	1.0	<	1.0	106	120	121	0.1
	ug/L	1.0		1.0	98	113	113	0.1
	ug/L	1.0		1.0	98	102	103	0.6
	ug/L	1.0		1.0	101	107	107	0.0
	ug/L	1.0		2.0	106	116	117	0.4
	ug/L	1.0	<	1.0	98	108	106	1.3
	ug/L	1.0		1.0	103	112	111	1,1
	ug/L	1.0		1.0	93	98	100	1.5
	ug/L	1.0		1.0	88	101	99	2.4
	ug/L	1.0		2.0	97	104	102	2.2
	ug/L	1.0	<	2.0	99	106	104	1.7

#### Control Limits

## Sample I.D.:

#### 243986

ł

## Date: 03/06/08 QC Pack: 9-030608-1

•

MS	RPD
LIMITS	Limits
70-130	0-30
70-130	0-30
70-130	0-30
50-150	0-30
70-130	0-30
70-130	0-30
50-150	0-30
70-130	0-30
70-130	0-30
70-130	0-30
	LIMITS 70-130 70-130 50-150 70-130 70-130 50-150 70-130 70-130

70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30
80-120	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30
70-130	70-130	0-30

 70-130
 70-130
 0-30

 70-130
 70-130
 0-30

 70-130
 70-130
 0-30

 70-130
 70-130
 0-30

 80-120
 70-130
 0-30

 70-130
 70-130
 0-30

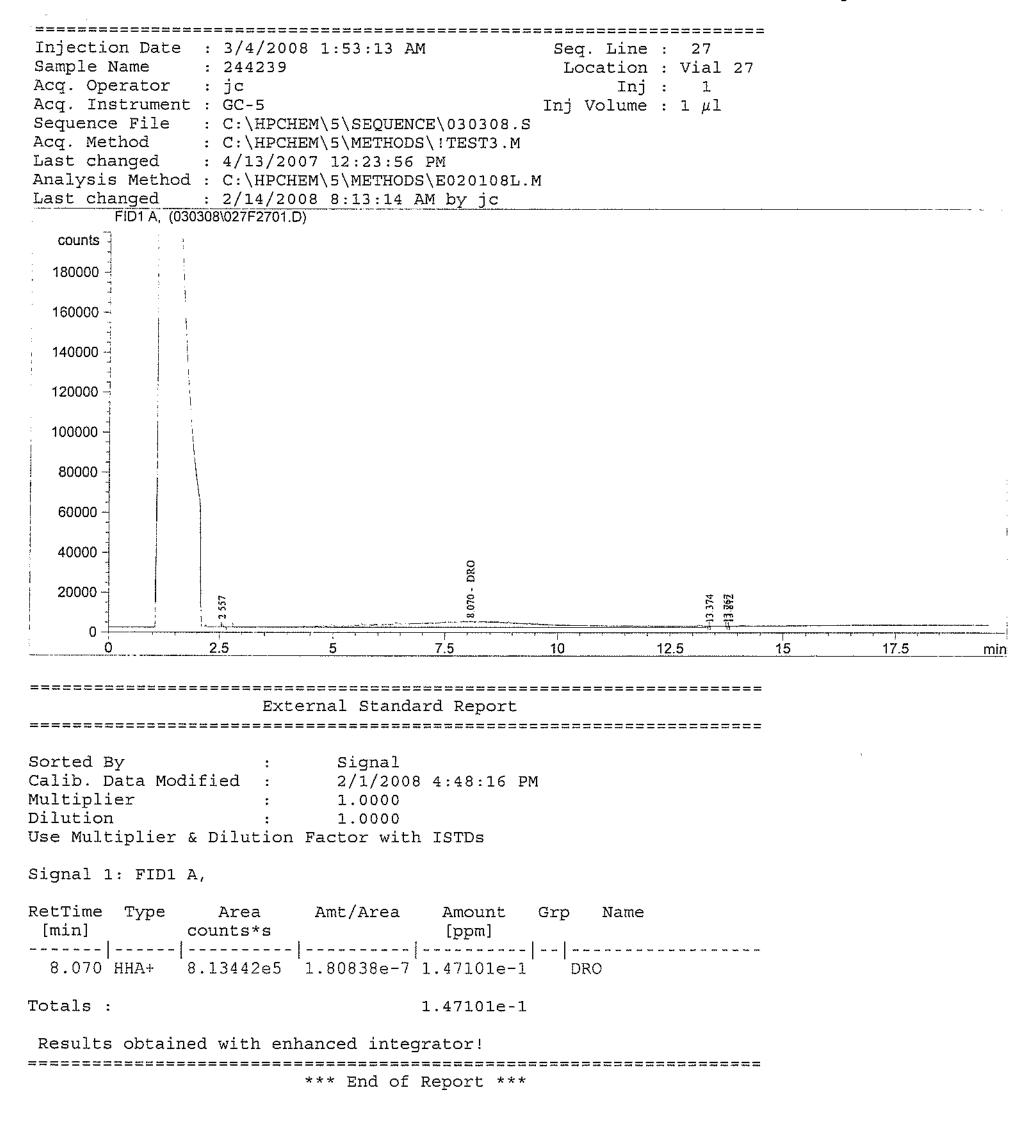
 70-130
 70-130
 0-30

 70-130
 70-130
 0-30

 70-130
 70-130
 0-30

 70-130
 70-130
 0-30

 70-130
 70-130
 0-30


1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Trichlorofluoromethane 1,2,3-Trichloropropane 1,1,2-Trichlorotrifluoroetha Vinyl Chloride Acetone Benzene n-Butylbenzene

sec-Butylbenzene tert-Butylbenzene Isopropylbenzene (Cumene Ethyl Benzene Ethyl Ether p-Isopropyltoluene Methyl Ethyl Ketone Methyl Isobutyl Ketone Methyl Isobutyl Ketone Methyl tert-butyl ether n-Propylbenzene

Naphthalene Styrene Tetrahydrofuran Toluene 1,2,4-Trimethylbenzene I,3,5-Trimethylbenzene m.Yulene & p.Yulene

m-Xylene & p-Xylene o-Xylene

			Lab Blank	LCS	Matrix	MSD	
	Units	DF	Conc ug/L	% Rec	Spike %	(%)	RPD %
	ug/L	1.0	< 1.0	102	114	114	0.3
	ug/L	1.0	< 1.0	100	107	108	1.7
	ug/L	1.0	< 1.0	98	111	109	1.4
	ug/L	1.0	< 2.0	107	127	129	1.9
	ug/L	1.0	< 1.0	89	93	93	0.3
lane	ug/L	1.0	< 1.0	97	111	115	3.5
	ug/L	1.0	< 1.0	89	99	104	4.6
	ug/L	1.0	< 20	97	92	103	10.3
	ug/L	1.0	< 1.0	97	109	110	1,1
	ug/L	1.0	< 1.0	104	114	114	0.1
	ug/L	1.0	< 1.0	105	114	114	0.7
	ug/L	1.0	< 1.0	92	98	99	0.4
ie)	ug/L	1.0	< 1.0	95	103	102	0.8
	ug/L	1.0	< 1.0	104	117	115	1.6
	ug/L	1.0	< 2.0	99	100	108	7.9
	ug/L	1.0	< 1.0	107	113	114	1.0
	ug/L	1.0	< 5.0	91	99	102	2.9
	ug/L	1.0	< 5.0	97	100	100	0.7
	ug/L	1.0	< 1.0	96	100	103	2.2
	ug/L	1.0	< 1.0	100	107	108	0.7
	ug/L	1.0	< 2.0	95	101	102	0.8
	ug/L	1.0	< 1.0	100	110	107	2.6
	ug/L	1.0	< 5.0	88	91	94	1.8
	ug/L	1.0	< 1.0	101	113	112	0.9
	ug/L	1.0	< 1.0	103	109	110	0.7
	ug/L	1.0	< 1.0	103	109	109	0.4
	ug/L	1.0	< 2.0	104	115	112	2.0
	ug/L	1.0	< 1.0	107	115	114	0.6
						F	\$



			-	i ouk	Z			15,656				
Ö C	Cust		Record						No	4353		SULOJA STS AECOM
Contact Person Contact Person Phone No. 263-3/5 Project No. 200 70 Project Name A 1-	son 7/m Gra 763-315-6319 200705844	Defice Office PON	PO No.				ďS	Special Handling Request          Contract       Response         Contract       Contract         Contract       Contract	Laboratory Contact Person Phone No. Results Due	e	Record Number T 7 S Renee Store 218-742-1042 Std.	Through
Sample I.D.	Grab Grab	Composite No. of Containers	Sample Type (Water, soil, air,	siudge, etc.)	Preservation	1 15	Sample Ti fi		Analysis Request		Comments on Sample (Include Major Contaminants)	i Sample ontaminants)
B-7(W) R-77(M)	3/27/68 1735 X		1 water	1 7	00				Voc		Seyungss	331
0 Bla	12.00							5RO	<i>V0</i> ~		5/5	<u>237</u>
ed B			7 water		0 0			DRU, GRO,	γος		hhe	238
(m)2-0	1015 Sofer		1 Warter	<u>لم</u> الم				DRUGRO	Vac		Mr.C.	239
B-7(151) Soil Tom Rhank	2/27/68 (310 X		50i/ 50i/		8			BTEX/GRO,	DRO		hhc	240
B-8(15)		-~~		<u>- '</u>				BTEX/GRO,	<u>NR0</u>		nhe l	-Cher
Collected by:	A,		50	pare		Time			Eggs Duk	5.	18210	
Received by:	Mar Con-		Date 5	17 C	C. C.			S Relinquished by:	V: Kian	etity	Date 2/28/08	Time / ソッシ Time / フ レヘ
Received by:			Date			Time			y: <2 & @	4	Date	~
Received for lab by:	( MK	JOBUL 1	Date	2-29-08	08	Time	8:3	0	y:		Date	Time
Laboratory Comments		eals Int	Seals Intact Upon Receipt?	I Recei		□ Yes	°N □	D//A	H.O ^a C ov	on jc		
Final Disposition:	■ Provident receive					2		Comments (We	Comments (Weather Conditions, Precautions, Hazards):	, Precautic	ons, Hazards):	
Distribution: Original and	Orininal and Canary - Lahoratory	yeid yea	CTC	Droioot Eilo		t caritoritor						Annual 1997

Distribution: Original and Canary - Laboratory Pink - STS Project File Instructions to Laboratory: Forward completed original to STS with analytical results.

à.

~

ţ

Page 1 of 13



Northeast Technical Services 315 Chestnut Street

PO Box 1142 Virginia, MN 55792 Phone: 218-741-4290 Fax: 218-742-1010

MDH Certification: 027-137-157

NTS COC: 92138 Received: 12/17/2008 Client: 0605 e-mail - STS Consultants Project: 4930 - 200805033/Alex Exhaust Sampled By: Client Report Date: 12/22/2008 Rec'd Temperature: 2 °C

DEC 2 9 2008

Approved by:

Renee Stone

STS Consultants Attn: Tim Grape 10900 73rd Ave. N. Suite 150 Maple Grove, MN 55369

NTS Sample: 330479 Description: B-9 (W) Sample Date: 12/12/2008 12:00:00 PM

Matrix: Aqueous Sample Type: Grab

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
DRO	<0.1	mg/L	0.1	1	WI(95) DRO	12/18/2008	CSD
GRO	<0.1	mg/L	0.1	1	WI(95) GRO	12/18/2008	CSD
1,1,1,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,1,1-Trichloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,1,2,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,1,2-Trichloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,1,2-Trichlorotrifluoroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,1-Dichloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,1-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,1-Dichloropropene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,2,3-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
1,2,3-Trichloropropane	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
1,2,4-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
1,2,4-Trimethylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,2-Dibromo-3-chloropropane	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
1,2-Dibromoethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,2-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,2-Dichloroethane	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
1,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES

This report may not be reproduced, except in full, without written consent of NTS laboratory.

Results apply only to the sample received. Results for solid matrices are based on dry weight, unless noted. Analysis was performed in accordance with methods approved by the US EPA and the Minnesota Department of Health, where applicable, unless noted in the report. NTS Sample: 330479 Description: B-9 (W) Sample Date: 12/12/2008 12:00:00 PM Matrix: Aqueous Sample Type: Grab

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
1,3,5-Trimethylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,3-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,3-Dichloropropane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,4-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
2,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
2-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
4-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Acetone	<20	µg/L	20	1	EPA 8260B	12/18/2008	MES
Allyl Chloride	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Benzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Bromobenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Bromochloromethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Bromodichloromethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Bromoform	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Bromomethane	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
Carbon Tetrachloride	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Chlorobenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Chloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Chloroform	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Chloromethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Cis-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Cis-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Dibromochloromethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Dibromomethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Dichlorodifluoromethane	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
Dichlorofluoromethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Ethyl Benzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Ethyl Ether	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
Hexachlorobutadiene	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
Isopropylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Methyl Ethyl Ketone	<10	µg/L	10	1	EPA 8260B	12/18/2008	MES
Methyl Isobutyl Ketone	<10	µg/L	10	1	EPA 8260B	12/18/2008	MES
Methyl Tert-butyl Ether	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Methylene Chloride	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Naphthalene	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
n-Butylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
n-Propylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES

NTS Sample: 330479		Matrix: Aqueous
Description: B-9 (W)		Sample Type: Grab
Sample Date: 12/12/2008	12:00:00 PM	

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
p-Isopropyltoluene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
sec-Butylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Styrene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
tert-Butylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Tetrachloroethylene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Tetrahydrofuran	<5	µg/L	5	1	EPA 8260B	12/18/2008	MES
Toluene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Trans-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Trans-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Trichloroethylene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Trichlorofluoromethane	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
Vinyl Chloride	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Xylene, M&P	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
Xylene, O	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Surrogate 1,2-Dichloroethane-d4	102	%	1	1	EPA 8260B	12/18/2008	MES
Surrogate Bromofluorobenzene	102	%	1	1	EPA 8260B	12/18/2008	MES
Surrogate Toluene-d8	93	%	1	1	EPA 8260B	12/18/2008	MES

## NTS Sample: 330480 Description: B-99 (W) Sample Date: 12/12/2008 12:15:00 PM

Sample Type: Grab

Matrix: Aqueous

DRO         c0.1         mg/L         0.1         1         W((§) DRO         12/16/2008         CSD           GRO         40.1         mg/L         0.1         1         W((§) DRO         12/16/2008         CSD           GRO         40.1         mg/L         1         1         EPA 8260B         12/16/2008         MES           1,1,1.2-Trichloroethane         1         µg/L         1         1         EPA 8260B         12/16/2008         MES           1,1.2-Trichloroethane         1         µg/L         1         1         EPA 8260B         12/16/2008         MES           1,1.2-Trichloroethane         1         µg/L         1         1         EPA 8260B         12/16/2008         MES           1,1-Dichloroethylene         1         µg/L         1         1         EPA 8260B         12/16/2008         MES           1,1-Dichloropropane         2         µg/L         2         1         EPA 8260B         12/16/2008         MES           1,2-A-Trichlorobenzene          µg/L         2         1         EPA 8260B         12/16/2008         MES           1,2-A-Trichlorobenzene          µg/L         1         1         EPA 8260B         12	Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
1,1,2-Tetrachloroethane       <1	DRO	<0.1	mg/L	0.1	1	WI(95) DRO	12/18/2008	CSD
1,1,1-Trichloroethane       <1	GRO	<0.1	mg/L	0.1	1	WI(95) GRO	12/18/2008	CSD
1,1,2,2-Tetrachloroethane       <1	1,1,1,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,1,2-Trichloroethane       <1	1,1,1-Trichloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1.1.2-Trichlorotrifluoroethane       <1	1,1,2,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1.1-Dichloroethane       <1	1,1,2-Trichloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1.1-Dichloroethylene       <1	1,1,2-Trichlorotrifluoroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1.1-Dichloropropene       <1	1,1-Dichloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1.2.3-Trichlorobenzene       2       µg/L       2       1       EPA 8260B       12/18/2008       MES         1.2.3-Trichloropropane       -2       µg/L       2       1       EPA 8260B       12/18/2008       MES         1.2.4-Trichlorobenzene       -2       µg/L       2       1       EPA 8260B       12/18/2008       MES         1.2.4-Trichlorobenzene       -1       µg/L       1       1       EPA 8260B       12/18/2008       MES         1.2-Dibromo-schloropropane       -2       µg/L       1       1       EPA 8260B       12/18/2008       MES         1.2-Dibromo-schloropropane       -2       µg/L       1       1       EPA 8260B       12/18/2008       MES         1.2-Dichlorobenzene       -1       µg/L       1       1       EPA 8260B       12/18/2008       MES         1.2-Dichloropropane       -1       µg/L       1       1       EPA 8260B       12/18/2008       MES         1.3-Dichloropropane       -1       µg/L       1       1       EPA 8260B       12/18/2008       MES         1.3-Dichloropropane       -1       µg/L       1       1       EPA 8260B       12/18/2008       MES         1.3-Dichloropropane	1,1-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,2,3-Trichloropropane       -2       µg/L       2       1       EPA 8260B       12/18/2008       MES         1,2,4-Trichlorobenzene       -2       µg/L       2       1       EPA 8260B       12/18/2008       MES         1,2,4-Trinchlylbenzene       -1       µg/L       1       1       EPA 8260B       12/18/2008       MES         1,2-Dichorno-3-chloropropane       -2       µg/L       1       1       EPA 8260B       12/18/2008       MES         1,2-Dichlorobenzene       -1       µg/L       1       1       EPA 8260B       12/18/2008       MES         1,2-Dichlorobenzene       -1       µg/L       1       1       EPA 8260B       12/18/2008       MES         1,2-Dichlorobenzene       -1       µg/L       1       1       EPA 8260B       12/18/2008       MES         1,3-Dichlorobenzene       -1       µg/L       1       1       EPA 8260B       12/18/2008       MES         1,4-Dichlorobenzene       -1       µg/L       1       1       EPA 8260B       12/18/2008       MES         1,4-Dichlorobenzene       -1       µg/L       1       1       EPA 8260B       12/18/2008       MES         1,4-Dichlorobenzene       -1	1,1-Dichloropropene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1.2.4-Trichlorobenzene       <2	1,2,3-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
1,2,4-Trimethylbenzene       <1	1,2,3-Trichloropropane	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
1,2-Dibromo-3-chloropropane       2       µg/L       2       1       EPA 8260B       12/18/2008       MES         1,2-Dibromoethane       1       µg/L       1       1       EPA 8260B       12/18/2008       MES         1,2-Dichlorobenzene       <1	1,2,4-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
1.2-Dibromoethane       <1	1,2,4-Trimethylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,2-Dichlorobenzene       <1	1,2-Dibromo-3-chloropropane	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
1.2-Dichlorogethane       <2	1,2-Dibromoethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,2-Dichloropropane       1       µg/L       1       1       EPA 8260B       12/18/2008       MES         1,3,5-Trimethylbenzene       1       µg/L       1       1       EPA 8260B       12/18/2008       MES         1,3-Dichlorobenzene       1       µg/L       1       1       EPA 8260B       12/18/2008       MES         1,3-Dichloropopane       1       µg/L       1       1       EPA 8260B       12/18/2008       MES         1,4-Dichlorobenzene       1       µg/L       1       1       EPA 8260B       12/18/2008       MES         2,2-Dichloropropane       -1       µg/L       1       1       EPA 8260B       12/18/2008       MES         2,2-Dichloropropane       -1       µg/L       1       1       EPA 8260B       12/18/2008       MES         2,2-Dichloropropane       -1       µg/L       1       1       EPA 8260B       12/18/2008       MES         2,2-Dichloropune       -1       µg/L       1       1       EPA 8260B       12/18/2008       MES         2,2-Dichloropune       -1       µg/L       1       1       EPA 8260B       12/18/2008       MES         4-Chlorotoluene       -1       µg/L	1,2-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,3,5-Trimethylbenzene	1,2-Dichloroethane	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
13-Dichlorobenzene       1       µg/L       1       1       EPA 8260B       12/18/2008       MES         1,3-Dichloropropane       1       µg/L       1       1       EPA 8260B       12/18/2008       MES         1,4-Dichlorobenzene       1       µg/L       1       1       EPA 8260B       12/18/2008       MES         2,2-Dichloropropane       1       µg/L       1       1       EPA 8260B       12/18/2008       MES         2,2-Dichloropropane       1       µg/L       1       1       EPA 8260B       12/18/2008       MES         2,2-Dichloropropane       <1	1,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,3-Dichloropropane<1µg/L11EPA 8260B12/18/2008MES1,4-Dichlorobenzene<1	1,3,5-Trimethylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,4-Dichlorobenzene       <1	1,3-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
2,2-Dichloropropane       <1	1,3-Dichloropropane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
2-Chlorotoluene       <1	1,4-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
4-Chlorotoluene       <1	2,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Acetone<20µg/L201EPA 8260B12/18/2008MESAllyl Chloride<1	2-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Allyl Chloride<1µg/L11EPA 8260B12/18/2008MESBenzene<1	4-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Benzene       <1	Acetone	<20	µg/L	20	1	EPA 8260B	12/18/2008	MES
Bromobenzene       <1	Allyl Chloride	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Bromochloromethane       <1	Benzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Bromodichloromethane       <1	Bromobenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Bromoform       <1       µg/L       1       1       EPA 8260B       12/18/2008       MES         Bromomethane       <2	Bromochloromethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Bromomethane         <2         µg/L         2         1         EPA 8260B         12/18/2008         MES           Carbon Tetrachloride         <1	Bromodichloromethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Carbon Tetrachloride         <1         µg/L         1         1         EPA 8260B         12/18/2008         MES           Chlorobenzene         <1	Bromoform	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Chlorobenzene         <1         µg/L         1         1         EPA 8260B         12/18/2008         MES	Bromomethane	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
	Carbon Tetrachloride	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Chloroethane <1 µg/L 1 1 EPA 8260B 12/18/2008 MES	Chlorobenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
	Chloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES

## NTS Sample: 330480 Description: B-99 (W) Sample Date: 12/12/2008 12:15:00 PM

Matrix: Aqueous Sample Type: Grab

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
Chloroform	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Chloromethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Cis-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Cis-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Dibromochloromethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Dibromomethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Dichlorodifluoromethane	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
Dichlorofluoromethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Ethyl Benzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Ethyl Ether	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
Hexachlorobutadiene	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
Isopropylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Methyl Ethyl Ketone	<10	µg/L	10	1	EPA 8260B	12/18/2008	MES
Methyl Isobutyl Ketone	<10	µg/L	10	1	EPA 8260B	12/18/2008	MES
Methyl Tert-butyl Ether	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Methylene Chloride	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Naphthalene	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
n-Butylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
n-Propylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
p-Isopropyltoluene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
sec-Butylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Styrene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
tert-Butylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Tetrachloroethylene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Tetrahydrofuran	<5	µg/L	5	1	EPA 8260B	12/18/2008	MES
Toluene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Trans-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Trans-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Trichloroethylene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Trichlorofluoromethane	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
Vinyl Chloride	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Xylene, M&P	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
Xylene, O	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Surrogate 1,2-Dichloroethane-d4	102	%	1	1	EPA 8260B	12/18/2008	MES
Surrogate Bromofluorobenzene	103	%	1	1	EPA 8260B	12/18/2008	MES
Surrogate Toluene-d8	94.4	%	1	1	EPA 8260B	12/18/2008	MES

## NTS Sample: 330481 Description: Field Blank (W) Sample Date: 12/12/2008 2:45:00 PM

Matrix: Aqueous Sample Type: Grab

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
DRO	<0.1	mg/L	0.1	1	WI(95) DRO	12/18/2008	CSD
GRO	<0.1	mg/L	0.1	1	WI(95) GRO	12/18/2008	CSD
1,1,1,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,1,1-Trichloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,1,2,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,1,2-Trichloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,1,2-Trichlorotrifluoroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,1-Dichloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,1-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,1-Dichloropropene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,2,3-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
1,2,3-Trichloropropane	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
1,2,4-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
1,2,4-Trimethylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,2-Dibromo-3-chloropropane	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
1,2-Dibromoethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,2-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,2-Dichloroethane	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
1,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,3,5-Trimethylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,3-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,3-Dichloropropane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,4-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
2,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
2-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
4-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Acetone	<20	µg/L	20	1	EPA 8260B	12/18/2008	MES
Allyl Chloride	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Benzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Bromobenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Bromochloromethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Bromodichloromethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Bromoform	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Bromomethane	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
Carbon Tetrachloride	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Chlorobenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Chloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES

## NTS Sample: 330481 Description: Field Blank (W) Sample Date: 12/12/2008 2:45:00 PM

Matrix: Aqueous Sample Type: Grab

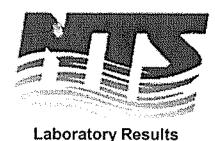
Chloroform         <1	Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
Cis-1,2-Dichloroethylene         <1         µg/L         1         1         EPA 8260B         12/18/2008         MES           Cis-1,3-Dichloropropene         <1	Chloroform	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Cis-1,3-Dichloropropene         <1         µg/L         1         1         EPA 8260B         12/18/2008         MES           Dibromochloromethane         <1	Chloromethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Dibromochloromethane         <1         µg/L         1         1         EPA 8260B         12/18/2008         MES           Dibromomethane         <1	Cis-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Dibromomethane         <1         µg/L         1         1         EPA 8260B         12/18/2008         MES           Dichlorodifluoromethane         2         µg/L         2         1         EPA 8260B         12/18/2008         MES           Dichlorodifluoromethane         1         µg/L         1         1         EPA 8260B         12/18/2008         MES           Ethyl Ether         -2         µg/L         2         1         EPA 8260B         12/18/2008         MES           Ethyl Ether         -2         µg/L         2         1         EPA 8260B         12/18/2008         MES           Isopropylbenzene         -1         µg/L         1         1         EPA 8260B         12/18/2008         MES           Methyl Ethyl Ketone         <10	Cis-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Dichlorodifluoromethane         <2         µg/L         2         1         EPA 8260B         12/18/2008         MES           Dichlorofluoromethane         <1	Dibromochloromethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Dichlorofluoromethane         <1         µg/L         1         1         EPA 8260B         12/18/2008         MES           Ethyl Benzene         <1	Dibromomethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Ethyl Benzene         <1         µg/L         1         1         EPA 8260B         12/18/2008         MES           Ethyl Ether         <2	Dichlorodifluoromethane	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
Ethyl Ether         2         µg/L         2         1         EPA 8260B         12/18/2008         MES           Hexachlorobutadiene         -2         µg/L         2         1         EPA 8260B         12/18/2008         MES           Isopropylbenzene         -1         µg/L         1         1         EPA 8260B         12/18/2008         MES           Methyl Ethyl Ketone         -10         µg/L         10         1         EPA 8260B         12/18/2008         MES           Methyl Isobutyl Ketone         -10         µg/L         10         1         EPA 8260B         12/18/2008         MES           Methyl Isobutyl Ketone         -11         µg/L         1         1         EPA 8260B         12/18/2008         MES           Methyl Isobutyl Ketone         -21         µg/L         1         1         EPA 8260B         12/18/2008         MES           Naphthalene         -2         µg/L         1         1         EPA 8260B         12/18/2008         MES           n-Propylbenzene         -1         µg/L         1         1         EPA 8260B         12/18/2008         MES           Styrene         -1         µg/L         1         1         EPA 8260B	Dichlorofluoromethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Hexachlorobutadiene         <2         µg/L         2         1         EPA 8260B         12/18/2008         MES           Isopropylbenzene         <1	Ethyl Benzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Isopropylbenzene         <1         µg/L         1         I EPA 8260B         12/18/2008         MES           Methyl Ethyl Ketone         <10	Ethyl Ether	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
Methyl Ethyl Ketone         <10         µg/L         10         1         EPA 8260B         12/18/2008         MES           Methyl Isobutyl Ketone         <10	Hexachlorobutadiene	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
Methyl Isobutyl Ketone         <10         µg/L         10         1         EPA 8260B         12/18/2008         MES           Methyl Tert-butyl Ether         <1	Isopropylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Methyl Tert-butyl Ether         <1         µg/L         1         1         EPA 8260B         12/18/2008         MES           Methylene Chloride         <1	Methyl Ethyl Ketone	<10	µg/L	10	1	EPA 8260B	12/18/2008	MES
Metylene Chloride         I         I         EPA 8260B         12/18/2008         MES           Naphthalene         <2	Methyl Isobutyl Ketone	<10	µg/L	10	1	EPA 8260B	12/18/2008	MES
Naphthalene         <2         µg/L         2         1         EPA 8260B         12/18/2008         MES           n-Butylbenzene         <1	Methyl Tert-butyl Ether	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
n-Butylbenzene       <1	Methylene Chloride	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
n-Proybenzene       <1	Naphthalene	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
p-Isoropyltoluene       1       µg/L       1       1       EPA 8260B       12/18/2008       MES         sec-Butylbenzene       1       µg/L       1       1       EPA 8260B       12/18/2008       MES         Styrene       1       µg/L       1       1       EPA 8260B       12/18/2008       MES         tert-Butylbenzene       1       µg/L       1       1       EPA 8260B       12/18/2008       MES         Tetrachloroethylene       1       µg/L       1       1       EPA 8260B       12/18/2008       MES         Tetrachloroethylene       1       µg/L       1       1       EPA 8260B       12/18/2008       MES         Toluene       1       µg/L       1       1       EPA 8260B       12/18/2008       MES         Trans-1,2-Dichloroethylene       1       µg/L       1       1       EPA 8260B       12/18/2008       MES         Trans-1,3-Dichloropropene       1       µg/L       1       1       EPA 8260B       12/18/2008       MES         Trichorofluoromethane       2       µg/L       1       1       EPA 8260B       12/18/2008       MES         Vinyl Chloride       1       µg/L       1       <	n-Butylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
sec-Butylbenzene       <1	n-Propylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Styrene       <1	p-Isopropyltoluene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
tert-Butylbenzene       <1	sec-Butylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Tetrachloroethylene       <1	Styrene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Tetrahydrofuran       <5	tert-Butylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Toluene       <1	Tetrachloroethylene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Trans-1,2-Dichloroethylene       <1	Tetrahydrofuran	<5	µg/L	5	1	EPA 8260B	12/18/2008	MES
Trans-1,3-Dichloropropene       <1	Toluene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Trichloroethylene       <1       µg/L       1       1       EPA 8260B       12/18/2008       MES         Trichlorofluoromethane       <2	Trans-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Trichlorofluoromethane       <2	Trans-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Vinyl Chloride       <1       µg/L       1       1       EPA 8260B       12/18/2008       MES         Xylene, M&P       <2	Trichloroethylene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Xylene, M&P       <2       µg/L       2       1       EPA 8260B       12/18/2008       MES         Xylene, O       <1	Trichlorofluoromethane	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
Xylene, O       <1       µg/L       1       1       EPA 8260B       12/18/2008       MES         Surrogate 1,2-Dichloroethane-d4       100       %       1       1       EPA 8260B       12/18/2008       MES         Surrogate Bromofluorobenzene       104       %       1       1       EPA 8260B       12/18/2008       MES	Vinyl Chloride	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Surrogate 1,2-Dichloroethane-d4         100 %         1         1         EPA 8260B         12/18/2008         MES           Surrogate Bromofluorobenzene         104 %         1         1         EPA 8260B         12/18/2008         MES	Xylene, M&P	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
Surrogate Bromofluorobenzene     104 %     1     1     EPA 8260B     12/18/2008     MES	Xylene, O	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
	Surrogate 1,2-Dichloroethane-d4	100	%	1	1	EPA 8260B	12/18/2008	MES
Surrogate Toluene-d8         94.8         %         1         1         EPA 8260B         12/18/2008         MES	Surrogate Bromofluorobenzene	104	%	1	1	EPA 8260B	12/18/2008	MES
	Surrogate Toluene-d8	94.8	%	1	1	EPA 8260B	12/18/2008	MES

NTS Sample: 330482 Description: Trip Blank (W) Sample Date: 12/12/2008 Matrix: Aqueous Sample Type: Grab

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
GRO	<0.1	mg/L	0.1	1	WI(95) GRO	12/18/2008	CSD
1,1,1,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,1,1-Trichloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,1,2,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,1,2-Trichloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,1,2-Trichlorotrifluoroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,1-Dichloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,1-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,1-Dichloropropene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,2,3-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
1,2,3-Trichloropropane	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
1,2,4-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
1,2,4-Trimethylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,2-Dibromo-3-chloropropane	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
1,2-Dibromoethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,2-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,2-Dichloroethane	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
1,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,3,5-Trimethylbenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,3-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,3-Dichloropropane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
1,4-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
2,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
2-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
4-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Acetone	<20	µg/L	20	1	EPA 8260B	12/18/2008	MES
Allyl Chloride	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Benzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Bromobenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Bromochloromethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Bromodichloromethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Bromoform	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Bromomethane	<2	µg/L	2	1	EPA 8260B	12/18/2008	MES
Carbon Tetrachloride	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Chlorobenzene	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Chloroethane	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES
Chloroform	<1	µg/L	1	1	EPA 8260B	12/18/2008	MES

NTS Sample: 330482 Description: Trip Blank (W) Sample Date: 12/12/2008 Matrix: Aqueous Sample Type: Grab

Analyte Result Units	RL	DIL	Method	Analysis Dat	Analyst
Chloromethane <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
Cis-1,2-Dichloroethylene <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
Cis-1,3-Dichloropropene <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
Dibromochloromethane <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
Dibromomethane <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
Dichlorodifluoromethane <2 µg/L	2	1	EPA 8260B	12/18/2008	MES
Dichlorofluoromethane <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
Ethyl Benzene <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
Ethyl Ether <2 µg/L	2	1	EPA 8260B	12/18/2008	MES
Hexachlorobutadiene <2 µg/L	2	1	EPA 8260B	12/18/2008	MES
Isopropylbenzene <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
Methyl Ethyl Ketone <10 µg/L	10	1	EPA 8260B	12/18/2008	MES
Methyl Isobutyl Ketone <10 µg/L	10	1	EPA 8260B	12/18/2008	MES
Methyl Tert-butyl Ether <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
Methylene Chloride <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
Naphthalene <2 µg/L	2	1	EPA 8260B	12/18/2008	MES
n-Butylbenzene <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
n-Propylbenzene <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
p-Isopropyltoluene <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
sec-Butylbenzene <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
Styrene <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
tert-Butylbenzene <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
Tetrachloroethylene <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
Tetrahydrofuran <5 µg/L	5	1	EPA 8260B	12/18/2008	MES
Toluene <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
Trans-1,2-Dichloroethylene <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
Trans-1,3-Dichloropropene <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
Trichloroethylene <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
Trichlorofluoromethane <2 µg/L	2	1	EPA 8260B	12/18/2008	MES
Vinyl Chloride <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
Xylene, M&P <2 µg/L	2	1	EPA 8260B	12/18/2008	MES
Xylene, O <1 µg/L	1	1	EPA 8260B	12/18/2008	MES
Surrogate 1,2-Dichloroethane-d4 101 %	1	1	EPA 8260B	12/18/2008	MES
Surrogate Bromofluorobenzene 104 %	1	1	EPA 8260B	12/18/2008	MES
Surrogate Toluene-d8 95.1 %	1	1	EPA 8260B	12/18/2008	MES


NTS Sample: 330483 Description: B-9 (7) Sample Date: 12/12/2008	12:45:00 PM	Matrix: Non-Aqueous Sample Type: Grab			Client: 0605 e- Project: 4930 - Sampled By: C	NTS COC: 92138 Client: 0605 e-mail - STS Consultants Project: 4930 - 200805033/Alex Exhaust Sampled By: Client Report Date: 12/22/2008		
Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst	
DRO	<10	mg/Kg	10	1	WI(95) DRO	12/18/2008	CSD	
Benzene	<120	µg/Kg	120	1	EPA 8021	12/18/2008	CSD	
Ethyl Benzene	<82	µg/Kg	82	1	EPA 8021	12/18/2008	CSD	
GRO	<5.8	mg/Kg	5.8	1	WI(95) GRO	12/18/2008	CSD	
Toluene	<120	µg/Kg	120	1	EPA 8021	12/18/2008	CSD	
Xylene, Total	<230	µg/Kg	230	1	EPA 8021	12/18/2008	CSD	
Solids, Total (TS)	85.2	%	1	1	SM 2540G, Mod	12/18/2008	CSD	

NTS Sample: 330484 Description: B-9 (15) Sample Date: 12/12/2008	1:30:00 PM	Matrix: Non-Aqueous Sample Type: Grab			Client: 0605 e- Project: 4930 - Sampled By: C	NTS COC: 92138 Client: 0605 e-mail - STS Consultants Project: 4930 - 200805033/Alex Exhaust Sampled By: Client Report Date: 12/22/2008		
Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst	
DRO	<10	mg/Kg	10	1	WI(95) DRO	12/18/2008	CSD	
Benzene	<110	µg/Kg	110	1	EPA 8021	12/18/2008	CSD	
Ethyl Benzene	<77	µg/Kg	77	1	EPA 8021	12/18/2008	CSD	
GRO	<5.5	mg/Kg	5.5	1	WI(95) GRO	12/18/2008	CSD	
Toluene	<110	µg/Kg	110	1	EPA 8021	12/18/2008	CSD	
Xylene, Total	<220	µg/Kg	220	1	EPA 8021	12/18/2008	CSD	
Solids, Total (TS)	90.5	%	1	1	SM 2540G, Mod	12/18/2008	CSD	

NTS Sample: 330485 Description: B-9 (35) Sample Date: 12/12/2008	2:30:00 PM		atrix: Non-Aqueous ample Type: Grab			mail - STS Consu 200805033/Alex I Client	
Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
DRO	<10	mg/Kg	10	1	WI(95) DRO	12/18/2008	CSD
Benzene	<110	µg/Kg	110	1	EPA 8021	12/18/2008	CSD
Ethyl Benzene	<80	µg/Kg	80	1	EPA 8021	12/18/2008	CSD
GRO	<5.7	mg/Kg	5.7	1	WI(95) GRO	12/18/2008	CSD
Toluene	<110	µg/Kg	110	1	EPA 8021	12/18/2008	CSD
Xylene, Total	<230	µg/Kg	230	1	EPA 8021	12/18/2008	CSD
Solids, Total (TS)	89.1	%	1	1	SM 2540G, Mod	12/18/2008	CSD

NTS Sample: 330486 Description: MeOH Trip Blank Sample Date: 12/12/2008			lon-Aqueous ype: Grab	5		e-mail - STS Consu 0 - 200805033/Alex I : Client	
Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
Benzene	<100	µg/Kg	100	1	EPA 8021	12/18/2008	CSD
Ethyl Benzene	<70	µg/Kg	70	1	EPA 8021	12/18/2008	CSD
GRO	<5	mg/Kg	5	1	WI(95) GRO	12/18/2008	CSD
Toluene	<100	µg/Kg	100	1	EPA 8021	12/18/2008	CSD
Xylene, Total	<200	µg/Kg	200	1	EPA 8021	12/18/2008	CSD

Chain of Custody Record		
	Special Handling Request	Record Number Through
1 1 m 6 262-215-61 20305033	□ Rush Laboratory ∠ □ verbal Contact Person □ other Phone No.	75 Renee Stree 2,18-742-1042
Sample Type Sample Type Composite D Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Comp	Analysis	Comments on Sample (Include Major Contaminants)
Water	DROIGROIVOCI	330480
ekt Blank (w) J Blank (w)	L 6K0, VOC	530481 330481
$\frac{\beta-q(7)}{\lambda-a} = \frac{3}{120} = \frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}{1} = \frac{1}{$	GRO, RTEX, DRO	330483
	lan RTC 4	N3 402 5
Kyan Dolerty Date 12/12/08	Relin	Date /1//5/6 Q Time
201 CI-71	Relinquished by:	Date 12/17/0
Received by: Time Date During Time/V	Relinquished by: 5. Muth w/	Date 711 (00 mm 14)
nts Only: Seals Intact Upon Receipt?	. ~~	
Final Disposition:	Comments (Weather Conditions, Precautions, Hazards):	cautions, Hazards):



# Northeast Technical Services

315 Chestnut Street PO Box 1142 Virginia, MN 55792 Phone: 218-741-4290 Fax: 218-742-1010

MDH Certification: 027-137-157

NTS COC: 75269 Received: 2/12/2007 Client: 0605 - STS Consultants Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007 Rec'd Temperature: 3.2 °C

Approved by:

Renee Stone

STS Consultants Attn: Tim Grape 10900 73rd Ave. N. Suite 150 Maple Grove, MN 55369

NTS Sample: 143516 Description: B-2 (18) Sample Date: 2/7/2007 1:20:00 PM Matrix: Non-Aqueous Sample Type: Grab

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
DRO	<10	mg/Kg	10	1	WI(95) DRO	2/15/2007	CSD
Benzene	<110	µg/Kg	110	1	EPA 8021	2/16/2007	CSD
Ethyl Benzene	<78	µg/Kg	78	1	EPA 8021	2/16/2007	CSD
GRO	<5.5	mg/Kg	5.5	1	WI(95) GRO	2/16/2007	CSD
Toluene	<110	µg/Kg	110	1	EPA 8021	2/16/2007	CSD
Xylene, Total	<220	µg/Kg	220	1	EPA 8021	2/16/2007	CSD
Solids, Total (TS)	89.5	%		1	SM 2540G	2/14/2007	ТЕМ

This report may not be reproduced, except in full, without written consent of NTS laboratory.

Results apply only to the sample received. Results for solid matrices are based on dry weight, unless noted. Analysis was performed in accordance with methods approved by the US EPA and the Minnesota Department of Health, where applicable, unless noted in the report.

CSD

TEM

2/16/2007

2/14/2007

\$

NTS Sample: 143517 Description: B-3 (5) Sample Date: 2/7/2007	11:40:00 AM	Matrix: Non-Aqueous Sample Type: Grab			Client: 060 Project: 49 Sampled B	NTS COC: 75269 Client: 0605 - STS Consultants Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007		
Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst	
DRO	<10	mg/Kg	10	1	WI(95) DRO	2/15/2007	CSD	0.000
Benzene	<120	µg/Kg	120	1	EPA 8021	2/16/2007	CSD	
Ethyl Benzene	<81	µg/Kg	81	1	EPA 8021	2/16/2007	CSD	
GRO	<5.8	mg/Kg	5.8	1	WI(95) GRO	2/16/2007	CSD	
Toluene	<120	µg/Kg	120	1	EPA 8021	2/16/2007	CSD	

230

1 EPA 8021

1 SM 2540G

µg/Kg

%

<230

87.7

Xylene, Total

\$

NTS Sample: 143518 Description: B-3 (16) Sample Date: 2/7/2007	11:45:00 AM	Matrix: Non-Aqueous Sample Type: Grab			Client: 0605 Project: 493 Sampled By	NTS COC: 75269 Client: 0605 - STS Consultants Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007		
Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst	
DRO	<10	mg/Kg	10	1	WI(95) DRO	2/15/2007	CSD	
Benzene	< <b>1</b> 10	µg/Kg	110	1	EPA 8021	2/16/2007	CSD	
Ethyl Benzene	<78	µg/Kg	78	1	EPA 8021	2/16/2007	CSD	
GRO	<5.5	mg/Kg	5.5	1	WI(95) GRO	2/16/2007	CSD	
Toluene	<110	µg/Kg	110	1	EPA 8021	2/16/2007	CSD	
Xylene, Total	<220	µg/Kg	220	1	EPA 8021	2/16/2007	CSD	
Solids, Total (TS)	90.9	%		1	SM 2540G	2/14/2007	ТЕМ	

2/16/2007

2/16/2007

2/14/2007

×

CSD

CSD

TEM

NTS Sample: 143519 Description: B-4 (13) Sample Date: 2/7/2007	10:10:00 AM	Matrix: Non-Aqueous Sample Type: Grab			Client: 060 Project: 49 Sampled By	NTS COC: 75269 Client: 0605 - STS Consultants Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007		
Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst	
DRO	<10	mg/Kg	10	1	WI(95) DRO	2/15/2007	CSD	
Benzene	<120	µg/Kg	120	1	EPA 8021	2/16/2007	CSD	
Ethyl Benzene	1400	µg/Kg	81	1	EPA 8021	2/16/2007	CSD	
GRO	71	mg/Kg	5.8	1	WI(95) GRO	2/16/2007	CSD	

120

230

1 EPA 8021

1 EPA 8021

1 SM 2540G

140 µg/Kg

%

1500

87.7

µg/Kg

Toluene

Xylene, Total

NTS Sample: 143520 Description: B-4 (22) Sample Date: 2/7/2007	10:15:00 AM	Matrix: Non-Aqueous Sample Type: Grab			Client: 060 Project: 49 Sampled By	NTS COC: 75269 Client: 0605 - STS Consultants Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007		
Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst	
DRO	<10	mg/Kg	10	1	WI(95) DRO	2/15/2007	CSD	
Benzene	<110	µg/Kg	110	1	EPA 8021	2/16/2007	CSD	
Ethyl Benzene	<78	µg/Kg	78	1	EPA 8021	2/16/2007	CSD	
GRO	<5.6	mg/Kg	5.6	1	WI(95) GRO	2/16/2007	CSD	
Toluene	<110	µg/Kg	110	1	EPA 8021	2/16/2007	CSD	
Xylene, Total	<220	µg/Kg	220	1	EPA 8021	2/16/2007	CSD	

1 SM 2540G

2/14/2007

×

TEM

89.6

%

NTS Sample: 143521 Description: B-5 (6) Sample Date: 2/7/2007	4:05:00 PM	Matrix: Non-Aqueous Sample Type: Grab			Client: 060 Project: 49 Sampled By	NTS COC: 75269 Client: 0605 - STS Consultants Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007		
Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst	
DRO	310	mg/Kg	100	10	WI(95) DRO	2/16/2007	CSD	q
Benzene	<110	µg/Kg	240	2	EPA 8021	2/16/2007	CSD	
Ethyl Benzene	610	µg/Kg	170	2	EPA 8021	2/16/2007	CSD	
GRO	130	mg/Kg	12	2	WI(95) GRO	2/16/2007	CSD	
Toluene	<110	µg/Kg	240	2	EPA 8021	2/16/2007	CSD	
Xylene, Total	<220	µg/Kg	480	2	EPA 8021	2/16/2007	CSD	

82.8 %

1 SM 2540G

2/14/2007

\$

TEM

Qualifier Description	Note
q Qualified Data.	Heavy hydrocarbons outside the DRO window.

