

Investigation Report Form

Guidance Document 4-06

Complete this form to document site investigation activities, including Limited Site Investigations (LSIs) and Remedial Investigations (RIs). Do not revise or delete any text or questions from this report form. Include any additional information that is important for making a site management decision. If only an LSI is necessary, some questions do not need to be answered and have been identified in the form. Highlighted text contains instructions and references to related guidance documents for that section or question. Refer to Minnesota Pollution Control Agency (MPCA) Guidance Document 1-01 *Petroleum Remediation Program General Policy* for the overall site investigation objectives and to other MPCA guidance documents for details on investigation requirements and methods.

MPCA Site ID: Leak00018571	Date: February 27, 2014
Responsible Party Information	
Name: Mayo Clinic Health Care Systems	Phone #: (952) 758-8196
Mailing Address: 301 Second Street NE	
City: New Prague	Zip Code: 55071
Alternate Contact (if any) for Responsible Party:	Mr. Clay Brister Phone #: same
Leak Site Information	
Leak Site Name: Queen of Peace Hospital	Phone #: same
Mailing Address: 301 Second Street NE	
City: New Prague	Zip Code: 55071
County: Scott	

Environmental Professional Information

By signing this document, I/we acknowledge that we are submitting this document on behalf of and as agents of the responsible person or volunteer for this leak site. I/we acknowledge that if information in this document is inaccurate or incomplete, it will delay the completion of remediation and may harm the environment and may result in a reduction in Petrofund reimbursement. In addition, I/we acknowledge on behalf of the responsible person or volunteer for this leak site that if this document is determined to contain a false material statement, representation, or certification, or if it omits material information, the responsible person or volunteer may be found to be in violation of Minn. Stat. § 115.075 (2007) or Minn. R. 7000.0300 (Duty of Candor), and that the responsible person or volunteer may be liable for civil penalties.

MPCA staff are instructed to reject unsigned reports and reports that have been altered.

Name and Title of				
Report Author(s)			Signature	Date Signed
Jeffrey G. Vosburg	h			
Name and Title of Report Reviewer(s)			Signature	Date Signed
Name(s) of Field Te	chnician(s): <u>Ja</u>	effrey G.	Vosburgh	
Company and mailir	ng address:	60801	Environmental, Inc. County Highway 46 ers Prairie, MN 56361	
	Phone:		(218) 338-5947	
	Fax:		(218) 338-5049	
Project Manager E-r	nail Address:		apexpp@hotmail.com	
	Phone:			
	Fax:			

Emergency and High Priority Sites

A.	Is an existing drinking water well impacted or likely to be impacted within a two-year travel time?	Yes 🛛 No
B.	Is a hydrogeologically sensitive aquifer impacted that is tapped by water wells that are within 500 feet from the release source? If <i>YES</i> , explain below.	Yes No
C.	Has the public water supply risk assessment concluded that the site is a high priority site with respect to a public water supply well (see Guidance Document 4-18 <i>Public Water Supply Risk Assessment at Petroleum Remediation Sites</i>)?	☐ Yes ⊠ No
D.	Is there an existing surface water impact as indicated by 1) a petroleum sheen on the surface water or 2) a petroleum sheen or volatile organic compounds in the part per million range observed in a ground water sample collected close to the surface water?	Yes 🛛 No
E.	Has free product been detected at the site? If YES , attach Guidance Document 2-03 <i>Free Product Recovery Report Worksheet</i> in Section 6.	Yes No
F.	Are there any existing field-detectable vapor impacts (photoionization detector, explosimeter, odors, etc.) to a receptor?	Yes No
G.	Did the vapor intrusion assessment detect contaminants in excess of acute intrusion screening values (see Guidance Document 4-01a Vapor Intrusion Assessments Performed during Site Investigations)?	Yes 🛛 No

If you answered *YES* to any of questions A through G above, describe below the actions taken to date to reduce or eliminate the risk posed by the release.

Section 1: Site Assessment

Site and Release Information

Complete Guidance Document 1-03a *Spatial Data Reporting Form*, Guidance Document 2-05 *Release Information Worksheet* if 3-02 *General Excavation Report Worksheet* was not completed, and include in Section 6.

1.1 Describe the land use and pertinent geographic features (e.g., topographic changes, surface waters, etc.) within 1,000 feet of the site. Illustrate these features using the Site Location Map, aerial photographs, and Sanborn Fire Insurance Maps[™] for the various time periods they are available in Section 4.

The site is situated in a mixture of both commercial and residential structures located just north of the downtown area of New Prague approximately two blocks (Figure 1). The site lies in a relatively flat area of topography with 3rd Street NE bounding the site to the north, Columbus Avenue/Highway 15 to the east, 2nd Street NE to the south and 1st Avenue SE to the west. The closest hydrologic features are located northeast of the site approximately 2,000 feet and to the west approximately 2,500 feet (Figure 1). These features are two small un-named lakes located northeast and an intermittent stream located west. The lake features appear to be remnants of an oxbow of the stream that flows from the north to the south west of the site (Figure 1).