NTS Sample: 143522 Matrix: Non-Aqueous NTS COC: 75269 Description: B-5 (25) Sample Type: Grab Client: 0605 - STS Consultants Sample Date: 2/7/2007 4:10:00 PM Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007 Analyte Result Units RL **DIL Method** Analysis Dat Analyst 1 WI(95) DRO DRO <10 mg/Kg 10 2/16/2007 CSD Benzene µg/Kg <110 110 1 EPA 8021 2/16/2007 CSD µg/Kg Ethyl Benzene <80 80 1 EPA 8021 2/16/2007 CSD GRO <5.7 mg/Kg 5.7 1 WI(95) GRO 2/16/2007 CSD Toluene <110 µg/Kg 110 1 EPA 8021 CSD 2/16/2007 Xylene, Total <230 µg/Kg 230 1 EPA 8021 2/16/2007 CSD

ł

1 SM 2540G

2/14/2007

TEM

87.8

%

NTS Sample: 143523 Description: B-6 (23) Sample Date: 2/7/2007	2:20:00 PM	Matrix: Non-Aqueous Sample Type: Grab			Client: 060 Project: 49 Sampled By	NTS COC: 75269 Client: 0605 - STS Consultants Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007		
Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst	
DRO	<10	mg/Kg	10	1	WI(95) DRO	2/16/2007	CSD	
Benzene	<110	µg/Kg	110	1	EPA 8021	2/16/2007	CSD	
Ethyl Benzene	<79	µg/Kg	79	1	EPA 8021	2/16/2007	CSD	
GRO	<5.6	mg/Kg	5.6	1	WI(95) GRO	2/16/2007	CSD	
Toluene	<110	µg/Kg	110	1	EPA 8021	2/16/2007	CSD	
Xylene, Total	<230	µg/Kg	230	1	EPA 8021	2/16/2007	CSD	

1 SM 2540G

2/14/2007

\$

TEM

89.2 %

NTS Sample: 143524 Matrix: Non-Aqueous NTS COC: 75269 **Description: MeOH Blank** Sample Type: Grab Client: 0605 - STS Consultants Sample Date: 2/7/2007 11:05:00 AM Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007 Analyte Result Units Analysis Dat Analyst RL **DIL Method** 

Benzene	<100	µg/Kg	100	1	EPA 8021	2/16/2007	CSD	
Ethyl Benzene	<70	µg/Kg	70	1	EPA 8021	2/16/2007	CSD	
GRO	<5	mg/Kg	5	1	WI(95) GRO	2/16/2007	CSD	
Toluene	<100	µg/Kg	100	1	EPA 8021	2/16/2007	CSD	
Xylene, Total	<200	µg/Kg	200	1	EPA 8021	2/16/2007	CSD	

NTS Sample: 143525 Matrix: Non-Aqueous NTS COC: 75269 Description: B-1 (6) Sample Type: Grab Client: 0605 - STS Consultants Sample Date: 2/8/2007 10:00:00 AM Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007 Analyte Result Units RL DIL Method Analysis Dat Analyst DRO mg/Ka 170 50 5 WI(95) DRO 2/16/2007 CSD

5110			00	~		2/10/2007	000
Benzene	<2400	µg/Kg	2400	20	EPA 8021	2/16/2007	CSD
Ethyl Benzene	10000	µg/Kg	1700	20	EPA 8021	2/16/2007	CSD
GRO	1100	mg/Kg	120	20	WI(95) GRO	2/16/2007	CSD
Toluene	2700	µg/Kg	2400	20	EPA 8021	2/16/2007	CSD
Xylene, Total	28000	µg/Kg	4800	20	EPA 8021	2/16/2007	CSD
Solids, Total (TS)	89.5	%		1	SM 2540G	2/14/2007	TEM

NTS Sample: 143526 Description: B-1 (20) Sample Date: 2/8/2007 10:05:00 AM		Matrix: Non-Aqueous Sample Type: Grab			Client: 0605 Project: 493( Sampled By:	NTS COC: 75269 Client: 0605 - STS Consultants Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007		
Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst	
DRO	<10	mg/Kg	10	1	WI(95) DRO	2/16/2007	CSD	
Benzene	<120	µg/Kg	120	1	EPA 8021	2/16/2007	CSD	
Ethyl Benzene	<80	µg/Kg	80	1	EPA 8021	2/16/2007	CSD	
GRO	<57	mg/Kg	57	1	WI(95) GRO	2/16/2007	CSD	
Toluene	<120	µg/Kg	120	1	EPA 8021	2/16/2007	CSD	
Xylene, Total	<230	µg/Kg	230	1	EPA 8021	2/16/2007	CSD	
Solids, Total (TS)	88.7	%		1	SM 2540G	2/14/2007	ТЕМ	

2

NTS Sample: 143527 Description: TW-1 Sample Date: 2/8/2007 10:45:00 AM Matrix: Aqueous Sample Type: Grab

NTS COC: 75269 Client: 0605 - STS Consultants Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007

Notes: I - Improper sample preservation noted, analysis performed. VOC pH=7

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
DRO	2.8	mg/L	0.1	1	WI(95) DRO	2/14/2007	CSD i
GRO	11	mg/L	2	20	WI(95) GRO	2/14/2007	MES i
1,1,1,2-Tetrachloroethane	<20	μg/L	20	20	EPA 8260B	2/13/2007	KJD
1,1,1-Trichloroethane	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
1,1,2,2-Tetrachloroethane	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
1,1,2-Trichloroethane	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
1,1,2-Trichlorotrifluoroethane	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
1,1-Dichloroethane	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
1,1-Dichloroethylene	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
1,1-Dichloropropene	<20	μg/L	20	20	EPA 8260B	2/13/2007	KJD
1,2,3-Trichlorobenzene	<40	µg/L	40	20	EPA 8260B	2/13/2007	KJD
1,2,3-Trichloropropane	<40	µg/L	40	20	EPA 8260B	2/13/2007	KJD
1,2,4-Trichlorobenzene	<40	µg/L	40	20	EPA 8260B	2/13/2007	KJD
1,2,4-Trimethylbenzene	1200	µg/L	20	20	EPA 8260B	2/13/2007	KJD
1,2-Dibromo-3-chloropropane	<40	µg/L	40	20	EPA 8260B	2/13/2007	KJD
1,2-Dibromoethane	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
1,2-Dichlorobenzene	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
1,2-Dichloroethane	370	µg/L	40	20	EPA 8260B	2/13/2007	KJD
1,2-Dichloropropane	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
1,3,5-Trimethylbenzene	380	μg/L	20	20	EPA 8260B	2/13/2007	KJD
1,3-Dichlorobenzene	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
1,3-Dichloropropane	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
1,4-Dichlorobenzene	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
2,2-Dichloropropane	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
2-Chlorotoluene	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
4-Chlorotoluene	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Acetone	<400	µg/L	400	20	EPA 8260B	2/13/2007	KJD
Allyl Chloride	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Benzene	150	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Bromobenzene	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Bromochloromethane	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Bromodichloromethane	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Bromoform	<20	μg/L	20	20	EPA 8260B	2/13/2007	KJD
Bromomethane	<40	µg/L	40	20	EPA 8260B	2/13/2007	KJD
Carbon Tetrachloride	<20	μg/L	20	20	EPA 8260B	2/13/2007	KJD
Chlorobenzene	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Chloroethane	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Qualifier         Description           i         Improper sample preservation r           n         Matrix Spike recovery not within	erformed.			Note DRO sample p	рН 7.,pН=7		

NTS Sample: 143527 Description: TW-1 Sample Date: 2/8/2007 10:45:00 AM Matrix: Aqueous Sample Type: Grab NTS COC: 75269 Client: 0605 - STS Consultants Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007

Notes: I - Improper sample preservation noted, analysis performed. VOC pH=7

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
Chloroform	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Chloromethane	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Cis-1,2-Dichloroethylene	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Cis-1,3-Dichloropropene	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Dibromochloromethane	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Dibromomethane	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Dichlorodifluoromethane	<40	µg/L	40	20	EPA 8260B	2/13/2007	KJD
Dichlorofluoromethane	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Ethyl Benzene	530	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Ethyl Ether	<40	µg/L	40	20	EPA 8260B	2/13/2007	KJD
Hexachlorobutadiene	<40	µg/L	40	20	EPA 8260B	2/13/2007	KJD
Isopropylbenzene	61	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Methyl Ethyl Ketone	<200	µg/L	200	20	EPA 8260B	2/13/2007	KJD
Methyl Isobutyl Ketone	<200	µg/L	200	20	EPA 8260B	2/13/2007	KJD
Methyl Tert-butyl Ether	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Methylene Chloride	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Naphthalene	210	µg/L	40	20	EPA 8260B	2/13/2007	KJD
n-Butylbenzene	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
n-Propylbenzene	180	µg/L	20	20	EPA 8260B	2/13/2007	KJD
p-Isopropyltoluene	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
sec-Butylbenzene	23	µg/L	20	20	EPA 8260B	2/13/2007	KJD n
Styrene	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
tert-Butylbenzene	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Tetrachloroethylene	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Tetrahydrofuran	<100	μg/L	100	20	EPA 8260B	2/13/2007	KJD
Toluene	87	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Trans-1,2-Dichloroethylene	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Trans-1,3-Dichloropropene	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Trichloroethylene	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Trichlorofluoromethane	<40	µg/L	40	20	EPA 8260B	2/13/2007	KJD
Vinyl Chloride	<20	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Xylene, M&P	1800	µg/L	40	20	EPA 8260B	2/13/2007	KJD
Xylene, O	420	µg/L	20	20	EPA 8260B	2/13/2007	KJD
Surrogate 1,2-Dichloroethane-d4	99	%	20	20	EPA 8260B	2/13/2007	KJD
Surrogate Bromofluorobenzene	103	%	20	20	EPA 8260B	2/13/2007	KJD
Surrogate Toluene-d8	97.3	%	20	20	EPA 8260B	2/13/2007	KJD

Qualifier	Description	Note
i	Improper sample preservation noted, analysis performed.	DRO sample pH 7.,pH≔7
n	Matrix Spike recovery not within control limits.	

NTS Sample: 143528 Description: TW-2 Sample Date: 2/7/2007 2:30:00 PM Matrix: Aqueous Sample Type: Grab

NTS COC: 75269 Client: 0605 - STS Consultants Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007

Notes: i - Improper sample preservation noted, analysis performed. VOC pH = 7.

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
DRO	1	mg/L	0.1	1	WI(95) DRO	2/15/2007	CSD i
GRO	3.9	mg/L	0.5	5	WI(95) GRO	2/14/2007	MES i
1,1,1,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,1,1-Trichloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,1,2,2-Tetrachloroethane	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
1,1,2-Trichloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,1,2-Trichlorotrifluoroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,1-Dichloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,1-Dichloroethylene	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
1,1-Dichloropropene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,2,3-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
1,2,3-Trichloropropane	<2	μg/L	2	1	EPA 8260B	2/13/2007	KJD
1,2,4-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
1,2,4-Trimethylbenzene	200	µg/L	10	10	EPA 8260B	2/13/2007	KJD
1,2-Dibromo-3-chloropropane	<2	μg/L	2	1	EPA 8260B	2/13/2007	KJD
1,2-Dibromoethane	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
1,2-Dichlorobenzene	2.3	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,2-Dichloroethane	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
1,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,3,5-Trimethylbenzene	150	µg/L	10	10	EPA 8260B	2/13/2007	KJD
1,3-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,3-Dichloropropane	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
1,4-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
2,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
2-Chlorotoluene	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
4-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Acetone	<20	μg/L	20	1	EPA 8260B	2/13/2007	KJD
Allyl Chloride	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
Benzene	38	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromobenzene	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromochloromethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromodichloromethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromoform	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromomethane	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
Carbon Tetrachloride	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Chlorobenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Chloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Qualifier         Description           i         Improper sample preservation no           m         Mercury detected in the field bland	Note DRO sample pH 7.,pH=7						

NTS Sample: 143528 Description: TW-2 Sample Date: 2/7/2007 2:30:00 PM

Matrix: Aqueous Sample Type: Grab

NTS COC: 75269 Client: 0605 - STS Consultants Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007

Notes: i - Improper sample preservation noted, analysis performed. VOC pH = 7.

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
Chloroform	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
Chloromethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Cis-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Cis-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Dibromochloromethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Dibromomethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Dichlorodifluoromethane	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
Dichlorofluoromethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Ethyl Benzene	700	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Ethyl Ether	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
Hexachlorobutadiene	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
Isopropylbenzene	38	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Methyl Ethyl Ketone	<10	µg/L	10	1	EPA 8260B	2/13/2007	KJD
Methyl Isobutyl Ketone	<10	µg/L	10	1	EPA 8260B	2/13/2007	KJD
Methyl Tert-butyl Ether	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Methylene Chloride	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Naphthalene	77	µg/L	2	1	EPA 8260B	2/13/2007	KJD
n-Butylbenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
n-Propylbenzene	83	µg/L	1	1	EPA 8260B	2/13/2007	KJD
p-Isopropyltoluene	1.9	µg/L	1	1	EPA 8260B	2/13/2007	KJD
sec-Butylbenzene	4.2	µg/L	1	1	EPA 8260B	2/13/2007	KJD m
Styrene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
tert-Butylbenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Tetrachloroethylene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Tetrahydrofuran	<5	µg/L	5	1	EPA 8260B	2/13/2007	KJD
Toluene	18	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Trans-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Trans-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Trichloroethylene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Trichlorofluoromethane	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
Vinyl Chloride	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Xylene, M&P	360	µg/L	20	10	EPA 8260B	2/13/2007	KJD
Xylene, O	27	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Surrogate 1,2-Dichloroethane-d4	97.4	%	1	1	EPA 8260B	2/13/2007	KJD
Surrogate Bromofluorobenzene	104	%	1	1	EPA 8260B	2/13/2007	KJD
Surrogate Toluene-d8	97.8	%	1	1	EPA 8260B	2/13/2007	KJD

( )			
ł	Qualifier	Description	Note
	-	•	Note
ł	i	Improper sample preservation noted, analysis performed.	
ę	•	inproper bumple preservation notes, analysis penormes.	DRO sample pH 7.,pH=7
1	m	Mercury detected in the field blank is in excess of the method limit.	

NTS Sample: 143529 Description: TW-3 Sample Date: 2/7/2007 1:00:00 PM Matrix: Aqueous Sample Type: Grab

NTS COC: 75269 Client: 0605 - STS Consultants Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
DRO	1.2	mg/L	0.1	1	WI(95) DRO	2/14/2007	CSD
GRO	5.8	mg/L	1	10	WI(95) GRO	2/14/2007	MES
1,1,1,2-Tetrachloroethane	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
1,1,1-Trichloroethane	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
1,1,2,2-Tetrachloroethane	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
1,1,2-Trichloroethane	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
1,1,2-Trichlorotrifluoroethane	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
1,1-Dichloroethane	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
1,1-Dichloroethylene	<10	μg/L	10	10	EPA 8260B	2/13/2007	KJD
1,1-Dichloropropene	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
1,2,3-Trichlorobenzene	<20	µg/L	20	10	EPA 8260B	2/13/2007	KJD
1,2,3-Trichloropropane	<20	μg/L	20	10	EPA 8260B	2/13/2007	KJD
1,2,4-Trichlorobenzene	<20	μg/L	20	10	EPA 8260B	2/13/2007	KJD
1,2,4-Trimethylbenzene	<10	μg/L	10	10	EPA 8260B	2/13/2007	KJD
1,2-Dibromo-3-chloropropane	<20	μg/L	20	10	EPA 8260B	2/13/2007	KJD
1,2-Dibromoethane	<10	μg/L	10	10	EPA 8260B	2/13/2007	KJD
1,2-Dichlorobenzene	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
1,2-Dichloroethane	<20	µg/L	20	10	EPA 8260B	2/13/2007	KJD
1,2-Dichloropropane	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
1,3,5-Trimethylbenzene	75	µg/L	10	10	EPA 8260B	2/13/2007	KJD
1,3-Dichlorobenzene	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
1,3-Dichloropropane	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
1,4-Dichlorobenzene	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
2,2-Dichloropropane	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
2-Chlorotoluene	<10	μg/L	10	10	EPA 8260B	2/13/2007	KJD
4-Chlorotoluene	<10	μg/L	10	10	EPA 8260B	2/13/2007	KJD
Acetone	<200	µg/L	200	10	EPA 8260B	2/13/2007	KJD
Allyl Chloride	<10	μg/L	10	10	EPA 8260B	2/13/2007	KJD
Benzene	160	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Bromobenzene	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Bromochloromethane	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Bromodichloromethane	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Bromoform	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Bromomethane	<20	µg/L	20	10	EPA 8260B	2/13/2007	KJD
Carbon Tetrachloride	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Chlorobenzene	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Chloroethane	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Qualifier         Description           n         Matrix Spike recovery not within	n control limits.				Note		

Ļ

NTS Sample: 143529 Description: TW-3 Sample Date: 2/7/2007 1:00:00 PM

Matrix: Aqueous Sample Type: Grab NTS COC: 75269 Client: 0605 - STS Consultants Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
Chloroform	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Chloromethane	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Cis-1,2-Dichloroethylene	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Cis-1,3-Dichloropropene	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Dibromochloromethane	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Dibromomethane	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Dichlorodifluoromethane	<20	µg/L	20	10	EPA 8260B	2/13/2007	KJD
Dichlorofluoromethane	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Ethyl Benzene	620	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Ethyl Ether	<20	µg/L	20	10	EPA 8260B	2/13/2007	KJD
Hexachlorobutadiene	<20	µg/L	20	10	EPA 8260B	2/13/2007	KJD
Isopropylbenzene	65	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Methyl Ethyl Ketone	<100	µg/L	100	10	EPA 8260B	2/13/2007	KJD
Methyl Isobutyl Ketone	<100	µg/L	100	10	EPA 8260B	2/13/2007	KJD
Methyl Tert-butyl Ether	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Methylene Chloride	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Naphthalene	30	µg/L	20	10	EPA 8260B	2/13/2007	KJD
n-Butylbenzene	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
n-Propylbenzene	130	µg/L	10	10	EPA 8260B	2/13/2007	KJD
p-Isopropyltoluene	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
sec-Butylbenzene	12	µg/L	10	10	EPA 8260B	2/13/2007	KJD n
Styrene	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
tert-Butylbenzene	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Tetrachloroethylene	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Tetrahydrofuran	<50	µg/L	50	10	EPA 8260B	2/13/2007	KJD
Toluene	23	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Trans-1,2-Dichloroethylene	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Trans-1,3-Dichloropropene	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Trichloroethylene	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Trichlorofluoromethane	<20	μg/L	20	10	EPA 8260B	2/13/2007	KJD
Vinyl Chloride	<10	μg/L	10	10	EPA 8260B	2/13/2007	KJD
Xylene, M&P	42	µg/L	20	10	EPA 8260B	2/13/2007	KJD
Xylene, O	<10	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Surrogate 1,2-Dichloroethane-d4	96.6	%	10	10	EPA 8260B	2/13/2007	KJD
Surrogate Bromofluorobenzene	106	%	10	10	EPA 8260B	2/13/2007	KJD
Surrogate Toluene-d8	98.9	%	10	10	EPA 8260B	2/13/2007	KJD

Ļ

Qualifier Description

n Matrix Spike recovery not within control limits.

Note

NTS Sample: 143530 Description: TW-4 Sample Date: 2/7/2007 11:25:00 AM

Matrix: Aqueous Sample Type: Grab NTS COC: 75269 Client: 0605 - STS Consultants Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007

Notes: i - Improper sample preservation noted, analysis performed. VOC pH = 6.

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
DRO	0.4	mg/L	0.1	1	WI(95) DRO	2/14/2007	CSD i
GRO	1.3	mg/L	0.1	1	WI(95) GRO	2/14/2007	MES i
1,1,1,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,1,1-Trichloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,1,2,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,1,2-Trichloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,1,2-Trichlorotrifluoroethane	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
1,1-Dichloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,1-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,1-Dichloropropene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,2,3-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
1,2,3-Trichloropropane	<2	μg/L	2	1	EPA 8260B	2/13/2007	KJD
1,2,4-Trichlorobenzene	<2	μg/L	2	1	EPA 8260B	2/13/2007	KJD
1,2,4-Trimethylbenzene	53	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,2-Dibromo-3-chloropropane	<2	μg/L	2	1	EPA 8260B	2/13/2007	KJD
1,2-Dibromoethane	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
1,2-Dichlorobenzene	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
1,2-Dichloroethane	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
1,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,3,5-Trimethylbenzene	21	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,3-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,3-Dichloropropane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,4-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
2,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
2-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
4-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Acetone	<20	µg/L	20	1	EPA 8260B	2/13/2007	KJD
Allyl Chloride	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Benzene	26	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromobenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromochloromethane	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromodichloromethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromoform	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromomethane	<2	μg/L	2	1	EPA 8260B	2/13/2007	KJD
Carbon Tetrachloride	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Chlorobenzene	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
Chloroethane	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
Qualifier         Description           i         Improper sample preservation r           n         Matrix Spike recovery not within			<b>Note</b> DRO sample p				

NTS Sample: 143530 Description: TW-4 Sample Date: 2/7/2007 11:25:00 AM Matrix: Aqueous Sample Type: Grab

NTS COC: 75269 Client: 0605 - STS Consultants Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007

Notes: i - Improper sample preservation noted, analysis performed. VOC pH = 6.

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
Chloroform	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
Chloromethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Cis-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Cis-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Dibromochloromethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Dibromomethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Dichlorodifluoromethane	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
Dichlorofluoromethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Ethyl Benzene	160	µg/L	10	10	EPA 8260B	2/13/2007	KJD
Ethyl Ether	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
Hexachlorobutadiene	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
Isopropylbenzene	9.2	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Methyl Ethyl Ketone	<10	µg/L	10	1	EPA 8260B	2/13/2007	KJD
Methyl Isobutyl Ketone	<10	µg/L	10	1	EPA 8260B	2/13/2007	KJD
Methyl Tert-butyl Ether	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Methylene Chloride	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Naphthalene	18	µg/L	2	1	EPA 8260B	2/13/2007	KJD
n-Butylbenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
n-Propylbenzene	19	µg/L	1	1	EPA 8260B	2/13/2007	KJD
p-Isopropyltoluene	1.2	µg/L	1	1	EPA 8260B	2/13/2007	KJD
sec-Butylbenzene	1.8	µg/L	1	1	EPA 8260B	2/13/2007	KJD n
Styrene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
tert-Butylbenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Tetrachloroethylene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Tetrahydrofuran	<5	µg/L	5	1	EPA 8260B	2/13/2007	KJD
Toluene	14	µg/L	1	1	EPA 8260B	2/13/2007	KJÐ
Trans-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Trans-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Trichloroethylene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Trichlorofluoromethane	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
Vinyl Chloride	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Xylene, M&P	68	µg/L	2	1	EPA 8260B	2/13/2007	KJD
Xylene, O	24	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Surrogate 1,2-Dichloroethane-d4	96.5	%	1	1	EPA 8260B	2/13/2007	KJD
Surrogate Bromofluorobenzene	103	%	1	1	EPA 8260B	2/13/2007	KJD
Surrogate Toluene-d8	97.3	%	1	1	EPA 8260B	2/13/2007	KJD

1	Qualifier	Description	Note	
1	1	Improper sample preservation noted, analysis performed.	DRO sample pH 7.,pH=5	
L	n	Matrix Spike recovery not within control limits.		

.....

NTS Sample: 143531 Description: TW-5 Sample Date: 2/7/2007 12:05:00 PM

Matrix: Aqueous Sample Type: Grab

NTS COC: 75269 Client: 0605 - STS Consultants Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007

DRO         0.3         mg/L         0.1         1         WI(95) DRO         2/14/2007         CSD           GRO         <0.1         mg/L         0.1         WI(95) GRO         2/14/2007         KLD           J.1.1,2-Tetrachloroethane         <1         µg/L         1         EPA 8260B         2/13/2007         KLD           J.1.1,2-Tetrachloroethane         <1         µg/L         1         EPA 8260B         2/13/2007         KLD           J.1.2-Tetrachloroethane         <1         µg/L         1         EPA 8260B         2/13/2007         KLD           J.1.2-Tetrachloroethane         <1         µg/L         1         EPA 8260B         2/13/2007         KLD           J.1.2-Tetrachloroethane         <1         µg/L         1         EPA 8260B         2/13/2007         KLD           J.1-Dichtoroethane         <1         µg/L         1         I         EPA 8260B         2/13/2007         KLD           J.2-Strichtoroperpane         <2         µg/L         2         I         EPA 8260B         2/13/2007         KLD           J.2-Artichtorobenzene         <2         µg/L         1         I         EPA 8260B         2/13/2007         KLD           J.2-Dichtoroethane	Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
1.1,1,2-Tetrachloroethane        1       1       EPA 22008       2/13/2007       KJD         1.1,1,2-Tetrachloroethane        1       1       EPA 22008       2/13/2007       KJD         1.1,2,2-Tetrachloroethane        1       1       EPA 22008       2/13/2007       KJD         1.1,2-Trichloroethane        4       µg/L       1       1       EPA 22008       2/13/2007       KJD         1.1,12-Trichloroethane        µg/L       1       1       EPA 22008       2/13/2007       KJD         1.1,12-Dichloroethane        µg/L       1       1       EPA 22008       2/13/2007       KJD         1.1,2-Dichloroethylene        µg/L       1       1       EPA 22008       2/13/2007       KJD         1.2,3-Trichlorophopana        µg/L       1       1       EPA 22008       2/13/2007       KJD         1.2,4-Trichlorophopana        µg/L       2       1       EPA 22008       2/13/2007       KJD         1.2,4-Trichlorophopana        µg/L       1       1       EPA 22008       2/13/2007       KJD         1.2,4-Trichlorobenzene        µg/L       1	DRO	0.3	mg/L	0.1	1	WI(95) DRO	2/14/2007	CSD
1,1,1-Trichloroethane       <1	GRO	<0.1	mg/L	0.1	1	WI(95) GRO	2/14/2007	MES
1.1,2.2-Tetrachloroethane       <1	1,1,1,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,12-Trichloroethane       <1	1,1,1-Trichloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1.12-Trichlorothiluoroethane       <1	1,1,2,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1.1-Dichloroethane<	1,1,2-Trichloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,1-Dichloroethylene<	1,1,2-Trichlorotrifluoroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1.1-Dichloropropene       <1	1,1-Dichloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1.2.3-Trichlorobenzene       -2       µg/L       2       1       EPA 8260B       2/13/2007       KJD         1.2.3-Trichloropenane       -2       µg/L       2       1       EPA 8260B       2/13/2007       KJD         1.2.4-Trichlorobenzene       -2       µg/L       2       1       EPA 8260B       2/13/2007       KJD         1.2.4-Trimethylbenzene       8       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1.2.Dibromoethane       -1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1.2-Dibromoethane       -1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1.2-Dichoroptane       -1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1.2-Dichloroptropane       -1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1.2-Dichloroptropane       -1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1.3-Dichloroptopane       -1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1.3-Dichloroptopane       -1       µg/L <td>1,1-Dichloroethylene</td> <td>&lt;1</td> <td>µg/L</td> <td>1</td> <td>1</td> <td>EPA 8260B</td> <td>2/13/2007</td> <td>KJD</td>	1,1-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,2,3-Trichloropropane $<2$ $\mu g/L$ 21EPA 8260B2/13/2007KJD1,2,4-Trinchlorobenzene $<2$ $\mu g/L$ 11EPA 8260B2/13/2007KJD1,2,4-Trinchlylbenzene8 $\mu g/L$ 11EPA 8260B2/13/2007KJD1,2-Dibromo-3-chloropropane $<2$ $\mu g/L$ 11EPA 8260B2/13/2007KJD1,2-Dibromo-3-chloropropane $<2$ $\mu g/L$ 11EPA 8260B2/13/2007KJD1,2-Dichlorobenzene $<1$ $\mu g/L$ 11EPA 8260B2/13/2007KJD1,2-Dichloroppane $<2$ $\mu g/L$ 11EPA 8260B2/13/2007KJD1,2-Dichloroppane $<1$ $\mu g/L$ 11EPA 8260B2/13/2007KJD1,3-Dichlorobenzene $<2$ $\mu g/L$ 11EPA 8260B2/13/2007KJD1,3-Dichloropopane $<1$ $\mu g/L$ 11EPA 8260B2/13/2007KJD1,3-Dichloropopane $<1$ $\mu g/L$ 11EPA 8260B2/13/2007KJD1,4-Dichloropopane $<1$ $\mu g/L$ 11EPA 8260B2/13/2007KJD2,2-Dichloropopane $<1$ $\mu g/L$ 11EPA 8260B2/13/2007KJD2,2-Dichloropopane $<1$ $\mu g/L$ 11EPA 8260B2/13/2007KJD2,2-Dichloropopane $<1$ $\mu g/L$ 11EPA 8260B2/13/2007KJD2,2-Di	1,1-Dichloropropene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,2,4-Trichlorobenzene $<2$ $\mu g/L$ 21EPA 8260B $2/13/2007$ KJD1,2,4-Trimethylbenzene8 $\mu g/L$ 11EPA 8260B $2/13/2007$ KJD1,2-Dibromo-3-chloropropane $<2$ $\mu g/L$ 11EPA 8260B $2/13/2007$ KJD1,2-Dibromoethane<1	1,2,3-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
1.2.4-Trimethylbenzene8 $\mu g/L$ 11EPA 8260B2/13/2007KJD1.2-Dibromo-3-chloropropane<2	1,2,3-Trichloropropane	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
1,2-Dibrome-3-chloropropane       <2	1,2,4-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
1,2-Dibromoethane       <1	1,2,4-Trimethylbenzene	8	μg/L	1	1	EPA 8260B	2/13/2007	KJD
1,2-Dichlorobenzene<1 $\mug/L$ 11EPA 8260B $2/13/2007$ KJD1,2-Dichloropthane<2	1,2-Dibromo-3-chloropropane	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
1,2-Dichloroethane       <2	1,2-Dibromoethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,2-Dichloropropane       <1	1,2-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,3,5-Trimethylbenzene       2.5       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1,3-Dichlorobenzene       <1	1,2-Dichloroethane	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
1,3-Dichlorobenzene       <1	1,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,3-Dichloropropane       <1	1,3,5-Trimethylbenzene	2.5	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,4-Dichlorobenzene       <1	1,3-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
2,2-Dichloropropane       <1	1,3-Dichloropropane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
2-Chlorotoluene       <1	1,4-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
4-Chlorotoluene       <1	2,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Acetone       <20	2-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Allyl Chloride       <1	4-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Benzene       <1	Acetone	<20	µg/L	20	1	EPA 8260B	2/13/2007	KJD
Bromobenzene       <1	Allyl Chloride	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromochloromethane       <1       μg/L       1       1       EPA 8260B       2/13/2007       KJD         Bromodichloromethane       <1	Benzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromodichloromethane         <1         μg/L         1         1         EPA 8260B         2/13/2007         KJD           Bromoform         <1	Bromobenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromoform         <1         μg/L         1         1         EPA 8260B         2/13/2007         KJD           Bromomethane         <2	Bromochloromethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromomethane         <2         μg/L         2         1         EPA 8260B         2/13/2007         KJD           Carbon Tetrachloride         <1	Bromodichloromethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Carbon Tetrachloride         <1         μg/L         1         1         EPA 8260B         2/13/2007         KJD           Chlorobenzene         <1	Bromoform	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Chlorobenzene         <1         μg/L         1         1         EPA 8260B         2/13/2007         KJD	Bromomethane	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
	Carbon Tetrachloride	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Chloroethane <1 µg/L 1 1 EPA 8260B 2/13/2007 KJD	Chlorobenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
	Chloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD

NTS Sample: 143531 Description: TW-5 Sample Date: 2/7/2007 12:05:00 PM Matrix: Aqueous Sample Type: Grab NTS COC: 75269 Client: 0605 - STS Consultants Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
Chloroform	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Chloromethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Cis-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Cis-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Dibromochloromethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Dibromomethane	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
Dichlorodifluoromethane	<2	μg/L	2	1	EPA 8260B	2/13/2007	KJD
Dichlorofluoromethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Ethyl Benzene	1.5	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Ethyl Ether	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
Hexachlorobutadiene	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
lsopropylbenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Methyl Ethyl Ketone	<10	µg/L	10	1	EPA 8260B	2/13/2007	KJD
Methyl Isobutyl Ketone	<10	µg/L	10	1	EPA 8260B	2/13/2007	KJD
Methyl Tert-butyl Ether	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Methylene Chloride	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Naphthalene	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
n-Butylbenzene	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
n-Propylbenzene	1.1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
p-Isopropyltoluene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
sec-Butylbenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Styrene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
tert-Butylbenzene	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
Tetrachloroethylene	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
Tetrahydrofuran	<5	µg/L	5	1	EPA 8260B	2/13/2007	KJD
Toluene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Trans-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Trans-1,3-Dichloropropene	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
Trichloroethylene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Trichlorofluoromethane	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
Vinyl Chloride	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Xylene, M&P	2.3	µg/L	2	1	EPA 8260B	2/13/2007	KJD
Xylene, O	1.9	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Surrogate 1,2-Dichloroethane-d4	92.7	%	1	1	EPA 8260B	2/13/2007	KJD
Surrogate Bromofluorobenzene	106	%	1	1	EPA 8260B	2/13/2007	KJD
Sans guie Erenienzonobonizonio	100			•		£11012001	1100

NTS Sample: 143532 Description: TW-6 Sample Date: 2/7/2007 3:35:00 PM

Matrix: Aqueous Sample Type: Grab NTS COC: 75269 Client: 0605 - STS Consultants Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
DRO	<0.1	mg/L	0.1	1	WI(95) DRO	2/14/2007	CSD i
GRO	<0.1	mg/L	0.1	1	WI(95) GRO	2/14/2007	MES
1,1,1,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,1,1-Trichloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,1,2,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,1,2-Trichloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,1,2-Trichlorotrifluoroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,1-Dichloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,1-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,1-Dichloropropene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,2,3-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
1,2,3-Trichloropropane	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
1,2,4-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
1,2,4-Trimethylbenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,2-Dibromo-3-chloropropane	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
1,2-Dibromoethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,2-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,2-Dichloroethane	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
1,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,3,5-Trimethylbenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,3-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,3-Dichloropropane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,4-Dichlorobenzene	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
2,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
2-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
4-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Acetone	<20	µg/L	20	1	EPA 8260B	2/13/2007	KJD
Allyl Chloride	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Benzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromobenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromochloromethane	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromodichloromethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromoform	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromomethane	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
Carbon Tetrachloride	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Chlorobenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Chloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Qualifier Description i Improper sample preservation	noted analysis na	utormed			Note	~년 3	
	norou, anaiyaia pe			· · ·	DRO sample	<u>µп э.</u>	

L E

NTS Sample: 143532 Description: TW-6 Sample Date: 2/7/2007 3:35:00 PM

Matrix: Aqueous Sample Type: Grab

NTS COC: 75269 Client: 0605 - STS Consultants Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007

Chloroform Chloromethane Cis-1,2-Dichloroethylene Cis-1,3-Dichloropropene	<1 <1 <1	µg/L	1	1	EPA 8260B	2/13/2007	17.10
Cis-1,2-Dichloroethylene Cis-1,3-Dichloropropene		ua/l				2/13/2007	KJD
Cis-1,3-Dichloropropene	~1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
• •		µg/L	1	1	EPA 8260B	2/13/2007	KJD
	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Dibromochloromethane	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
Dibromomethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Dichlorodifluoromethane	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
Dichlorofluoromethane	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
Ethyl Benzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Ethyl Ether	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
Hexachlorobutadiene	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
Isopropylbenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Methyl Ethyl Ketone	<10	µg/L	10	1	EPA 8260B	2/13/2007	KJD
Methyl Isobutyl Ketone	<10	µg/L	10	1	EPA 8260B	2/13/2007	KJD
Methyl Tert-butyl Ether	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Methylene Chloride	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Naphthalene	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
n-Butylbenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
n-Propylbenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
p-Isopropyltoluene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
sec-Butylbenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Styrene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
tert-Butylbenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Tetrachloroethylene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Tetrahydrofuran	<5	µg/L	5	1	EPA 8260B	2/13/2007	KJD
Toluene	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
Trans-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Trans-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Trichloroethylene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Trichlorofluoromethane	<2	μg/L	2	1	EPA 8260B	2/13/2007	KJD
Vinyl Chloride	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Xylene, M&P	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
Xylene, O	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
Surrogate 1,2-Dichloroethane-d4	101	%	1	1	EPA 8260B	2/13/2007	KJD
Surrogate Bromofluorobenzene	106	%	1	1	EPA 8260B	2/13/2007	KJD
Surrogate Toluene-d8	97.9	%	1	1	EPA 8260B	2/13/2007	KJD

Qualifier	Description	Note
; <b>;</b>	Improper sample preservation noted, analysis performed.	DRO sample pH 3.

# NTS Sample: 143533 Description: Field Blank Sample Date: 2/8/2007 4:35:00 PM

Matrix: Aqueous Sample Type: Grab

NTS COC: 75269 Client: 0605 - STS Consultants Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
1,1,2-Tetrachloroethane4µµµL11EPA 8260B2/13/2007KJD1,1,1-Tritchloroethane<1	DRO	<0.1	mg/L	0.1	1	WI(95) DRO	2/14/2007	CSD
1.1.1-Trichloroethane       <1	GRO	<0.1	mg/L	0.1	1	WI(95) GRO	2/14/2007	MES
1.1.2.2-Tetrachloroethane       <1	1,1,1,2-Tetrachloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1.1.2-Trichloroethane       <1	1,1,1-Trichloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1.1.2-Trichlorothilluoroethane $\mu g/L$ 1       EPA 8260B       2/13/2007       KJD         1,1-Dichloroethylene $\mu g/L$ 1       1       EPA 8260B       2/13/2007       KJD         1,1-Dichloroethylene $\mu g/L$ 1       1       EPA 8260B       2/13/2007       KJD         1,2-Strichloropenpane $\mu g/L$ 1       1       EPA 8260B       2/13/2007       KJD         1,2.3-Trichloropenpane $\mu g/L$ 2       1       EPA 8260B       2/13/2007       KJD         1,2.4-Trinethylbenzene $\mu g/L$ 2       1       EPA 8260B       2/13/2007       KJD         1,2-Dichlorobenzene $\mu g/L$ 1       1       EPA 8260B       2/13/2007       KJD         1,2-Dichlorobenzene $\mu g/L$ 1       1       EPA 8260B       2/13/2007       KJD         1,2-Dichlorobenzene $\mu g/L$ 1       1       EPA 8260B       2/13/2007       KJD         1,2-Dichloropropane $\mu g/L$ 1       1       EPA 8260B       2/13/2007       KJD         1,3-Dichloropropane <td< td=""><td>1,1,2,2-Tetrachloroethane</td><td>&lt;1</td><td>μg/L</td><td>1</td><td>1</td><td>EPA 8260B</td><td>2/13/2007</td><td>KJD</td></td<>	1,1,2,2-Tetrachloroethane	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
1.1-Dichloroethane<1 $\mu g/L$ 11EPA 8200B $2/13/2007$ KJD1.1-Dichloroethylene<1	1,1,2-Trichloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1.1-Dichloroethylene11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111	1,1,2-Trichlorotrifluoroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1.1-Dichloropropene       -1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1.2.3-Trichloropenzene       -2       µg/L       2       1       EPA 8260B       2/13/2007       KJD         1.2.3-Trichloropenzene       -2       µg/L       2       1       EPA 8260B       2/13/2007       KJD         1.2.4-Trichlorobenzene       -2       µg/L       2       1       EPA 8260B       2/13/2007       KJD         1.2.4-Trindhylbenzene       -1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1.2-Dibromo-3-chloropropane       -2       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1.2-Dibromo-3-chloropropane       -2       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1.2-Dibromo-3-chloropropane       -1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1.2-Dibromo-4ne       -1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1.3-Dichloropopane       -1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1.3-Dichloropopane       -	1,1-Dichloroethane	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
1.2.3-Trichlorobenzene       <2	1,1-Dichloroethylene	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
1.2.3-Trichloropropane       -2       µg/L       2       1       EPA 8260B       2/13/2007       KJD         1.2.4-Trinethylbenzene       -2       µg/L       2       1       EPA 8260B       2/13/2007       KJD         1.2.4-Trinethylbenzene       -1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1.2-Dichlorobenzene       -1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1.2-Dichlorobenzene       -1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1.2-Dichlorobenzene       -1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1.2-Dichlorobenzene       -1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1.3-Dichlorobenzene       -1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1.3-Dichlorobenzene       -1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1.3-Dichloropropane       -1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1.4-Dichloropropane       -1       µg/	1,1-Dichloropropene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1.2.4-Trichlorobenzene2 $\mu g/L$ 21EPA 8260B2/13/2007KJD1.2.4-Trimethylbenzene<1	1,2,3-Trichlorobenzene	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
1.2.4-Trimethylbenzene1 $\mu g/L$ 1EPA 8260B2/13/2007KJD1.2-Dibromo-3-chloropropane $<2$ $\mu g/L$ 21EPA 8260B2/13/2007KJD1.2-Dibromoethane $<1$ $\mu g/L$ 11EPA 8260B2/13/2007KJD1.2-Dichlorobenzene $<1$ $\mu g/L$ 11EPA 8260B2/13/2007KJD1.2-Dichlorobenzene $<1$ $\mu g/L$ 11EPA 8260B2/13/2007KJD1.2-Dichlorobenzene $<1$ $\mu g/L$ 11EPA 8260B2/13/2007KJD1.3-Dichlorobenzene $<1$ $\mu g/L$ 11EPA 8260B2/13/2007KJD1.3-Dichlorobenzene $<1$ $\mu g/L$ 11EPA 8260B2/13/2007KJD1.3-Dichloropopane $<1$ $\mu g/L$ 11EPA 8260B2/13/2007KJD1.3-Dichloropopane $<1$ $\mu g/L$ 11EPA 8260B2/13/2007KJD1.4-Dichloropopane $<1$ $\mu g/L$ 11EPA 8260B2/13/2007KJD2.2-Dichloropopane $<1$ $\mu g/L$ 11EPA 8260B2/13/2007KJD2.2-Chlorobluene $<1$ $\mu g/L$ 11EPA 8260B2/13/2007KJD2.2-Chlorobluene $<1$ $\mu g/L$ 11EPA 8260B2/13/2007KJDAcetone $<20$ $\mu g/L$ 11EPA 8260B2/13/2007KJDBromochloromethane $<1$ $\mu g$	1,2,3-Trichloropropane	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
1,2-Dibrome-3-chiloropropane $<2$ $\mu g/L$ $2$ 1EPA 8260B $2/13/2007$ KJD1,2-Dibromoethane<1	1,2,4-Trichlorobenzene	<2	μg/L	2	1	EPA 8260B	2/13/2007	KJD
1,2-Dibromoethane       <1	1,2,4-Trimethylbenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1.2-Dichlorobenzene       <1	1,2-Dibromo-3-chloropropane	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
1,2-Dichloroethane       <2	1,2-Dibromoethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,2-Dichloropropane       <1	1,2-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,3,5-Trimethylbenzene        1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1,3-Dichlorobenzene        1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1,3-Dichlorobenzene        1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         1,4-Dichlorobenzene        1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         2,2-Dichloropropane        1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         2,2-Dichloropropane        µg/L       1       1       EPA 8260B       2/13/2007       KJD         2-Chlorotoluene        µg/L       1       1       EPA 8260B       2/13/2007       KJD         Acetone         µg/L       1       1       EPA 8260B       2/13/2007       KJD         Allyl Chloride         µg/L       1       1       EPA 8260B       2/13/2007       KJD         Benzene         µg/L       1       1       EPA 8260B       2/13/2007       KJD	1,2-Dichloroethane	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
1,3-Dichlorobenzene       <1	1,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,3-Dichloropropane<1 $\mu g/L$ 11EPA 8260B2/13/2007KJD1,4-Dichlorobenzene<1	1,3,5-Trimethylbenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
1,4-Dichlorobenzene       <1	1,3-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
2,2-Dichloropropane       <1	1,3-Dichloropropane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
2-Chlorotoluene       <1	1,4-Dichlorobenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
4-Chlorotoluene       <1	2,2-Dichloropropane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Acetone       <20	2-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Allyl Chloride       <1	4-Chlorotoluene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Benzene       <1	Acetone	<20	µg/L	20	1	EPA 8260B	2/13/2007	KJD
Bromobenzene       <1	Allyl Chloride	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromochloromethane       <1	Benzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromodichloromethane       <1	Bromobenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromoform       <1	Bromochloromethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Bromomethane         <2         μg/L         2         1         EPA 8260B         2/13/2007         KJD           Carbon Tetrachloride         <1	Bromodichloromethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Carbon Tetrachloride       <1       µg/L       1       1       EPA 8260B       2/13/2007       KJD         Chlorobenzene       <1	Bromoform	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Chlorobenzene         <1         µg/L         1         1         EPA 8260B         2/13/2007         KJD	Bromomethane	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
	Carbon Tetrachloride	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
	Chlorobenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	
	Chloroethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	

L B NTS Sample: 143533 Description: Field Blank Sample Date: 2/8/2007 4:35:00 PM

Matrix: Aqueous Sample Type: Grab NTS COC: 75269 Client: 0605 - STS Consultants Project: 4930 - 200600839/Alex Exhaust Sampled By: Client Report Date: 2/21/2007

Analyte	Result	Units	RL	DIL	Method	Analysis Dat	Analyst
Chloroform	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
Chloromethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Cis-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Cis-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Dibromochloromethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Dibromomethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Dichlorodifluoromethane	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
Dichlorofluoromethane	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Ethyl Benzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Ethyl Ether	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
Hexachlorobutadiene	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
Isopropylbenzene	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
Methyl Ethyl Ketone	<10	µg/L	10	1	EPA 8260B	2/13/2007	KJD
Methyl Isobutyl Ketone	<10	µg/L	10	1	EPA 8260B	2/13/2007	KJD
Methyl Tert-butyl Ether	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Methylene Chloride	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Naphthalene	<2	µg/L	2	1	EPA 8260B	2/13/2007	KJD
n-Butylbenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
n-Propylbenzene	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
p-lsopropyltoluene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
sec-Butylbenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Styrene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
tert-Butylbenzene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Tetrachloroethylene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Tetrahydrofuran	12	µg/L	5	1	EPA 8260B	2/13/2007	KJD
Toluene	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
Trans-1,2-Dichloroethylene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Trans-1,3-Dichloropropene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Trichloroethylene	<1	µg/L	1	1	EPA 8260B	2/13/2007	KJD
Trichlorofluoromethane	<2	μg/L	2	1	EPA 8260B	2/13/2007	KJD
Vinyl Chloride	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
Xylene, M&P	<2	μg/L	2	1	EPA 8260B	2/13/2007	KJD
Xylene, O	<1	μg/L	1	1	EPA 8260B	2/13/2007	KJD
Surrogate 1,2-Dichloroethane-d4	96	%	1	1	EPA 8260B	2/13/2007	KJD
Surrogate Bromofluorobenzene	104	%	1	1	EPA 8260B	2/13/2007	KJD
Surrogate Toluene-d8	98.4	%	1		EPA 8260B	2/13/2007	KJD

## QUALITY ASSURANCE REPORT: VOLATILE ORGANIC COMPOUNDS 8260

#### Sample I.D.:

## Date: 02/13/07 QC Pack: 9-021307-1

Allyl Chloride Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene Dibromochloromethane 1,2-Dibromo-3-chloropr 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene

Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethylene Cis-1,2-Dichloroethylene Trans-1,2-Dichloroethylene Dichlorofluoromethane 1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane

1,4-Dichlorobenzene

1,1-Dichloropropene Cis-1,3-Dichloropropene Trans-1,3-Dichloropropene Hexachlorobutadiene Methylene Chloride 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene

	Units	DF	Lab Blanl Conc ug/L	C LCS % Rec	Matrix Spike %	Matrix Spike Duplicate (%)	RPD %
	ug/L	1.0	< 1.0	105	109	102	6.6
	ug/L	1.0	< 1.0	114	119	117	1.9
	ug/L	1.0	< 1.0	118	120	116	3.8
e	ug/L	1.0	< 1.0	116	119	117	1.3
	ug/L	1.0	< 1.0	108	99	101	2.4
	ug/L	1.0	< 2.0	95	95	91	4.4
	ug/L	1.0	< 1.0	124	132	125	5.9
	ug/L	1.0	< 1.0	109	114	111	2.7
	ug/L	1.0	< 1.0	102	105	99	5.6
	ug/L	1.0	< 1.0	118	126	120	4.9
		1		·····			
	ug/L	1.0	< 1.0	100	99	94	5.2
	ug/L	1.0	< 1.0	119	129	125	2.8
	ug/L	1.0	< 1.0	115	123	119	3.6
;	ug/L	1.0	< 1.0	107	106	105	0.6
ropane	ug/L	1.0	< 2.0	87	72	76	5.4
	ug/L	1.0	< 1.0	109	102	104	1.3
	ug/l	1.0	< 1.0	117	111	111	0.0
	ug/L	1.0	< 1.0	110	111	109	2.1
	ug/L	1.0	< 1.0	110	115	111	3.3
	ug/L	1.0	< 1.0	108	112	108	3.6
ne	ug/L	1.0	< 3.0	83	90	77	14.8
	ug/L	1.0	< 1.0	117	123	118	4.6
	ug/L	1.0	< 1.0	111	109	109	0.8
	ug/L	1.0	< 1.0	119	122	116	5.1
ie	ug/L	1.0	< 1.0	123	128	124	3.4
lene	ug/L	1.0	< 1.0	118	125	117	6.5
	ug/L	1.0	< 1.0	105	108	101	6.3
	ug/L	1.0	< 1.0	113	115	112	2.3
	ug/L	1.0	< 1.0	108	105	105	0.2
	ug/L	1.0	< 1.0	127	124	119	3.8
	ug/L	1.0	< 1.0	121	128	122	5.0
e	ug/L	1.0	< 1.0	107	108	107	0.9
ene	ug/L	1.0	< 1.0	103	101	101	0.0
	ug/L	1.0	< 2.0	122	124	122	2.2
	ug/L	1.0	< 1.0	133	134	131	2.6
ie	ug/L	1.0	< 1.0	115	118	117	0.9
ne	ug/L	1.0	< 1.0	107	95	98	2.8
	ug/L	1.0	< 1.0	119	127	124	2.2
	ug/L	1.0	< 2.0	99	82	86	5.0
	ug/L	1.0	< 2.0	104	96	97	1.0
•							

Ł

### **QUALITY ASSURANCE REPORT: VOLATILE ORGANIC COMPOUNDS 8260**

## Date: 02/13/07 QC Pack: 9-021307-1

RPD %

6.1

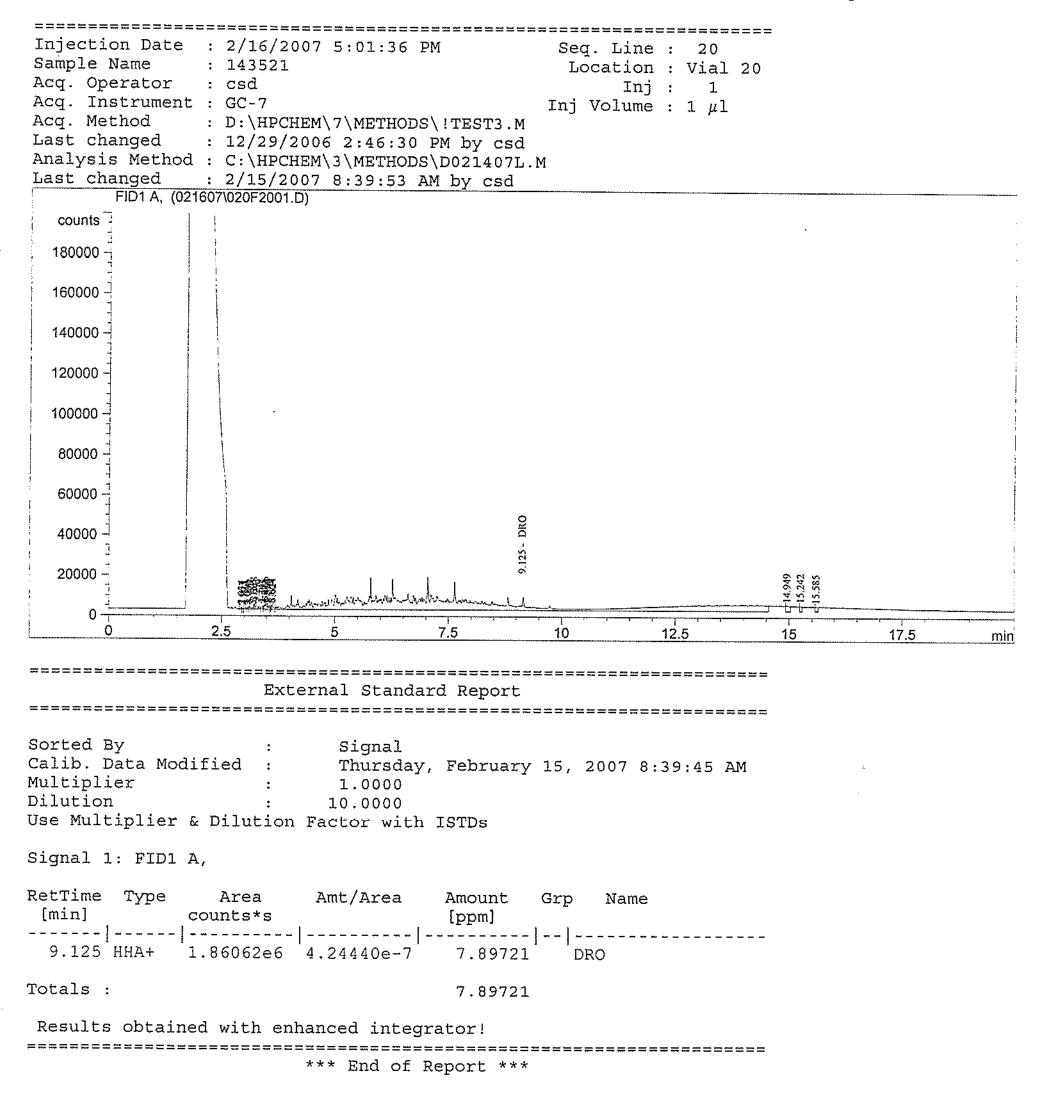
1.3

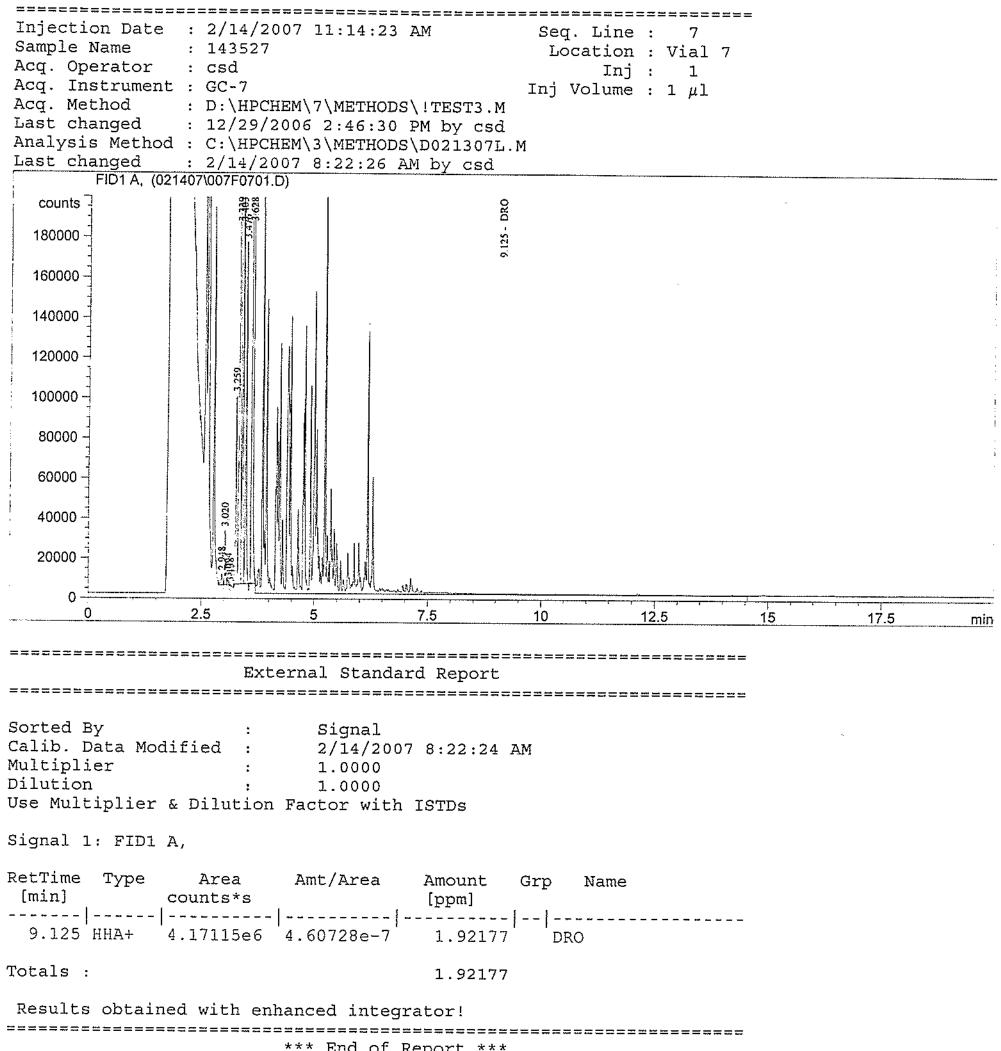
4.6

**Matrix Spike** Duplicate (%)

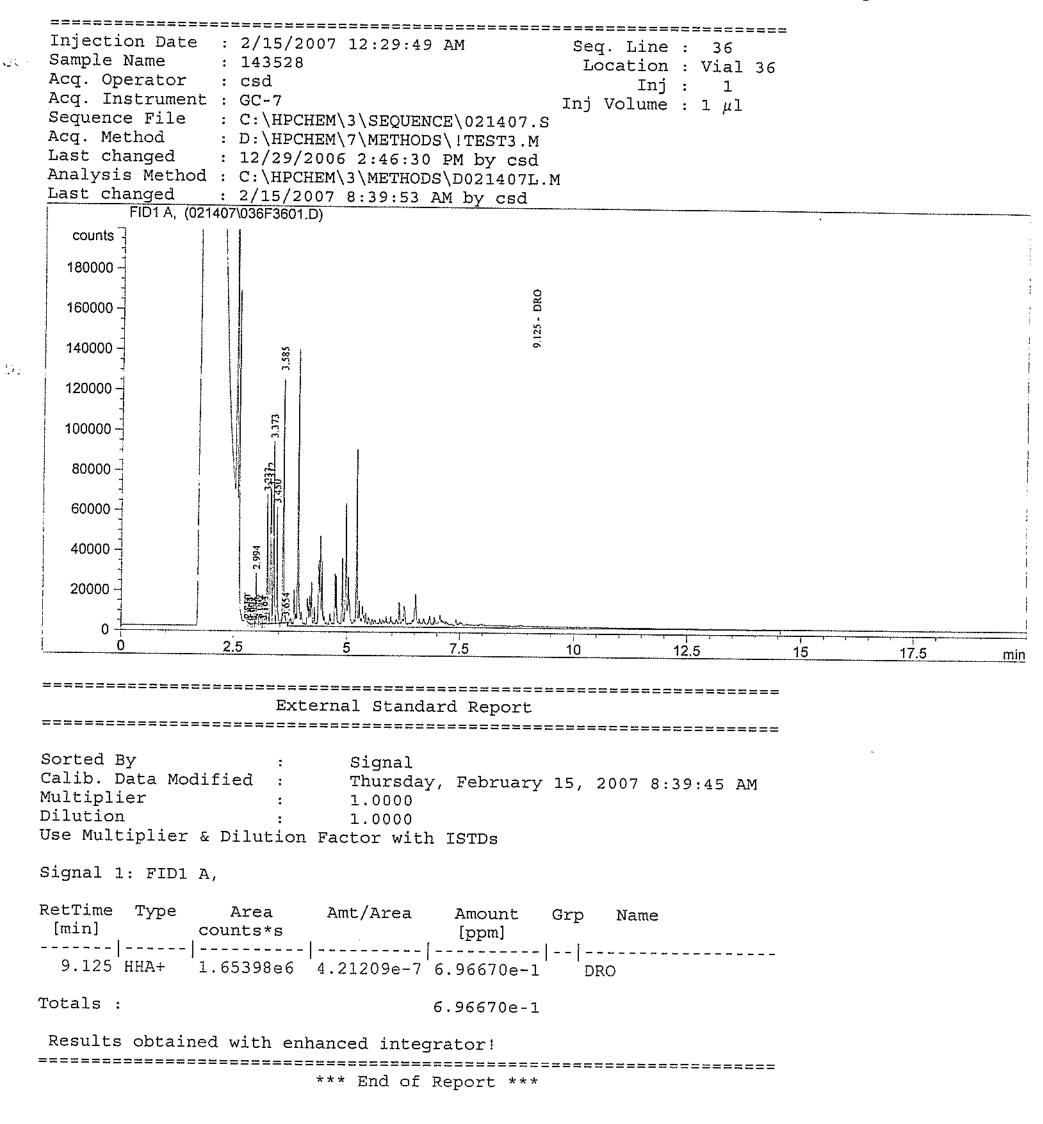
121

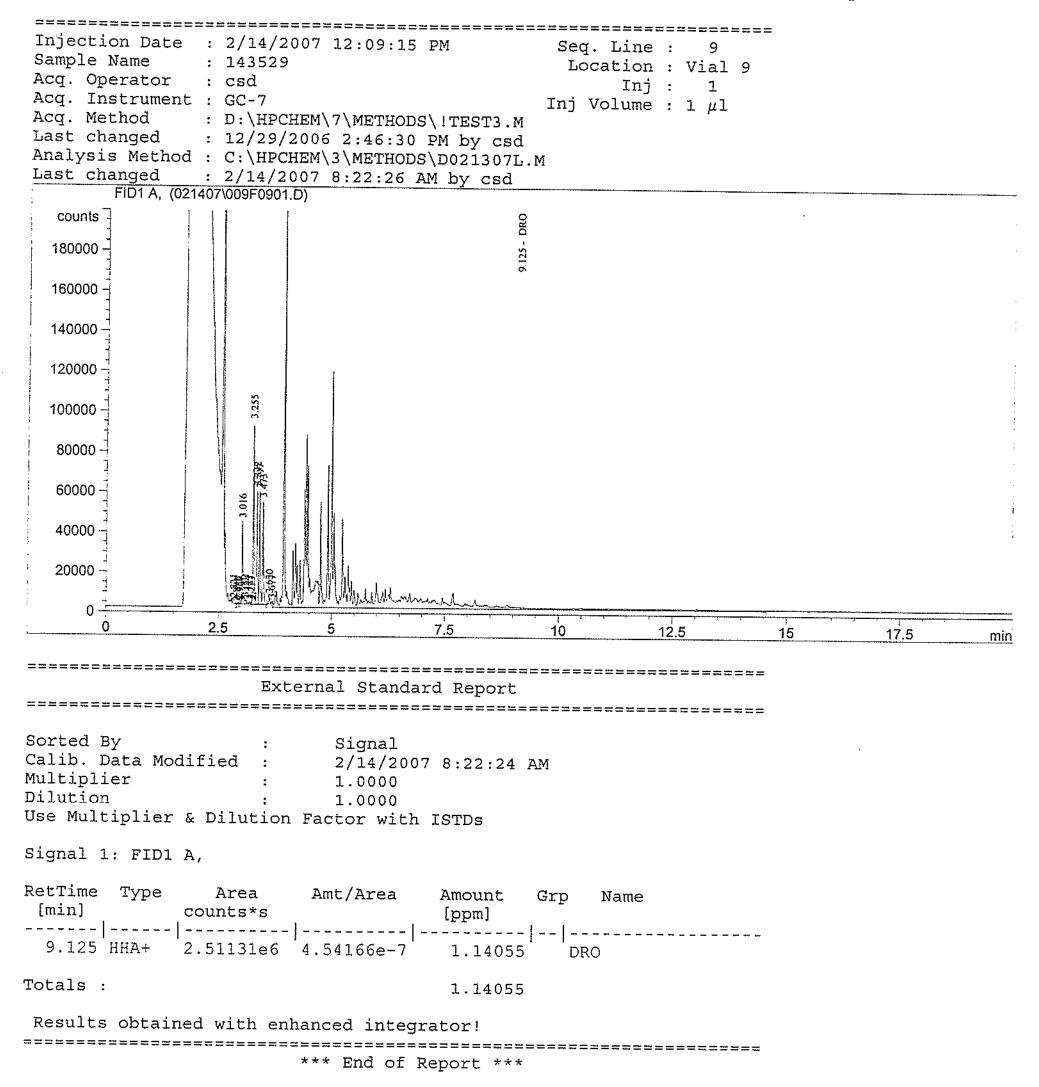
103

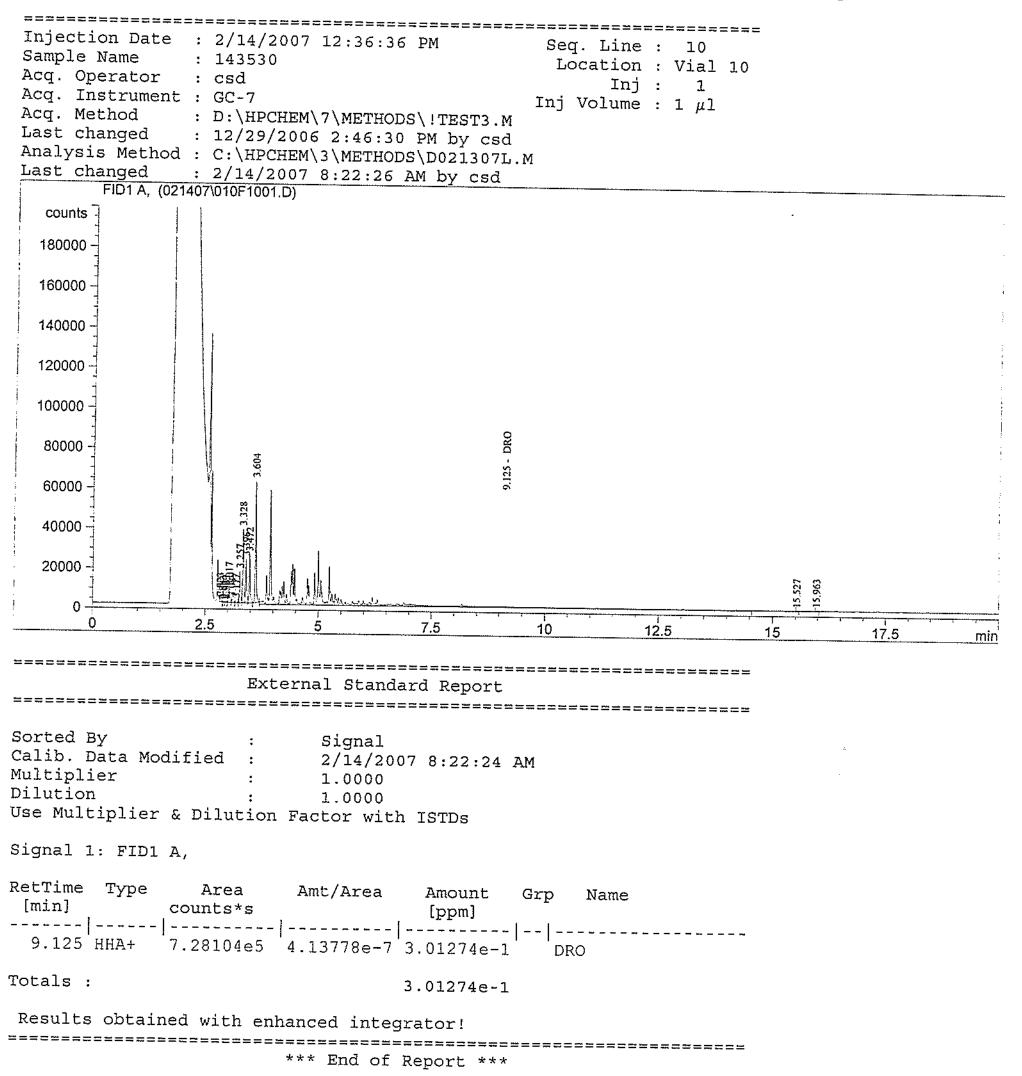

120

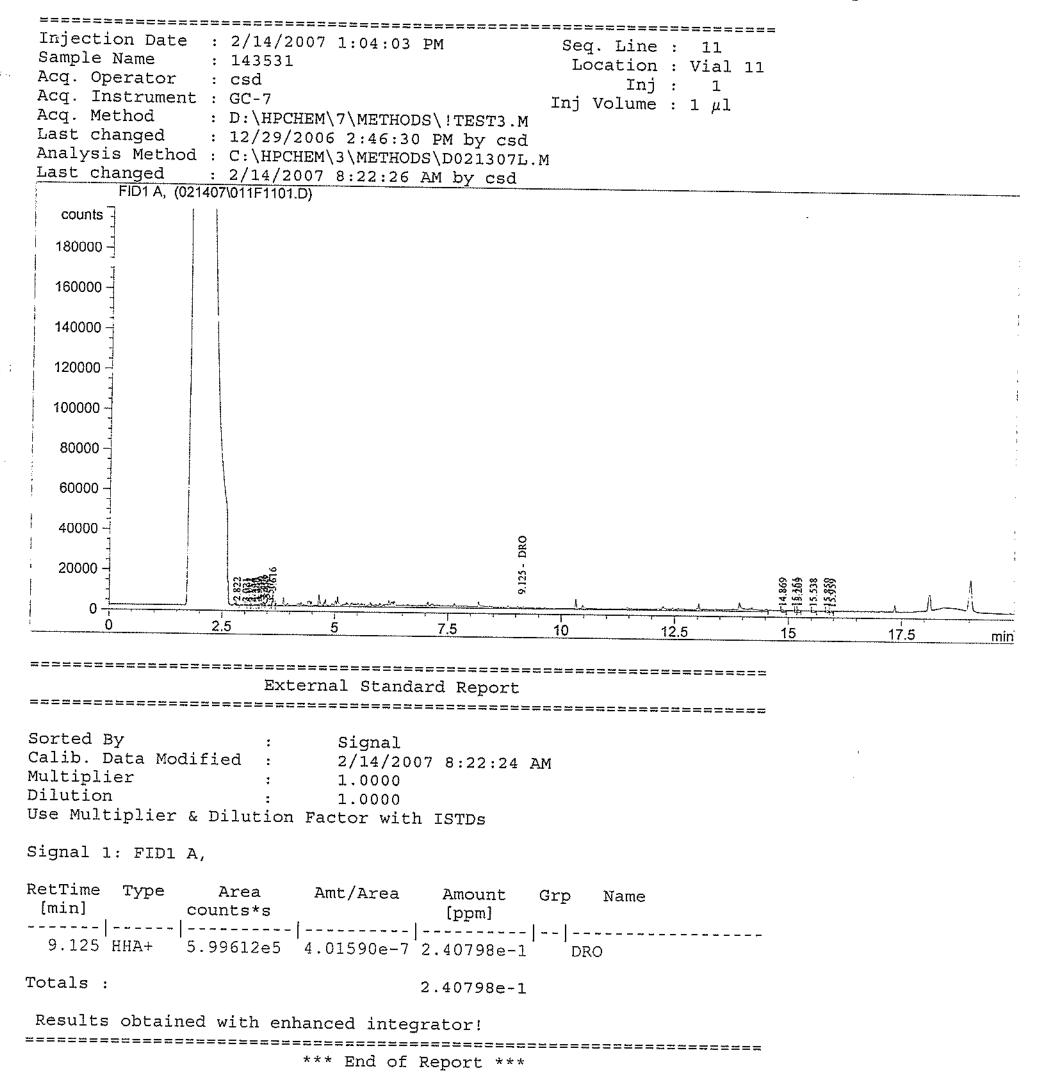

Sample I.D.:

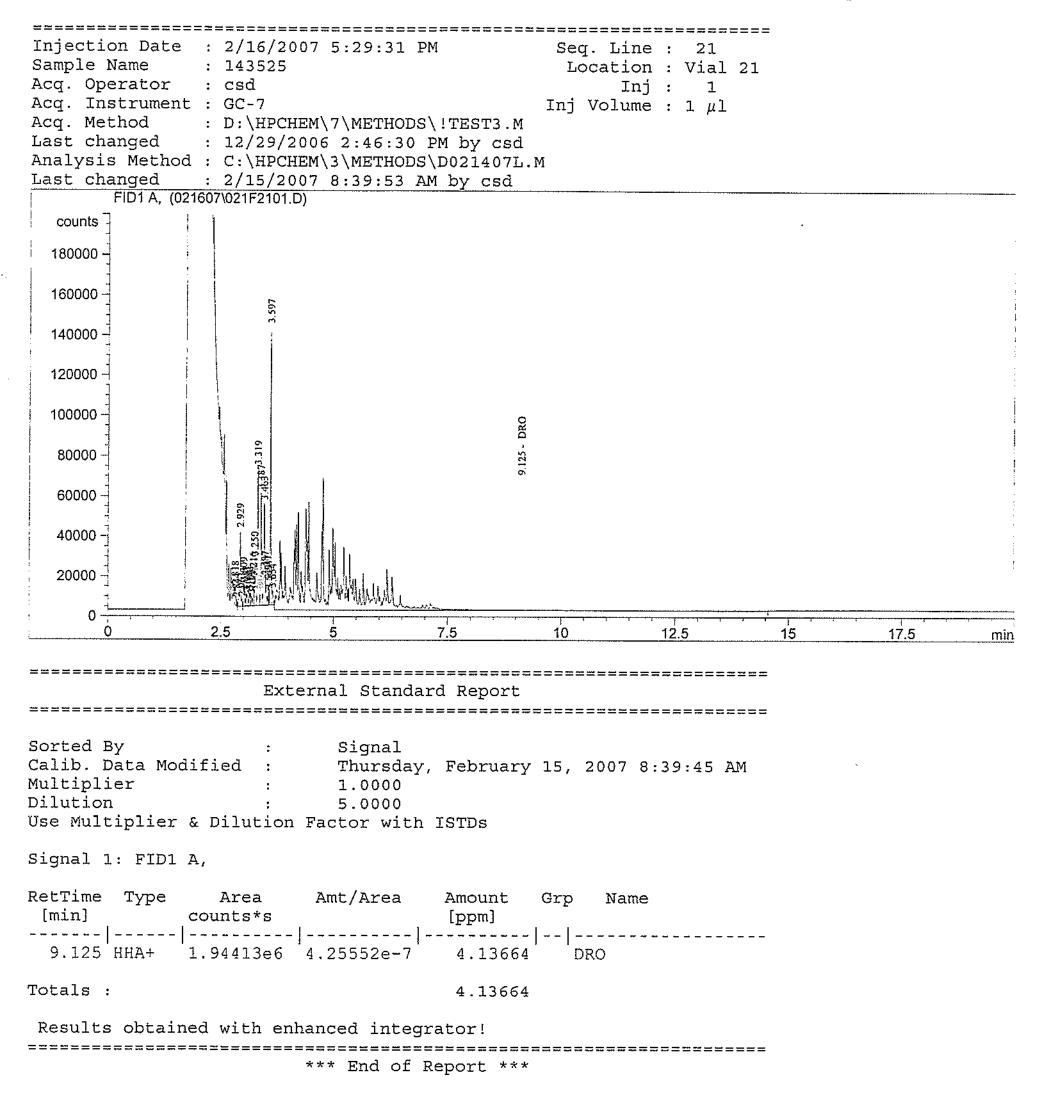
Lab Blank LCS Matrix Units DF Conc ug/L % Rec Spike % 1.0 < 1.0 122 1,1,1-Trichloroethane ug/L 129 ug/L < 1.0 1,1,2-Trichloroethane 1.0 111 104 Trichloroethylene ug/L 1.0 < 1.0 120 126 Trichlorofluoromethane 1,2,3-Trichloropropane 1,1,2-Trichlorotrifluoroet Vinyl Chloride Acetone Benzene n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Isopropylbenzene (Cumer Ethyl Benzene Ethyl Ether p-Isopropyltoluene Methyl Ethyl Ketone Methyl Isobutyl Ketone Methyl tert-butyl ether n-Propylbenzene

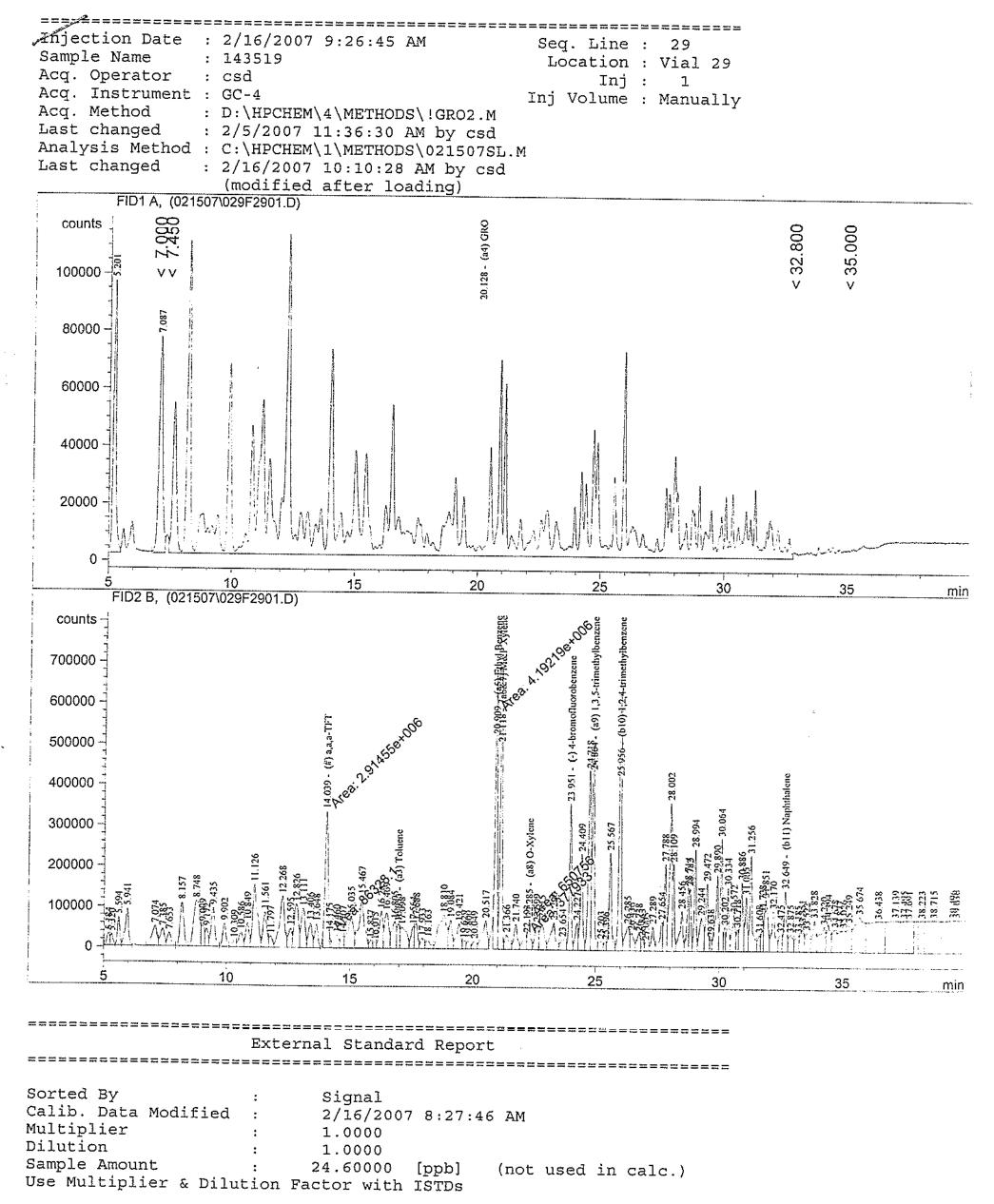

Naphthalene Styrene Tetrahydrofuran Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene m-Xylene & p-Xylene o-Xylene

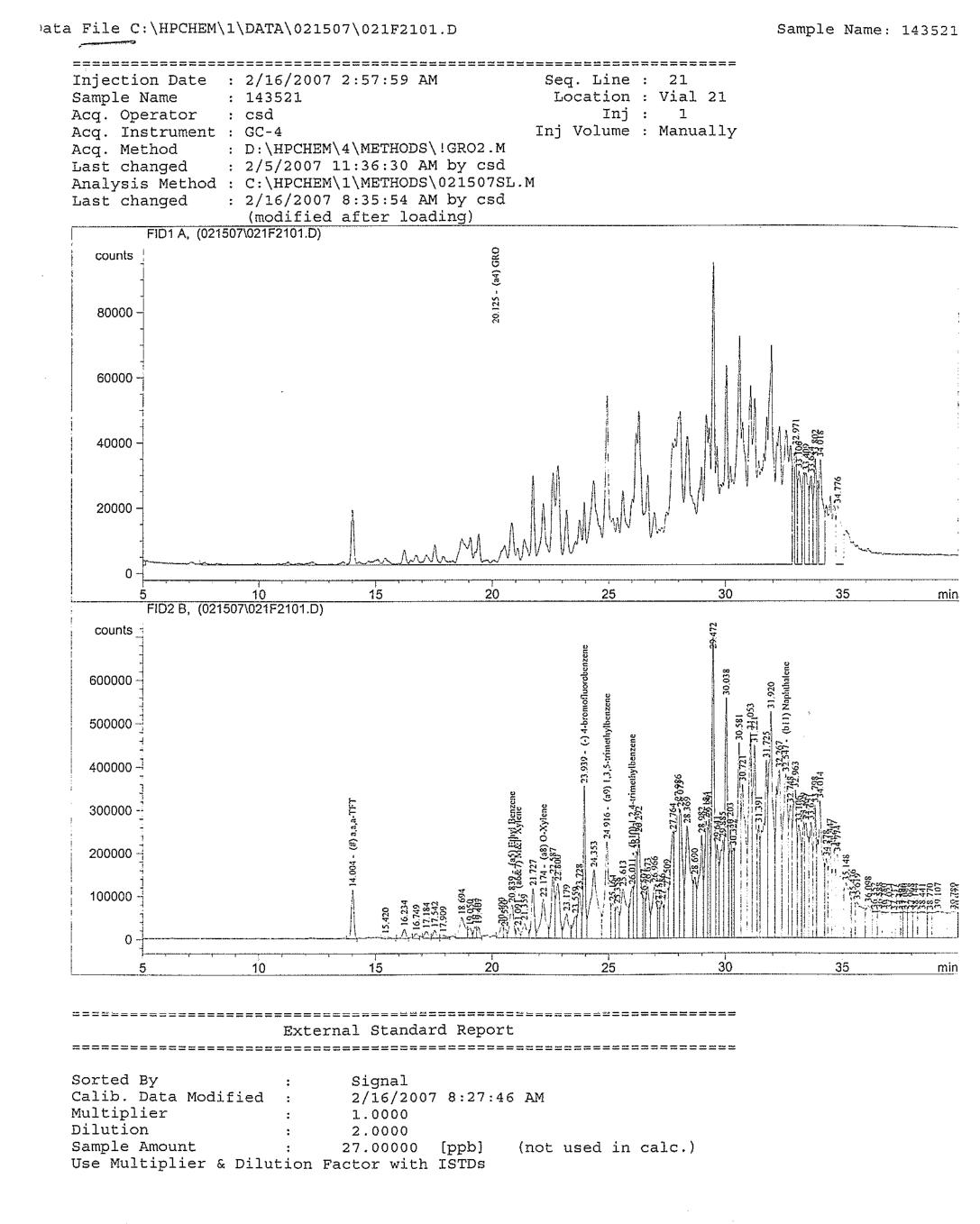

;	ug/L	1.0	<	3.0	111	111	92	19.5
	ug/L	1.0	<	1.0	104	88	91	3.0
ethane	ug/L	1.0	<	1.0	112	116	105	9.3
	ug/L	1.0	<	1.0	100	100	94	5.7
	ug/L	1.0	<	20	157	95	97	2.1
	ug/L	1.0	<	1.0	118	124	119	3.7
	ug/L	1.0	<	1.0	121	128	122	4.6
	ug/L	1.0	<	1.0	121	131	126	4.2
	ug/L	1.0	<	1.0	105	115	110	5.2
ene)	ug/L	1.0	<	1.0	108	115	111	3.3
	ug/L	1.0	<	1.0	116	125	121	2.8
:	ug/L	1.0	<	2.0	106	99	96	2.5
	ug/L	1.0	۷	1.0	121	130	124	4.4
	ug/L	1.0	<b>v</b>	5.0	113	81	82	2.0
	ug/L	1.0	۷ ا	5.0	103	80	83	3.2
	ug/L	1.0	۷	1.0	103	93	93	0.4
	ug/L	1.0	<	1.0	115	127	121	4.8
	ug/L	1.0	۸	2.0	90	70	76	8.4
	ug/L	1.0	<	1.0	112	116	114	1.7
	ug/L	1.0	<	5.0	106	84	85	0.9
	ug/L	1.0	<	1.0	114	122	120	2.1
	ug/L	1.0	<	1.0	118	126	121	3.5
	ug/L	1.0	<	1.0	118	126	122	3.3
	ug/L	1.0	<	1.0	116	121	118	2.9
	ug/L	1.0	<	1.0	117	124	122	2.4