- **1.2** Briefly describe the history of the site and any past site investigation work that may have been completed. If a Phase I or Phase II report has been prepared for this site, include a copy in Section 6.
- **1.3** List other potential petroleum sources within 500 feet of the site and identify them on the Potential Receptor Map in Section 4.

There are no leak sites within 500 feet of the site according to the MPCA website (<u>http://pca-gis02.pca.state.mn.us/prp/index.html</u>).

Investigation Report Form Page 5

1.4 Describe the status of the tank system(s) including current and former tanks, piping, and dispensers. Summarize the status and characteristics of all past and present tanks in Table 1 and identify all components on a Site Map.

The release at this site was reported following the removal of two USTs on October 11, 2012. Removed from a single excavation were a 10.000 gallon fuel oil tank and a 1.000 gallon diesel fuel tank (Figure 3). The former tank basin was located just north of the former emergency room entrance on the north side of the hospital. These tanks were installed in 1963 according to MPCA database (Table 1). A 1,000 gallon diesel tank was removed from the excavation which was present in order to provide fuel for a back up generator. The 10,000 gallon UST appeared to be leaking as is shown on Table 1 of the excavation report (Appendix A). Small holes were found in the tank shell following removal. Field personnel were unable however, to determine if the holes were exposed when iron scale was knocked free during the removal process. Tank removal observations did show fuel impacts to the native clay soils near the base of the excavation. Soil samples collected at the base of the excavation did not show any DRO impacts and only one low level GRO detection in the sample locations (Section E-Excavation Report/Appendix A). Headspace sampling showed somewhat moderate to high headspace readings in the sidewalls and backfill materials of the tank excavation. A 6,000 gallon AST was installed over the former tank basin to be used to store fuel oil and was used as a backup heat source. A 500 gallon tank was installed in 2005 according to the MPCA data base and the onsite facilities personnel. This AST was installed to replace the 1,000 gallon UST for diesel fuel for the backup generator.

1.5 Briefly describe the known or suspected source(s) of the release and how it was discovered.

The release appears to be related to spills that occurred when the fuel oil or diesel fuel tanks were filled with product over time.

- **1.6** When did the release occur (if known)? **Unknown**
- 1.7 What was the volume and type(s) of petroleum product released (if known)? Unknown gallons Released product type(s):

When a tank has been excavated, refer to Guidance Documents 3-01 *Excavation of Petroleum Contaminated Soil and Tank Removal Sampling* and 3-02 *General Excavation Report Worksheet* for reporting requirements. If a tank has been excavated or if contaminated soil was removed for offsite treatment prior to this investigation, include Guidance Document 3-02 in Section 6. **1.8** Was soil excavated for off-site treatment? \Box Yes \boxtimes No

Date(s) soil was excavated:	Total volume removed:	cubic v	yards
Duie(s) son was eneavated.	rotar voranie renio vea.	eacre .	<i>,</i>

Volume of total soil removed that was petroleum saturated: cubic yards

Soil treatment method:

Land treatment
 Thermal treatment
 Composting/Biopiling
 Other
 Name and location of treatment facility:

If you checked "Other", describe how the soil was treated and attach applicable documentation at the end of the reporting form.

Site-Specific Geology and Hydrogeology

1.9 Discuss the soil borings drilled and provide rationale for their locations. Include boring logs in Section 6. Boring logs must include all the information required in Guidance Document 4-01 *Soil and Ground Water Assessments Performed during Site Investigations.*

A total of four probes were advanced at the site on June 5, 2012. The first probe was advanced through the west side of the former tank basin where the 10,000 gallon tank and dispenser were located (Figure 3). The second probe (GP-2) was advanced northeast of the tank basin, the third (GP-3) west of the basin and the final probe (GP-4) south of the tank basin. One soil gas vapor sample (SV-1-8') was also completed near GP-4 to determine if there was a soil gas vapor plume associated with the site that may have migrated towards the building in this direction (Figure 3). Soil impacts were encountered in only the first probe completed through the former tank basin with one positive OVM reading at 14 feet in depth. This reading was 41 ppm as recorded on the OVM and appeared to be related to fuel oil impacts. Due to the absence of soil impacts in the perimeter probes, there were no additional probes completed to delineate impacts at this site.

1.10 Indicate the locations and depths of soil samples submitted for grain size analysis.

Three soil samples were collected and analyzed for grain size. The results of the grain size analysis can be found in Appendix I. Of the samples collected, one was collected from GP-1 at 16.0 feet, one from GP-2 at 15.8 feet and the third from GP-3 at 9.5 feet. Of the samples submitted only one graph crossed the d_{10} fraction and this value was used along with the Hazen grain size method to estimate the hydraulic conductivity for the site.

1.11 Discuss in detail the site geology based on soil boring data, grain size analyses, cross sections, geologic logs of nearby water wells, and available published information. Include detailed descriptions of more porous lenses or stringers within tighter soil types.