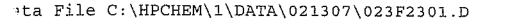


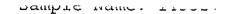



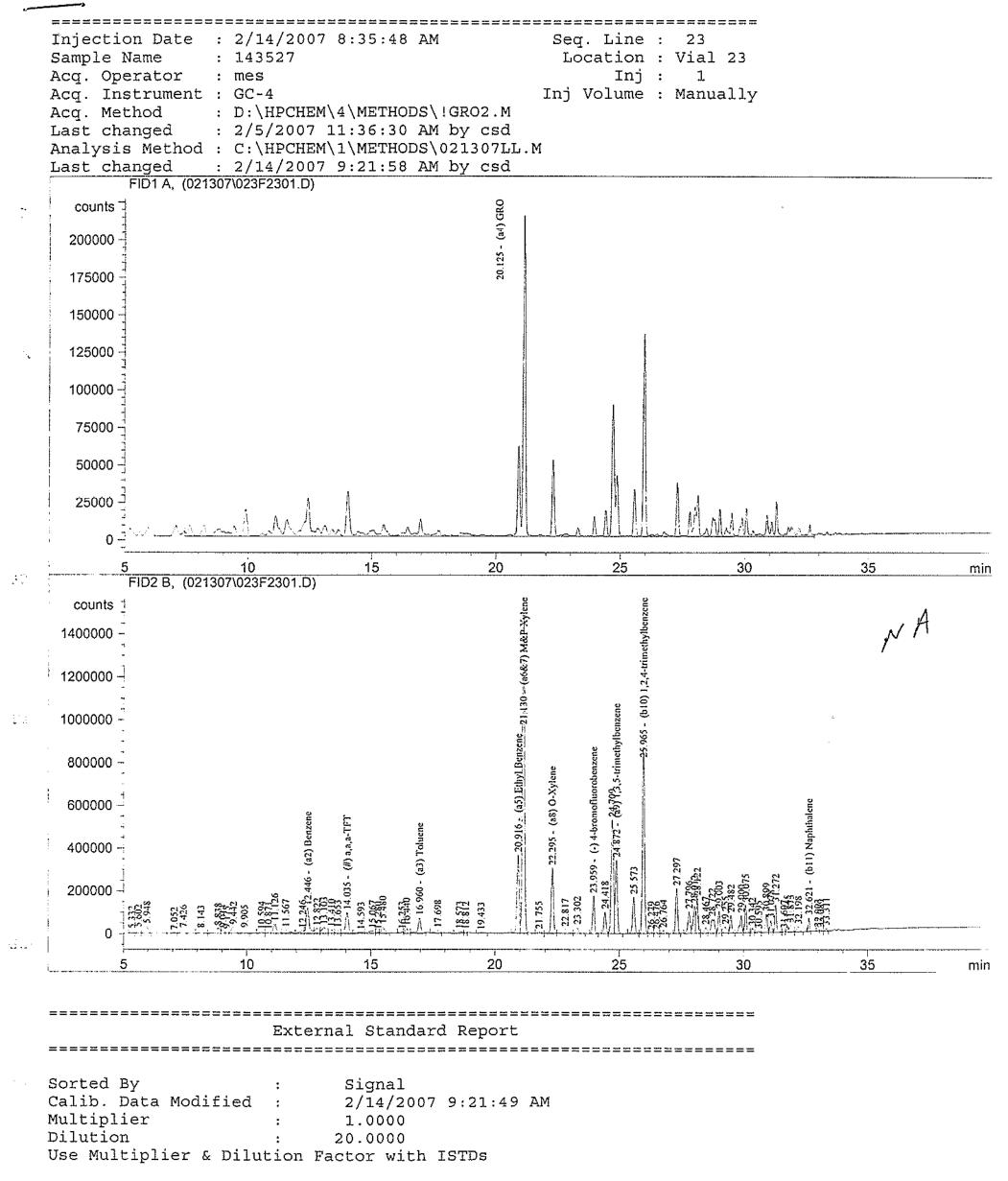


*** End of Report ***



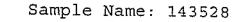



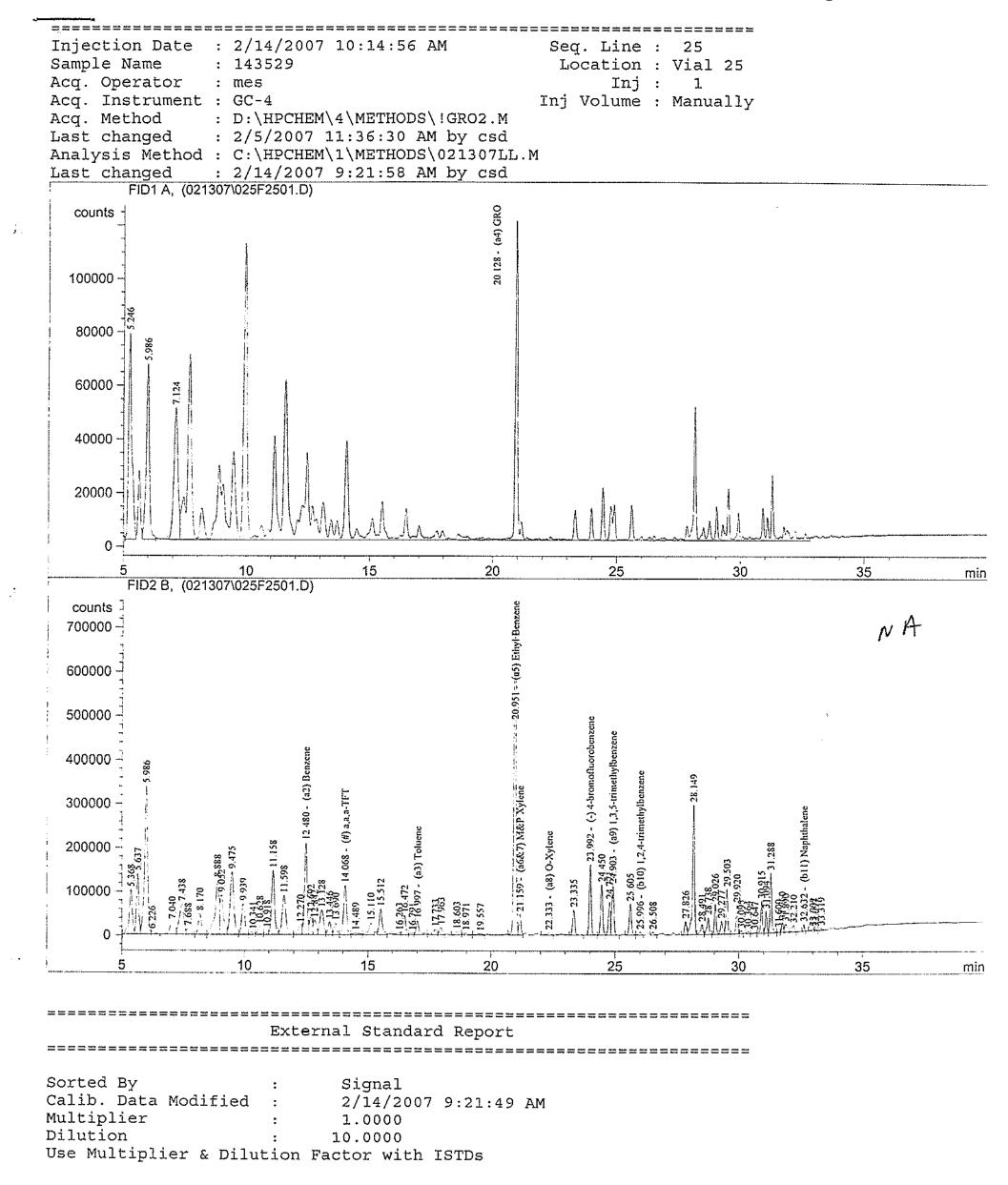




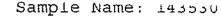



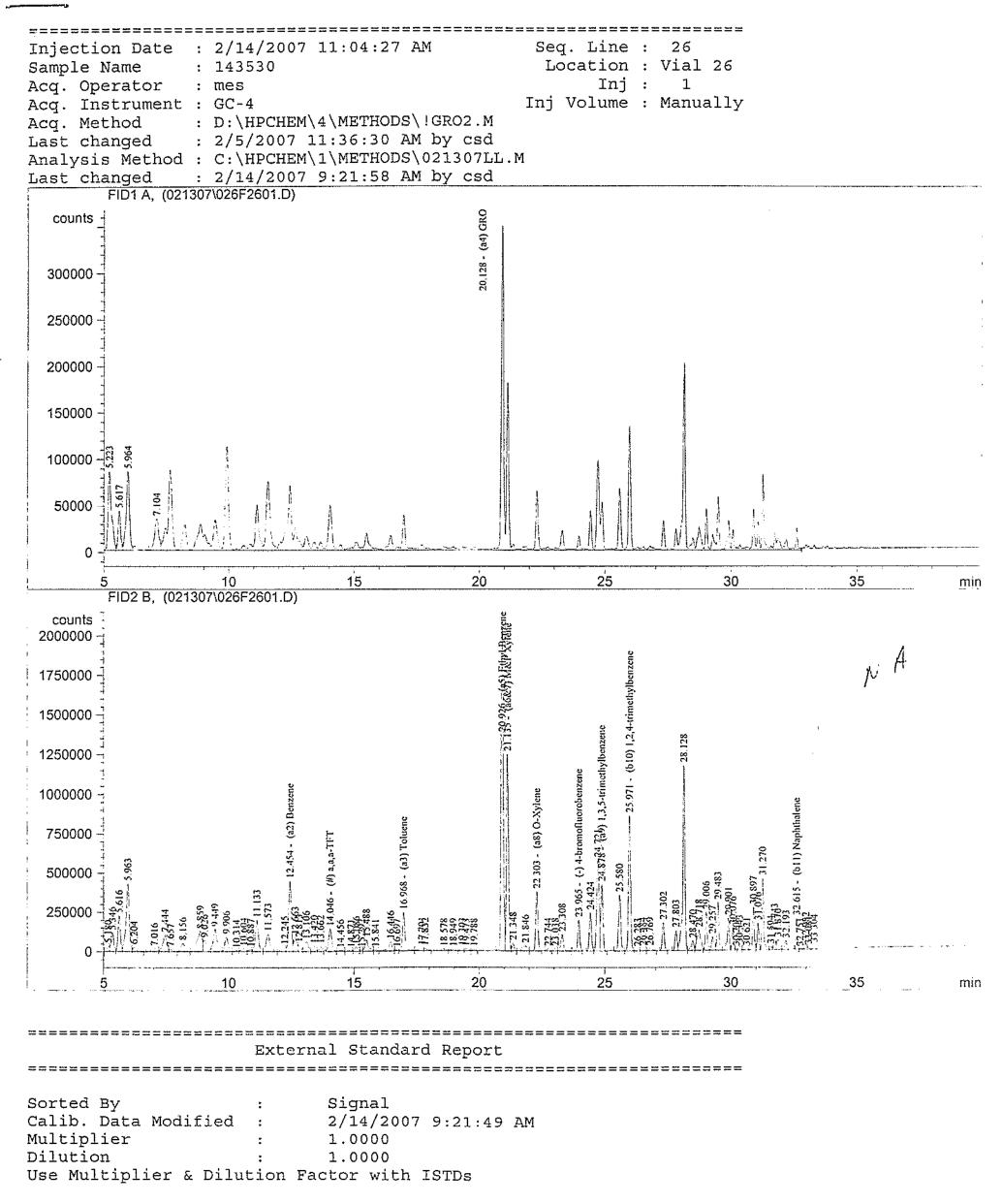






42 .

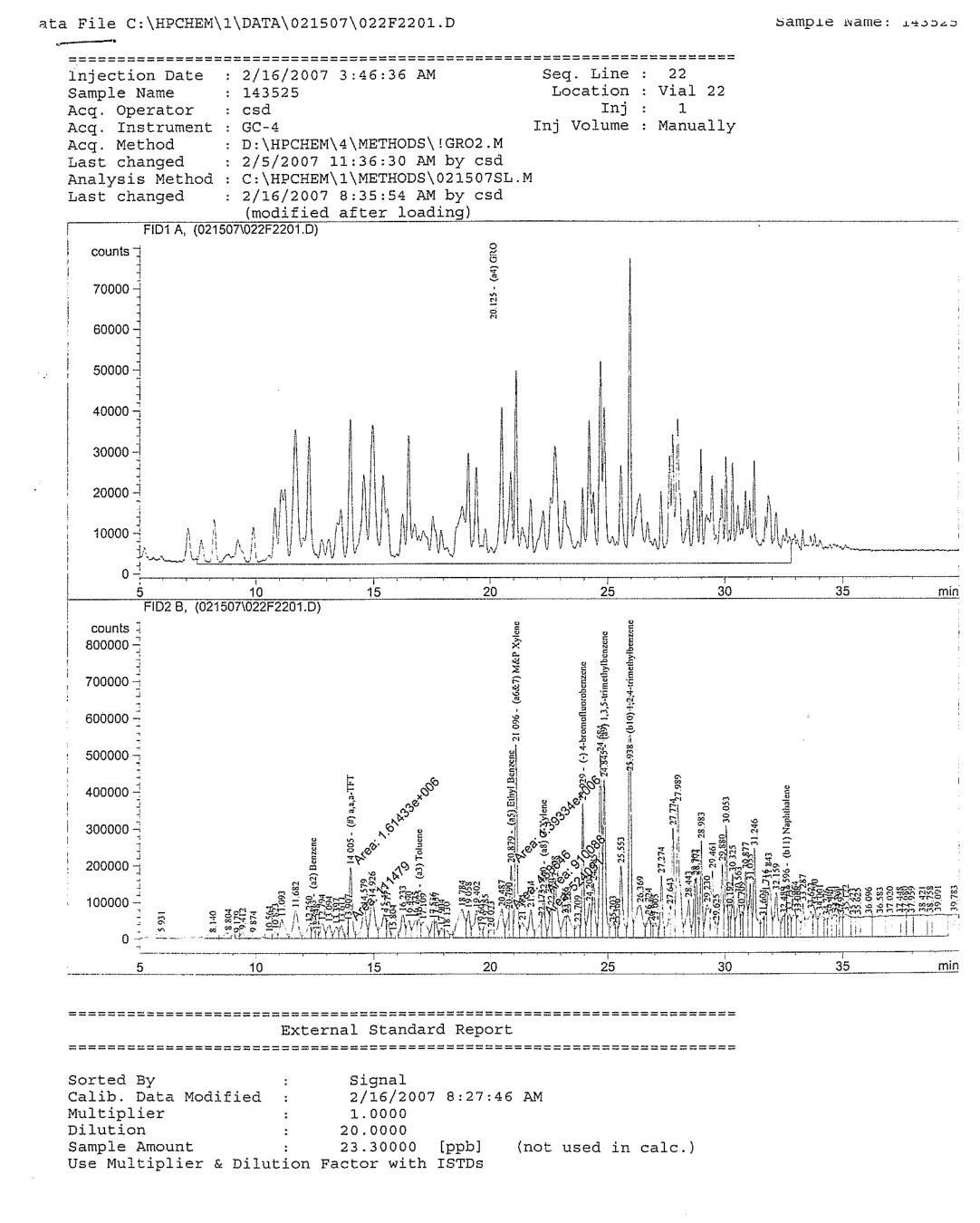





2.




ata File C:\HPCHEM\1\DATA\021307\026F2601.D





Ļ

 $\mathbf{y}_{i}$ 



6/99cp10k	S Project File	orter Goldenrod - STS Project File Its. Retain green copy.	Green - Laboratory Yellow - As needed Pink - Transporter Forward completed original to STS with analytical results. P	atory Yellow - / pleted original to		Distribution: Original and Instructions to Laboratory:
tions, Hazards):	Comments (Weather Conditions, Precautions, Hazards):					Final Disposition:
	INA 3,2,C DANC	□Yes □No [	Seals Intact Upon Receipt?	Seals Intact	nents Only:	Laboratory Comments
Date Time	Relinquished by:	Time 2:00	Date 2-12-07	ALENA D	y: ("A	Received for lab by:
Date 2.12.7 Time /	Relinquished by: Juny Westington	Time 910A	Date 2 12.7		in Ilalyta	Received by:
Date 2/12/07 Time	Relinquished by: X Zm	Time	Date	D		Received by:
n Date 2/9/07 Time 1602	Relinquished by: Markan Derlamo	Time 600	Date 2/9/67		In him	Received by:
Date Time	Delivery by:	Time	Date Cr	mm	Array Kan	Collected by:
hrg 2 hl	BIEX/620	S.	Me014-11		2/28 1105-	Marthan Shall
143523			•	N N	0(HI C/C	(25) J-2
LCS51				X V	W0	(120) 5-5
12521				X V	7 1605	<u>R-5 (6)</u>
143520				× ×	NOS	<u>B-4 (22')</u>
143519				2	200	B-4 (12)
8192hl				× ~	27 1115	B-3 (161)
143517			4152000000000 475827.	× ~	7 1(40	B-3 (5')
NJ92hl	TEX/ERO, DRO, dry ut	Bi	501 2	× ×	2/7 1320	<u>8-2 (151)</u>
Comments on Sample (Include Major Contaminants)	Analysis Request	Ambient Port	Sample Type (Water, soil, air, sludge, etc.)	Grab Composite No. of Containers	Date Time	Sample I.D.
idrid	Other Phone No. Results Due Standa			A VST		rroject No <u>ما کہ مار</u> Project Name <u>Alex</u>
smee Stone	erson <u>M</u>		5/21	Office //	2	i Ga
RECORD NUMBER 35721 THROUGH 35		Special Ha		5		
10201	Nº 38722	RD	RECO	USTODY	OF CU	CHAIN
1 P 1 1 1	ł					

	oject File	Distribution: Original and Green - Laboratory Yellow - As needed Pink - Transporter Goldenrod - STS Project File
Hazards):	Comments (Weather Conditions, Precautions,	Final Disposition:
À	IA 3, 2° conic	Laboratory Comments Only: Seals Intact Upon Receipt?
Date Time	Relinquished by:	Received for lab by: ( 1 108 1 Date 2-12-07 Time/2: 00 Re
Date 2 · / 2 · 7 Time / 2 *	Relinquished by: Jun Matyles	Date 2.12.1 Time 9104
Date 2/12/07 Time	Relinquished by:	Received by: Date Time Re
$\sqrt{Date \mathcal{Q}/q/\sigma'}$ Tim	Relinquished by: Mathew Beckman	Date 2/3/67 Time 1600
Date Time	Delivery by:	Collected by: Marchery Beekingen Date Sone Time Aby 10 De
IN 3533	Eres DRS	2.3. 24g 1635 × 7 Water 7 1 1 1 100
143526		$B_{-1} 20' \frac{2}{5} \frac{105}{5} \frac{1}{3} \frac{3}{3} \frac{1}{3}
143525	(free, DRO, Dry U+	B-1 6' "4 1000 x 3 SOIC 1 2 BTE
22	<	$\overline{1}$ $W = W = W = W = W = W = W = W = W = W $
143531		TW-5 26 105 × 7 7 7
143530		$\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}$
143529		1 - 3 - 2 ¹ - 300 χ - 17 - 2 ⁻¹ - 17
Š		$710^{-2}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$
143527	teo neo	TWI 218 MISY 7 Wester 7 Vor
Comments on Sample (Include Major Contaminants)	Analysis Request	Sample       Date       Image       Image       Grab       Grab       Composite       No. of Containers       Sample Type (Water, soil, air, studge, etc.)       ✓       Preservation       Ambient       PH       Sample       PH       Special Cond.
	Other Phone No.	Project No. <u>2026/00/331</u> PO No C version of the second se
	sh Contact Person	$\frac{300}{100}$ Office $\frac{M_{\rho}}{s}$
RECORD NUMBER 38721 THROUGH 3872		S
J2269 200	Nº 38721	CHAIN OF CUSTODY RECORD

, ,

STS Consultants Ltd. Consulting Engineers



Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414

> Phone: (612)607-1700 Fax: (612)607-6444

February 22, 2007

Mr. Tim Grape STS Consultants,Ltd. 10900 73rd Ave. N. Suite 150 Maple Grove, MN 55369

RE: Project: 200606839 ALEX EXHAUST Pace Project No.: 1046203

Dear Mr. Grape:

Enclosed are the analytical results for sample(s) received by the laboratory on February 09, 2007. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sett Junden

Seth Jacobson

seth.jacobson@pacelabs.com Project Manager

Illinois Certification #: 200011 Iowa Certification #: 368 Minnesota Certification #: 027-053-137 Wisconsin Certification #: 999407970

Enclosures

# **REPORT OF LABORATORY ANALYSIS**





### **PROJECT NARRATIVE**

Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

#### Method: TO-15

Description:TO15 MSV AIRClient:STS Consultants, Ltd.Date:February 22, 2007

#### General Information:

5 samples were analyzed for TO-15. All samples were received in acceptable condition with any exceptions noted below.

#### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### QC Batch: AIR/5173

- IC: The initial calibration for this compound was outside of method control limits. The result is estimated.
  - BLANK (Lab ID: 309344)
  - 1,2,4-Trichlorobenzene
  - DUP (Lab ID: 310336)
  - 1,2,4-Trichlorobenzene
  - FB (Lab ID: 1046203005)
    - 1,2,4-Trichlorobenzene
  - LCS (Lab ID: 309345)
    - 1,2,4-Trichlorobenzene

SS: This analyte did not meet the secondary source verification criteria for the initial calibration. The reported result should be considered an estimated value.

- DUP (Lab ID: 310336)
  - Acetone
- FB (Lab ID: 1046203005)
  - Acetone
- LCS (Lab ID: 309345)
- Acetone
  - Tetrahydrofuran

#### QC Batch: AIR/5188

IC: The initial calibration for this compound was outside of method control limits. The result is estimated.

- BLANK (Lab ID: 310368)
- 1,2,4-Trichlorobenzene
- DUP (Lab ID: 310337)
  - 1,2,4-Trichlorobenzene
- LCS (Lab ID: 310369)
  - 1,2,4-Trichlorobenzene
- VP-3 (Lab ID: 1046203003)
  - 1,2,4-Trichlorobenzene

SS: This analyte did not meet the secondary source verification criteria for the initial calibration. The reported result should be considered an estimated value.

- LCS (Lab ID: 310369)
  - Acetone
- VP-3 (Lab ID: 1046203003)
  - Acetone

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..





### **PROJECT NARRATIVE**

Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

Method:	TO-15
<b>Description:</b>	TO15 MSV AIR
Client:	STS Consultants, Ltd.
Date:	February 22, 2007

#### QC Batch: AIR/5198

- IC: The initial calibration for this compound was outside of method control limits. The result is estimated.
  - BLANK (Lab ID: 310879)
    - 1,2,4-Trichlorobenzene
  - DUP (Lab ID: 310881)
    - 1,2,4-Trichlorobenzene
  - DUP (Lab ID: 310882)
    - 1,2,4-Trichlorobenzene
  - LCS (Lab ID: 310880)
  - 1,2,4-Trichlorobenzene
  - VP-1 (Lab ID: 1046203001)
  - 1,2,4-Trichlorobenzene
  - VP-2 (Lab ID: 1046203002)
  - 1,2,4-Trichlorobenzene
  - VP-4 (Lab ID: 1046203004)
    - 1,2,4-Trichlorobenzene

SS: This analyte did not meet the secondary source verification criteria for the initial calibration. The reported result should be considered an estimated value.

- LCS (Lab ID: 310880)
- Acetone
- VP-4 (Lab ID: 1046203004)
  - Acetone

#### **Continuing Calibration:**

All criteria were within method requirements with any exceptions noted below.

#### QC Batch: AIR/5173

CC: The continuing calibration for this compound is outside of method control limits. The result is estimated.

- LCS (Lab ID: 309345)
  - 1,2,4-Trimethylbenzene
  - Naphthalene

#### QC Batch: AIR/5188

CC: The continuing calibration for this compound is outside of method control limits. The result is estimated.

- LCS (Lab ID: 310369)
  - 1,2,4-Trimethylbenzene
  - Hexachloro-1,3-butadiene
  - Naphthalene
- VP-3 (Lab ID: 1046203003)
  - Naphthalene

#### Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

### Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

# **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

EN ACCORD





Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414

> Phone: (612)607-1700 Fax: (612)607-6444

#### **PROJECT NARRATIVE**

Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

#### Method: TO-15

Description:TO15 MSV AIRClient:STS Consultants, Ltd.Date:February 22, 2007

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### QC Batch: AIR/5173

L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.

- LCS (Lab ID: 309345)
  - Ethyl acetate

L3: Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.

- LCS (Lab ID: 309345)
  - Hexachloro-1,3-butadiene

#### QC Batch: AIR/5188

L3: Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.

- LCS (Lab ID: 310369)
  - 1,2,4-Trichlorobenzene
  - Ethyl acetate
  - Hexachloro-1,3-butadiene

#### QC Batch: AIR/5198

L2: Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

- LCS (Lab ID: 310880)
  - Hexachloro-1,3-butadiene

L3: Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.

- LCS (Lab ID: 310880)
  - Naphthalene

#### **Duplicate Sample:**

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: AIR/5188

D6: The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 310337)
  - Acetone

#### Additional Comments:

Sample Comments:

- K1: The Total Hydrocarbon (THC) pattern occured in the first half of the chromatogram (before toluene).
  - VP-1 (Lab ID: 1046203001)
  - VP-2 (Lab ID: 1046203002)

K3: The Total Hydrocarbon (THC) pattern is evenly distributed throughout the chromatogram (before and after toluene).

• VP-3 (Lab ID: 1046203003)

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..





### **PROJECT NARRATIVE**

Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

#### Method: TO-15

Description:TO15 MSV AIRClient:STS Consultants, Ltd.Date:February 22, 2007

Sample Comments:

- K1: The Total Hydrocarbon (THC) pattern occured in the first half of the chromatogram (before toluene).
   VP-4 (Lab ID: 1046203004)
- K3: The Total Hydrocarbon (THC) pattern is evenly distributed throughout the chromatogram (before and after toluene).
  - FB (Lab ID: 1046203005)
- Analyte Comments:

QC Batch: AIR/5188

- E: Analyte concentration exceeded the calibration range. The reported result is estimated.
  - DUP (Lab ID: 310337) • Acetone
- E: Analyte concentration exceeded the calibration range. The reported result is estimated.
  - DUP (Lab ID: 310337)
    - Propylene

#### QC Batch: AIR/5198

- E: Analyte concentration exceeded the calibration range. The reported result is estimated.
  - VP-1 (Lab ID: 1046203001)
    - Cyclohexane
- E: Analyte concentration exceeded the calibration range. The reported result is estimated.
  - VP-1 (Lab ID: 1046203001)

n-Hexane

- E: Analyte concentration exceeded the calibration range. The reported result is estimated.
  - VP-2 (Lab ID: 1046203002)
    - Cyclohexane
- E: Analyte concentration exceeded the calibration range. The reported result is estimated.
  - VP-2 (Lab ID: 1046203002)
    - n-Hexane
- E: Analyte concentration exceeded the calibration range. The reported result is estimated.
  - VP-4 (Lab ID: 1046203004)
    - Propylene
- E: Analyte concentration exceeded the calibration range. The reported result is estimated.
  - DUP (Lab ID: 310881)
    - Propylene

This data package has been reviewed for quality and completeness and is approved for release.

# **REPORT OF LABORATORY ANALYSIS**





Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414

> Phone: (612)607-1700 Fax: (612)607-6444

## SAMPLE SUMMARY

#### Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

Lab ID	Sample ID	Matrix	Date Collected	Date Received
1046203001	VP-1	Air	02/08/07 14:45	02/09/07 13:00
1046203002	VP-2	Air	02/08/07 14:20	02/09/07 13:00
1046203003	VP-3	Air	02/08/07 15:00	02/09/07 13:00
1046203004	VP-4	Air	02/08/07 15:30	02/09/07 13:00
1046203005	FB	Air	02/08/07 15:45	02/09/07 13:00

# **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



Page 6 of 33



## SAMPLE ANALYTE COUNT

Project:200606839ALEX EXHAUSTPace Project No.:1046203

Lab ID	Sample ID	Method	Analytes Reported
1046203001 V	'P-1	TO-15	58
1046203002 V	'P-2	TO-15	58
1046203003 V	'P-3	TO-15	58
1046203004 V	'P-4	TO-15	58
1046203005 F	В	TO-15	58

# **REPORT OF LABORATORY ANALYSIS**





## **ANALYTICAL RESULTS**

#### Project: 200606839 ALEX EXHAUST

Sample: VP-1	Lab ID: 10462030	01 Collected: 02/08/0	07 14:45	Received: 02/09/07 13:00	Matrix: Air	
Parameters	Results U	nits Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: To	O-15				
Acetone	ND ug/m3	312	650	02/14/07 03:2	3 67-64-1	
Benzene	<b>15700</b> ug/m3	422	650	02/14/07 03:2	3 71-43-2	
Bromodichloromethane	ND ug/m3	910	650	02/14/07 03:2	3 75-27-4	
Bromoform	ND ug/m3	1360	650	02/14/07 03:2	3 75-25-2	
Bromomethane	ND ug/m3	514	650	02/14/07 03:2	3 74-83-9	
1,3-Butadiene	ND ug/m3	292	650	02/14/07 03:2	3 106-99-0	
2-Butanone (MEK)	ND ug/m3	390	650	02/14/07 03:2	3 78-93-3	
Carbon disulfide	ND ug/m3	410	650	02/14/07 03:2	3 75-15-0	
Carbon tetrachloride	ND ug/m3	845	650	02/14/07 03:2	3 56-23-5	
Chlorobenzene	ND ug/m3	611	650	02/14/07 03:2	3 108-90-7	
Chloroethane	ND ug/m3	351	650	02/14/07 03:2	3 75-00-3	
Chloroform	ND ug/m3	644	650	02/14/07 03:2	3 67-66-3	
Chloromethane	ND ug/m3	273	650	02/14/07 03:2	3 74-87-3	
Cyclohexane	<b>1080000</b> ug/m3	4420	6500	02/14/07 03:5	8 110-82-7	Е
Dibromochloromethane	ND ug/m3	1100	650	02/14/07 03:2	3 124-48-1	
1,2-Dibromoethane (EDB)	ND ug/m3	1040	650	02/14/07 03:2	3 106-93-4	
1,2-Dichlorobenzene	ND ug/m3	780	650	02/14/07 03:2	3 95-50-1	
1,3-Dichlorobenzene	ND ug/m3	780	650	02/14/07 03:2	3 541-73-1	
1,4-Dichlorobenzene	ND ug/m3	780	650	02/14/07 03:2	3 106-46-7	
Dichlorodifluoromethane	ND ug/m3	650	650	02/14/07 03:2	3 75-71-8	
1,1-Dichloroethane	ND ug/m3	533	650	02/14/07 03:2	3 75-34-3	
1,2-Dichloroethane	ND ug/m3	533	650	02/14/07 03:2	3 107-06-2	
1,1-Dichloroethene	ND ug/m3	526	650	02/14/07 03:2	3 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	526	650	02/14/07 03:2	3 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	526	650	02/14/07 03:2	3 156-60-5	
1,2-Dichloropropane	ND ug/m3	611	650	02/14/07 03:2		
cis-1,3-Dichloropropene	ND ug/m3	598	650		3 10061-01-5	
rans-1,3-Dichloropropene	ND ug/m3	598	650		3 10061-02-6	
Dichlorotetrafluoroethane	ND ug/m3	910	650	02/14/07 03:2		
Ethyl acetate	ND ug/m3	474	650	02/14/07 03:2		
Ethylbenzene	<b>18400</b> ug/m3	572	650	02/14/07 03:2		
4-Ethyltoluene	<b>4050</b> ug/m3	1620	650	02/14/07 03:2		
n-Heptane	<b>288000</b> ug/m3	5400	6500	02/14/07 03:5		
Hexachloro-1,3-butadiene	ND ug/m3	1430	650	02/14/07 03:2		L2
n-Hexane	<b>540000</b> ug/m3	4680	6500	02/14/07 03:5		E
2-Hexanone	ND ug/m3	540	650	02/14/07 03:2		-
Methylene Chloride	ND ug/m3	462	650	02/14/07 03:2		
4-Methyl-2-pentanone (MIBK)	ND ug/m3	540	650	02/14/07 03:2		
Methyl-tert-butyl ether	ND ug/m3	474	650		3 1634-04-4	
Naphthalene	ND ug/m3	1760	650	02/14/07 03:2		
Propylene	ND ug/m3	228	650	02/14/07 03:2		
Styrene	ND ug/m3	566	650	02/14/07 03:2		
1,1,2,2-Tetrachloroethane	ND ug/m3	910	650	02/14/07 03:2		
Tetrachloroethene	ND ug/m3 ND ug/m3	910	650	02/14/07 03:2		
	-		650 650	02/14/07 03:2		
Tetrahydrofuran	ND ug/m3	390				
Toluene	<b>4100</b> ug/m3	500	650		3 108-88-3	

Date: 02/22/2007 03:18 PM

# **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..





## **ANALYTICAL RESULTS**

#### Project: 200606839 ALEX EXHAUST

Pace Project No.:

1046203 Sample: VP-1 Lab ID: 1046203001 Collected: 02/08/07 14:45 Received: 02/09/07 13:00 Matrix: Air

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Met	hod: TO-15						
1,1,1-Trichloroethane	ND ug	g/m3	715	650		02/14/07 03:23	71-55-6	
1,1,2-Trichloroethane	ND ug	g/m3	715	650		02/14/07 03:23	79-00-5	
Trichloroethene	ND ug	g/m3	715	650		02/14/07 03:23	79-01-6	
Trichlorofluoromethane	ND ug	g/m3	715	650		02/14/07 03:23	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND ug	g/m3	1040	650		02/14/07 03:23	76-13-1	
1,2,4-Trimethylbenzene	<b>5930</b> ug	g/m3	1620	650		02/14/07 03:23	95-63-6	
1,3,5-Trimethylbenzene	<b>2370</b> ug	g/m3	1620	650		02/14/07 03:23	108-67-8	
Vinyl acetate	ND ug	g/m3	462	650		02/14/07 03:23	108-05-4	
Vinyl chloride	ND ug	g/m3	338	650		02/14/07 03:23	75-01-4	
m&p-Xylene	<b>31200</b> ug	g/m3	1140	650		02/14/07 03:23	1330-20-7	
o-Xylene	<b>5180</b> ug	g/m3	572	650		02/14/07 03:23	95-47-6	

## **REPORT OF LABORATORY ANALYSIS**

Page 9 of 33





#### ANALYTICAL RESULTS

#### Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

Sample: VP-2 Received: 02/09/07 13:00 Lab ID: 1046203002 Collected: 02/08/07 14:20 Matrix: Air Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual **TO15 MSV AIR** Analytical Method: TO-15 Acetone ND ug/m3 300 625 02/14/07 02:10 67-64-1 33500 ug/m3 406 625 02/14/07 02:10 71-43-2 Benzene ND ug/m3 Bromodichloromethane 875 625 02/14/07 02:10 75-27-4 ND ug/m3 Bromoform 1310 625 02/14/07 02:10 75-25-2 02/14/07 02:10 74-83-9 ND ug/m3 Bromomethane 494 625 1,3-Butadiene ND ug/m3 281 625 02/14/07 02:10 106-99-0 2-Butanone (MEK) ND ug/m3 375 625 02/14/07 02:10 78-93-3 Carbon disulfide ND ug/m3 394 625 02/14/07 02:10 75-15-0 Carbon tetrachloride ND ug/m3 812 625 02/14/07 02:10 56-23-5 Chlorobenzene ND ug/m3 588 625 02/14/07 02:10 108-90-7 Chloroethane ND ug/m3 338 625 02/14/07 02:10 75-00-3 Chloroform ND ug/m3 619 625 02/14/07 02:10 67-66-3 Chloromethane ND ug/m3 262 625 02/14/07 02:10 74-87-3 918000 ug/m3 4250 6250 02/14/07 02:47 110-82-7 Е Cyclohexane Dibromochloromethane ND ug/m3 1060 625 02/14/07 02:10 124-48-1 ND ug/m3 1,2-Dibromoethane (EDB) 1000 625 02/14/07 02:10 106-93-4 1,2-Dichlorobenzene ND ug/m3 750 625 02/14/07 02:10 95-50-1 1,3-Dichlorobenzene ND ug/m3 750 625 02/14/07 02:10 541-73-1 1,4-Dichlorobenzene ND ug/m3 750 625 02/14/07 02:10 106-46-7 ND ug/m3 625 625 Dichlorodifluoromethane 02/14/07 02:10 75-71-8 1,1-Dichloroethane ND ug/m3 512 625 02/14/07 02:10 75-34-3 1,2-Dichloroethane ND ug/m3 512 625 02/14/07 02:10 107-06-2 ND ug/m3 506 625 02/14/07 02:10 75-35-4 1.1-Dichloroethene cis-1,2-Dichloroethene ND ug/m3 506 625 02/14/07 02:10 156-59-2 trans-1,2-Dichloroethene ND ug/m3 506 625 02/14/07 02:10 156-60-5 1,2-Dichloropropane ND ug/m3 588 625 02/14/07 02:10 78-87-5 cis-1,3-Dichloropropene ND ug/m3 575 625 02/14/07 02:10 10061-01-5 trans-1,3-Dichloropropene ND ug/m3 575 625 02/14/07 02:10 10061-02-6 Dichlorotetrafluoroethane ND ug/m3 875 625 02/14/07 02:10 76-14-2 Ethyl acetate ND ug/m3 456 625 02/14/07 02:10 141-78-6 18000 ug/m3 Ethylbenzene 550 625 02/14/07 02:10 100-41-4 5100 ug/m3 4-Ethyltoluene 1560 625 02/14/07 02:10 622-96-8 n-Heptane ND ua/m3 519 625 02/14/07 02:10 142-82-5 Hexachloro-1,3-butadiene ND ug/m3 1380 625 02/14/07 02:10 87-68-3 L2 02/14/07 02:47 110-54-3 829000 ug/m3 4500 6250 Е n-Hexane ND ug/m3 625 02/14/07 02:10 591-78-6 2-Hexanone 519 02/14/07 02:10 75-09-2 625 Methylene Chloride ND ug/m3 444 4-Methyl-2-pentanone (MIBK) ND ug/m3 519 625 02/14/07 02:10 108-10-1 Methyl-tert-butyl ether ND ug/m3 456 625 02/14/07 02:10 1634-04-4 Naphthalene ND ug/m3 1690 625 02/14/07 02:10 91-20-3 Propylene ND ug/m3 219 625 02/14/07 02:10 115-07-1 Styrene ND ug/m3 544 625 02/14/07 02:10 100-42-5 1,1,2,2-Tetrachloroethane ND ug/m3 875 625 02/14/07 02:10 79-34-5 Tetrachloroethene ND ug/m3 875 625 02/14/07 02:10 127-18-4 ND ug/m3 375 625 02/14/07 02:10 109-99-9 Tetrahydrofuran 3740 ug/m3 481 625 02/14/07 02:10 108-88-3 Toluene ND ug/m3 619 625 02/14/07 02:10 120-82-1 IC 1,2,4-Trichlorobenzene

Date: 02/22/2007 03:18 PM

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..



Page 10 of 33



## ANALYTICAL RESULTS

#### Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

NOUCOSS ALLA LANAUST

Sample: VP-2	Lab ID: 1046203002	Collected: 02/08/0	7 14:20	Received: 02	2/09/07 13:00 N	Aatrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15						
1,1,1-Trichloroethane	ND ug/m3	688	625		02/14/07 02:10	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	688	625		02/14/07 02:10	79-00-5	
Trichloroethene	ND ug/m3	688	625		02/14/07 02:10	79-01-6	
Trichlorofluoromethane	ND ug/m3	688	625		02/14/07 02:10	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND ug/m3	1000	625		02/14/07 02:10	76-13-1	
1,2,4-Trimethylbenzene	<b>6970</b> ug/m3	1560	625		02/14/07 02:10	95-63-6	
1,3,5-Trimethylbenzene	<b>4190</b> ug/m3	1560	625		02/14/07 02:10	108-67-8	
Vinyl acetate	ND ug/m3	444	625		02/14/07 02:10	108-05-4	
Vinyl chloride	ND ug/m3	325	625		02/14/07 02:10	75-01-4	
m&p-Xylene	<b>28600</b> ug/m3	1100	625		02/14/07 02:10	1330-20-7	
o-Xylene	<b>2760</b> ug/m3	550	625		02/14/07 02:10	95-47-6	

## **REPORT OF LABORATORY ANALYSIS**

Page 11 of 33





#### ANALYTICAL RESULTS

#### Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

Sample: VP-3 Received: 02/09/07 13:00 Lab ID: 1046203003 Collected: 02/08/07 15:00 Matrix: Air Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual **TO15 MSV AIR** Analytical Method: TO-15 Acetone 48.6 ug/m3 36 7.55 02/13/07 17:19 67-64-1 SS 0.98 02/12/07 19:02 71-43-2 29.1 ug/m3 Benzene 1.51 ND ug/m3 Bromodichloromethane 2.1 02/12/07 19:02 75-27-4 1.51 ND ug/m3 Bromoform 02/12/07 19:02 75-25-2 3.2 1.51 ND ug/m3 02/12/07 19:02 74-83-9 Bromomethane 1.2 1.51 ND ug/m3 1,3-Butadiene 0.68 1.51 02/12/07 19:02 106-99-0 2-Butanone (MEK) 11.0 ug/m3 0.91 1.51 02/12/07 19:02 78-93-3 Carbon disulfide 3.7 ug/m3 0.95 1.51 02/12/07 19:02 75-15-0 Carbon tetrachloride ND ug/m3 2.0 1.51 02/12/07 19:02 56-23-5 ND ug/m3 Chlorobenzene 1.4 1.51 02/12/07 19:02 108-90-7 Chloroethane ND ug/m3 0.82 1.51 02/12/07 19:02 75-00-3 Chloroform ND ug/m3 1.5 1.51 02/12/07 19:02 67-66-3 Chloromethane ND ug/m3 0.63 1.51 02/12/07 19:02 74-87-3 98.5 ug/m3 1.51 1.0 02/12/07 19:02 110-82-7 Cyclohexane ND ug/m3 2.6 Dibromochloromethane 1.51 02/12/07 19:02 124-48-1 ND ug/m3 1,2-Dibromoethane (EDB) 2.4 1.51 02/12/07 19:02 106-93-4 1,2-Dichlorobenzene ND ug/m3 1.8 1.51 02/12/07 19:02 95-50-1 1,3-Dichlorobenzene ND ug/m3 1.8 1.51 02/12/07 19:02 541-73-1 1,4-Dichlorobenzene ND ug/m3 1.8 1.51 02/12/07 19:02 106-46-7 29.7 ug/m3 Dichlorodifluoromethane 1.5 1.51 02/12/07 19:02 75-71-8 1,1-Dichloroethane ND ug/m3 1.2 1.51 02/12/07 19:02 75-34-3 1,2-Dichloroethane ND ug/m3 1.2 1.51 02/12/07 19:02 107-06-2 ND ug/m3 1.2 1.51 02/12/07 19:02 75-35-4 1.1-Dichloroethene cis-1,2-Dichloroethene ND ug/m3 1.2 1.51 02/12/07 19:02 156-59-2 trans-1,2-Dichloroethene ND ug/m3 1.2 1.51 02/12/07 19:02 156-60-5 1,2-Dichloropropane ND ug/m3 1.4 1.51 02/12/07 19:02 78-87-5 ND ug/m3 cis-1,3-Dichloropropene 1.4 1.51 02/12/07 19:02 10061-01-5 trans-1,3-Dichloropropene ND ug/m3 1.4 1.51 02/12/07 19:02 10061-02-6 Dichlorotetrafluoroethane ND ug/m3 2.1 1.51 02/12/07 19:02 76-14-2 Ethyl acetate ND ug/m3 1.1 1.51 02/12/07 19:02 141-78-6 15.0 ug/m3 02/12/07 19:02 100-41-4 Ethylbenzene 1.3 1.51 11.0 ug/m3 02/12/07 19:02 622-96-8 4-Ethyltoluene 3.8 1.51 n-Heptane 36.2 ua/m3 1.3 1.51 02/12/07 19:02 142-82-5 Hexachloro-1,3-butadiene ND ug/m3 3.3 1.51 02/12/07 19:02 87-68-3 42.1 ug/m3 02/12/07 19:02 110-54-3 n-Hexane 1.1 1.51 ND ug/m3 02/12/07 19:02 591-78-6 2-Hexanone 1.3 1.51 2.1 ug/m3 02/12/07 19:02 75-09-2 Methylene Chloride 1.51 1.1 4-Methyl-2-pentanone (MIBK) ND ug/m3 1.51 02/12/07 19:02 108-10-1 1.3 Methyl-tert-butyl ether ND ug/m3 1.1 1.51 02/12/07 19:02 1634-04-4 Naphthalene 4.3 ug/m3 4.1 1.51 02/12/07 19:02 91-20-3 CC Propylene 167 ug/m3 7.55 02/13/07 17:19 115-07-1 2.6 Styrene 2.9 ug/m3 1.3 1.51 02/12/07 19:02 100-42-5 1,1,2,2-Tetrachloroethane ND ug/m3 02/12/07 19:02 79-34-5 2.1 1.51 Tetrachloroethene 3.2 ug/m3 2.1 1.51 02/12/07 19:02 127-18-4 Tetrahydrofuran ND ug/m3 0.91 1.51 02/12/07 19:02 109-99-9 39.1 ug/m3 1.51 02/12/07 19:02 108-88-3 Toluene 1.2 ND ug/m3 1.5 02/12/07 19:02 120-82-1 IC 1,2,4-Trichlorobenzene 1.51

Date: 02/22/2007 03:18 PM

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nout the written consent of Face Analytical Services, inc..



Page 12 of 33



## ANALYTICAL RESULTS

#### Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

Sample: VP-3	Lab ID: 1046	6203003	Collected: 02/08/	07 15:00	Received: 02	2/09/07 13:00 N	latrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Meth	nod: TO-15						
1,1,1-Trichloroethane	ND ug/	/m3	1.7	1.51		02/12/07 19:02	71-55-6	
1,1,2-Trichloroethane	ND ug/	/m3	1.7	1.51		02/12/07 19:02	79-00-5	
Trichloroethene	ND ug/	/m3	1.7	1.51		02/12/07 19:02	79-01-6	
Trichlorofluoromethane	ND ug/	/m3	1.7	1.51		02/12/07 19:02	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND ug/	/m3	2.4	1.51		02/12/07 19:02	76-13-1	
1,2,4-Trimethylbenzene	<b>31.3</b> ug/	/m3	3.8	1.51		02/12/07 19:02	95-63-6	
1,3,5-Trimethylbenzene	<b>8.9</b> ug/	/m3	3.8	1.51		02/12/07 19:02	108-67-8	
Vinyl acetate	ND ug/	/m3	1.1	1.51		02/12/07 19:02	108-05-4	
Vinyl chloride	ND ug/	/m3	0.79	1.51		02/12/07 19:02	75-01-4	
m&p-Xylene	<b>36.9</b> ug/	/m3	2.7	1.51		02/12/07 19:02	1330-20-7	
o-Xylene	<b>11.7</b> ug/	/m3	1.3	1.51		02/12/07 19:02	95-47-6	

Date: 02/22/2007 03:18 PM

## **REPORT OF LABORATORY ANALYSIS**

Page 13 of 33





#### ANALYTICAL RESULTS

#### Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

Sample: VP-4 Received: 02/09/07 13:00 Lab ID: 1046203004 Collected: 02/08/07 15:30 Matrix: Air Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual **TO15 MSV AIR** Analytical Method: TO-15 Acetone 48.4 ug/m3 31 6.5 02/13/07 17:49 67-64-1 SS 02/13/07 17:49 71-43-2 21.9 ug/m3 4.2 Benzene 6.5 ND ug/m3 Bromodichloromethane 9.1 6.5 02/13/07 17:49 75-27-4 ND ug/m3 Bromoform 13.6 6.5 02/13/07 17:49 75-25-2 ND ug/m3 02/13/07 17:49 74-83-9 Bromomethane 5.1 6.5 ND ug/m3 1,3-Butadiene 2.9 6.5 02/13/07 17:49 106-99-0 2-Butanone (MEK) ND ug/m3 3.9 6.5 02/13/07 17:49 78-93-3 Carbon disulfide 6.8 ug/m3 4.1 6.5 02/13/07 17:49 75-15-0 Carbon tetrachloride ND ug/m3 8.4 6.5 02/13/07 17:49 56-23-5 ND ug/m3 Chlorobenzene 6.1 6.5 02/13/07 17:49 108-90-7 Chloroethane ND ug/m3 3.5 6.5 02/13/07 17:49 75-00-3 Chloroform ND ug/m3 6.4 6.5 02/13/07 17:49 67-66-3 Chloromethane ND ug/m3 2.7 6.5 02/13/07 17:49 74-87-3 27.0 ug/m3 4.4 6.5 02/13/07 17:49 110-82-7 Cyclohexane ND ug/m3 Dibromochloromethane 11.0 6.5 02/13/07 17:49 124-48-1 ND ug/m3 1,2-Dibromoethane (EDB) 10.4 6.5 02/13/07 17:49 106-93-4 1,2-Dichlorobenzene ND ug/m3 7.8 6.5 02/13/07 17:49 95-50-1 1,3-Dichlorobenzene ND ug/m3 7.8 6.5 02/13/07 17:49 541-73-1 1,4-Dichlorobenzene ND ug/m3 7.8 6.5 02/13/07 17:49 106-46-7 ND ug/m3 6.5 6.5 Dichlorodifluoromethane 02/13/07 17:49 75-71-8 1,1-Dichloroethane ND ug/m3 5.3 6.5 02/13/07 17:49 75-34-3 1,2-Dichloroethane ND ug/m3 5.3 6.5 02/13/07 17:49 107-06-2 ND ug/m3 5.3 6.5 02/13/07 17:49 75-35-4 1.1-Dichloroethene cis-1,2-Dichloroethene ND ug/m3 5.3 6.5 02/13/07 17:49 156-59-2 trans-1,2-Dichloroethene ND ug/m3 5.3 6.5 02/13/07 17:49 156-60-5 1,2-Dichloropropane ND ug/m3 6.1 6.5 02/13/07 17:49 78-87-5 ND ug/m3 cis-1,3-Dichloropropene 6.0 6.5 02/13/07 17:49 10061-01-5 trans-1,3-Dichloropropene ND ug/m3 6.0 6.5 02/13/07 17:49 10061-02-6 Dichlorotetrafluoroethane ND ug/m3 9.1 6.5 02/13/07 17:49 76-14-2 Ethyl acetate ND ug/m3 4.7 6.5 02/13/07 17:49 141-78-6 7.2 ug/m3 Ethylbenzene 5.7 6.5 02/13/07 17:49 100-41-4 ND ug/m3 4-Ethyltoluene 16.2 6.5 02/13/07 17:49 622-96-8 n-Heptane 21.1 ug/m3 5.4 6.5 02/13/07 17:49 142-82-5 Hexachloro-1,3-butadiene ND ug/m3 14.3 6.5 02/13/07 17:49 87-68-3 L2 02/13/07 17:49 110-54-3 32.5 ug/m3 n-Hexane 4.7 6.5 ND ug/m3 02/13/07 17:49 591-78-6 2-Hexanone 5.4 6.5 02/13/07 17:49 75-09-2 Methylene Chloride ND ug/m3 4.6 6.5 4-Methyl-2-pentanone (MIBK) ND ug/m3 5.4 6.5 02/13/07 17:49 108-10-1 Methyl-tert-butyl ether ND ug/m3 4.7 6.5 02/13/07 17:49 1634-04-4 Naphthalene ND ug/m3 17.6 6.5 02/13/07 17:49 91-20-3 Propylene 267 ug/m3 6.5 02/13/07 17:49 115-07-1 2.3 Е Styrene ND ug/m3 5.7 6.5 02/13/07 17:49 100-42-5 1,1,2,2-Tetrachloroethane ND ug/m3 9.1 6.5 02/13/07 17:49 79-34-5 Tetrachloroethene ND ug/m3 9.1 6.5 02/13/07 17:49 127-18-4 ND ug/m3 3.9 6.5 02/13/07 17:49 109-99-9 Tetrahydrofuran 25.0 ug/m3 5.0 6.5 02/13/07 17:49 108-88-3 Toluene ND ug/m3 6.5 02/13/07 17:49 120-82-1 IC 1,2,4-Trichlorobenzene 6.4

Date: 02/22/2007 03:18 PM

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

anout the written consent of Face Analytical Services, inc...



Page 14 of 33



## ANALYTICAL RESULTS

#### Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

Sample: VP-4	Lab ID: 1046203004	Collected: 02/08/0	7 15:30	Received: 02	/09/07 13:00 N	Aatrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15						
1,1,1-Trichloroethane	ND ug/m3	7.2	6.5		02/13/07 17:49	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	7.2	6.5		02/13/07 17:49	79-00-5	
Trichloroethene	ND ug/m3	7.2	6.5		02/13/07 17:49	79-01-6	
Trichlorofluoromethane	ND ug/m3	7.2	6.5		02/13/07 17:49	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND ug/m3	10.4	6.5		02/13/07 17:49	76-13-1	
1,2,4-Trimethylbenzene	ND ug/m3	16.2	6.5		02/13/07 17:49	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	16.2	6.5		02/13/07 17:49	108-67-8	
√inyl acetate	ND ug/m3	4.6	6.5		02/13/07 17:49	108-05-4	
/inyl chloride	ND ug/m3	3.4	6.5		02/13/07 17:49	75-01-4	
n&p-Xylene	<b>14.1</b> ug/m3	11.4	6.5		02/13/07 17:49	1330-20-7	
o-Xylene	ND ug/m3	5.7	6.5		02/13/07 17:49	95-47-6	

## **REPORT OF LABORATORY ANALYSIS**

Page 15 of 33





#### ANALYTICAL RESULTS

#### Project: 200606839 ALEX EXHAUST

Pace Project No .: 1046203

Sample: FB Received: 02/09/07 13:00 Lab ID: 1046203005 Collected: 02/08/07 15:45 Matrix: Air Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual **TO15 MSV AIR** Analytical Method: TO-15 Acetone 5.7 ug/m3 0.60 1 25 02/12/07 17:59 67-64-1 SS 02/12/07 17:59 71-43-2 ND ug/m3 0.81 Benzene 1.25 ND ug/m3 Bromodichloromethane 1.8 1.25 02/12/07 17:59 75-27-4 ND ug/m3 Bromoform 2.6 02/12/07 17:59 75-25-2 1.25 02/12/07 17:59 74-83-9 ND ug/m3 Bromomethane 0.99 1.25 1,3-Butadiene ND ug/m3 0.56 1.25 02/12/07 17:59 106-99-0 2-Butanone (MEK) 1.7 ug/m3 0.75 1.25 02/12/07 17:59 78-93-3 Carbon disulfide ND ug/m3 0.79 1.25 02/12/07 17:59 75-15-0 Carbon tetrachloride ND ug/m3 1.6 1.25 02/12/07 17:59 56-23-5 Chlorobenzene ND ug/m3 1.2 1.25 02/12/07 17:59 108-90-7 Chloroethane ND ug/m3 0.68 1.25 02/12/07 17:59 75-00-3 Chloroform ND ug/m3 1.2 1.25 02/12/07 17:59 67-66-3 Chloromethane 0.83 ug/m3 0.52 02/12/07 17:59 74-87-3 1.25 ND ug/m3 0.85 1.25 02/12/07 17:59 110-82-7 Cyclohexane ND ug/m3 Dibromochloromethane 2.1 1.25 02/12/07 17:59 124-48-1 ND ug/m3 1,2-Dibromoethane (EDB) 2.0 1.25 02/12/07 17:59 106-93-4 1,2-Dichlorobenzene ND ug/m3 1.5 1.25 02/12/07 17:59 95-50-1 1,3-Dichlorobenzene ND ug/m3 1.5 1.25 02/12/07 17:59 541-73-1 1,4-Dichlorobenzene ND ug/m3 1.5 1.25 02/12/07 17:59 106-46-7 2.2 ug/m3 1.2 Dichlorodifluoromethane 1.25 02/12/07 17:59 75-71-8 1,1-Dichloroethane ND ug/m3 1.0 1.25 02/12/07 17:59 75-34-3 1,2-Dichloroethane ND ug/m3 1.0 1.25 02/12/07 17:59 107-06-2 ND ug/m3 1.0 1.25 02/12/07 17:59 75-35-4 1.1-Dichloroethene cis-1,2-Dichloroethene ND ug/m3 1.0 1.25 02/12/07 17:59 156-59-2 trans-1,2-Dichloroethene ND ug/m3 1.0 1.25 02/12/07 17:59 156-60-5 1,2-Dichloropropane ND ug/m3 1.2 1.25 02/12/07 17:59 78-87-5 cis-1,3-Dichloropropene ND ug/m3 1.2 1.25 02/12/07 17:59 10061-01-5 trans-1,3-Dichloropropene ND ug/m3 1.2 1.25 02/12/07 17:59 10061-02-6 Dichlorotetrafluoroethane ND ug/m3 1.8 1.25 02/12/07 17:59 76-14-2 Ethyl acetate ND ug/m3 0.91 1.25 02/12/07 17:59 141-78-6 Ethylbenzene ND ug/m3 1.1 1.25 02/12/07 17:59 100-41-4 4-Ethyltoluene ND ug/m3 3.1 1.25 02/12/07 17:59 622-96-8 n-Heptane ND ua/m3 1.0 1.25 02/12/07 17:59 142-82-5 Hexachloro-1,3-butadiene ND ug/m3 2.8 1.25 02/12/07 17:59 87-68-3 02/12/07 17:59 110-54-3 n-Hexane ND ug/m3 0.90 1.25 ND ug/m3 02/12/07 17:59 591-78-6 2-Hexanone 1.0 1.25 02/12/07 17:59 75-09-2 Methylene Chloride ND ug/m3 0.89 1.25 4-Methyl-2-pentanone (MIBK) ND ug/m3 1.25 02/12/07 17:59 108-10-1 1.0 Methyl-tert-butyl ether ND ug/m3 0.91 1.25 02/12/07 17:59 1634-04-4 Naphthalene ND ug/m3 3.4 1.25 02/12/07 17:59 91-20-3 Propylene ND ug/m3 0.44 02/12/07 17:59 115-07-1 1.25 Styrene ND ug/m3 1.1 1.25 02/12/07 17:59 100-42-5 1,1,2,2-Tetrachloroethane ND ug/m3 1.8 1.25 02/12/07 17:59 79-34-5 Tetrachloroethene ND ug/m3 1.8 1.25 02/12/07 17:59 127-18-4 ND ug/m3 0.75 1.25 02/12/07 17:59 109-99-9 Tetrahydrofuran ND ug/m3 0.96 1.25 02/12/07 17:59 108-88-3 Toluene ND ug/m3 1.25 02/12/07 17:59 120-82-1 IC 1,2,4-Trichlorobenzene 1.2

Date: 02/22/2007 03:18 PM

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full,

Page 16 of 33

without the written consent of Pace Analytical Services, Inc..





## ANALYTICAL RESULTS

#### Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

Sample: FB	Lab ID: 1046203005	Collected: 02/08/07	15:45	Received: 02/	09/07 13:00 N	latrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15						
1,1,1-Trichloroethane	ND ug/m3	1.4	1.25		02/12/07 17:59	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.4 <i>°</i>	1.25		02/12/07 17:59	79-00-5	
Trichloroethene	ND ug/m3	1.4 <i>°</i>	1.25		02/12/07 17:59	79-01-6	
Trichlorofluoromethane	ND ug/m3	1.4 <i>°</i>	1.25		02/12/07 17:59	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND ug/m3	2.0	1.25		02/12/07 17:59	76-13-1	
1,2,4-Trimethylbenzene	ND ug/m3	3.1 [·]	1.25		02/12/07 17:59	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	3.1 [·]	1.25		02/12/07 17:59	108-67-8	
Vinyl acetate	ND ug/m3	0.89	1.25		02/12/07 17:59	108-05-4	
Vinyl chloride	ND ug/m3	0.65	1.25		02/12/07 17:59	75-01-4	
m&p-Xylene	ND ug/m3	2.2	1.25		02/12/07 17:59	1330-20-7	
o-Xylene	ND ug/m3	1.1 [·]	1.25		02/12/07 17:59	95-47-6	

# **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



Page 17 of 33



## **QUALITY CONTROL DATA**

Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

QC Batch:	AIR/5173	Analysis Method:	TO-15
QC Batch Method:	TO-15	Analysis Description:	TO15 MSV AIR Low Level
Associated Lab Sam	ples: 1046203005		

#### METHOD BLANK: 309344

Associated Lab Samples: 1046203005

Parameter	Units	Blank Result	Reporting Limit	Qualifier
1,1,1-Trichloroethane	ug/m3		1.1	
1,1,2,2-Tetrachloroethane	ug/m3	ND	1.4	
1,1,2-Trichloroethane	ug/m3	ND	1.1	
1,1,2-Trichlorotrifluoroethane	ug/m3	ND	1.6	
1,1-Dichloroethane	ug/m3	ND	0.82	
1,1-Dichloroethene	ug/m3	ND	0.81	
1,2,4-Trichlorobenzene	ug/m3	ND	0.99 10	
1,2,4-Trimethylbenzene	ug/m3	ND	2.5	
1,2-Dibromoethane (EDB)	ug/m3	ND	1.6	
1,2-Dichlorobenzene	ug/m3	ND	1.0	
1,2-Dichloroethane	ug/m3	ND	0.82	
1,2-Dichloropropane	ug/m3	ND	0.94	
1,3,5-Trimethylbenzene	ug/m3	ND	2.5	
1,3-Butadiene	ug/m3	ND	0.45	
1,3-Dichlorobenzene	ug/m3	ND	1.2	
1,4-Dichlorobenzene	ug/m3	ND	1.2	
2-Butanone (MEK)	ug/m3	ND	0.60	
2-Hexanone	ug/m3	ND	0.83	
4-Ethyltoluene	ug/m3	ND	2.5	
4-Methyl-2-pentanone (MIBK)	ug/m3	ND	0.83	
Acetone	ug/m3	ND	0.48	
Benzene	ug/m3	ND	0.65	
Bromodichloromethane	ug/m3	ND	1.4	
Bromoform	ug/m3	ND	2.1	
Bromomethane	ug/m3	ND	0.79	
Carbon disulfide	ug/m3	ND	0.63	
Carbon tetrachloride	ug/m3	ND	1.3	
Chlorobenzene	ug/m3	ND	0.94	
Chloroethane	ug/m3	ND	0.54	
Chloroform	ug/m3	ND	0.99	
Chloromethane	ug/m3	ND	0.42	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	
cis-1,3-Dichloropropene	ug/m3	ND	0.92	
Cyclohexane	ug/m3	ND	0.68	
Dibromochloromethane	ug/m3	ND	1.7	
Dichlorodifluoromethane	ug/m3	ND	1.0	
Dichlorotetrafluoroethane	ug/m3	ND	1.0	
Ethyl acetate	ug/m3	ND	0.73	
Ethylbenzene	ug/m3	ND	0.88	
Hexachloro-1,3-butadiene	ug/m3	ND	2.2	
m&p-Xylene	ug/m3	ND	1.8	
Methyl-tert-butyl ether	ug/m3	ND	0.73	
Methylene Chloride	ug/m3	ND	0.70	

Date: 02/22/2007 03:18 PM

## **REPORT OF LABORATORY ANALYSIS**





## **QUALITY CONTROL DATA**

#### Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

## METHOD BLANK: 309344

Associated Lab Samples: 1046203005

		Blank	Reporting	
Parameter	Units	Result	Limit	Qualifiers
n-Heptane	ug/m3	ND	0.83	
n-Hexane	ug/m3	ND	0.72	
Naphthalene	ug/m3	ND	2.7	
o-Xylene	ug/m3	ND	0.88	
Propylene	ug/m3	ND	0.35	
Styrene	ug/m3	ND	0.87	
Tetrachloroethene	ug/m3	ND	1.4	
Tetrahydrofuran	ug/m3	ND	0.60	
Toluene	ug/m3	ND	0.77	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	
trans-1,3-Dichloropropene	ug/m3	ND	0.92	
Trichloroethene	ug/m3	ND	1.1	
Trichlorofluoromethane	ug/m3	ND	1.1	
Vinyl acetate	ug/m3	ND	0.71	
Vinyl chloride	ug/m3	ND	0.52	

#### LABORATORY CONTROL SAMPLE: 309345

LABORATORT CONTROL SAMPL	_E. 309345					
Deveryeter	1.1-1-	Spike	LCS	LCS	% Rec	Qualifian
Parameter	Units	Conc	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	58.3	63.0	108	60-134	
1,1,2,2-Tetrachloroethane	ug/m3	74	89.7	121	55-141	
1,1,2-Trichloroethane	ug/m3	59.4	62.1	105	64-129	
1,1,2-Trichlorotrifluoroethane	ug/m3	81.8	85.9	105	55-137	
1,1-Dichloroethane	ug/m3	43.6	49.7	114	59-136	
1,1-Dichloroethene	ug/m3	41.9	44.2	105	60-137	
1,2,4-Trichlorobenzene	ug/m3	80.6	144	179	50-150	IC
1,2,4-Trimethylbenzene	ug/m3	53	65.2	123	63-137	CC
1,2-Dibromoethane (EDB)	ug/m3	82.8	98.2	119	61-136	
1,2-Dichlorobenzene	ug/m3	64.8	86.5	133	60-139	
1,2-Dichloroethane	ug/m3	43.6	50.2	115	56-141	
1,2-Dichloropropane	ug/m3	49.4	58.4	118	57-131	
1,3,5-Trimethylbenzene	ug/m3	52.5	62.8	120	61-134	
1,3-Butadiene	ug/m3	24.3	25.8	106	53-140	
1,3-Dichlorobenzene	ug/m3	67.3	79.9	119	59-136	
1,4-Dichlorobenzene	ug/m3	64.2	78.5	122	59-130	
2-Butanone (MEK)	ug/m3	32.4	35.1	108	54-133	
2-Hexanone	ug/m3	45.8	46.3	101	54-139	
4-Ethyltoluene	ug/m3	55	60.6	110	61-138	
4-Methyl-2-pentanone (MIBK)	ug/m3	45.8	47.7	104	53-139	
Acetone	ug/m3	24.4	28.0	115	50-139	SS
Benzene	ug/m3	34.4	39.4	114	64-125	
Bromodichloromethane	ug/m3	70.9	77.5	109	61-131	
Bromoform	ug/m3	110	133	120	66-138	
Bromomethane	ug/m3	40.3	43.1	107	55-135	
Carbon disulfide	ug/m3	33.3	36.4	109	50-150	

Date: 02/22/2007 03:18 PM

## **REPORT OF LABORATORY ANALYSIS**

Page 19 of 33





## **QUALITY CONTROL DATA**

#### Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

## LABORATORY CONTROL SAMPLE: 309345

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
						Qualificity
Carbon tetrachloride	ug/m3	67.8	71.0	105	58-135	
Chlorobenzene	ug/m3	49.6	49.1	99	62-139	
loroethane	ug/m3	27.1	30.9	114	56-140	
hloroform	ug/m3	48.7	50.1	103	50-150	
loromethane	ug/m3	21	21.9	104	56-144	
1,2-Dichloroethene	ug/m3	42.7	51.2	120	62-135	
1,3-Dichloropropene	ug/m3	48.9	63.4	130	64-133	
lohexane	ug/m3	35.7	45.0	126	54-139	
omochloromethane	ug/m3	95.3	112	117	50-150	
nlorodifluoromethane	ug/m3	50.8	51.0	100	60-130	
hlorotetrafluoroethane	ug/m3	71.8	75.6	105	59-130	
yl acetate	ug/m3	35.9	48.8	136	60-132 L	_1
lbenzene	ug/m3	46.4	61.7	133	65-140	
achloro-1,3-butadiene	ug/m3	115	184	160	50-150 L	_3
-Xylene	ug/m3	92.7	114	123	60-132	
nyl-tert-butyl ether	ug/m3	38.1	44.2	116	50-150	
nylene Chloride	ug/m3	37.1	48.0	129	56-138	
eptane	ug/m3	43.3	58.3	134	62-135	
exane	ug/m3	35.8	45.2	126	62-134	
hthalene	ug/m3	55.3	88.3	160	70-130 0	CC
lene	ug/m3	46.8	57.9	124	64-132	
ylene	ug/m3	18.4	22.2	121	56-125	
ene	ug/m3	45.9	53.7	117	69-134	
achloroethene	ug/m3	67.6	79.7	118	60-137	
ahydrofuran	ug/m3	31.5	35.2	112	52-139 \$	SS
iene	ug/m3	41	46.3	113	69-130	
s-1,2-Dichloroethene	ug/m3	39.9	46.7	117	50-150	
s-1,3-Dichloropropene	ug/m3	50.8	67.2	132	70-142	
nloroethene	ug/m3	56.8	60.9	107	60-134	
hlorofluoromethane	ug/m3	57.7	62.2	108	56-141	
yl acetate	ug/m3	38.3	47.8	125	61-142	
nyl chloride	ug/m3	26.3	29.0	110	66-132	

## SAMPLE DUPLICATE: 310336

		1046203005	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	ND	0	25	
1,1,2,2-Tetrachloroethane	ug/m3	ND	ND	0	25	
1,1,2-Trichloroethane	ug/m3	ND	ND	0	25	
1,1,2-Trichlorotrifluoroethane	ug/m3	ND	ND	0	25	
1,1-Dichloroethane	ug/m3	ND	ND	0	25	
1,1-Dichloroethene	ug/m3	ND	ND	0	25	
1,2,4-Trichlorobenzene	ug/m3	ND	ND	0	25 I	С
1,2,4-Trimethylbenzene	ug/m3	ND	ND	0	25	
1,2-Dibromoethane (EDB)	ug/m3	ND	ND	0	25	
1,2-Dichlorobenzene	ug/m3	ND	ND	0	25	
1,2-Dichloroethane	ug/m3	ND	ND	0	25	

Date: 02/22/2007 03:18 PM

# **REPORT OF LABORATORY ANALYSIS**

Page 20 of 33





## **QUALITY CONTROL DATA**

#### Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

## SAMPLE DUPLICATE: 310336

Parameter	Units	1046203005 Result	Dup Result	RPD	Max RPD Qualifi	ers
						515
1,2-Dichloropropane 1,3,5-Trimethylbenzene	ug/m3 ug/m3	ND	ND ND	0 0	25 25	
1,3-Butadiene	ug/m3	ND	ND	0	25	
1,3-Dichlorobenzene	ug/m3	ND	ND	0	25	
-	-	ND	ND	0	25	
,4-Dichlorobenzene	ug/m3	1.7	ND 1.7	5	25	
2-Butanone (MEK)	ug/m3	ND	ND	0	25	
2-Hexanone	ug/m3	ND				
1-Ethyltoluene	ug/m3	ND	ND	0	25 25	
-Methyl-2-pentanone (MIBK)	ug/m3	5.7	ND	0		
Acetone	ug/m3	ND	7.3	24	25 SS	
Benzene	ug/m3	ND	ND	0	25	
Bromodichloromethane	ug/m3	ND	ND	0	25	
Bromoform	ug/m3		ND	0	25	
Bromomethane	ug/m3	ND ND	ND	0	25	
Carbon disulfide	ug/m3		ND	0	25	
Carbon tetrachloride	ug/m3	ND	ND	0	25	
Chlorobenzene	ug/m3	ND	ND	0	25	
Chloroethane	ug/m3	ND	ND	0	25	
Chloroform	ug/m3	ND	ND	0	25	
Chloromethane	ug/m3	0.83	0.93	12	25	
is-1,2-Dichloroethene	ug/m3	ND	ND	0	25	
s-1,3-Dichloropropene	ug/m3	ND	ND	0	25	
yclohexane	ug/m3	ND	ND	0	25	
ibromochloromethane	ug/m3	ND	ND	0	25	
ichlorodifluoromethane	ug/m3	2.2	2.5	13	25	
Dichlorotetrafluoroethane	ug/m3	ND	ND	0	25	
thyl acetate	ug/m3	ND	ND	0	25	
thylbenzene	ug/m3	ND	ND	0	25	
lexachloro-1,3-butadiene	ug/m3	ND	ND	0	25	
n&p-Xylene	ug/m3	ND	ND	0	25	
1ethyl-tert-butyl ether	ug/m3	ND	ND	0	25	
1ethylene Chloride	ug/m3	ND	ND	0	25	
-Heptane	ug/m3	ND	ND	0	25	
-Hexane	ug/m3	ND	ND	0	25	
laphthalene	ug/m3	ND	ND	0	25	
-Xylene	ug/m3	ND	ND	0	25	
ropylene	ug/m3	ND	ND	0	25	
styrene	ug/m3	ND	ND	0	25	
etrachloroethene	ug/m3	ND	ND	0	25	
etrahydrofuran	ug/m3	ND	ND	0	25	
oluene	ug/m3	ND	ND	0	25	
rans-1,2-Dichloroethene	ug/m3	ND	ND	0	25	
rans-1,3-Dichloropropene	ug/m3	ND	ND	0	25	
Frichloroethene	ug/m3	ND	ND	0	25	
Trichlorofluoromethane	ug/m3	ND	ND	0	25	
/inyl acetate	ug/m3	ND	ND	0	25	
'inyl chloride	ug/m3	ND	ND	0	25	

Date: 02/22/2007 03:18 PM

## **REPORT OF LABORATORY ANALYSIS**





## **QUALITY CONTROL DATA**

#### Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

QC Batch:	AIR/5188	Analysis Method:	TO-15
QC Batch Method:	TO-15	Analysis Description:	TO15 MSV AIR Low Level
Associated Lab Sam	ples: 1046203003		

#### METHOD BLANK: 310368

Associated Lab Samples: 1046203003

Parameter	Units	Blank Result	Reporting Limit	Qualifier
1,1,1-Trichloroethane	 ug/m3		1.1	
1,1,2,2-Tetrachloroethane	ug/m3	ND	1.4	
1,1,2-Trichloroethane	ug/m3	ND	1.1	
1,1,2-Trichlorotrifluoroethane	ug/m3	ND	1.6	
1,1-Dichloroethane	ug/m3	ND	0.82	
1,1-Dichloroethene	ug/m3	ND	0.81	
1,2,4-Trichlorobenzene	ug/m3	ND	0.99 1	C.
1,2,4-Trimethylbenzene	ug/m3	ND	2.5	0
1,2-Dibromoethane (EDB)	ug/m3	ND	1.6	
1,2-Dichlorobenzene	ug/m3	ND	1.0	
1,2-Dichloroethane	ug/m3	ND	0.82	
1,2-Dichloropropane	ug/m3	ND	0.94	
1,3,5-Trimethylbenzene	ug/m3	ND	2.5	
1,3-Butadiene	ug/m3	ND	0.45	
1,3-Dichlorobenzene	ug/m3	ND	1.2	
1,4-Dichlorobenzene	ug/m3	ND	1.2	
2-Butanone (MEK)	ug/m3	ND	0.60	
2-Hexanone	ug/m3	ND	0.83	
4-Ethyltoluene	ug/m3	ND	2.5	
4-Methyl-2-pentanone (MIBK)	ug/m3	ND	0.83	
Acetone	ug/m3	ND	0.48	
Benzene	ug/m3	ND	0.65	
Bromodichloromethane	ug/m3	ND	1.4	
Bromoform	ug/m3	ND	2.1	
Bromomethane	ug/m3	ND	0.79	
Carbon disulfide	ug/m3	ND	0.63	
Carbon tetrachloride	ug/m3	ND	1.3	
Chlorobenzene	ug/m3	ND	0.94	
Chloroethane	ug/m3	ND	0.54	
Chloroform	ug/m3	ND	0.99	
Chloromethane	ug/m3	ND	0.42	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	
cis-1,3-Dichloropropene	ug/m3	ND	0.92	
Cyclohexane	ug/m3	ND	0.68	
Dibromochloromethane	ug/m3	ND	1.7	
Dichlorodifluoromethane	ug/m3	ND	1.0	
Dichlorotetrafluoroethane	ug/m3	ND	1.4	
Ethyl acetate	ug/m3	ND	0.73	
Ethylbenzene	ug/m3	ND	0.88	
Hexachloro-1,3-butadiene	ug/m3	ND	2.2	
m&p-Xylene	ug/m3	ND	1.8	
Methyl-tert-butyl ether	ug/m3	ND	0.73	
Methylene Chloride	ug/m3	ND	0.73	

Date: 02/22/2007 03:18 PM

## **REPORT OF LABORATORY ANALYSIS**





## **QUALITY CONTROL DATA**

#### Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

## METHOD BLANK: 310368

Associated Lab Samples: 1046203003

		Blank	Reporting	
Parameter	Units	Result	Limit	Qualifiers
n-Heptane	ug/m3	ND	0.83	
n-Hexane	ug/m3	ND	0.72	
Naphthalene	ug/m3	ND	2.7	
o-Xylene	ug/m3	ND	0.88	
Propylene	ug/m3	ND	0.35	
Styrene	ug/m3	ND	0.87	
Tetrachloroethene	ug/m3	ND	1.4	
Tetrahydrofuran	ug/m3	ND	0.60	
Toluene	ug/m3	ND	0.77	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	
trans-1,3-Dichloropropene	ug/m3	ND	0.92	
Trichloroethene	ug/m3	ND	1.1	
Trichlorofluoromethane	ug/m3	ND	1.1	
Vinyl acetate	ug/m3	ND	0.71	
Vinyl chloride	ug/m3	ND	0.52	

#### LABORATORY CONTROL SAMPLE: 310369

LABORATORT CONTROL SAMPL	L. 310309					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3		63.0	108	60-134	
1,1,2,2-Tetrachloroethane	ug/m3	74	89.7	100	55-141	
1,1,2-Trichloroethane	ug/m3	59.4	62.1	105	64-129	
1,1,2-Trichlorotrifluoroethane	ug/m3	81.8	85.9	105	55-137	
1,1-Dichloroethane	ug/m3	43.6	49.7	114	59-136	
1,1-Dichloroethene	ug/m3	41.9	44.2	105	60-137	
1,2,4-Trichlorobenzene	ug/m3	80.6	144	179	50-150	IC,L3
1,2,4-Trimethylbenzene	ug/m3	53	65.2	123	63-137	cc
1,2-Dibromoethane (EDB)	ug/m3	82.8	98.2	119	61-136	
1,2-Dichlorobenzene	ug/m3	64.8	86.5	133	60-139	
1,2-Dichloroethane	ug/m3	43.6	50.2	115	56-141	
1,2-Dichloropropane	ug/m3	49.4	58.4	118	57-131	
1,3,5-Trimethylbenzene	ug/m3	52.5	62.8	120	61-134	
1,3-Butadiene	ug/m3	24.3	25.8	106	53-140	
1,3-Dichlorobenzene	ug/m3	67.3	79.9	119	59-136	
1,4-Dichlorobenzene	ug/m3	64.2	78.5	122	59-130	
2-Butanone (MEK)	ug/m3	32.4	35.1	108	54-133	
2-Hexanone	ug/m3	45.8	46.3	101	54-139	
4-Ethyltoluene	ug/m3	55	60.6	110	61-138	
4-Methyl-2-pentanone (MIBK)	ug/m3	45.8	47.7	104	53-139	
Acetone	ug/m3	24.4	28.0	115	50-139	SS
Benzene	ug/m3	34.4	39.4	114	64-125	
Bromodichloromethane	ug/m3	70.9	77.5	109	61-131	
Bromoform	ug/m3	110	133	120	66-138	
Bromomethane	ug/m3	40.3	43.1	107	55-135	
Carbon disulfide	ug/m3	33.3	36.4	109	50-150	

Date: 02/22/2007 03:18 PM

## **REPORT OF LABORATORY ANALYSIS**

Page 23 of 33





## **QUALITY CONTROL DATA**

#### Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

## LABORATORY CONTROL SAMPLE: 310369

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
						Quaimers
Carbon tetrachloride	ug/m3	67.8	71.0	105	58-135	
Chlorobenzene	ug/m3	49.6	49.1	99	62-139	
hloroethane	ug/m3	27.1	30.9	114	56-140	
hloroform	ug/m3	48.7	50.1	103	50-150	
nloromethane	ug/m3	21	21.9	104	56-144	
-1,2-Dichloroethene	ug/m3	42.7	51.2	120	62-135	
-1,3-Dichloropropene	ug/m3	48.9	63.4	130	64-133	
clohexane	ug/m3	35.7	45.0	126	54-139	
promochloromethane	ug/m3	95.3	112	117	50-150	
hlorodifluoromethane	ug/m3	50.8	51.0	100	60-130	
chlorotetrafluoroethane	ug/m3	71.8	75.6	105	59-130	
yl acetate	ug/m3	35.9	48.8	136	60-132	L3
ylbenzene	ug/m3	46.4	61.7	133	65-140	
achloro-1,3-butadiene	ug/m3	115	184	160	50-150	CC,L3
o-Xylene	ug/m3	92.7	114	123	60-132	
hyl-tert-butyl ether	ug/m3	38.1	44.2	116	50-150	
ylene Chloride	ug/m3	37.1	48.0	129	56-138	
eptane	ug/m3	43.3	58.3	134	62-135	
exane	ug/m3	35.8	45.2	126	62-134	
hthalene	ug/m3	55.3	88.3	160	70-130	CC
lene	ug/m3	46.8	57.9	124	64-132	
bylene	ug/m3	18.4	22.2	121	56-125	
ene	ug/m3	45.9	53.7	117	69-134	
achloroethene	ug/m3	67.6	79.7	118	60-137	
rahydrofuran	ug/m3	31.5	35.2	112	52-139	
Jene	ug/m3	41	46.3	113	69-130	
s-1,2-Dichloroethene	ug/m3	39.9	46.7	117	50-150	
s-1,3-Dichloropropene	ug/m3	50.8	67.2	132	70-142	
hloroethene	ug/m3	56.8	60.9	107	60-134	
hlorofluoromethane	ug/m3	57.7	62.2	108	56-141	
yl acetate	ug/m3	38.3	47.8	125	61-142	
nyl chloride	ug/m3	26.3	29.0	110	66-132	

## SAMPLE DUPLICATE: 310337

		1046237001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	ND	0	25	
1,1,2,2-Tetrachloroethane	ug/m3	ND	ND	0	25	
1,1,2-Trichloroethane	ug/m3	ND	ND	0	25	
1,1,2-Trichlorotrifluoroethane	ug/m3	ND	ND	0	25	
1,1-Dichloroethane	ug/m3	ND	ND	0	25	
1,1-Dichloroethene	ug/m3	ND	ND	0	25	
1,2,4-Trichlorobenzene	ug/m3	ND	ND	0	25 I	С
1,2,4-Trimethylbenzene	ug/m3	23.7	23.1	2	25	
1,2-Dibromoethane (EDB)	ug/m3	ND	ND	0	25	
1,2-Dichlorobenzene	ug/m3	ND	ND	0	25	
1,2-Dichloroethane	ug/m3	ND	ND	0	25	

Date: 02/22/2007 03:18 PM

# **REPORT OF LABORATORY ANALYSIS**

Page 24 of 33





## **QUALITY CONTROL DATA**

#### Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

## SAMPLE DUPLICATE: 310337

Parameter	Units	1046237001 Result	Dup Result	RPD	Max RPD Qualifier
,2-Dichloropropane					
	ug/m3	7.5	ND 7.3	0 3	25 25
,3,5-Trimethylbenzene	ug/m3	ND			
I,3-Butadiene	ug/m3	ND	ND ND	0	25
,	ug/m3	ND	ND	0	25
,4-Dichlorobenzene	ug/m3	21.3		0	25
P-Butanone (MEK)	ug/m3	21.3 ND	23.9	11	25
-Hexanone	ug/m3	8.2	ND	0	25
-Ethyltoluene	ug/m3		8.2	.4	25
-Methyl-2-pentanone (MIBK)	ug/m3	8.0	8.4	6	25 05 D0 5
cetone	ug/m3	67.2	102	41	25 D6,E
Benzene	ug/m3	20.5	22.0	7	25
romodichloromethane	ug/m3	ND	ND	0	25
romoform	ug/m3	ND	ND	0	25
romomethane	ug/m3	ND	ND	0	25
arbon disulfide	ug/m3	4.1	4.0	1	25
Carbon tetrachloride	ug/m3	ND	ND	0	25
Chlorobenzene	ug/m3	ND	ND	0	25
hloroethane	ug/m3	ND	ND	0	25
hloroform	ug/m3	ND	ND	0	25
hloromethane	ug/m3	ND	ND	0	25
s-1,2-Dichloroethene	ug/m3	ND	ND	0	25
s-1,3-Dichloropropene	ug/m3	ND	ND	0	25
vclohexane	ug/m3	29.0	30.4	5	25
bromochloromethane	ug/m3	ND	ND	0	25
ichlorodifluoromethane	ug/m3	2.1	2.1	.1	25
chlorotetrafluoroethane	ug/m3	ND	ND	0	25
hyl acetate	ug/m3	ND	ND	0	25
thylbenzene	ug/m3	9.6	10.4	9	25
exachloro-1,3-butadiene	ug/m3	ND	ND	0	25
&p-Xylene	ug/m3	34.8	37.3	7	25
ethyl-tert-butyl ether	ug/m3	1.2	1.3	6	25
ethylene Chloride	ug/m3	ND	ND	0	25
Heptane	ug/m3	7.8	8.6	9	25
Hexane	ug/m3	21.2	22.4	5	25
aphthalene	ug/m3	ND	ND	0	25
Xylene	ug/m3	13.5	14.4	6	25
opylene	ug/m3	111	104	7	25 E
yrene	ug/m3	2.3	2.5	7	25
etrachloroethene	ug/m3	ND	ND	0	25
etrahydrofuran	ug/m3	ND	ND	0	25
luene	ug/m3	36.8	39.0	6	25
ans-1,2-Dichloroethene	ug/m3	ND	ND	0	25
ans-1,3-Dichloropropene	ug/m3	ND	ND	0	25
richloroethene	ug/m3	ND	ND	0	25
richlorofluoromethane	ug/m3	ND	ND	0	25
inyl acetate	ug/m3	ND	ND	0	25
inyl chloride	ug/m3	ND	ND	0	25

Date: 02/22/2007 03:18 PM

## **REPORT OF LABORATORY ANALYSIS**





## **QUALITY CONTROL DATA**

Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

Se i Tojeci No.. 1040200

QC Batch:	AIR/5198	Analysis Method:	TO-15
QC Batch Method:	TO-15	Analysis Description:	TO15 MSV AIR Low Level
Associated Lab Sam	ples: 1046203001, 1046203002, 104	6203004	

#### METHOD BLANK: 310879

Associated Lab Samples: 1046203001, 1046203002, 1046203004

		Blank	Reporting
Parameter	Units	Result	Limit Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	1.1
1,1,2,2-Tetrachloroethane	ug/m3	ND	1.4
1,1,2-Trichloroethane	ug/m3	ND	1.1
1,1,2-Trichlorotrifluoroethane	ug/m3	ND	1.6
1,1-Dichloroethane	ug/m3	ND	0.82
1,1-Dichloroethene	ug/m3	ND	0.81
1,2,4-Trichlorobenzene	ug/m3	ND	0.99 IC
1,2,4-Trimethylbenzene	ug/m3	ND	2.5
1,2-Dibromoethane (EDB)	ug/m3	ND	1.6
1,2-Dichlorobenzene	ug/m3	ND	1.2
1,2-Dichloroethane	ug/m3	ND	0.82
1,2-Dichloropropane	ug/m3	ND	0.94
1,3,5-Trimethylbenzene	ug/m3	ND	2.5
1,3-Butadiene	ug/m3	ND	0.45
1,3-Dichlorobenzene	ug/m3	ND	1.2
1,4-Dichlorobenzene	ug/m3	ND	1.2
2-Butanone (MEK)	ug/m3	ND	0.60
2-Hexanone	ug/m3	ND	0.83
4-Ethyltoluene	ug/m3	ND	2.5
4-Methyl-2-pentanone (MIBK)	ug/m3	ND	0.83
Acetone	ug/m3	ND	0.48
Benzene	ug/m3	ND	0.65
Bromodichloromethane	ug/m3	ND	1.4
Bromoform	ug/m3	ND	2.1
Bromomethane	ug/m3	ND	0.79
Carbon disulfide	ug/m3	ND	0.63
Carbon tetrachloride	ug/m3	ND	1.3
Chlorobenzene	ug/m3	ND	0.94
Chloroethane	ug/m3	ND	0.54
Chloroform	ug/m3	ND	0.99
Chloromethane	ug/m3	ND	0.42
cis-1,2-Dichloroethene	ug/m3	ND	0.81
cis-1,3-Dichloropropene	ug/m3	ND	0.92
Cyclohexane	ug/m3	ND	0.68
Dibromochloromethane	ug/m3	ND	1.7
Dichlorodifluoromethane	ug/m3	ND	1.0
Dichlorotetrafluoroethane	ug/m3	ND	1.4
Ethyl acetate	ug/m3	ND	0.73
Ethylbenzene	ug/m3	ND	0.88
Hexachloro-1,3-butadiene	ug/m3	ND	2.2 L2
m&p-Xylene	ug/m3	ND	1.8
Methyl-tert-butyl ether	ug/m3	ND	0.73
Methylene Chloride	ug/m3	ND	0.71

Date: 02/22/2007 03:18 PM

## **REPORT OF LABORATORY ANALYSIS**





### **QUALITY CONTROL DATA**

Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

### METHOD BLANK: 310879

Associated Lab Samples: 1046203001, 1046203002, 1046203004

Parameter	Units	Blank Result	Reporting Limit	Qualifiers
n-Heptane	ug/m3	ND	0.83	
n-Hexane	ug/m3	ND	0.72	
Naphthalene	ug/m3	ND	2.7	
o-Xylene	ug/m3	ND	0.88	
Propylene	ug/m3	ND	0.35	
Styrene	ug/m3	ND	0.87	
Tetrachloroethene	ug/m3	ND	1.4	
Tetrahydrofuran	ug/m3	ND	0.60	
Toluene	ug/m3	ND	0.77	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	
trans-1,3-Dichloropropene	ug/m3	ND	0.92	
Trichloroethene	ug/m3	ND	1.1	
Trichlorofluoromethane	ug/m3	ND	1.1	
Vinyl acetate	ug/m3	ND	0.71	
Vinyl chloride	ug/m3	ND	0.52	

#### LABORATORY CONTROL SAMPLE: 310880

LABORATORT CONTROL SAMEL	L. 310000					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3		56.9	98	60-134	
1,1,2,2-Tetrachloroethane	ug/m3	74	82.3	111	55-141	
1,1,2-Trichloroethane	ug/m3	59.4	56.3	95	64-129	
1,1,2-Trichlorotrifluoroethane	ug/m3	81.8	79.8	97	55-137	
1,1-Dichloroethane	ug/m3	43.6	43.2	99	59-136	
1,1-Dichloroethene	ug/m3	41.9	40.6	97	60-137	
1,2,4-Trichlorobenzene	ug/m3	80.6	126	156	50-150	IC
1,2,4-Trimethylbenzene	ug/m3	53	59.9	113	63-137	
1,2-Dibromoethane (EDB)	ug/m3	82.8	90.8	110	61-136	
1,2-Dichlorobenzene	ug/m3	64.8	78.5	121	60-139	
1,2-Dichloroethane	ug/m3	43.6	45.7	105	56-141	
1,2-Dichloropropane	ug/m3	49.4	53.5	108	57-131	
1,3,5-Trimethylbenzene	ug/m3	52.5	57.4	109	61-134	
1,3-Butadiene	ug/m3	24.3	25.9	107	53-140	
1,3-Dichlorobenzene	ug/m3	67.3	72.1	107	59-136	
1,4-Dichlorobenzene	ug/m3	64.2	70.3	110	59-130	
2-Butanone (MEK)	ug/m3	32.4	33.9	105	54-133	
2-Hexanone	ug/m3	45.8	46.8	102	54-139	
4-Ethyltoluene	ug/m3	55	56.0	102	61-138	
4-Methyl-2-pentanone (MIBK)	ug/m3	45.8	48.3	105	53-139	
Acetone	ug/m3	24.4	26.4	108	50-139	SS
Benzene	ug/m3	34.4	36.7	106	64-125	
Bromodichloromethane	ug/m3	70.9	69.4	98	61-131	
Bromoform	ug/m3	110	118	107	66-138	
Bromomethane	ug/m3	40.3	42.4	105	55-135	
Carbon disulfide	ug/m3	33.3	35.2	106	50-150	

Date: 02/22/2007 03:18 PM

### **REPORT OF LABORATORY ANALYSIS**

Page 27 of 33

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..





### **QUALITY CONTROL DATA**

#### Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

### LABORATORY CONTROL SAMPLE: 310880

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
						Qualifiers
Carbon tetrachloride	ug/m3	67.8	62.1	92	58-135	
Chlorobenzene	ug/m3	49.6	45.9	92	62-139	
hloroethane	ug/m3	27.1	31.2	115	56-140	
Chloroform	ug/m3	48.7	45.5	93	50-150	
hloromethane	ug/m3	21	21.2	101	56-144	
s-1,2-Dichloroethene	ug/m3	42.7	47.7	111	62-135	
-1,3-Dichloropropene	ug/m3	48.9	57.8	118	64-133	
clohexane	ug/m3	35.7	41.4	116	54-139	
promochloromethane	ug/m3	95.3	101	106	50-150	
chlorodifluoromethane	ug/m3	50.8	44.8	88	60-130	
chlorotetrafluoroethane	ug/m3	71.8	71.0	99	59-130	
nyl acetate	ug/m3	35.9	47.1	131	60-132	
lylbenzene	ug/m3	46.4	57.7	124	65-140	
xachloro-1,3-butadiene	ug/m3	115	39.5	34	50-150 L	.2
p-Xylene	ug/m3	92.7	105	114	60-132	
thyl-tert-butyl ether	ug/m3	38.1	43.3	114	50-150	
hylene Chloride	ug/m3	37.1	45.3	122	56-138	
eptane	ug/m3	43.3	54.4	125	62-135	
exane	ug/m3	35.8	44.0	123	62-134	
hthalene	ug/m3	55.3	79.0	143	70-130 L	.3
lene	ug/m3	46.8	52.8	113	64-132	
pylene	ug/m3	18.4	19.9	108	56-125	
rene	ug/m3	45.9	49.9	109	69-134	
rachloroethene	ug/m3	67.6	74.5	110	60-137	
rahydrofuran	ug/m3	31.5	36.0	114	52-139	
uene	ug/m3	41	42.8	104	69-130	
ns-1,2-Dichloroethene	ug/m3	39.9	45.6	114	50-150	
ns-1,3-Dichloropropene	ug/m3	50.8	62.5	123	70-142	
chloroethene	ug/m3	56.8	55.8	98	60-134	
chlorofluoromethane	ug/m3	57.7	53.5	93	56-141	
lyl acetate	ug/m3	38.3	43.8	114	61-142	
nyl chloride	ug/m3	26.3	29.5	112	66-132	

### SAMPLE DUPLICATE: 310881

		1046203004	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	ND	0	25	
1,1,2,2-Tetrachloroethane	ug/m3	ND	ND	0	25	
1,1,2-Trichloroethane	ug/m3	ND	ND	0	25	
1,1,2-Trichlorotrifluoroethane	ug/m3	ND	ND	0	25	
1,1-Dichloroethane	ug/m3	ND	ND	0	25	
1,1-Dichloroethene	ug/m3	ND	ND	0	25	
1,2,4-Trichlorobenzene	ug/m3	ND	ND	0	25 I	С
1,2,4-Trimethylbenzene	ug/m3	ND	12.1J	9	25	
1,2-Dibromoethane (EDB)	ug/m3	ND	ND	0	25	
1,2-Dichlorobenzene	ug/m3	ND	ND	0	25	
1,2-Dichloroethane	ug/m3	ND	ND	0	25	

Date: 02/22/2007 03:18 PM

### **REPORT OF LABORATORY ANALYSIS**

Page 28 of 33

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ED IN ACCORDAN





### **QUALITY CONTROL DATA**

#### Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

### SAMPLE DUPLICATE: 310881

Parameter	Units	1046203004 Result	Dup Result	RPD	Max RPD Qualifier
,2-Dichloropropane	ug/m3	ND	ND	0	25
,3,5-Trimethylbenzene	ug/m3	ND	ND	0	25
,3-Butadiene	ug/m3	ND	ND	0	25
,3-Dichlorobenzene	ug/m3	ND	ND	0	25
,4-Dichlorobenzene	ug/m3	ND	ND	0	25
-Butanone (MEK)	ug/m3	ND	ND	0	25
-Hexanone	ug/m3	ND	ND	0	25
-Ethyltoluene	ug/m3	ND	ND	0	25
-Methyl-2-pentanone (MIBK)	ug/m3	ND	ND	0	25
cetone	ug/m3	48.4	56.0	15	25
enzene	ug/m3	21.9	22.5	3	25
romodichloromethane	ug/m3	ND	ND	0	25
romoform	ug/m3	ND	ND	0	25
romomethane	ug/m3	ND	ND	0	25
arbon disulfide	ug/m3	6.8	6.7	2	25
arbon tetrachloride	ug/m3	ND	ND	0	25
hlorobenzene	ug/m3	ND	ND	0	25
hloroethane	ug/m3	ND	ND	0	25
hloroform	ug/m3	ND	ND	0	25
hloromethane	ug/m3	ND	ND	0	25
s-1,2-Dichloroethene	ug/m3	ND	ND	0	25
s-1,3-Dichloropropene	ug/m3	ND	ND	0	25
vclohexane	ug/m3	27.0	27.8	3	25
bromochloromethane	ug/m3	ND	ND	0	25
chlorodifluoromethane	ug/m3	ND	ND	0	25
chlorotetrafluoroethane	ug/m3	ND	ND	0	25
hyl acetate	ug/m3	ND	ND	0	25
hylbenzene	ug/m3	7.2	7.7	7	25
exachloro-1,3-butadiene	ug/m3	ND	ND	0	25 25 L2
&p-Xylene	ug/m3	14.1	15.4	9	25
ethyl-tert-butyl ether	ug/m3	ND	ND	0	25
ethylene Chloride	ug/m3	ND	ND	0	25
Heptane	ug/m3	21.1	21.7	3	25
Hexane	ug/m3	32.5	32.6	.3	25 25
aphthalene	ug/m3	ND	32.0 ND	.3 0	25 25
Xylene	ug/m3	ND	ND	0	25 25
-	ug/m3	267	269	.7	25 25 E
opylene		ND	269 ND		
yrene trachlaraethana	ug/m3	ND		0	25
etrachloroethene	ug/m3	ND	ND	0	25
trahydrofuran	ug/m3		ND	0	25
bluene	ug/m3	25.0	27.1	8	25
ans-1,2-Dichloroethene	ug/m3	ND	ND	0	25
ans-1,3-Dichloropropene	ug/m3	ND	ND	0	25
richloroethene	ug/m3	ND	ND	0	25
richlorofluoromethane	ug/m3	ND	ND	0	25
nyl acetate	ug/m3	ND	ND	0	25
nyl chloride	ug/m3	ND	ND	0	25

Date: 02/22/2007 03:18 PM

### **REPORT OF LABORATORY ANALYSIS**

Page 29 of 33

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..





### **QUALITY CONTROL DATA**

Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

### SAMPLE DUPLICATE: 310882

Parameter	Units	1046237003 Result	Dup Result	RPD	Max RPD Qualifiers
I,1,1-Trichloroethane	ug/m3	ND ND	ND	0	25
I,1,2,2-Tetrachloroethane	ug/m3		ND	0	25
I,1,2-Trichloroethane	ug/m3	ND	ND	0	25
I,1,2-Trichlorotrifluoroethane	ug/m3	ND	ND	0	25
I,1-Dichloroethane	ug/m3	ND	ND	0	25
,1-Dichloroethene	ug/m3	ND	ND	0	25
,2,4-Trichlorobenzene	ug/m3	ND	ND	0	25 IC
,2,4-Trimethylbenzene	ug/m3	ND	ND	0	25
,2-Dibromoethane (EDB)	ug/m3	ND	ND	0	25
,2-Dichlorobenzene	ug/m3	ND	ND	0	25
,2-Dichloroethane	ug/m3	ND	ND	0	25
,2-Dichloropropane	ug/m3	ND	ND	0	25
,3,5-Trimethylbenzene	ug/m3	ND	ND	0	25
,3-Butadiene	ug/m3	ND	ND	0	25
,3-Dichlorobenzene	ug/m3	ND	ND	0	25
,4-Dichlorobenzene	ug/m3	ND	ND	0	25
P-Butanone (MEK)	ug/m3	ND	ND	0	25
-Hexanone	ug/m3	ND	ND	0	25
-Ethyltoluene	ug/m3	ND	ND	0	25
Methyl-2-pentanone (MIBK)	ug/m3	ND	ND	0	25
cetone	ug/m3	ND	ND	0	25
enzene	ug/m3	12.2	12.6	4	25
romodichloromethane	ug/m3	ND	ND	0	25
omoform	ug/m3	ND	ND	0	25
romomethane	ug/m3	ND	ND	0	25
arbon disulfide	ug/m3	793	842	6	25
arbon tetrachloride	ug/m3	ND	ND	0	25
hlorobenzene	ug/m3	ND	ND	0	25
hloroethane	ug/m3	ND	ND	0	25
hloroform	ug/m3	ND	ND	0	25
hloromethane	ug/m3	ND	ND	0	25
s-1,2-Dichloroethene	ug/m3	ND	ND	0	25
is-1,3-Dichloropropene	ug/m3	ND	ND	0	25
yclohexane	ug/m3	410	423	3	25
libromochloromethane	ug/m3	ND	ND	0	25
ichlorodifluoromethane	ug/m3	14.3	14.6	3	25
ichlorotetrafluoroethane	ug/m3	ND	ND	0	25
thyl acetate	ug/m3	ND	ND	0	25
thylbenzene	ug/m3	ND	ND	0	25
exachloro-1,3-butadiene	ug/m3	ND	ND	0	25 25 L2
	ug/m3	ND	ND	0	25 L2 25
&p-Xylene		ND			25 25
ethyl-tert-butyl ether	ug/m3	ND	ND	0	
lethylene Chloride	ug/m3	ND	ND	0	25
-Heptane	ug/m3		ND	0	25
-Hexane	ug/m3	99.3	103	4	25
laphthalene	ug/m3	ND	ND	0	25
-Xylene	ug/m3	ND	ND	0	25
ropylene	ug/m3	214	188	13	25

Date: 02/22/2007 03:18 PM

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



Page 30 of 33



### **QUALITY CONTROL DATA**

Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

### SAMPLE DUPLICATE: 310882

		1046237003	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Styrene	ug/m3	ND	ND	0	25	
Tetrachloroethene	ug/m3	ND	ND	0	25	
Tetrahydrofuran	ug/m3	ND	ND	0	25	
Toluene	ug/m3	ND	ND	0	25	
trans-1,2-Dichloroethene	ug/m3	ND	ND	0	25	
trans-1,3-Dichloropropene	ug/m3	ND	ND	0	25	
Trichloroethene	ug/m3	ND	ND	0	25	
Trichlorofluoromethane	ug/m3	ND	ND	0	25	
Vinyl acetate	ug/m3	ND	ND	0	25	
Vinyl chloride	ug/m3	ND	ND	0	25	

Date: 02/22/2007 03:18 PM

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



Page 31 of 33



Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414

> Phone: (612)607-1700 Fax: (612)607-6444

### QUALIFIERS

Project: 200606839 ALEX EXHAUST

Pace Project No.: 1046203

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

#### SAMPLE QUALIFIERS

#### Sample: 1046203001

[1] The Total Hydrocarbon (THC) pattern occured in the first half of the chromatogram (before toluene).

Sample: 1046203002

[1] The Total Hydrocarbon (THC) pattern occured in the first half of the chromatogram (before toluene).

Sample: 1046203003

[1] The Total Hydrocarbon (THC) pattern is evenly distributed throughout the chromatogram (before and after toluene). Sample: 1046203004

[1] The Total Hydrocarbon (THC) pattern occured in the first half of the chromatogram (before toluene).

Sample: 1046203005

[1] The Total Hydrocarbon (THC) pattern is evenly distributed throughout the chromatogram (before and after toluene).

#### ANALYTE QUALIFIERS

- CC The continuing calibration for this compound is outside of method control limits. The result is estimated.
- D6 The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory control limits.
- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- IC The initial calibration for this compound was outside of method control limits. The result is estimated.
- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
- L3 Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.
- SS This analyte did not meet the secondary source verification criteria for the initial calibration. The reported result should be considered an estimated value.

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..





### QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:200606839ALEX EXHAUSTPace Project No.:1046203

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
1046203005	 FB	TO-15	AIR/5173		
1046203003	VP-3	TO-15	AIR/5188		
1046203001	VP-1	TO-15	AIR/5198		
1046203002	VP-2	TO-15	AIR/5198		
1046203004	VP-4	TO-15	AIR/5198		

Date: 02/22/2007 03:18 PM

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



Page 33 of 33

Data File: \\192.168.10.12\chem\10air0.i\021307.b\04427tic.D Report Date: 27-Feb-2007 15:02

# Pace Analytical Services

# TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Lab Smp Id: 1046203001 Operator : HRG Sample Location: Sample Matrix: AIR Analysis Type: VOA Inj Date: 14-FEB-2007 03:23 Client SDG: 102205

Sample Date: Sample Point: Date Received: Level: LOW

# CONCENTRATION UNITS: (ug/L or ug/KG) ppbv

CAS NUMBER COMPOUND NAME	RT	EST. CONC.	Q
1. 78-78-4Butane, 2-methyl-2. 96-14-0Pentane, 3-methyl-3. 96-37-7Cyclopentane, methyl-4. 591-76-4Hexane, 2-methyl-5. 589-34-4Hexane, 3-methyl-6. 594-82-1Butane, 2,2,3,3-tetram7. 589-43-5Hexane, 2,4-dimethyl-8. 565-75-3Pentane, 2,3,4-trimeth9. 560-21-4Pentane, 2,3,3-trimeth	yl- 8.565 9.018	21100 17000 16600 75100	

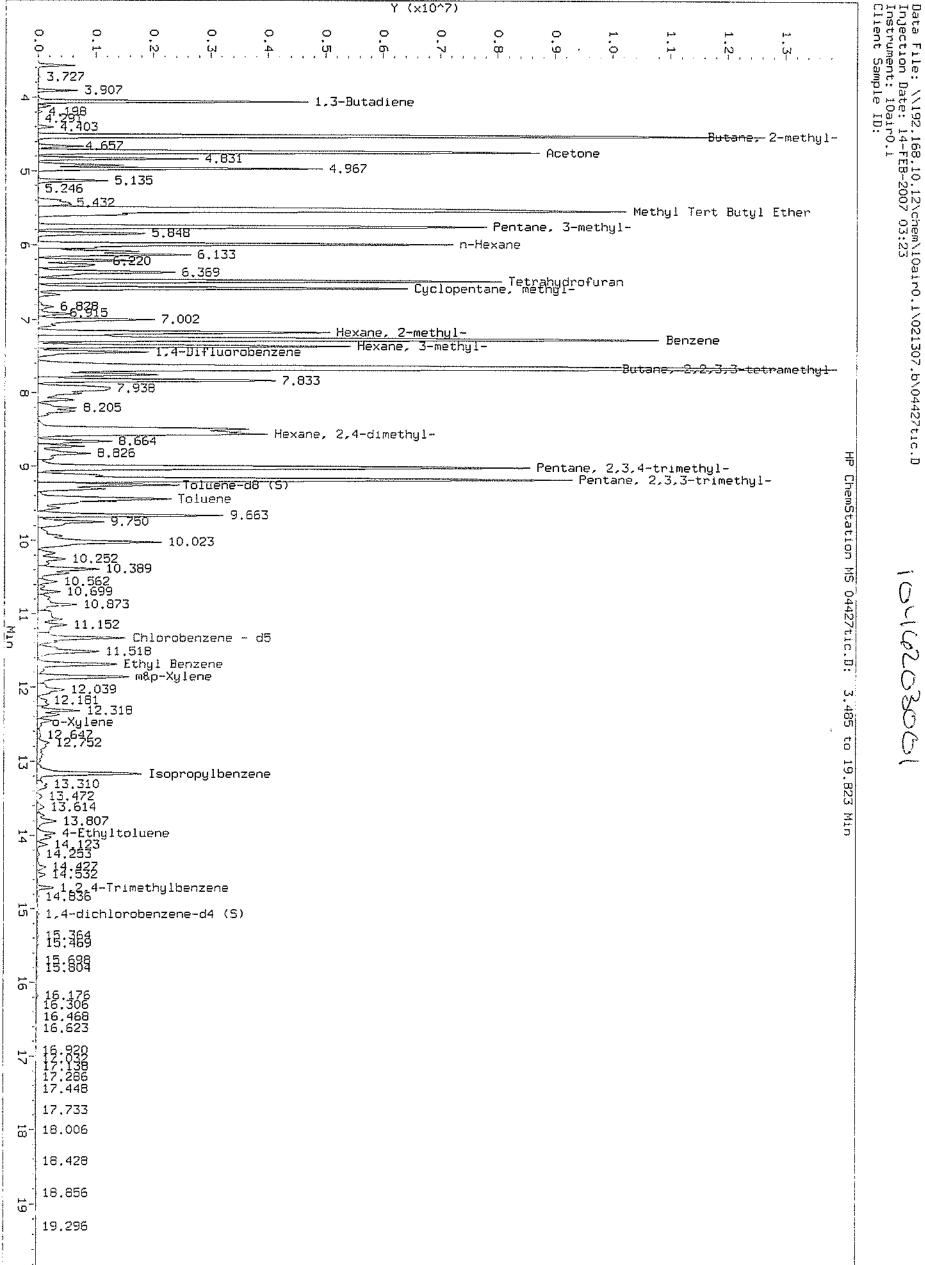
Number TICs found: 9

Data File: \\192.168.10.12\chem\10air0.i\021307.b\04427tic.D Report Date: 27-Feb-2007 15:02

Pace Analytical Services TO15 Analysis (UNIX) Data file : \\192.168.10.12\chem\10air0.i\021307.b\04427tic.D Lab Smp Id: 1046203001 Inj Date : 14-FEB-2007 03:23 Operator : HRG Inst ID: 10air0.i Smp Info : Misc Info : 5198 Comment : Volatile Organic COMPOUNDS in Air Method : \\192.168.10.12\chem\10air0.i\021307.b\LOWT015 038.m Meth Date : 27-Feb-2007 11:06 lweinkauf Quant Type: ISTD Cal Date : 07-FEB-2007 16:44 Cal File: 03809.D Als bottle: 27 Dil Factor: 650.00000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 4.14 Processing Host: AIRGROUP

Concentration Formula: Amt * DF * Uf * CpndVariable

Name	Value	Description
DF Uf Cpnd Variable	650.000 1.000	Dilution Factor ng unit correction factor Local Compound Variable


ISTD	RT	AREA	AMOUNT
		======	======
* 31 1,4-Difluorobenzene	7.442	4729942	10.000

		CONCENTR	ATIONS		QU		
RT	AREA	ON-COL( ppbv)	FINAL( ppbv)	QUAL	LIBRARY	LIB ENTRY	CPND #
						========	
Butane, 2	methyl-			CAS #	: 78-78-4		
4.521	26836508	56.7374978	36900	91	NBS75K.l	62518	31
Pentane, 1	B-methyl-			CAS #	: 96-14-0		
5.755	16622896	35.1439733	22800	91	NBS75K.1	62868	31
Cyclopenta	ne, methy	yl-		CAS #	: 96-37-7		
6.586	15365881	32.4864045	21100	86	NBS75K.1	594	31
Hexane, 2-	methyl-			CAS #	: 591-76-4		
7.176	12398995	26.2138413	17000	90	NBS75K.1	63435	31
Hexane, 3-	methyl-			CAS #	: 589-34-4		
7.362	12104979	25.5922354	16600	90	NBS75K.1	63423	31
Butane, 2,	2,3,3-tet	tramethyl-		CAS #	: 594-82-1		
7.659	54638005		75100	78	NBS75K.1	3090	31

Data File: \\192.168.10.12\chem\10air0.i\021307.b\04427tic.D Report Date: 27-Feb-2007 15:02

		CONCENT	RATIONS			QUANI		
RT	AREA	ON-COL( ppbv)	FINAL( ppbv)	QUAL	LIBRA	YY LI	B ENTRY	CPND #
====	====			====		== ==		
Hexane, 2,4	-dimeth	yl-		CAS	#: 589-	13-5		
8.565 2	3980518	50.6993896	33000	96	NBS7	5K.l	3089	31
Pentane, 2,	3,4-tri	methyl-		CAS	#: 565-	75-3		
9.018 2	2938325	48.4959950	31500	91	NBS7	5K.l	64229	31
Pentane, 2,	3,3-tri	methyl-		CAS	#: 560-2	21-4		
9.179 2	6769475	56.5957768	36800	83	NBS7	5K.l	3088	31

۶ .



10-1620300

.

Data File: \\192.168.10.12\chem\10air0.i\021307.b\04425tic.D Report Date: 27-Feb-2007 15:00

# Pace Analytical Services

## TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Lab Smp Id: 1046203002 Operator : HRG Sample Location: Sample Matrix: AIR Analysis Type: VOA Inj Date: 14-FEB-2007 02:10 Client SDG: 102205

Sample Date: Sample Point: Date Received: Level: LOW

# CONCENTRATION UNITS: (ug/L or ug/KG) ppbv

4

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 78-78-4 2. 96-14-0 3. 96-37-7 4. 540-84-1 5. 142-82-5 6. 108-87-2 7. 3522-94-9 8. 9.	Butane, 2-methyl- Pentane, 3-methyl- Cyclopentane, methyl- Pentane, 2,2,4-trimethyl- Heptane Cyclohexane, methyl- Hexane, 2,2,5-trimethyl- Unknown Unknown	$\begin{array}{r} 4.514 \\ 5.767 \\ 6.592 \\ 7.665 \\ 7.839 \\ 8.540 \\ 9.675 \\ 10.035 \\ 10.401 \end{array}$	7470 5870 5960 16400 4290 7360 13800 13400 4910	NJ

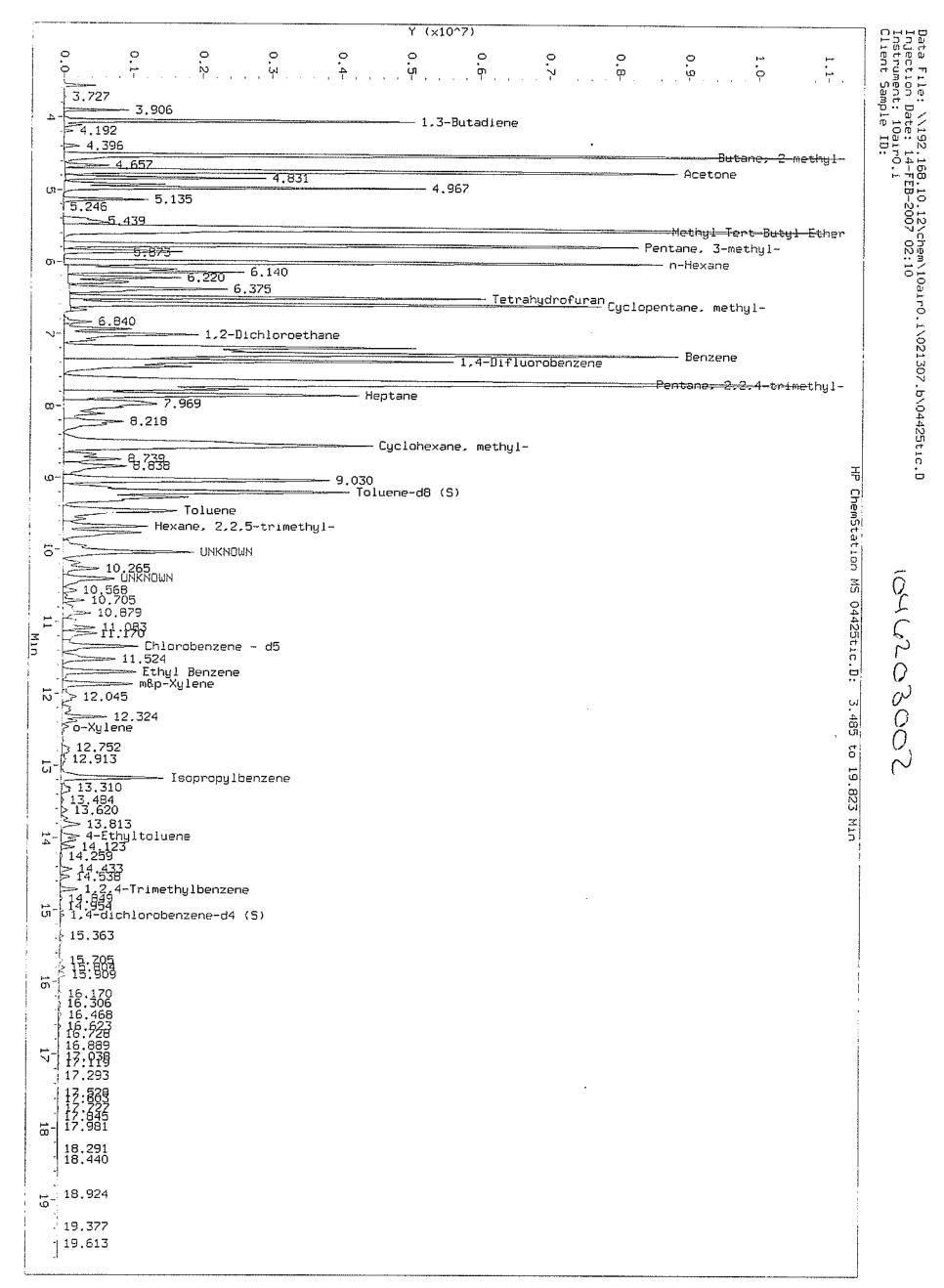
Number TICs found: 9

Data File: \\192.168.10.12\chem\10air0.i\021307.b\04425tic.D Report Date: 27-Feb-2007 15:00

Pace Analytical Services TO15 Analysis (UNIX) Data file : \\192.168.10.12\chem\10air0.i\021307.b\04425tic.D Lab Smp Id: 1046203002 Inj Date : 14-FEB-2007 02:10 Operator : HRG Inst ID: 10air0.i Smp Info : Misc Info : 5198 Comment : Volatile Organic COMPOUNDS in Air Method : \\192.168.10.12\chem\10air0.i\021307.b\LOWTO15_038.m Meth Date : 27-Feb-2007 11:06 lweinkauf Quant Type: ISTD Cal Date : 07-FEB-2007 16:44 Cal File: 03809.D Als bottle: 25 Dil Factor: 625.00000 Compound Sublist: all.sub Integrator: HP RTE Target Version: 4.14 Processing Host: AIRGROUP

Concentration Formula: Amt * DF * Uf * CpndVariable

Name	Value	Description
DF Uf Cpnd Variable	625.000 1.000	Dilution Factor ng unit correction factor Local Compound Variable


IS	TD	RT	AREA	AMOUNT	
==		======		======	
*	31 1,4-Difluorobenzene	7.455	19646425	10.000	
*	46 Chlorobenzene - d5	11.344	3498880	10.000	

		CONCENTI	RATIONS		QU	ANT	
RT	AREA	ON-COL( ppbv)	FINAL( ppbv)	QUAL	LIBRARY	LIB ENTRY	CPND #
					*****		
Butane, 2	-methyl-			CAS	#: 78-78-4		
4.514	23481969	11.9522855	7470	86	NBS75K.1	62518	31
Pentane,	3-methyl-			CAS	#: 96-14-0		
5.767	18461128	9.39668535	5870	91	NBS75K.1	62867	31
Cyclopent	ane, methy	/1-		CAS	#: 96-37-7		
6.592	18736922	9.53706385	5960	90	NBS75K.1	594	31
Pentane,	2,2,4-trim	nethyl-		CAS	#: 540-84-1		
7.665	51549811	26.2387733	16400	78	NB\$75K.1	64221	31
Heptane				CAS	#: 142-82-5		
- 7.839	13492588	6.86770624	4290	80	NBS75K.1	63439	31

Data File: \\192.168.10.12\chem\10air0.i\021307.b\04425tic.D Report Date: 27-Feb-2007 15:00

		CONCENTI	RATIONS		ç	UANT	
RT	AREA	ON-COL( ppbv)	FINAL( ppbv)	QUAL	LIBRARY	LIB ENTRY	CPND #
====							
<b>C  )</b>							
cyclonexa	ine, methy	1 -		CAS	#: 108-87-2	,	
8.540	23148819	11.7827125	7360	95	NBS75K.1	63236	31
Hexane, 2	1,2,5-trim	ethyl-		CAS	#: 3522-94-	9	
9.675	7743978	22.1327317	13800	72	NBS75K.1	65126	46
Unknown				CAS	#:		
10.035	7492644	21.4144056	13400	0		0	46
Unknown				CAS	#:		
10.401	2750071	7.85985960	4910	0		. 0	46
						÷	20

~



Data File: \\192.168.10.12\chem\10air0.i\021207.b\04315tic.D Report Date: 27-Feb-2007 14:55

# Pace Analytical Services

# TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Lab Smp Id: 1046203003 Operator : HRG Sample Location: Sample Matrix: AIR Analysis Type: VOA Inj Date: 12-FEB-2007 19:02 Client SDG: 102205

Sample Date: Sample Point: Date Received: Level: LOW

# CONCENTRATION UNITS: (ug/L or ug/KG) ppbv

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 594-82-1 2. 108-87-2 3. 565-75-3 4. 560-21-4 5. 79-92-5 6. 7. 124-18-5 8. 138-86-3 9. 10.	Butane, 2,2,3,3-tetramethyl Cyclohexane, methyl- Pentane, 2,3,4-trimethyl- Pentane, 2,3,3-trimethyl- Camphene Unknown Decane Limonene Unknown Unknown	7.653 8.534 9.011 9.179 13.881 14.123 14.538 15.419 15.878 16.883	30.9 11.0 12.8 16.3 20.1 9.22 11.1 30.8 21.4 13.9	NJ NJ NJ NJ NJ NJ NJ NJ NJ J J J J

Number TICs found: 10

Data File: \\192.168.10.12\chem\10air0.i\021207.b\04315tic.D Report Date: 27-Feb-2007 14:55

Pace Analytical Services

TO15 Analysis (UNIX) Data file : \\192.168.10.12\chem\10air0.i\021207.b\04315tic.D Lab Smp Id: 1046203003 Inj Date : 12-FEB-2007 19:02 Operator : HRG Inst ID: 10air0.i Smp Info : Misc Info : 5173 Comment : Volatile Organic COMPOUNDS in Air Method : \\192.168.10.12\chem\10air0.i\021207.b\LOWT015_038.m Meth Date : 27-Feb-2007 10:50 lweinkauf Quant Type: ISTD Cal Date : 07-FEB-2007 16:44 Cal File: 03809.D Als bottle: 15 Dil Factor: 1.51000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 4.14 Processing Host: AIRGROUP

Concentration Formula: Amt * DF * Uf * CpndVariable

Name	Value	Description
DF Uf Cpnd Variable	1.510 1.000	Dilution Factor ng unit correction factor Local Compound Variable

IS ==	TD ====================================	RT =====	AREA	AMOUNT
*	31 1,4-Difluorobenzene	7.454	2990427	10.000
*	46 Chlorobenzene - d5	11.331	2571003	10.000

		CONCENTI	RATIONS			QU	ANT	
RT	AREA	ON-COL( ppbv)	FINAL( ppbv)	QUAL		LIBRARY	LIB ENTRY	CPND #
		***********						
Butano 2	2 $2$ $3$ to	tromother		010		<b>501 00 1</b>		
		tramethyl-		CAS	#:	594-82-1		
7.653	6114374	20.4464857	30,9	72		NBS75K.1	64215	31
Cyclohexa	ne, methy	1-		CAS	#:	108-87-2		
8.534	2187386	7.31462632	11.0	94		NBS75K.1	1326	31
Pentane,	2,3,4-tri	methyl-		CAS	#:	565-75-3		
9.011	2545852	8.51333757	12.8	90		NBS75K.1	64228	31
Pencane, :	2,3,3-trin	nethyl-		CAS	#:	560-21-4		
9.179	3232233	10.8085988	16.3	83		NBS75K.1	3088	31
Camphene				CAS	#:	79-92-5		
13.881	3430197	13.3418614	20.1	97		NBS75K.1	65767	46

Data File: \\192.168.10.12\chem\10air0.i\021207.b\04315tic.D Report Date: 27-Feb-2007 14:55

		CONCENT	RATIONS		QU	JANT	
RT	AREA	ON-COL( ppbv)	FINAL( ppbv)	QUAL	LIBRARY	LIB ENTRY	CPND #
====	====			====		<b></b>	
Unknown				CAS	#:		
14.123	1570202	6.10735073	9.22	0		0	46
Decane				CAS	<b>#: 124-18-5</b>		
14.538	1896598	7.37687724	11.1	95	NBS75K.1	66204	46
Limonene				CAS	#: 138-86-3		
15.419	5248658	20.4148213	30.8	91	NBS75K.1	6647	46
Unknown				CAS	#:		
15.878	3652300	14.2057355	21.4	0		0	46
Unknown				CAS	# =		
16.883	2360820	9.18248501	13.9	0		. 0	46

8

[						Y (	×10^7)							
- F - F	0 0	0.1-	0,2,	بع ب	0 • •	ុ ហ៊ុ	0 6	0.7-	0. 8.	0.9	1,0-,	خبۇ • <del>سو</del>		Data File: \\ Injection Dat Instrument: 1 Client Sample
- ھ	-P 4.1	ropylene ≥ 1,3-Bu 85 96	tadiene											100
់ 	34:8	55	orofluoro	methane									1	.168.10 12-FEB- r0.1
	5.4	thylene c 39 5.556 223											۹ ۱ ۱	2007 I
on-	5.8	973 lethyl Et 92 493 493 493	hyl Keton furan	2										02.168.10.12\chem\10air0.1\021207.b\04315tic.D 12-FEB-2007 19:02 11r0.1 D:
	-> 6,79	Dichlorc	ethane											0.1\02
		1,4 1,4 833 	-Difluoro	benzene Butane,	2,2,3,3-1	etramethį	<i>j</i> 1 –							L207.b
. 00 -	8.20	15	ne methu	1-										,04315t
-a	8.8	54 25 Per	ne, methy Itane, 2,3 Yęgtane, 2	- 3,4-trime 2,3,3-tri	ethyl- .methyl-								HPC	ic.D
	9.9	- Toluene 50 ³											ChemStation MS	
10	∱ 10.2 > 10. √ Tetr	0.023 246 389 achloroet	thene										ion MS	
11 M10	> 10.6 > 10.6 > 10.8	92 372 152		177									04315t1c	0
	·	.511 thyl Benz m&p-Xyle	orobenzen :ene :ne	e - do									to,D:	162
	2	- Styrene											3,485	80
μ. 	12.9	07 T	achloroet) sopropylb										to 19.	
- - -	ۇ <u>1</u> 3.6		e										19,823 Min	$\mathcal{O}^{\vee}$
	<u>- 14.2</u>	72 .433 Decan	e e											
្រំ ដំ		1,2,4-ir. 146 154 1,4-dichl 15,295	imethylbe orobenzen											
- - 16	2 15.	.717 ≦— UNKNOI	— Limone JN	ne										
, o,	> 16.	52 16.170 337 151 <u>4</u> 24											The second	
	- KT	UNKNOWN 119 286 454												
	> 17 > 17.8   18.0	194												
-	18.3 Naph 18.7 18.8	35 thalene 23												
- 19	19.12 19.12	29												
· · ·	19.95	0												

t

Data File: \\192.168.10.12\chem\10air0.i\021307.b\04409tic.D Report Date: 27-Feb-2007 14:59

# Pace Analytical Services

## TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Lab Smp Id: 1046203004 Operator : HRG Sample Location: Sample Matrix: AIR Analysis Type: VOA Inj Date: 13-FEB-2007 17:49 Client SDG: 102205

Sample Date: Sample Point: Date Received: Level: LOW

# CONCENTRATION UNITS: (ug/L or ug/KG) ppbv

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 3. 78-78-4 4. 107-83-5 5. 6. 108-87-2 7. 79-92-5 8. 124-18-5 9. 5989-27-5 10.	Unknown Unknown Butane, 2-methyl- Pentane, 2-methyl- Unknown Cyclohexane, methyl- Camphene Decane D-Limonene Unknown	$\begin{array}{c} 3.906\\ 4.198\\ 4.527\\ 5.531\\ 7.647\\ 8.527\\ 13.887\\ 14.532\\ 15.413\\ 19.445\end{array}$	15.5 12.5 20.7 10.7 8.93 8.69 11.6 8.14 16.6 8.88	      

Number TICs found: 10

Data File: \\192.168.10.12\chem\10air0.i\021307.b\04409tic.D Report Date: 27-Feb-2007 14:59

Pace Analytical Services

TO15 Analysis (UNIX) Data file : \\192.168.10.12\chem\10air0.i\021307.b\04409tic.D Lab Smp Id: 1046203004 Inj Date : 13-FEB-2007 17:49 Operator : HRG Inst ID: 10air0.i Smp Info : Misc Info : 5198 Comment : Volatile Organic COMPOUNDS in Air Method : \\192.168.10.12\chem\10air0.i\021307.b\LOWTO15_038.m Meth Date : 27-Feb-2007 11:06 lweinkauf Quant Type: ISTD Cal Date : 07-FEB-2007 16:44 Cal File: 03809.D Als bottle: 9 Dil Factor: 6.50000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 4.14 Processing Host: AIRGROUP

Concentration Formula: Amt * DF * Uf * CpndVariable

Name	Value	Description
DF Uf Cpnd Variable	6.500 1.000	Dilution Factor ng unit correction factor Local Compound Variable

IS == ==	'TD ====================================	RT =====	AREA =====	AMOUNT
*	31 1,4-Difluorobenzene	7.448	2064168	10.000
*	46 Chlorobenzene - d5	11.331	2304275	10.000

		CONCENTI	RATIONS		(	TVAUC	
RT	AREA	ON-COL( ppbv)	FINAL( ppbv)	QUAL	LIBRARY	LIB ENTRY	CPND #
====		********	****	====			<b></b>
Unknown				CAS	<b>#</b> .		
3.906	491452	2.38087397	15.5	0	** *		
3.900	491402	2.38087397	12.2	U		0	31
Unknown				CAS	#:		
4.198	395973	1.91831724	12.5	0		0	31
Butane,	2-methyl-			CAS	#: 78-78-4		
4.527	656798	3.18190285	20.7	86	NBS75K.]	62517	31
Pontana	2-methyl-			(1)(			
	-				#: 107-83-5		
5.531	338714	1.64092148	10.7	87	NBS75K.]	L 733	31
Unknown				CAS	# :		
7.647	283504	1.37345187	8.93	0			<b>~</b> ~
1.041	205304	T'9/940T0/	0.75	U		0	31

Data File: \\192.168.10.12\chem\10air0.i\021307.b\04409tic.D Report Date: 27-Feb-2007 14:59

		CONCENTI	RATIONS		QL	JANT	
RT	AREA	ON-COL( ppbv)	FINAL( ppbv)	QUAL	LIBRARY	LIB ENTRY	CPND #
							======
Our laborer		1			4 100 00 0		
Cyclohexane	•			CAS	#: 108-87-2		
8.527	275908	1.33665379	8.69	95	NBS75K.1	1326	31
Camphene				CAS	#: 79-92-5		
13.887	413345	1.79381661	11.6	97	NBS75K.1	65768	46
Decane				CAS	#: 124-18-5		
14.532	288482	1.25194131	8.14	91	NBS75K.1	8077	46
D-Limonene				CAS	#: 5989-27-5	\$	
15.413	590544	2.56281761	16.6	94	NBS75K.1	65790	46
Unknown				CAS	#:		
	214764	1 26600012	0 00		. ·	0	
19.445	314764	1.36600013	8.88	0		0	46

.

ι.

					Y (x1)	0^7)						
0.0	0,1	0.2	۵ به	• • • • •	ុ ហា រ	0 • •	0.7	0, 8, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	9.0	, , , , , , , , , , , , , , , , , , ,	<b>1</b> • <b>1</b>	Data File: \\ Injection Dat Instrument: 1 Client Sample
		lene								······································		Sampt Sampt Dampt
5	• UNKNOWN											10air( 10air) 10air
1.2	4.402 Butane, 2-	-methyl-										:0.168
ហា~់	Methylene chl Carbon Disul	loride										.10. EB-2
	5,426 Pentane, 2-m	ethyl-										12\c
ڊ. م-ک	5:854 Methyl Ethyl	Ketone										:hem\ 17:2
-	6.220 6:355											10a;
	6.750 6.451 6.764							·				r0.
	7.014 Benzene											
م الب م		-Difluorob	enzene									1307
	Heptane 7.913											168.10.12\chem\10aır0.1\021307.b\04409tic 3-FEB-2007 17:49 0.1
	8.155 8.298											4409
	Cyclohexane, 8:233	methy1-									-	
	9.005 9:239							<i>,</i>				
12												
	9,750 10,022											1 1 1
-	18.392 10.519											n C
ļ	10.692 10.692 18:838											i 1
	11.151	orobenzene	- 45									1620
-	11.511		- up									
1. 1. 1.	Ethyl Benzene m&p-Xylene 12.082											
- 1	Styrene										) • • •	
	12.808 12,950										, - C	
	13.304 I	sopropylbe	enzene								بر بر د	
1	13.465 13.626										10.040 19.040 19.040	
·r	Camphene 1,3,5-Trimeth	ylbenzene										
	14.427 Décane											
	1,2,4-Trimeth 4,842 14,954 1,4-dichlorob	ylbenzene										
, דר ג	1.4-dichlorab 15.301 - D-Limonene	enzene-d4	(5)									
	15.717 15.878											
m.‴!	15.878 16.163											-
í	16.5124											
	16,883											
	17.125 17.286 17.454											
1	17.454 17.615											1
	17.888 18.055											) )
- 1	18.440											
1	18.663 .8,874											5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 7 8 7 8
-! t	9:228 UNKNOWN											
2	U IIVI I WIN											

ł

------

Data File: \\192.168.10.12\chem\10air0.i\021207.b\04313tic.D Report Date: 27-Feb-2007 14:53

# Pace Analytical Services

## TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Lab Smp Id: 1046203005 Operator : HRG Sample Location: Sample Matrix: AIR Analysis Type: VOA Inj Date: 12-FEB-2007 17:59 Client SDG: 102205

Sample Date: Sample Point: Date Received: Level: LOW

## CONCENTRATION UNITS: (ug/L or ug/KG) ppbv

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 91-57-6	Naphthalene, 2-methyl-	10.972	1.89	
2. 3891-98-3	Dodecane, 2,6,10-trimethyl-	13.689	3.33	
3. 629-59-4	Tetradecane	15.004	2.78	
4. 629-92-5	Nonadecane	17.324	1.27	
5. 556-67-2	Cyclotetrasiloxane, octamet	18.626	1.73	

Number TICs found: 5

Data File: \\192.168.10.12\chem\10air0.i\021207.b\04313tic.D Report Date: 27-Feb-2007 14:53

Pace Analytical Services

TO15 Analysis (UNIX) Data file : \\192.168.10.12\chem\10air0.i\021207.b\04313tic.D Lab Smp Id: 1046203005 Inj Date : 12-FEB-2007 17:59 Operator : HRG Inst ID: 10air0.i Smp Info : Misc Info : 5173 Comment : Volatile Organic COMPOUNDS in Air Method : \\192.168.10.12\chem\10air0.i\021207.b\LOWTO15_038.m Meth Date : 27-Feb-2007 10:50 lweinkauf Quant Type: ISTD Cal Date : 07-FEB-2007 16:44 Cal File: 03809.D Als bottle: 13 Dil Factor: 1.25000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 4.14 Processing Host: AIRGROUP

Concentration Formula: Amt * DF * Uf * CpndVariable

Name	Value	Description
DF Uf Cpnd Variable	1.250 1.000	Dilution Factor ng unit correction factor Local Compound Variable

ISTD	RT	AREA	AMOUNT
~ = = = = = = = = = = = = = = = = = = =	=====		=====
* 46 Chlorobenzene - d5	11.331	2487597	10.000

		CONCENT	RATIONS			QU	ANT	
RT	AREA	ON-COL( ppbv)	FINAL( ppbv)	QUAL		LIBRARY	LIB ENTRY	CPND #
			*********	====		****		======
Naphthalene	e, 2-met)	nyl-		CAS	#:	91-57-6		
10.972	376920	1.51519503	1.89	80		NBS75K.1	8115	46
Dodecane, 2	2,6,10-tı	cimethyl-		CAS	#:	3891-98-3		
13.689	662342	2.66257532	3.33	87		NBS75K.1	70270	46
Tetradecane	2			CAS	#:	629-59-4		
15.004	554054	2.22726496	2.78	96		NBS75K.1	69659	46
Nonadecane				CAS	#:	629-92-5		
17.324	253643	1.01963230	1.27	74		NBS75K.1	37469	46
Cyclotetras	iloxane,	octamethyl-		CAS	#:	556-67-2		
18.626	344298	1.38405656	1.73	78		NBS75K.1	41966	46

•	Υ (x10^7) Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο		listru
ן - - 4			Instrument: 10air0 Client Sample ID:
••• -	- 4.384 4.508		10air0 e ID;
רי. ייייייייייייייייייייייייייייייייייי	Trichlorofluoromethane Methylene chloride 5.395 5.513		1 1 1 1 1
י. הית	Methyl Ethyl Ketone		н с т. с с с с с с с с с с с с с с с с с
•	6.412 6.561		
- לי	Benzene		
-0 -0	7.579 Heptane 7.932 8.143 8.472		0.1 // LD-200/ 17:53
- 0	9.055		1
	9,315 Toluene 9.675 Méthyl Butyl Ketone		ChemStation MS
5-	10.023 10.296		
• • •	Naphthalene, 2-methyl-		
	Chlorobenzene - d5 11.542 11.691 11.852 12.045		
	12.367 12.553		
- - - - -	Isopropylbenzene		"   /
	) Dodecane, 2,5,10-trimethy1-		19 <b>(</b>
	14.117 14.247 14.520	:	
	> Tetradecane 1.4-dichlorobenzene-d4 (S) 15.463		
-	15,872 16,139 16,350 16,548		
	16.877 17.168 Nonadecane 17.578		
	18.062		-
-	Eyclotetrasiloxane, octamethyl-		

* State Contract Number	1 her S-972 (5) *	
CHAIN OF CUSTODY RECORD	Nº 38720	Noteros NN
۱ ۱	Request	RECORD NUMBER 38730 THROUGH 38720
Contact Person <u>1 い してきん</u> Phone No. <u>763 315 12365</u> Office <u>Mp/15</u> Project No. <u>2606.066339</u> PO No		Analyten
Project Name <u>A lex Ex haus</u> +	other Results Due	mator d
Composite Composite Composite Grab Grab Composite Water, soil, air, sludge, etc.) Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservat	Analysis Request	Comments on Sample (Include Major Contaminants)
218 PHIS V 1 NIC	70-15	100
Jers × 1		C00
VP-3 24 1500 × 1 × 1 ×		603
VP-4 218 1530 × 1 1 × 1		tal
, pre 1545 1 1 1	$\sim$	500
Collected by: Mr. Red Level Date See Time Alnave	Delivery by: Shaum Douris	Date 2 ( 9 ) 0 7 Time (1 2 )
Date Time	Relinquished by:	Date Time
Received by: Date Date	Relinquished by:	Date Time
Received by: Date Time	Relinquished by:	Date Time
Received for lab by: D. FLERU Date 2/9/07 Time B.00	Relinquished by:	Date Time
Laboratory Comments Only: Seals Intact Upon Receipt?		
Final Disposition:	Comments (Weather Conditions, Precautions, Hazards):	tions, Hazards):
: Original and Green - Laboratory Yellow - As needed Pink - Transporte	TS Project File	
Ð		6/99cp10k
		STS Consultants Ltd.
		Consulting Engineers

S S	ample Condition Upon Receip	
Pace Analytical Client Nam	e: SIS	Project # 1046203
Courier: Fed Ex UPS USPS Cli Tracking #:	ient Commercial XPace Other	Optional Proj Due Date:
Custody Seal on Cooler/Box Present:	s 🖾 no Seals intact: 🗌 yes	Proj. Name:
Packing Material: Bubble Wrap Bubb	le Bags 🕅 None 🗌 Other	
Thermometer Used 230194010	Type of Ice: Wet Blue (None)	Samples on ice, cooling process has begun
Cooler Temperature Amb	Biological Tissue is Frozen: Yes No Comments:	Date and Initials of person examining contents:
Chain of Custody Present:	ØYes □No □N/A 1.	
Chain of Custody Filled Out:	ŽÍYes □No □N/A 2.	
Chain of Custody Relinquished:	ŶYes DNo DN/A 3.	
Sampler Name & Signature on COC:	© Yes □No □N/A 4.	
Samples Arrived within Hold Time:	[Xes □No □N/A 5.	
Short Hold Time Analysis (<72hr):	□Yes QNo □N/A 6.	
Rush Turn Around Time Requested:		
Sufficient Volume:	QVes DNO DN/A 8.	
Correct Containers Used:	ØYes □No □N/A 9.	
-Pace Containers Used:		
Containers Intact:	® Yes □No □N/A 10.	
Filtered volume received for Dissolved tests	□Yes □No £N/A 11.	
Sample Labels match COC:	\$ Yes □No □N/A 12.	
-Includes date/time/ID/Analysis Matrix:	AIR CAN	
All containers needing preservation have been checked.	DYOS DNO XN/A 13.	
All containers needing preservation are found to be in compliance with EPA recommendation.	Dyes DNo DNA	ζ.
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes ₩No completed	Lot # of added preservative
Samples checked for dechlorination:	□Yes □No 12/N/A 14.	
Headspace in VOA Vials ( >6mm):	□Yes ØNO □N/A 15.	
Trip Blank Present:	□Yes @No □N/A 16.	
Trip Blank Custody Seals Present		
Pace Trip Blank Lot # (if purchased):		
Client Notification/ Resolution:		Field Data Required? Y / N
Person Contacted:	Date/Time:	
Comments/ Resolution:		
<u></u>	0	1.1.
Project Manager Review:	phi	Date: $2/9/07$

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Leak 15,656 – Alex Exhaust AECOM Project 04660027

## APPENDIX G

AECOM Methodologies and Procedures

## AECOM Standard Methodologies and Procedures

AECOM conducts environmental investigation and review following Minnesota Pollution Control Agency (MPCA) Guidance Documents and generally-accepted professional practices. The following sections provide a summary of standard AECOM procedures used at Leaking Underground Storage Tank (LUST) sites in Minnesota.

## 1.0 Site Reconnaissance and Background Review

Where appropriate, AECOM conducts literature review and interviews with knowledgeable individuals to develop a project background, and/or complete a reconnaissance of a project setting. These activities are conducted in general conformance with the acceptable procedures for site reconnaissance, interviewing, and acquisition of readily-available public documents, and the on-site activities for these tasks that are described in MPCA Guidance Document 4-02.

These reviews include the historic occupant/land uses associated with properties and their surroundings, and may be conducted to observe for the presence of groundwater wells where indications of presumed UST fill pipes, vents, hatches, piping, dispenser islands, or other site-specific appurtenances indicative of a property history with potential for USTs to be present.

Walking well surveys conducted by AECOM rely on visual observations made during a walking reconnaissance of the indicated search radius. These reviews are limited to the observations possible from public lands, rights-of-way, and transportation corridors (including sidewalks) unless property owner permission is provided to AECOM for closer inspection.

Reviews of County Well Index (CWI) records conducted by AECOM includes the review of well logs found in an indicated search area (township, range, section) in an electronic copy of the CWI database, and may include a visit to the University of Minnesota, Minnesota Geological Survey (MGS) facility for direct review of records on file at that location. These records are often provided with a key map showing the specific locations of wells based on literature review and on-site confirmation conducted by MGS. AECOM also contacts a local water planning official to gain information on current and projected groundwater wells in the area. This official is often the engineer for the municipality, and/or the Public Works Director. In rural areas, the County Planning Office and/or Engineering Office may have an environmental component involved in groundwater planning.

Interviews conducted by AECOM with knowledgeable individuals can include telephone and face-to-face discussions with current/past property owners, neighbors, representatives of the city/county where the site is located, or other individuals with specific knowledge about a site. These interviews are relatively informal in nature, and are documented as such in the AECOM report. Accounts of site history that can be cross-corroborated between sources are given greater credibility when used by AECOM to interpret site findings than individual accounts that are non-specific in nature. In the event non-specific accounts of past environmental incidents or property use are received by AECOM, additional sources of information are sought to determine if the account can be confirmed.

Sites with groundwater impacts require evaluation of municipal water well risk, if the impacts are found in a Source Water Protection (SWP) area or Drinking Water Source Management Area (DWSMA). To determine this, AECOM queries the Minnesota Dept. of Health (MDH) website. Specific information concerning the SWP / DWSMA (if any) involved is gathered by contacting the various officials mentioned above, and/or MDH area hydrologists, etc. listed on the MDH website.

## 2.0 Site Investigation

Site investigations conducted by AECOM typically include soil borings using the hollow stem auger method to advance soil borings, and the use of rotary drilling to extend these borings into bedrock where required. The placement of borings by AECOM is conducted in conformance with MPCA Guidance Document 4-01 procedures. AECOM extends soil borings in conformance with ASTM D-4700, typical site investigations rely on the use of a motorized drill rig equipped with hollow-stem augers. Samples are

retrieved using the split-spoon sampler in conformance with ASTM D-1586. A typical sample interval is 2.5 feet between intervals. A 2 foot split-spoon sampler is used to retrieve a representative soil sample from this interval. Soils are classified in conformance with ASTM D-2487, the visual manual procedure and described in general conformance with the Unified Soil Classification System.

Other methods are used by AECOM for soil sampling, notably direct-push "Geoprobe" sampling equipment advanced using a sampling vehicle that has both <u>push</u> and <u>rotary</u> drilling capabilities. The samplers used are consistent with ASTM D-3550 methodology.

Field screening of soil samples is conducted in conformance with the polyethylene bag head space screening method described in MPCA Guidance Document 4-04. For this purpose, AECOM uses a photoionization detector (PID) equipped with a 10.6 eV lamp and calibrated using 100 ppm isobutylene as a benzene surrogate. In the event a different screening tool (Flame Ionization Detector, Methane Meter, or different PID lamp excitation level) is used, this is noted on the boring log. Boring logs prepared by AECOM typically receive peer review of soil classification by a Professional Geologist, the typed boring logs show the encountered strata with the PID meter readings, and indicate the background PID meter deflections observed in ambient air. Alternate forms of boring logs are used when down-hole instrumentation is involved, such as the use of Laser Induced Fluorescence or Membrane Interface Probe technology.

Soil samples from boreholes are prepared for laboratory analysis in conformance with MPCA Guidance Document 4-04. Soil borings that encounter groundwater often require groundwater sample collection from temporary wells or permanent monitoring wells. This is conducted in conformance with MPCA Guidance Document 4-05. In the event permanent monitoring wells are required, AECOM installs these in conformance with Minnesota Department of Health (MDH) well codes.

### 2.1 Vapor Intrusion Investigation

AECOM follows the MPCA guidance for Vapor Risk Evaluation and Vapor Intrusion Assessment (Guidance Document 4.01a) for vapor sampling during investigation, and as a supplement to investigations that were completed without evaluation of this exposure pathway. This may include push probes for soil gas sampling using the Post-Run Tubing (PRT) sampler, and/or installation of semi permanent soil gas monitoring points.

Sub-slab samples are collected by first drilling a small (1/2 inch to 1-1/4 inch dia.) hole, and setting a temporary sample line in the hole. This line is equipped with intake protection to avoid soil entry, and a surface seal to prevent ambient air from flowing into the sub-slab air being sampled. AECOM also fabricates sample ports from brass and polyethylene that are grouted to a ³/₄ inch hole, which allows for repeated sub-slab samples from the same location in a manner that minimizes disruption to the building owner.

Whenever sample points such as those described above are sampled, AECOM purges them prior to sample collection. The purge device used may vary with application, but is generally a multi-gas detector (e.g. Landtech GEM 500) that has an integral, calibrated flow sample pump. This instrument has a steady-flow pump that allows for predictable sample line purging; the unit is allowed to run for the time required to purge the sample line. The instrument sensor readings are observed, and the sample line purging is considered to be confirmed when the readings appear to stabilize. The multi-gas monitor collects measurements of subsurface gas constituents such as oxygen, carbon dioxide, and methane which are useful in interpreting sample results and evaluating subsurface air flux.

AECOM efforts for Quality Assurance (QA) are defined in the Work Plan on a site-specific basis, and may include use of a tracer compound. An example of tracer use is placement of sorbent cloths containing isopropanol around a vapor sample probe. The presence of elevated isopropanol concentrations in collected vapor samples would indicate that atmospheric air followed a "short circuit" path to the vapor collection point, compromising the vapor sample data. Another QA strategy is to review the instrument readings for oxygen and carbon dioxide, and compare the gas ratios to atmospheric norms. Subsurface

vapor tends to be oxygen depleted and richer in carbon dioxide, unless subsurface air flux is sufficient to bring fresh air into the subsurface environment. Such increased air flux often occurs due to human alterations such as placement of granular fill and/or structures that penetrate the soil. The presence of such influencing factors, when observed, is taken into account when reviewing the results of vapor monitoring.

Sample collection is by 'Summa' canister, following manufacturer and Laboratory prescribed procedures. Quality Assurance efforts include the line purging and vapor screening tools described above, collection of Quality Assurance samples such as a sample line method blank, Ambient Air sample collection, and documentation of sample location conditions such as building interior observations and listing of readily observed materials in the area that could bias sample results. The latter conditions are documented on the form, Indoor Air Quality Building Survey prepared by Minnesota Department of Health.

Analytical results are interpreted by comparing the contaminants released at the site, with the compounds present in the vapor samples. While the presence of air contaminants not released from the site may be a concern, identification of these additional pollutants is not an objective of focused investigatory work. Compounds in air samples that were released from the site are reviewed further. The results of subsurface, sub-slab, and interior air sample analysis are evaluated to determine if a contaminant *migration pathway* appears to be completed. A completed exposure pathway would be inferred if (1) all sample locations had the same compound present, and it was a contaminant found in the release, and (2) the ratios of these compounds is consistent, with variability attributable to application of Henry's Law and/or natural attenuation processes, where appropriate.

Additional efforts for data reduction may be appropriate in specific cases. When applied to a site, AECOM will document the evaluation method and references that apply.

## 3.0 Well Sampling

The following methodologies pertain to groundwater samples collected from wells.

### 3.1 New Wells

New wells installed by AECOM are developed prior to sampling in order to enhance the connection between the well and the aquifer, and allow for collection of groundwater levels and laboratory samples that represent groundwater conditions to the extent practicable.

Well development can include jetting/flushing of the well screen using clean water from a tested source soon after well installation. The jetted water is then removed from the well by purging with a submersible pump and the volumes removed noted on the AECOM Well Development Summary. The well screen is then surged to loosen fines in the well annulus, followed by purging of the well to remove fines with the purge water. This process is repeated as necessary to clear sediment from the well; then the well is purged at a sustainable rate for collection of well stabilization parameters as described below.

### 3.2 Monitoring Well Sampling

Monitoring wells are sampled by AECOM by purging the well at a sustainable rate (if the well yields water at a pumpable flow rate) and by collecting readings of "well stabilization" parameters during purging at intervals of approximately one standing volume. The standing volume is determined by calculating the volume of water found in the well screen/casing and varies with well diameter.

Well stabilization is considered to occur when the following parameters match within the indicated tolerances:

- pH, ±0.1 unit
- temperature, ±0.5°C
- specific conductivity, ±5% of instrument range
- redox potential (if applicable), ±20 mV
- observed color and turbidity, consistent throughout the last three well volumes

In some cases, monitoring wells yield too slowly to allow continued purging. If this is the case, AECOM will purge the well dry once and then collect the stabilization reading set. Well recovery is monitored by AECOM, and the well may be bailed dry a second time if it recovers approximately 50% in two hours. Additional sets of stabilization readings will be taken for wells that can be bailed repeatedly and recover groundwater each time. Wells that recover too slowly to allow repeated or continued purging will be sampled within approximately three hours of being purged dry, if sufficient water is available for sample bottle filling. Departures from these procedures will be noted on the AECOM Sampling Information Form.

Sample collection is accomplished using a sampler bailer, or through use of a dedicated length of sample tubing connected to a peristaltic pump. Collection of water for field tests is typically run through the submersible pump's purge line prior to laboratory sample collection. A description of the sample collection device used is documented on the AECOM Sampling Information Form.

### 3.3 Water Supply Well Sampling

AECOM samples water wells by collecting the available information on the well depth, construction, and water level if readily available. The water wells are allowed to run, and purge water is drawn from a tap as close as practicable to the pump effluent. Often, this sample tap is equipped with a hose or other purge line to direct volumes of water away from the well location. Wells that are infrequently used involve collection of the stabilization readings described above to determine when groundwater geochemistry in the well has stabilized sufficiently for sample collection. Wells that are in constant use, or have been run frequently or an extended period prior to sample collection by AECOM may involve a "grab" sample from the sampling tap, as the continued period of operation would be assumed to stabilize well geochemistry prior to this.

Water samples are collected from these wells by removing the purge hose if appropriate, and slowing the rate of water flow through the sampling tap to a steady trickle, without observable air bubbles or other turbulence. Water is allowed to run directly into sample containers prepared by the analytical laboratory and handled appropriately. Water sampling for bacteriological testing is a specialized technique, and includes preparation of the sample location (e.g. flame sterilization for the tap) prior to sample collection. This form of water sampling requires more careful handling of all sampling materials, and provisions for rapid shipment of samples to the testing facility.

### 4.0 Equipment Decontamination

To minimize the amount of equipment requiring decontamination, AECOM relies on the use of dedicated, disposable sampling equipment where practicable. Such disposable equipment includes tubing, bailers and bailer retrieval cord, and in-well samplers. Items not available as disposable items are decontaminated between uses/wells. AECOM seeks to sample "clean" areas first, and work toward more contaminated locations to minimize the effects of contaminant carry-over.

The topic of equipment decontamination is extensive and beyond the scope of this report. AECOM generally follows "EPA Protocol B" for decontamination of equipment, using a laboratory grade detergent followed by three deionized water rinses. Where available, AECOM uses a running water rinse for the third rinse to maximize the efficiency of decontamination and remove traces of contaminants that may remain in standing rinse water.

Field blanks are often collected from equipment rinsate water generated during the final rinse of equipment such as bailers, sample tubing, etc. The same deionized water used for equipment rinsing is used for preparation of the field blank to allow for quality assurance testing on the field blank collected. When disposable bailers are used, a field blank is prepared by pouring deionized water into the bailer prior to use in a well, and then pouring the bailer's contents into the sample containers.

## 5.0 Aquifer Parameters

Certain aquifer parameters have to be established for evaluation of groundwater receptor risks. The following aquifer parameters were estimated using generally-accepted techniques for use in the risk estimation that applied to the site.

### 5.1 Horizontal Gradient

The horizontal gradient (dh/dl) was estimated by taking the difference in head (water elevation) between an up-gradient well and a similarly-constructed down-gradient well, to determine the "dh" value. The linear distance between these points was measured graphically perpendicular to flow lines (from the site map) and/or from actual field measurements. The dh value divided by the length between data points provides the horizontal gradient (unitless factor) for use in groundwater flow calculations.

### 5.2 Vertical Gradient

The vertical gradient (dh/dv) was estimated by taking the difference in head between wells screened in different portions of an aquifer, or separate aquifers to provide the "dh" value. This value divided by the "dv" value provides an estimated vertical gradient (unitless factor). AECOM assigns the descriptions "upward" or "downward" to describe the resulting gradient.

The dv value was calculated by taking the elevation of the center of the saturated portion of the shallower well, and subtracting the elevation center of the deeper well's sand pack. Therefore, the shallower wells bottom would be the base of borehole containing sand pack where the screen section is located. The top of well for the deeper well would include the upper elevation of the sand pack found above the well screen, and below the well seal/grout in the annulus.

### 5.3 Pore Velocity

The pore velocity in the impacted aquifer is presented as an estimate, and was based on the estimated values described according to the following formula:

Pore velocity = k x  $\frac{dh/dl}{porosity}$ 

For this calculation, aquifer material porosity was estimated per Fetter, in the reference cited in the following section.

### 5.4 Determination of Hydraulic Conductivity (k)

AECOM evaluated the soil texture found in the aquifer materials (screened portion of monitoring wells, for example) for determining of k as follows:

### 5.4.1 Estimated by Soil Texture

The predominant soil textures encountered in the impacted aquifer were classified by AECOM and compared with the soil types described by C.W. Fetter in <u>Applied Hydrogeology</u>, 2nd Edition dated 1988 (page 80) and in literature cited by Mr. Fetter. The literature provides values of k in cm/sec which are converted to other units (e.g. ft/day) using conversion formulas as appropriate.

## 5.4.2 Estimated by Hazen Approximation

MPCA Guidance Document 4-06 refers to use of the "Hazen Approximation" for determination of k. The Hazen Approximation was derived from empirical tests conducted on manufactured sand beds of less than maximum density. According to Fetter, the approximation becomes less accurate with decreasing *effective grain size*. The Hazen method is valid for k values greater than  $10^{-3}$  cm/sec, and with soils that have <5% of fines passing the No. 200 sieve. AECOM performs grain size analysis on soil samples collected from aquifer materials, in conformance with ASTM D-422.

The *effective grain size*  $(D_{10})$  derived from the sieve analysis is used to estimate k (Hazen method) as follows:

## $k = C \times (D_{10})^2$

Where k is hydraulic conductivity in centimeters/sec, C is a constant given by definition in the literature, and  $D_{10}$  is the effective grain size in centimeters. Fetter provides values for C based on textural soil classifications. Where appreciable difference in C values exist for a textural class, the higher and lower values are used to calculate a range of k values.

### 5.5 Natural Attenuation

AECOM follows MPCA guidance for evaluation of natural attenuation processes in groundwater. The Conceptual Model used in this evaluation includes the assumption that contaminant concentrations can diminish as the result of advection (dilution and aquifer mixing), diffusion (as contaminant mass is lost to the unsaturated zone by off-gassing of vapor), and bio-degradation. Microbial populations are facultative; microbes suited to a given set of geochemical conditions will become numerous if given time, when faced with an energy source (such as dissolved hydrocarbons), and a metabolism-inducing agent. Bio-attenuation suitability evaluation is estimated through collection of field measurements for this inducing agent (usually an electron acceptor such as dissolved oxygen, or alternative such as nitrate, iron, sulfate, etc.) either directly by measuring oxygen or an ion in solution, or indirectly by measuring oxidation-reduction potential or other geochemical parameters.

The above-described approach is used to develop an *inference* that natural attenuation processes involving microbial activity can occur. Other inferences can include the measurement of respirometry (oxygen, carbon dioxide, methane) parameters to find evidence that metabolic activity is changing the composition of subsurface gases. Other techniques may sample subsurface vapor to determine if the ratio of parent compound and degradation products changes over time, or across distance traveled in the groundwater.

Direct observation of natural attenuation can be made, by comparing analytical results collected over time from the same locations. If multiple (a rule of thumb is six) consecutive sampling events show a generally declining trend in contaminant concentrations, and this is not due to the plume moving out of the monitored area, a conclusion is made that natural attenuation is occurring.

## 6.0 Risk Estimation

AECOM conducts risk estimation on LUST sites in conformance with MPCA Guidance Document 4-02. The risk estimations rely on probable risks associated with impact severity and extent, and proximity to identified receptors. Receptors of contamination may be human or ecological beings. The pathways of exposure include direct bodily contact with contamination, ingestion of impacted soil and/or groundwater, and inhalation of vapors. Low-risk sites include those with minor impacts, impacts found only in a relatively small area, and sites where impacts are separated from receptors by a considerable distance. Risk-elevating factors include severe impacts, impacts that are extensive or are expanding in scope, and the presence of impacts in/near groundwater receptors in the vicinity.

In the event that elevated receptor risks are evident, additional effort is expended in determining whether impacts to receptors have occurred. In the event receptors are impacted by a release, corrective action is required in conformance with MPCA policies. When site conditions are such that receptor impacts have been addressed, a revised estimation of risk can be performed. Remedial actions (including natural attenuation) can act on remaining contamination such that either the extent or magnitude of impacts (or both) are diminished sufficiently to lower the estimated risks associated with a release site. In some cases, additional risk evaluation effort relies on established toxicological procedures to evaluate risks associated with site conditions. In such cases, a detailed description of methodology will be found in the AECOM text. Other factors that can reduce risk involve breaking an exposure pathway. Examples of this are: covering contaminated soil so that it cannot come into contact with receptors and/or will not leach to groundwater, providing an alternative source of water to receptors at-risk from contaminated groundwater, and preventing exposure to inhalable contaminants by changing the level or duration of exposure.

Leak 15,656 – Alex Exhaust AECOM Project 04660027

## APPENDIX H

Sampling Information Forms



Sampler's Name <u>Mathew J. Beckman</u>	Weather Overcast/ -1	Weather <u>Overcast/ -10's – 0's</u> Project <u>Alex Exhaust</u> STS project number: <u>200606839</u>			
Unusual Conditions	Project Alex Exhaust				
Location Alexandria, MN	STS project number: 2				
Sample ID number <u>TW-1</u>	Date sampled 2/8/2007	Time <u>1010</u> am	n pm X		
Describe sampling point Temporary well of					
Unique Well Number					
MONITORING WELL INFORMATION: (If	Applicable)				
MONTORING WELL IN ORMATION. (I	Applicable)				
Monitoring point elevation = <u>100.70</u>	Datum = Assum	ed local Water elevation = 7	9.70		
Well depth (prior to sampling) = $25.00$	feet below monitoring	point (mp)			
Depth to water (below mp) = $21.00$	feet Date 2/	08/07 Time 1000	am <u>X</u> pm		
Well diameter 2	inches Water lev	vel above screen? No	Yes feet		
Volume of water in well = $-0.6$	gallons				
PURGING INFORMATION:					
Purging method: Bailer X	Submorsible pump				
Tubing type: Teflon	Black poly	Tap Other			
Pump intake or bailer set at <u>Waterline</u>		ing point (mp).			
Discharge rate (if applicable) <a></a>					
At least well v	fournes evacuated before sampling	, totaling $\underline{\sim3}$ gallons.			
SAMPLING INFORMATION					
Sampling method: Bailer X	Тар	Other			
Tubing type (if applicable): Tef	lon Laboratory cleaned	Other			
Bailer was: Disposable	Laboratory cleaned	Field cleaned C	other		
Sample collected from Waterline	feet below monitoring point.	(mp)			
Sample collection discharge rate (if applica					
Sample appearance <u>Cloudy/sediment</u>					
Note any sampling observations if necessa					
Chemical Analysis VOC, GRO and DRO					
Equipment Calibration $pH = 7,4,10,7$ Co	nauctivity = 700 µs/cm @ 0800				
FIELD STABILIZATION					
<u></u>					
	Temperature corrected	Water Level	Cumulative		

Military time 1020 1025 1030	рН 7.4 7.4 7.4	Redox Pot. -23 -15 -5	corrected conductance [ms/cm] <u>3.59</u> <u>3.51</u> <u>3.49</u>	Temperature [°C] 5.1 5.0 4.9	Water Level (nearest 0.01 ft.)	Cumulative volume of water removed [gal.] ~1 ~2 ~3



Sampler's Name Mathew J. Beckman	Weather Overcast/ -10's - 0's
Unusual Conditions	Project Alex Exhaust
Location Alexandria, MN	STS project number: <u>200606839</u>
Sample ID number <u>TW-2</u> Date sampled <u>2/7/2007</u>	
Describe sampling point Temporary well converted from B-2	
Unique Well Number	
MONITORING WELL INFORMATION: (If Applicable)	
Monitoring point elevation = <u>100.67</u> Datum = <u>Assumed</u>	Vater elevation = 83.12
Well depth (prior to sampling) = $25.00$ feet below monitoring points	
Depth to water (below mp) = $17.55$ feet Date $2/7/2$	07 Time 1340 am pm X
Well diameter 2 inches Water leve	l above screen? No Yes feet
Volume of water in well = $-0.6$ gallons	
PURGING INFORMATION:	
Purging method: Bailer Submersible pump	Tap Other X - Peristaltic pump
Tubing type: Teflon Black poly	Other
Pump intake or bailer set at <u>Waterline</u> feet below monitorin	g point (mp).
Discharge rate (if applicable) <a>    <a>    <a>    /a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a></a>	cfm
At least 5 well volumes evacuated before sampling, t	
SAMPLING INFORMATION	
Sampling method: Bailer Tap	Other X - Peristaltic nump
Sampling method:   Bailer   Tap     Tubing type (if applicable):   Teflon	Other
Tubing type (if applicable):     Teflon       Bailer was:     Disposable     Laboratory cleaned	Field cleaned Other
Sample collected from <u>Waterline</u> feet below monitoring point. (r	np)
Sample collection discharge rate (if applicable): =	



Sampler's Name Mathew J. E	Beckman			Weather	Overcast/ -10's	– 0's
Unusual Conditions	Project <u>Alex Exhaust</u> STS project number: <u>200606839</u>					
Location Alexandria, MN						
Sample ID number TW-3			2/7/2007			pm <u>X</u>
Describe sampling point Temp						
Unique Well Number						
MONITORING WELL INFORM	IATION: (If )	Applicable)				
			A 11			0
Monitoring point elevation = $\frac{10}{1000}$		Datu	m = <u>Assumed loca</u> w monitoring point (r	u <u></u> vvater e	levation = $84.9$	9
Well depth (prior to sampling) = Depth to water (below mp) = 1	: <u>25.00</u> 16.11	feet below	w monitoring point (r	np) Tim/	1200 20	V pm
Well diameter $2$	0.11	inches	Water level abo	ve screen?	No No	/ <u>^</u> pin /esfeet
Volume of water in well = $-1$		nallons				
		gallonio				
PURGING INFORMATION:						
Purging method: Bailer		Submersible pump	Та	ар	Other X -	Peristaltic pump
Purging method:BailerTubing type:Teflon		Black poly	/	Other F	VC	
Pump intake or bailer set at	Waterline	feet b	elow monitoring poi	nt (mp).		
Discharge rate (if applicable)						
At least	well ve	olumes evacuated bef	ore sampling, totalin	ng <u>~3 g</u> a	allons.	
SAMPLING INFORMATION						
Sampling method: Bai	ler	Та	þ	Other	X - Peristaltic c	amp
Tubing type (if applicable):	Tefle	on	·	Other		
Tubing type (if applicable): Bailer was: Disposable		Laboratory cleaned	Field	d cleaned	Othe	r
Sample collected from Wat	terline	feet below mor	nitoring point. (mp)			
Sample collection discharge rat	te (if applicat	ole): = <u>&lt;1 L/min</u>	gpm			
Sample appearance Cloudy/s						
Note any sampling observation	s if necessar	у				
Chemical Analysis VOC, GRC	) and DRO					_
Equipment Calibration $pH = 7$						
	<u>,4,10,7</u> COI	$\frac{1000  \mu s/cm}{100  \mu s/cm}$				
FIELD STABILIZATION						
		Tomporatives				
Military	Redox	Temperature corrected conductance	Temperature	Water L		Cumulative

Military time 1215 1225 1235	pH 7.1 7.1 7.1	Redox Pot. -17 -16 -12	conductance [ms/cm] 3.51 3.49 3.50	Temperature [°C] <u>9.2</u> 9.1 9.2	(nearest 0.01 ft.)	volume of water removed [gal.] ~1 ~2 ~3



Sampler's Name Mathew J. Beckman	Weather Overcast/ -10's – 0's
Unusual Conditions	Project Alex Exhaust
Location Alexandria, MN	STS project number: <u>200606839</u>
Sample ID number TW-4 Date sampled 2/7/2007	Time <u>1125</u> am pm <u>X</u>
Describe sampling point Temporary well converted from B-4	
Unique Well Number	
MONITORING WELL INFORMATION: (If Applicable)	
Monitoring point elevation = <u>100.08</u> Datum = <u>Assumed loc</u>	cal Water elevation = <u>78.36</u>
Well depth (prior to sampling) = $30.00$ feet below monitoring point	(mp)
Depth to water (below mp) = $21.72$ feetDate $2/7/07$ Well diameter 2inchesWater level ab	Time <u>1035    </u> am <u>X    </u> pm
Well diameter 2 inches Water level ab	ove screen? No Yes feet
Volume of water in well = $\underline{-1}$ gallons	
PURGING INFORMATION:	
Purging method: Bailer X Submersible pump	Tap Other X - Peristaltic pump
Tubing type: Teflon Black poly	Other
Pump intake or bailer set at <u>Waterline</u> feet below monitoring po	pint (mp).
Discharge rate (if applicable) <a></a>	cfm
At least well volumes evacuated before sampling, total	ing <u>~3         g</u> allons.
SAMPLING INFORMATION	
Sampling method: Bailer X Tap	Other X - Peristaltic pump
Tubing type (if applicable): Teflon	Other
Tubing type (if applicable):     Teflon       Bailer was:     Disposable     Laboratory cleaned	eld cleaned Other
Sample collected from <u>Waterline</u> feet below monitoring point. (mp)	
Sample collection discharge rate (if applicable): = <pre> &lt;1 L/min gpm</pre>	
Sample appearance <u>Cloudy/sediment</u>	
Note any sampling observations if necessary	
Chemical Analysis VOC, GRO and DRO	
Equipment Calibration _pH = 7,4,10,7 Conductivity = 700 µs/cm @ 0945	
FIELD STABILIZATION	
Temperature	
corrected	Water Level Cumulative
Military Redox conductance Temperature time pH Pot. [ms/cm] [°C]	(nearest volume of water 0.01 ft.) removed [gal.]
1045 7.2 101 3.56 7.2	<u>~1</u> ~2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u> </u>
<u>1105</u> <u>7.2</u> <u>99</u> <u>3.49</u> <u>7.3</u>	~3



Sampler's Nam	ne Mathew J. Be	eckman			Weather <u>Overcast/</u> -10's – 0's				
Unusual Conditions					Project Alex Exhaust				
	Location Alexandria, MN					STS project number: 200606839			
Sample ID nun	nber <u>TW-5</u>		Date sampled	2/7/2007		am _pm X	_		
							-		
MONITORING		ATION: (If A	Applicable)						
Monitoring poir	nt elevation = <u>99</u>	.98	Datu	m = Assumed local	Water elevation :	= 74.83			
Well depth (prid	or to sampling) =	26.0	feet belov	w monitoring point (mp	)				
Depth to water	$(below mp) = \underline{2\xi}$	5.15	feet	Date <u>2/08/07</u>	Time 1000	am <u>X</u> pm Yesfee			
Well diameter	2		inches	Water level above	screen? <u>No</u>	Yes fee	et		
Volume of wate	er in well = $\frac{-0.6}{}$		gallons						
PURGING INF	ORMATION:								
Puraina metho	d: Bailer X		Submersible pump	Тар	Ot	her			
Tubing type:	Teflon		Black poly	/	Other				
Pump intake or	r bailer set at	Waterline	feet b	elow monitoring point	(mp).				
Discharge rate	(if applicable)	<1 gal/min	gpm :	x 0.1336806 =	cfm				
At least		well vo	plumes evacuated bef	ore sampling, totaling	<u>~3</u> gallons.				
SAMPLING IN	FORMATION								
Sampling meth	iod: Baile	er X	Та	D	Other	Other			
Tubing type (if	applicable):	Teflo	n	0	ther	0.1	_		
Bailer was:	Disposable		Laboratory cleaned	Field c	leaned	Other	-		
Sample collect	ed from <u>Wate</u>	erline	feet below mor	nitoring point. (mp)					
			le): = <u>&lt;1 L/min</u>						
	rance <u>Cloudy/se</u>				dor None observed				
Note any samp	oling observations	if necessar	y No water in well 2/	7/07. ~0.5' of water in	well the morning of 2/	8/07.	•		
							-		
Chemical Anal	ysis <u>VOC, GRO</u>	and DRO							
Equipment Cal	ibration <u>pH = 7,</u>	4,10,7 Cor	nductivity = 700 µs/cm	@ 0800			-		
FIELD STABIL	IZATION								
			Temperature						
			corrected		Water Level	Cumulative			
Military	pН	Redox	conductance	Temperature	(nearest	volume of water			
time	рп	Pot.	[ms/cm]	[°C]	0.01 ft.)	removed [gal.]			



Sampler's Name Mathew J. Beckman	Weather Overcast/ -10's – 0's
Unusual Conditions	Project Alex Exhaust
Location Alexandria, MN	STS project number: <u>200606839</u>
Sample ID number <u>TW-6</u> Date sampled <u>2/8/2007</u>	Time <u>1535</u> ampm X
Describe sampling point Temporary well converted from B-6	
Unique Well Number	
MONITORING WELL INFORMATION: (If Applicable)	
Monitoring point elevation = 99.86 Datum = Assumed lo	ocal Water elevation = 77.39
Well depth (prior to sampling) = $25.00$ feet below monitoring poin	
Depth to water (below mp) = $22.47$ feet Date $2/7/07$	Time 1445 am X pm
Well diameter 2 inches Water level a	bove screen? No Yes feet
Volume of water in well = $-0.5$ gallons	
PURGING INFORMATION:	
Purging method: Bailer Submersible pump	Tap Other X - Peristaltic pump
Tubing type: Teflon Black poly	Other
Pump intake or bailer set at <u>Waterline</u> feet below monitoring p	point (mp).
Discharge rate (if applicable) <a>  </a> br> 	
At least well volumes evacuated before sampling, tota	aling <u>~3         g</u> allons.
SAMPLING INFORMATION	
Sampling method: Bailer Tap	Other X - Peristaltic pump
Tubing type (if applicable):     Teflon       Bailer was:     Disposable	Other
Bailer was: Disposable Laboratory cleaned F	ield cleaned Other
Sample collected from <u>Waterline</u> feet below monitoring point. (mp	)
Sample collection discharge rate (if applicable): = <a block"="" href="https://www.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.collection.coll&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;Sample appearance &lt;u&gt;Cloudy/sediment&lt;/u&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;Note any sampling observations if necessary&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;Chemical Analysis VOC, GRO and DRO&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;Equipment Calibration &lt;math&gt;pH = 7,4,10,7&lt;/math&gt; Conductivity = 700 µs/cm @ 0800&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;FIELD STABILIZATION&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;Temperature&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;corrected&lt;/td&gt;&lt;td&gt;Water Level Cumulative&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;Military Redox conductance Temperature&lt;br&gt;time pH Pot. [ms/cm] [°C]&lt;/td&gt;&lt;td&gt;(nearest volume of water&lt;br&gt;0.01 ft.) removed [gal.]&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;1500 7.2 12 3.91 6.9&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;1510         7.2         13         3.88         6.9           1520         7.2         15         3.86         6.8&lt;/td&gt;&lt;td&gt;&lt;math display=">\frac{-1}{\frac{-2}{-3}}</a>	
	~0



AECOM 161 Cheshire Lane North, Suite 500 Minneapolis, MN 55441

Sampler's Name: Ryan Doherty	Weather: <u>Sunny 15-25</u> °		
Unusual Conditions	Project Alex Exhaust		
Location Alexandria, MN	STS project number 200705844		
Sample ID number <u>B-7(W)</u> Date sampled <u>2/27/08</u>	Time <u>1235</u> am pm <u>X</u>		
Describe sampling point 30' N of TH 27 (3 rd Ave) and 90' E of E side of driveway t	o old Alex Exhaust		
Unique Well Number Not Applicable			
MONITORING WELL INFORMATION: (If Applicable)			
Monitoring point elevation = <u>97.95</u> Datum = <u>Assumed loc</u>	cal Water elevation =		
Well depth (prior to sampling) = <u>25.58</u> feet below monitoring point			
Depth to water (below mp) = $15.8$ feet Date $2/27/08$			
Well diameter = inches Water level ab	ove screen? X No Yes feet		
Volume of water in well = <u>1.6</u> gallons			
PURGING INFORMATION:			
Purging method: Bailer X Submersible pump	Tap Other		
Tubing type: Teflon Black poly	Other		
Pump intake or bailer set at <u>waterline</u> .			
Discharge rate (if applicable) gpm.			
At least well volumes evacuated before sampling, total	ing <u>4.7    gallons</u> .		
SAMPLING INFORMATION			
Sampling method: Bailer X Tap	Other		
Sampling method:     Bailer     X     Tap       Tubing type (if applicable):     Teflon	Other		
Bailer was:         Disposable         X         Laboratory cleaned         Fie	eld cleaned Other		
Sample collected from <u>waterline</u> .			
Sample collection discharge rate (if applicable): = <1 gpm	Odor <u>None detected</u>		
Sample appearance whitish to clear Note any sampling observations if necessary Took duplicate sample at 1250 and o	Coor None detected		
	called it B-77(W). Also took Field Blattk at 1405		
Chemical Analysis DRO, VOC, GRO			
Equipment Calibration <u>pH = 7,4,10,7</u> Conductivity = 1413 µs/cm @ 1215			
FIELD STABILIZATION			
Temperature			
corrected	Water Level Cumulative		
time pH Pot. [ms/cm] [°C]	(nearest volume of water 0.01 ft.) removed [gal.]		
<u>1226</u> <u>1229</u> <u>7.75</u> <u>158</u> <u>1063</u> <u>9.7</u> <u>9.5</u>	$\frac{3}{4}$		
$\frac{1223}{1233} \qquad \frac{7.74}{7.74} \qquad \frac{100}{158} \qquad \frac{1001}{1088} \qquad \frac{9.5}{9.5}$	<u> </u>		



AECOM 161 Cheshire Lane North, Suite 500 Minneapolis, MN 55441

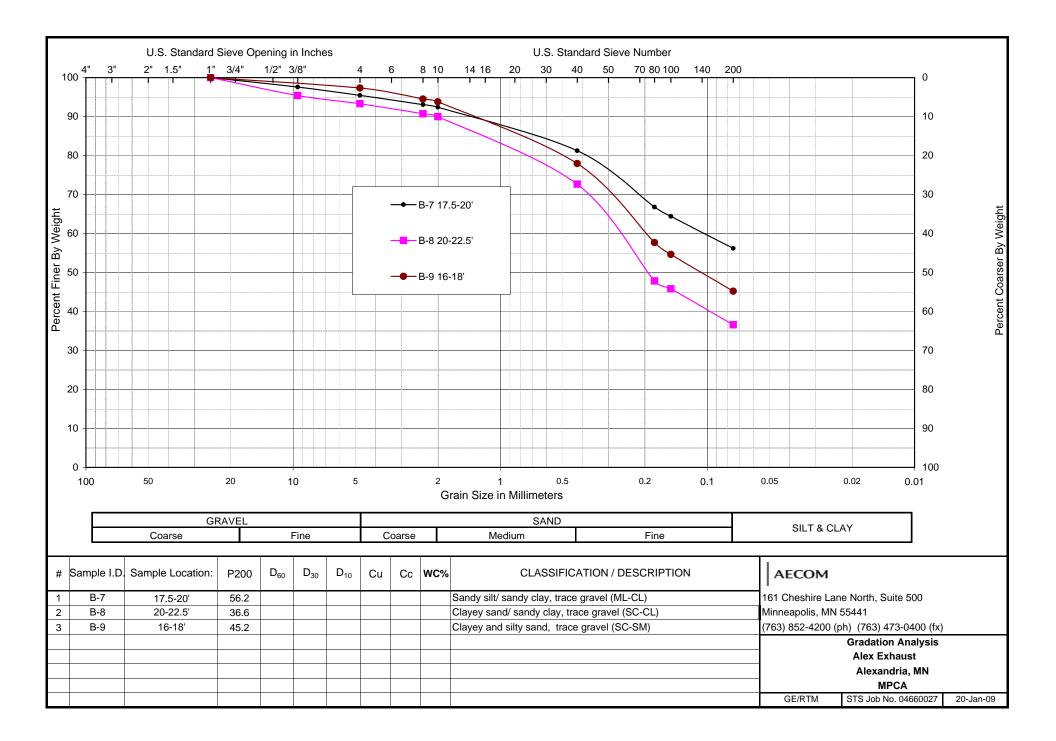
Sampler's Name: <u>Ryan Doherty</u>	Weather: <u>Overcast 20^o Light snow</u>
Unusual Conditions	
Location Alexandria, MN	STS project number 200705844
Sample ID number _B-8(W) Date sampled _2/28/08	Time <u>0910</u> am <u>X</u> pm
Describe sampling point 61' S of TH 27 (3 rd Ave) and 41' E of Park St.	
Unique Well Number	
MONITORING WELL INFORMATION: (If Applicable)	
Monitoring point elevation = <u>98.39</u> Datum = <u>Assum</u>	ed local Water elevation =
Well depth (prior to sampling) = 25.05 feet below monitoring	point (mp)
Depth to water (below mp) = <u>19.67</u> feet Date <u>2</u>	
Well diameter = <u>2</u> inches Water le	vel above screen? X No Yes feet
Volume of water in well = <u>.87</u> gallons	
PURGING INFORMATION:	
Purging method: Bailer Submersible pump	Tap Other Peristaltic pump
Tubing type: Teflon Black poly	Other
Pump intake or bailer set at <u>waterline</u> .	
Discharge rate (if applicable) gpm.	
At least well volumes evacuated before sampling	g, totaling <u>1         g</u> allon.
SAMPLING INFORMATION	
Sampling method: Bailer Tap	Other Peristaltic Pump
Tubing type (if applicable): Teflon	Other
Baller was: Disposable Laboratory cleaned	Field cleaned Other
Sample collected from <u>waterline</u> .	
Sample collection discharge rate (if applicable): = gpr	n
	Odor None detected
Note any sampling observations if necessary <u>Temp well set at 2:05pm on W</u>	led 2/27/08. No water in well when last checked at
5:15pm. Water in well this morning, Thurs 2/28/08.	
Chemical Analysis <u>DRO, VOC, GRO</u>	
Equipment Calibration _pH = 7,4,10,7 Conductivity = 1413 µs/cm @ 0830	

#### FIELD STABILIZATION

Military time 0903 0906 0909	pH <u>8.5</u> 8.39 8.30	Redox Pot. 272 208 194	Temperature corrected conductance [ms/cm] 688 663 672	Temperature [°C] 10.7 9.3 8.9	Water Level (nearest 0.01 ft.)	Cumulative volume of water removed [gal.] .5 .75 1.0



AECOM 161 Cheshire Lane North, Suite 500


	Minneapolis, MN 55441
Sampler's Name: <u>Ryan Doherty</u>	Weather: <u>Overcast 10^o</u>
Unusual Conditions	
Location <u>Alexandria, MN</u>	STS project number <u>04660027</u>
Sample ID number <u>B-9(W)</u> Date sampled	
	d Oak St
Unique Well Number	
TEMPORARY WELL INFORMATION: (If Applicable)	
Monitoring point elevation = Datu	um = Water elevation =
Well depth (prior to sampling) = $23.41$ feet belo	
Depth to water (below mp) = $7.64$ feet	••••••••••••••••••••••••••••••••••••••
	Water level above screen? <u>No X</u> Yes feet
Volume of water in well = $\sim 1$ gallons	
-	
PURGING INFORMATION:	
Purging method: Bailer Submersible pumr	D Tap Other Peristaltic
Tubing type: Teflon Black pol	ly Other _polyethylene
Pump intake or bailer set at <u>waterline</u> feet	below monitoring point (mp)
Discharge rate (if applicable) <1 gpm	
At least1 well volumes evacuated be	
	ganono.
SAMPLING INFORMATION	
Sampling method: Bailer Ta	an Other Perietaltic
Tubing type (if applicable): Teflon	Other
Bailer was: Disposable Laboratory cleaned	
Sample collected from <u>waterline</u> feet below mo	Oliter
Sample collected from <u>watering</u> leet below find Sample collection discharge rate (if applicable): =	
	gpmOdor <u>None detected</u>
	nd called it B-99 @ 12:15. Took Field Blank at 1445.
Note any sampling observations in necessary <u>rook duplicate a</u>	The called it D-33 @ 12.13. TOOK Held Dialik at 1443.
Chemical Analysis <u>DRO, GRO, VOC</u>	
-	
Equipment Calibration $\underline{pH} = 7,4,10,7$ Conductivity = 1413 $\mu$ s/c	m@1130
FIELD STABILIZATION	
Oxidation Temperature	
Reduction corrected	_ Water Level Cumulative
Military Potential conductance (EC) time pH (mV) (µs/cm)	Temperature (nearest volume of water
time pH (mV) (μs/cm) 1151 7.89 12 1028	[°C] 0.01 ft.) removed [gal.] 7.5 0.2
1156 7.21 -61 1035	6.2 0.5
1200 7.20 -60 1040	6.1 1.0

Leak 15,656 – Alex Exhaust AECOM Project 04660027

#### APPENDIX I

Grain Size Analyses

П										GRA	DATION ANALYSIS					
A	ECOM				-	PROJECT:				Alex Exhau	ıst		STS JOB	NO.:	04660	027
161 C	heshire La	ne North, Suite 50	0		L	OCATION:			A	lexandria,	MN		REPORT D	ATE:	20-Jar	า-09
Minne	eapolis, MN	55441				CLIENT:				MPCA			TESTE	D BY:	GE	
	•	ph) (763) 473-040	)0 (fx)		F	NGINEER:				AECOM			APPRO		RTN	
( /		TEST NO.		1		2	:	3					7			
		Sample ID:	В	-7		-8	В	-9								
		Sample Location:	17.5	5-20'	20-2	22.5'	16	-18'								
		TARE WEIGHT:														
ι	-	D DRY WT+TARE		7.20		4.60		4.40								
	WASHE	D DRY WT+TARE MINUS #200 WT		).60 5.60		6 <mark>.70</mark> 7.90		<mark>4.00</mark> 0.40								
	PERCEN	T PASSING # 200		6%		.5%		.6%								
~ ~			Sum Wt	Percent	Sum Wt	Percent	Sum Wt	Percent								
COBBLES &	No.	Size (mm)	Ret 1	Passing1	Ret 2	Passing2	Ret 3	Passing3								
	6"	150		#N/A		#N/A		#N/A								
OBI	8 4"	100		#N/A		#N/A		#N/A								
U d		75		#N/A		#N/A		#N/A		-						-
	۵ 2"	50		#N/A		#N/A		#N/A								
	2 "5.1 "1.5" "1.5"	38 25	0.00	#N/A	0.00	#N/A	0.00	#N/A								
GRAVEL	3 1" 3/4"	25 19	0.00	100.0 #N/A	0.00	100.0 #N/A	0.00	100.0 #N/A								
AV-	5/8"	15.9		#N/A #N/A		#N/A		#N/A #N/A								
БŖ		12.7		#N/A		#N/A		#N/A								
i	e 1/2 3/8"	9.5	9.80	97.6	38.30	95.4		#N/A								
	4	4.75	18.60	95.4	55.70	93.3	10.80	97.3								
	<u>ფ</u> 6	3.35		#N/A		#N/A		#N/A								
	6 8 900 800 800 800 800 800 800 800 800 8	2.36	28.30	93.1	77.40	90.7	22.30	94.5								
(		2	30.90	92.4	83.50	90.0	25.10	93.8								
	14	1.4		#N/A		#N/A		#N/A								
	16 20 30	1.18 0.85		#N/A #N/A		#N/A #N/A		#N/A #N/A								
	20 20 20	0.6		#N/A #N/A		#N/A #N/A		#N/A #N/A								
SAND	2 30 40	0.425	76.40	81.2	228.30	72.6	89.10	78.0								
<u>ہ</u>	50	0.3		#N/A	220.00	#N/A	00.10	#N/A								
	70	0.212		#N/A		#N/A		#N/A								
	80 100	0.18	135.30	66.8	435.40	47.8	171.20	57.7								
i		0.15	145.00	64.4	452.10	45.8	183.40	54.6								
	140	0.106	170.10	#N/A	=00.00	#N/A	004 70	#N/A								
	200	0.075 DROMETER	178.40	56.2 % Pass1	529.30	36.6	221.70	45.2								
	וח	DRONETER	Size (mm)	% Passi	Size (mm)	% Passz	Size (mm)	% Passa								
~× .																
SILT &	ς															
IS C	5															
		TEST NO.:				2		3	(		0	0	0		0	
		& BOULDERS		I/A		N/A		N/A	100		100.0	100.0	100.0		100.	.0
%	GRAVEL	Coarse Fine	#N/A #N/A	#N/A	#N/A #N/A	#N/A	#N/A #N/A	#N/A	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0	.0 —	0.0	0.0
		Coarse	#N/A 3.0		#N/A 3.3		#IN/A 3.5		0.0		0.0	0.0	0.0		0.0	
	% SAND	Medium	11.2	39.2	17.3	56.7	15.8	52.2	0.0	0.0	0.0 0.0	0.0 0.0		.0	0.0	0.0
		Fine	25.0		36.1		32.8	1	0.0		0.0	0.0	0.0		0.0	5.0
	% SILT	& CLAY		6.2		5.6		5.2	0.	0	0.0	0.0	0.0		0.0	)
	Soil De	scription:														



### APPENDIX J

Guidance Document 2-03 – Free Product Recovery Report Worksheet

#### THIS DOCUMENT NOT APPLICABLE FOR LEAK 15,656

Leak 15,656 – Alex Exhaust AECOM Project 04660027

### APPENDIX K

Copies of Water Supply Well Logs

Minnesota Unique Well No.					MINNESOTA DEPARTME				
680655	County Quad Quad ID	Douglas Alexandria East 180A			WELL AND E RECOR Minnesota Statutes C	D Update Receiv			
Well Name ALEXANDRIA 14	•				Well Depth	Depth Completed	Date Well Completed		
Township Range Dir Section	Subsections Elevation	n	1408 ft. Calc from		140 ft. 127 ft. 12/02/2002				
128 37 W 17	BCC Elevation	on Method	(USGS 7 or equiv.)	.5 min	Drilling Method Non-spec	ified Rotary			
					Drilling Fluid Bentonite Use Community Supply	Well Hydrofractured? From Ft. to Ft. PWS ID 1210001 Source			
					Casing Type Steel (black Yes 🔽 No Above/Below	,	lded Drive Shoe?		
					Casing Diameter	Weight	Hole Diameter		
Well Address 314 OAK ST N ALEXANDRIA MN					92 in to 12 ft.	lbs./ft.	20 in. to ft.		
					Open Hole from ft. to		· · · · · · · · · · · · · · · · · · ·		
Geological Material	Color	Hardness	From	То	Screen YES Make JO		s steel		
TOP SOIL CLAY	YELLOW		0 1	1 17	Diameter Slot/G	auze Length Se	t Between		
CLAY ROCK	BLUE		17	54	12 100		2 ft. and 127 ft.		
CLAY	BLUE		54 54	73					
CLAY SAND & GRAVEL	LT. BLU		73 87	87 127					
CLAY	BLUE		07 127	140	Static Water Level 53 ft. from Land surface	Data Manaurad 00/00/0	200		
					PUMPING LEVEL (below I				
					70 ft. after 24 hrs. pump				
					Well Head Completion Pitless adapter manufacture	r Model			
					Casing Protection	12 in. above grade			
						tal Weils and Borings ONL	۷ı		
	NO REMARK	S			Grouting Information We		No		
							·		
					Grout Material: Neat Cement from 0 to 80 ft. 4.5 yrds.				
Located Minnesota Departme		ethod GPS SA O	ff (average	ed)					
Unique Number Verification		nte N/A							
System UTM - Nad83, Zone1	5, Meters X:	316737 Y: 50	85295		Nearest Known Source of Contamination 50_feet				
					Well disinfected upon comp	( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (((((((((((((((((((	No		
					Pump Not Installe Manufacturer's name <u>GOUI</u> Length of drop Pipe <u>70</u> ft.				
					Abandoned Wells Does pr				
					Yes 🗹 No	- party root a wrighted in the date			
					Variance Was a variance g	ranted from the MDH for th	nis well? 🍸 Yes 🗹 No		
Plant Da Jac - ta					Well Contractor Certificati	on			
· · ·	uifer Quat. Buried Art	es. Aquifer			Thein Well Co.	<u>3462</u>			
Last Strat Dep	oth to Bedrock ft.				License Business Nan	ne Lic. Or Re	g. No. Name of Driller		
County Well In	idex Online	Report			680655		Printed 1/27/2009 HE-01205-07		

Minnesota Unique Well No.				MINNESOTA DEPARTMENT OF HEALTH				
685764	County Quad Quad ID	Douglas			WELL AND E RECOF	RD Update Receive	Date 03/11/2005	
Well Name ALEXANDRIA 1	5				Minnesota Statutes ( Well Depth	Depth Completed	Date Well Completed	
Township Range Dir Sectio	-	tion	ft.		132 ft.	132 ft.	09/23/2002	
128 37 W 17		tion Method			Drilling Method Non-spec		03/23/2002	
an a	******							
					Drilling Fluid Other	Well Hydrofractured? From Ft. to Ft.		
187-71 8					Use Community Supply	PWS ID 1210001 Sourc	e S11	
Well Address 514 OAK ST N ALEXANDRIA MN 56	308				Casing Type Steel (black Yes 🗹 No Above/Belo	or low carbon) Joint Unk w ft.	nown Drive Shoe?	
					Casing Diameter	Weight H	ole Diameter	
Geological Material TOP SOIL CLAY CLAY SAND	<b>Color</b> BLACK BROWN BROWN	Hardness SOFT MEDIUM MEDIUM	<b>From</b> 0 2 8	<b>To</b> 2 8 10	12 in. to 92 ft.	_	21 in. to 132 ft.	
CLAY	BROWN	MEDIUM	10	17	Open Hole from ft. to	ft.		
SAND CLAY	BROWN BROWN	MEDIUM	17 18	18 24	Screen YES Make JO	HNSON Type stainless	steel	
SAND SAND CLAY SAND CLAY SAND SAND	BROWN BROWN BROWN BROWN BROWN	MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM	24 30 34 35 38	30 34 35 38 41	Diameter Slot/G 4 60		<b>Between</b> 32 ft. and 92 ft.	
SAND CLAY	BROWN	MEDIUM	30 41	41 42	Static Water Level			
SANDY CLAY CLAY	BROWN GRAY	MEDIUM HARD	42 53	53 61	50 ft. from Land surface	Date Measured 09/23/20	02	
SAND CLAY	GRAY	MEDIUM	61	83	PUMPING LEVEL (below I			
SAND CLAY	GRAY GRAY	MEDIUM MEDIUM	83 84	84 88	70 ft. after 24 hrs.pump	ing 750 g.p.m.		
SAND	GRAY	MEDIUM	88	132	Well Head Completion Pitless adapter manufacture	er Model		
					Casing Protection	🗹 12 in. above grade		
					At-grade (Environmer	tal Wells and Borings ONL	()	
REMARKS		·····			Grouting Information W	······································	No	
M.G.S. NO. 4218.					Grout Material: Neat (		to 82 ft. 5.5 yrds.	
					Nearest Known Source of feetdirectiontype	Contamination		
					Well disinfected upon comp	oletion? 🔽 Yes	No	
					Pump Not Installe Manufacturer's name Length of drop Pipe _ft. (	ed Date Installed Model number HP Capacity _g.p.m Type	Volts Material	
					Abandoned Wells Does pr Yes 🗹 No	operty have any not in use	and not sealed well(s)?	
					Variance Was a variance g	ranted from the MDH for thi	s well? 🚺 Yes 🔽 No	
					Well Contractor Certificati			
First Bedrock Ac	quifer Quat. Buried A	rtes. Aquifer			Traut M.J. Well Co.	<u>71536</u>	DEAN/STEVE	
	epth to Bedrock ft.	-			License Business Nan	ne Lic. Or Reg	. No. Name of Driller	
County Well I	ndex Onlin	e Report			685764		Printed 1/27/2009 HE-01205-07	

,

Minnesota Unique Well No. 749302	County Douglas Quad Quad ID		MINNESOTA DEPARTME WELL AND B RECOR Minnesota Statutes C	ate 09/10/2007 Date 10/20/2008 ed Date 08/20/2007	
Well Name ALEXANDRIA 16 Township Range Dir Section Subs 128 37 W 17 BCC		ft.	Well Depth 120 ft.	Depth Completed 120 ft.	Date Well Completed 05/14/2007
Well Address 29 SH ALEXANDRIA MN 56308 Geological Material TOPSOIL CLAY & FILL SAND CLAY SAND	Color Hardness BLACK SOFT GRAY MEDIUM BROWN MEDIUM GRAY MEDIUM GRAY MEDIUM	From To 0 1 1 5 5 21 21 84 84 120	Drilling Method Non-spec         Drilling Fluid         Qwik gel         Use Community Supply         Casing Type Steel (black         Yes         ✓ No Above/Below         Casing Diameter         12 in. to 85 ft.         Open Hole from ft. to         Screen YES         Make JO         Diameter         12         45         50         Static Water Level         ft. from Date Measure         PUMPING LEVEL (below I)         119 ft. after 24 hrs. pum         Well Head Completion         Pitless adapter manufacture	Well Hydrofractured? From Ft. to Ft. PWS ID Source or low carbon) Joint No w ft. Weight H Ibs./ft. ft. HNSON Type stainless auze Length Set 15 85 20 10 d and surface) sping 1000 g.p.m.	Information Drive Shoe?
REMARKS DRILLERS - DEAN, STEVE, RICK &	ROB.		Casing Protection	12 in. above grade ntal Wells and Borings ONL ell Grouted? Ves	.Y) ⊡ No from to 75`ft.
			Nearest Known Source offeetdirectiontype         Well disinfected upon comp         Pump Not Install         Manufacturer's name         Length of drop Pipeft.         Abandoned Wells Does pr         Yes No	oletion? Yes ed Date Installed Model number HP Capacity _g.p.m Type	Material
Last Strat	Aquifer Depth to Bedrock ft.		Variance Was a variance g Well Contractor Certificati <u>Steven M Traut Wells,</u> License Business Na	on Inc. <u>188</u> 9	<u>SEE REMARKS</u> g. No. Name of Driller
County Well Inde	x Online Repor	t	749302		Printed 1/27/2009 HE-01205-07

Minnesota Unique Well No. 214756 Quad ID	Douglas Alexandria Eas 180A	t	MINNESOTA DEPARTME WELL AND E RECOR Minnesota Statutes (	BORING D	Entry Date Update Date Received Date	04/07/1988 03/11/2005
Well Name ALEXANDRIA 7A Township Range Dir Section Subsections Ele		1100 4	Well Depth	Depth Comple	ted Date Well	Completed
Township Hange bit Section Subsections Ele	vation	1403 ft. Calc from DEM	129 ft.	129 ft.	09/00	)/1959
128 37 W 18 DAAADD Ele	evation Method	(USGS 7.5 min or equiv.)	Drilling Method			
			Drilling Fluid 	Well Hydrofract From Ft. to Ft.		No
			Use Community Supply	PWS ID 1210001	Source S03	
			Casing Type Steel (black Yes No Above/Belo		int No Information Driv	e Shoe?
			Casing Diameter	Weight	t Hole Diam	eter
			16 in.to ft.	lbs./	/ft.	
Well Address			Open Hole from ft. to Screen Make Type	ft. e	· · · · · · · · · · · · · · · · · · ·	
ALEXANDRIA MN 56308			Diameter Sid	ot/Gauze	Length Set Be	tween
Geological Material Color NO RECORD	Hardness	From To 0 129			-	
			Static Water Level 38 ft. from Land surface PUMPING LEVEL (below to 58 ft. after hrs. pumping	and surface)	09/00/1959	
			Well Head Completion Pitiess adapter manufacture Casing Protection At-grade (Environment	12 in. above	-	
R E M A R K S DRILLER: MINNESOTA WELL DRILLERS MAD	ISON MINNESOTA		Grouting Information We	Il Grouted?	Yes No	
Located Minnesota Geological Survey Unique Number Verification Information from ( System UTM - Nad83, Zone15, Meters	Method GPS					
			Nearest Known Source of	Contamination		
			Well disinfected upon comp	letion?	es 🛄 No	
			•	ed Date Installed Model number Zapacity g.p.m	HP Volts Type Material	
			Abandoned Wells Does program			ell(s)?
			Variance Was a variance g	ranted from the MD	OH for this well?	/es 🚺 No
			Well Contractor Certification			
	fer Quat. Buried Arte h to Bedrock ft.	s. Aquifer	Minnesota Dept. of Nature License Business		<u>MNDNR</u> Lic. Or Reg. No.	Name of Driller
County Well Index Onli	ne Report		214756		Printe	ed 1/27/2009 HE-01205-07

Minnesota Unique Well No.CountyDouglas <b>214758</b> QuadAlexandria EastQuad ID180A		MINNESOTA DEPARTME WELL AND B RECOR Minnesota Statutes C	ORING Entry Date Update Da Received I	te 03/11/2005	
Cal 128 37 W 17 BCCCDD Elevation Method (US	00 ft. Ic from DEM SGS 7.5 min equiv.)	Well Depth 125 ft. Drilling Method Cable Too	Depth Completed 119 ft.	Date Well Completed 01/00/1962	
BLACK DIRT()CLAY & SAND-SAND-CLAY-SAND & CLAY-HARDPAN-SAND-FINE SAND (BACK-FILLED)-	From To 0 1 1 14 14 34 34 54 54 61 61 89 89 119 119 125 125 125	Casing Type Steel (black Yes No Above/Belov Casing Diameter 16 in. to 101 ft. Open Hole from ft. to Screen YES Make EVI Diameter Slot/Ga 16 Static Water Level 39 ft. from Land surface PUMPING LEVEL (below la 54 ft. after hrs. pumping Well Head Completion Pitless adapter manufacture Casing Protection	Weight Ibs./ft. ft. ERDUR Type auze Length Set Ba 20 99 Date Measured 01/00/1962 and surface) 500 g.p.m.	S04 prmation Drive Shoe?	
NO REMARKS	On (averaged)	Grouting Information We	Il Grouted? Tes	] No	
Unique Number Verification Information from owner Date N/A System UTM - NadB3, Zone15, Meters X: 316445 Y: 50	, , ,	Nearest Known Source of Contamination        feetdirectiontype         Well disinfected upon completion?       Yes         Pump       Not Installed Date Installed         Manufacturer's name       Model number HP Volts         Length of drop Pipe 85_ft.       Capacityg.p.m			
First Bedrock Aquifer Quat. Buried Artes. Aquifer Last Strat Clay Depth to Bedrock ft. County Well Index Online Report		Abandoned Wells Does pro	operty have any not in use an ranted from the MDH for this v on <u>62012</u>	d not sealed well(s)?	

Minnesota Unique Well No. 214759	County Quad Quad ID	Douglas Alexandria East 180A		MINNESOTA DEPARTME WELL AND B RECOR Minnesota Statutes C	ORING D	Entry Date Update Date Received Date	04/07/1988 03/11/2005	
Well Name ALEXANDRIA 9			(000 /)	Well Depth	Depth Compl	eted Da	te Well Completed	
Township Range Dir Section Subser	ctions Elevation	n	1396 ft. Calc from DEM	118 ft.	118 ft.		02/00/1958	
128 37 W 18 ADDDE	3D Elevatio	on Method	(USGS 7.5 min or equiv.)	Drilling Method	,			
				Drilling Fluid  Use Community Supply Casing Type Steel (black	Well Hydrofrac From Ft. to Ft PWS ID 121000 or low carbon) J	1 Source S05		
				Yes 🛄 No Above/Below	w ft.			
				Casing Diameter	Weigl	ht Hole	Diameter	
				16 in. to 96 ft.	lbs	./ft.		
Well Address				Open Hole from ft. to	ft.			
ALEXANDRIA MN 56308				Screen YES Make	Туре			
Geological Material NO RECORD	Color H	lardness	<b>From To</b> 0 118	Diameter Slot/G	auze Lengi 25		en and 118 ft.	
				Static Water Level				
				38 ft. from Land surface PUMPING LEVEL (below Ia		02/00/1958		
				58 ft. after hrs. pumping				
				Well Head Completion Pitless adapter manufacture	r Model			
				Casing Protection	12 in. above	e grade		
				At-grade (Environmen	tal Wells and Bori	ings ONLY)		
REMARKS USE OF WELL IS PUBLIC SUPPLY				Grouting Information We	ell Grouted?	Yes No	,	
Located Minnesota Geological Surve Unique Number Verification N/A System UTM - Nad83, Zone15, Mete.	Dat	thod GPS SA On e 04/27/2000 316341 Y: 5085						
System 0 mil 14000, 201010, Mete	ю <u>к</u> .	310341 1, 506;	JJ4 I	Nearest Known Source of Contaminationfeetdirectiontype				
				Well disinfected upon comp	letion?	/es 🔄 No		
				• —	ed Date Installed Model number Capacity 500g.p.	_ HP _ Volts	erial	
				Abandoned Wells Does pr Yes			ealed well(s)?	
				Variance Was a variance g	ranted from the M	DH for this well?	Yes No	
				Well Contractor Certification				
First Bedrock	-	Quat. Buried Artes	s. Aquifer	<u>Thein S.e. Well Co.</u>		<u>12013</u>	<u>62012</u>	
Last Strat Unknown deposit type	Depth to	Bedrock ft.		License Business Nam	ne Li	ic. Or Reg. No.	Name of Driller	
County Well Index	Online	Report		214759			Printed 1/27/2009 HE-01205-07	

Minnesota Unique Well No.			MINNESOTA DEPARTM	MINNESOTA DEPARTMENT OF HEALTH			
635452 Count Quad Quad	Alexandria Eas	t	WELL AND E RECOP Minnesota Statutes (	RD Update Receiv			
Well Name ALEXANDRIA			Well Depth	Depth Completed	Date Well Completed		
Township Range Dir Section Subsections I	Elevation	1400 ft. Calc from DEM	130 ft.	126 <b>ft</b> .	08/04/2000		
128 37 W 17 BCC 6	Elevation Method	(USGS 7.5 min or equiv.)	Drilling Method Non-spec	sified Rotary			
			Drilling Fluid Bentonite	Well Hydrofractured? From Ft. to Ft.	Yes 🗹 No		
			Use Community Supply	PWS ID 1210001 Sour	ce \$09		
			Casing Type Steel (black Yes 🗹 No Above/Belo		Information Drive Shoe?		
Well Address 314 OAK ST N			Casing Diameter	Weight	Hole Diameter		
ALEXANDRIA MN 56308			12 in. to 106 ft.	lbs./ft.	20 ín. to ft.		
	olor Hardness	From To	Open Hole from ft. to	ft.			
TOP SOIL SANDY CLAY		0 1 1 4	Screen YES Make JO		s steel		
SANDY CLAY BI	LUE	4 6 6 10 10 35 35 75 75 80	Diameter Slot/G 12 50		<b>Between</b> D6 ft. and 126 ft.		
SAND & GRAVEL SAND W/CLAY LENZE		80 91 91 93	Static Water Level	· · · · · · · · · · · · · · · · · · ·			
SAND & GRAVEL CLAY BI	LUE	93 125 125 130	48 ft. from Land surface PUMPING LEVEL (below I		000		
			58 ft. after 4 hrs. pumpli				
			Well Head Completion Pitiess adapter manufacture Casing Protection At-grade (Environmer	er MONITOR/BAKE M 12 in. above grade 12 in. above grade 14 Wells and Borings ONI	lodel 5PS1214WBW -Y)		
NO REM	ARKS		Grouting Information W	ell Grouted? 🗹 Yes	No		
Health (1:1	thod Digitization (Scree 12,000)	n) - Map	Grout Material: Neat (	Cement from (	D to 90 ft. 2.5 yrds.		
Unique Number Verification N/A Dat System UTM - Nad83, Zone15, Meters X:	te N/A 316575 V· 5085289		Nearest Known Source of				
			50_feet _direction Sept Well disinfected upon comp	,	No		
			Manufacturer's name <u>BERH</u> HP <u>20</u> Volts <u>460</u>		er <u>71720-450</u>		
			Length of drop Pipe 60 ft.		Type Submersible Material		
			Abandoned Wells Does pr Yes 🗹 No	roperty have any not in use	and not sealed well(s)?		
			Variance Was a variance g	ranted from the MDH for th	nis well? 🚺 Yes 🗹 No		
First Bedrock			Well Contractor Certificati		÷		
Last Strat Aquifer Quat. Bur Last Strat	•		<u>Thein Well Co.</u> License Business Nam	<u>34625</u> e Lic. Or Reg.	GRABOWSKI, D. No. Name of Driller		
County Well Index On			635452		Printed 1/27/2009 HE-01205-07		

Minnesota Unique Well No.					MINNESOTA DEPARTMENT OF HEALTH				
475655		uglas xandria East )A			WELL AND E RECOR	1D	Entry Date Update Date Received Date	07/24/1992 06/22/2005	
Well Name ALEXANDRIA 12					Minnesota Statutes (				
Township Range Dir Section Subse	ections Elevation		1399 ft.		Well Depth	Depth Comple 125 ft.	ited Da	te Well Completed	
128 37 W 17 BBD	Elevation Me	athod	Calc from		125 ft.			05/16/1991	
	Elevation me	einoù	(USGS 7. or equiv.)		Drilling Method Non-spec	med Hotary	alasa sa kananga kata kata kata kata kata kata kata ka	2005-00-00-00-00-00-00-00-00-00-00-00-00-	
					Drilling Fluid Bentonite	From Ft. to Ft.		No	
					Use Community Supply			······	
					Casing Type Steel (black Yes 🔄 No Above/Belor		bint No Informatio	in Drive Shoe?	
							Hala D	· · · · · · · · · · · · · · · · · · ·	
Well Address MN. HY #29					Casing Diameter	Weight		iameter	
ALEXANDRIA MN 56308					12 in. to 90 ft.	lbs./ft	. in. to	125 ft.	
Geological Material	Color Ha	ardness	From	То	Open Hole from ft. to	ft.			
BLACK SOIL	BLACK	and and a second	0	1	Screen YES Make CC	OCK Type stain	less steel		
TAN CLAY STREAK GRAVEL	TAN		1 6	6 8	Diameter Slot/G		h Set Betwee		
YELLOW CLAY GRAY CLAY	YELLOW GRAY		8 15	15 41	12 50	35	90 ft. a	and 125 ft.	
GREENISH CLAY	GREEN		41	46					
GRAY CLAY LIGHT GRAY CLAY	GRAY GRAY		46 60	60 88	Static Water Level				
SAND AND GRAVEL			88	125	41 ft. from Land surface		10/31/1991		
					PUMPING LEVEL (below la 58 ft. after 3 hrs. pumpir				
					Well Head Completion				
					Pitless adapter manufacture	r Model			
					Casing Protection	12 in. above	grade		
					At-grade (Environmen	tal Wells and Borin	igs ONLY)		
NO	REMARKS				Grouting Information Well Grouted? Ves No				
					Grout Material: Neat (	Semant	from 0 t	0.90 ft	
Located Minnesota Department of H	ealth Me	thod GPSS	A On (ave	(hanere	GIODE MALEITAI. NEAL C	Jeinent		0 30 n.	
Unique Number Verification Inform				adîed)					
System UTM - Nad83, Zone15, Mete		316623 Y:	5085422		Nearest Known Source of	Contamination			
					feetdirectiontype		<b></b>		
					Well disinfected upon comp				
						d Date Installed (			
					Manufacturer's name <u>JACU</u> Length of drop Pipe <u>72</u> ft.		umber <u>S8MC</u> Type Subme	HP <u>25</u> Volts <u>440</u> rsible Material	
					Abandoned Wells Does pro				
					Yes 🗹 No	-		χ.γ. Υ. Υ	
					Variance Was a variance g		)H for this well?	Yes No	
First Bedrock					Well Contractor Certificatio	on			
Aquiter C	luat. Buried Artes. Aq ledrock ft.	quifer			<u>Thein Well Co.</u> License Business Narr	ה: מו	<u>34050</u> Or Reg. No.	PLUCKER, D.	
							. Or Reg. No.	Name of Driller	
County Well Index	CONTINE Re	eport			475655			Printed 1/27/2009 HE-01205-07	

Leak 15,656 – Alex Exhaust AECOM Project 04660027

#### APPENDIX L

Results of Public Water Supply Assessment

### SOURCE WATER ASSESSMENT FOR Alexandria

ID Number:	1210001
Facility Contact:	Gary Eiden (320) 763-6501 Alexandria Keith Avery c/o MR. KEITH AVERY, WATER PLANT 316 Fillmore Street Alexandria, MN 56308
MDH Contact:	Mike Howe (320) 223-7342 333 West Division Street, Suite 212 St. Cloud, MN 56301 <u>mike.howe@health.state.mn.us</u>

### Status of the Source Water Protection Plan:

The water supply system is implementing the wellhead protection plan that has been approved by the Minnesota Department of Health under Minnesota Rules 4720.

Source Water Protection Area: - Click <u>Map1</u> to view SWPA map(s).

Yes - A Source Water Protection Area has been designated for this well.

**Description of the source water** - The water supply for Alexandria is obtained from 8 primary wells. Well depth (in feet), well status, aquifer(s) used, and sensitivity of the source(s) of drinking water are listed in the following table.

Unique Well No	Well ID	Depth	Well Use	Aquifer	Aquifer Sensitivity	*Well Sensitivity	SWPA
00214756	Well #7A	120.0	Primary	Glacial Deposits	High	See (1)	Yes
00214758	Well #8A	121.0	Primary	Glacial Deposits	High	See (2)	Yes
00214759	Well #9	110.0	Primary	Glacial Deposits	High	See (1)	Yes
00475655	Well #12	125.0	Primary	Glacial Deposits	High	See (2)	Yes
00635452	Well #13	130.0	Primary	Glacial Deposits	High	See (2)	Yes
00680655	Well #14	140.0	Primary	Glacial Deposits	High	See (2)	Ño
00685764	Well #15	132.0	Primary	Glacial Deposits	High	See (2)	No

1 Mg V 2 01 2	Page	2	of 2	
---------------	------	---	------	--

Deposits	(	00749302	Well #16	0.0	Primary	Glacial Deposits	High	See (1)	No
----------	---	----------	----------	-----	---------	---------------------	------	---------	----

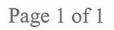
**Well construction assessment** - 00214758, 00475655, 00635452, 00680655, 00685764 meet current standards for construction and maintenance. These factors do not contribute to the susceptibility of the source water to contamination; and The Minnesota Department of Health considers 00214756, 00214759, 00749302 potentially vulnerable to contamination because there is insufficient information to document well construction.

**Well Sensitivity** - Well sensitivity refers to the integrity of the well due to its construction and maintenance. It is based on the results of the well construction assessment. It can be one of the following:

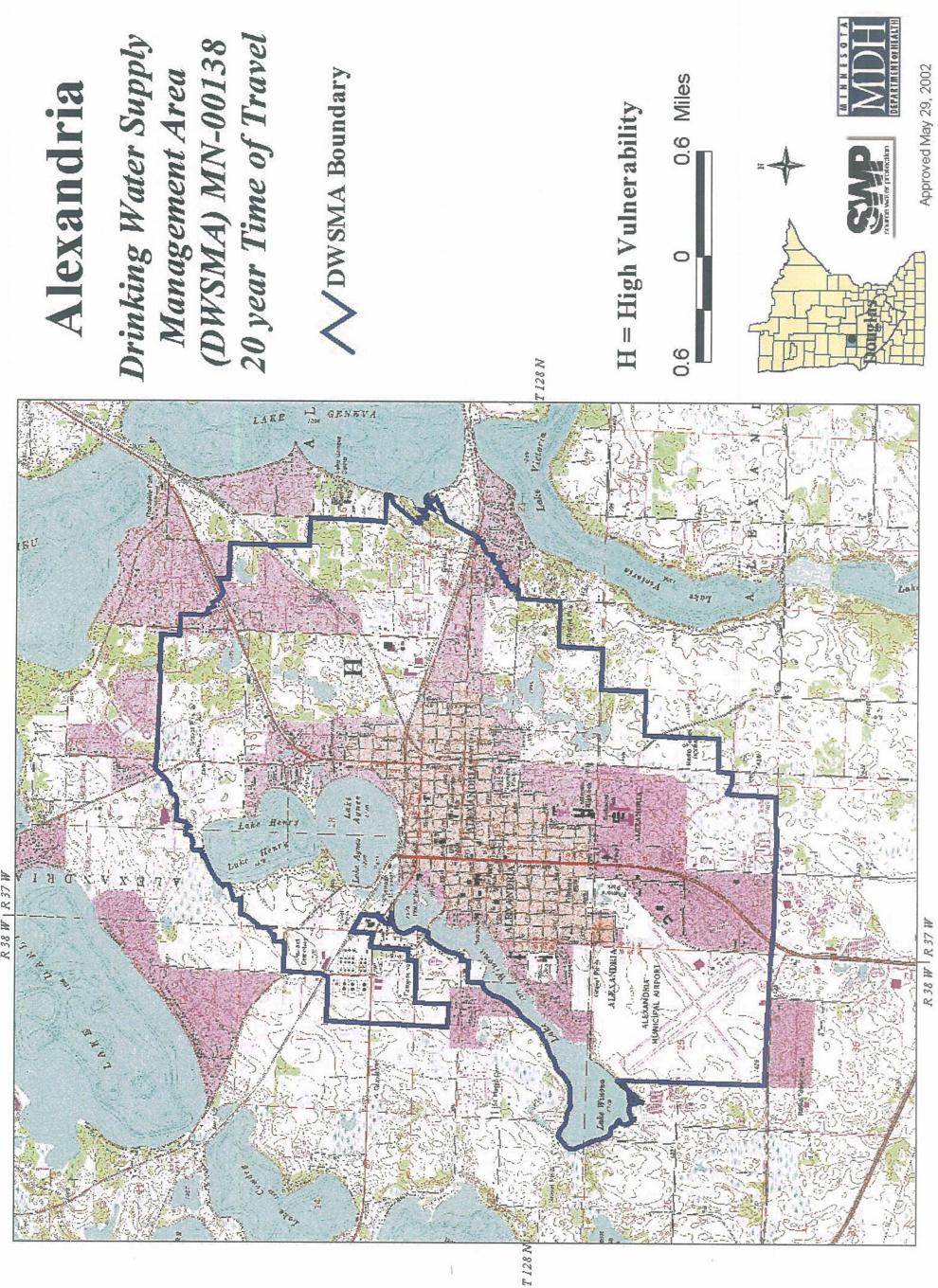
 (1) The well is susceptible to contamination because it does not meet current construction standards or no information about well construction is available, regardless of aquifer sensitivity.
 (2) The well is not susceptible because it meets well construction standards and does not present a pathway for contamination to readily enter the water supply.

Aquifer Sensitivity - Aquifer sensitivity refers to the degree of geological protection afforded the aquifer(s) used by the public water supply.

High - The aquifer is considered to exhibit a high sensitivity to contamination because of the local geological setting.


**Source Water Susceptibility** - Source water susceptibility refers to the likelihood that a contaminant will reach the source of drinking water. It reflects the results of assessing well sensitivity, aquifer sensitivity, and water quality data.

High - The source of drinking water is considered to exhibit a high susceptibility to contamination because of the local geological setting.


The source water is considered to be susceptible because of the tritium content of the well water in glacial deposits.

**Contaminants of concern** - The following statement summarizes the potential contaminants for which a source of drinking water may be at risk:

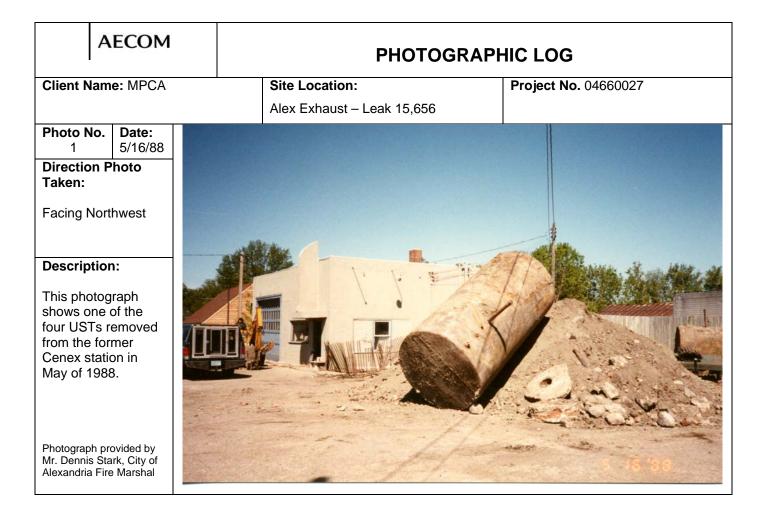
One or more contaminants regulated under the federal Safe Drinking Water Act for this public water supply system have been detected in the source water. However, the water supplied to users meets state and federal drinking water standards for potability. For further information, please contact the MDH representative listed at the beginning of this assessment.







R 38 W | R 37 W


#### APPENDIX M

Guidance Document 4-19 – Conceptual Corrective Action Design Worksheet

#### THIS DOCUMENT NOT APPLICABLE FOR LEAK 15,656

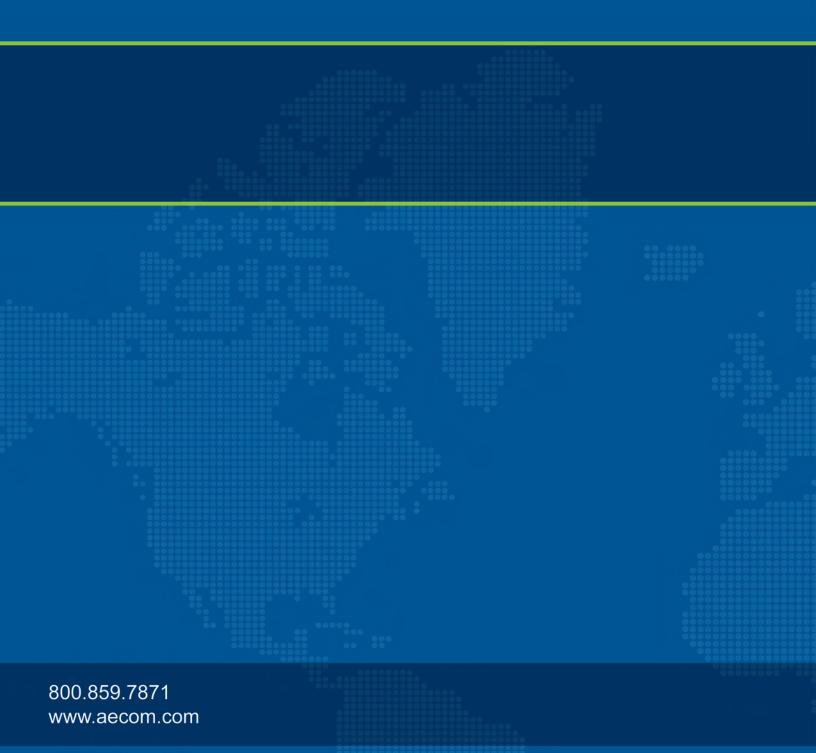
#### APPENDIX N

Site Photographs of UST Removal and Site Layout (UST removal photographs provided by Mr. Dennis Stark, City of Alexandria Fire Marshal)





AECOM	PHOTOGRAPHIC LOG				
Client Name: MPCA	Site Location: Alex Exhaust – Leak 15,656	Project No. 04660027			
Photo No. 3Date: 2/7/07Direction Photo Taken:Facing NorthwestFacing NorthwestDescription:This photograph 					
Photo No. 4Date: 2/7/07Direction Photo Taken: Facing Northwest					
Description: This photograph shows the large shed/garage building north of the Alex Exhaust building.					


Photogrpahs.doc

Web pages and phone numbers						
MPCA staff	http://www.pca.state.mn.us/pca/staff/index.cfm					
MPCA toll free	1-800-657-3864					
Petroleum Remediation Program web page						
	http://www.pca.state.mn.us/programs/lust_p.html					
MPCA Info. Request	http://www.pca.state.mn.us/about/inforequest.html					
MPCA VIC program	http://www.pca.state.mn.us/cleanup/vic.html					
MPCA Petroleum Brownfields Program						
	http://www.pca.state.mn.us/programs/vpic_p.html					
MPCA SRS guidance documents						
	http://www.pca.state.mn.us/cleanup/riskbasedoc.html					
	http://www.pca.state.mn.us/cleanup/riskbasedoc.html#surfacewaterpathway					
MDH HRLs	http://www.health.state.mn.us/divs/eh/groundwater/hrltable.html					
MDH DW hotline	1-800-818-9318					
Petrofund Web Page	http://www.state.mn.us/cgi-bin/portal/mn/jsp/content.do?id=-					
	536881377&agency=Commerce					
Petrofund Phone	651-215-1775 or 1-800-638-0418					
State Duty Officer	651-649-5451 or 1-800-422-0798					

Upon request, this document can be made available in other formats, including Braille, large print and audio tape. TTY users call 651/282-5332 or Greater Minnesota 1-800-657-3864 (voice/TTY).

Printed on recycled paper containing at least 10 percent fibers from paper recycled by consumers.