A total of four probes were advanced as part of this LSI ranging from 24 to 36 feet below ground surface (bgs-Boring Logs/Appendix E). The stratigraphy encountered in the probes appears to be consistent with the geology recorded on area well logs (Appendix K). In general, surficial geology encountered consisted of approximately four feet of brown silty clay fill materials. This clay fill is underlain by brown silty clay with distinct rust mottles to approximately seventeen feet in depth. Underlying the brown silty clay materials were gray clays of stiff consistency absent of any mottling. These gray clays were encountered to the extent of the drilling at the site advanced to 36 feet bgs.

The soil materials present at the site are characterized as stagnation moraine deposits from the Alexandria Moraine Association according to a Quaternary Geologic Map of Minnesota by Hobbs and Goebel. These ground moraine deposits are approximately 150 feet thick and overlie cretaceous age bedrock. This first bedrock encountered according to area logs is shale which overlies a sandstone and limestone bedrock unit. These bedrock units are used for area wells including the municipal wells which are drilled to depths ranging from 398 to 652 bgs.

The subject site lies just north of downtown New Prague and is supplied drinking water by six municipal wells. These wells are located both northwest and southeast of the site at distances less that ½ mile. The subject site is found to be located within the drinking water supply management area (DWSMA) for the original city wells located south of the site (<u>http://pca-gis02.pca.state.mn.us/prp/index.html</u>). The aquifer sensitivity is found to be low and even though the site is present within the DWSMA these wells do not appear to be at risk from soil impacts encountered at the site.

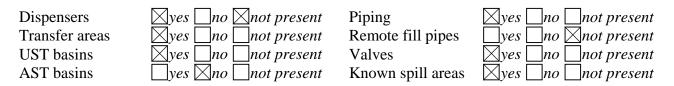
Groundwater was present in three of the temporary wells completed for the LSI. Groundwater appears to come from discontinuous sand layers present from approximately 9.5 to 15.9 feet below ground surface (bgs). Aside from these sand laminations the probes were absent of any other water bearing units. Groundwater levels measured 9.25 feet in GP-1, 15.91 in GP-2 and 11.14 feet in GP-3 (Table 6). Groundwater when removed from the temporary well was very slow to recover indicating limited groundwater capacity in these probes completed at the site. **1.12** Discuss in detail the local and regional hydrogeology based geologic logs of nearby water wells and available published information.

The MPCA web site (<u>http://pca-gis02.pca.state.mn.us/prp/index.html</u>) was visited to obtain the DWSMA for the six municipal wells in the area. The municipal wells according to well logs are found both southeast and northwest of the site. The MDH CWI was then utilized to determine the location of wells within ½ mile of the subject site. Three private wells were found within ½ mile of the site. These wells included two for the New Prague Creamery and one for John Yackley. There was also one found for an elevator and the rest of the well logs obtained were from the municipal wells.

Two of these municipal wells were newer and we could not obtain well logs from our version of the CWI (Table 16-Figure 7). The MPCA PRP website was also utilized to locate additional wells for the area. No additional wells were found within ½ mile of the site. It does not appear based on the data reviewed that area wells would be jeopardized by either soil or groundwater contamination from the site. The site is located within the DWSMA for the city for the municipal wells to the southeast, but again there is a low risk of impacts to these wells based on the data collected for this LSI.

1.13 Discuss site ground water flow direction using soil boring data, monitoring well data if collected, plume geometry, and available published information.

Table 6 shows the water levels in the four Geoprobe borings completed as temporary wells where groundwater was found within only three of the four probes. Three quarter inch diameter PVC casing and screen were inserted into each probe hole upon removing the push probe rods to serve as temporary wells. Groundwater was present in three of the four temporary wells at levels that varied by more than six feet thus a flow direction could not be determined.


1.14 Describe any evidence of a fluctuating water table or a seasonal high water table (e.g., mottling, saturated soil color or gleyed soils, monitoring well observations). Also, from other sources of information describe the range of natural water table fluctuations in the area.

The site area is underlain by seventeen feet of brown clay that overlies gray clays to the extent of our probes or 36 feet bgs as was shown in the deepest probe advanced at the site. Two sand seams or laminations were found in two of the four probes completed for this LSI. These sand seams were found in GP-2 at 15.8 feet and in GP-3 at 9.5 feet. Mottling was observed in brown clays and in the form of bright rust colored mottles from 6 to 12 feet in depth.

Given the grain size data and groundwater collection data gathered for this LSI, it appears that groundwater would be more abundant in periods of high precipitation given the soil types and the absence of abundant moisture observed during the drilling. Mottling observed indicates the past presence of groundwater at levels that vary as much as 10 feet. Of the three grain size samples sent for analysis only one crossed the d_{10} fraction. This sample was used along with Hazen Grain size approximation to estimate the hydraulic conductivity. Based on the approximation using only this sample, it would appear that the soils meet the criteria of an aquifer. Using all the data collected including the other two samples collected for grain size and the absence of continuous sand lenses or layers, it does not appear that the soils at this site meet the criteria of an aquifer. Additionally, the UST basin was backfilled with coarse fill materials and was not capped with any clay materials therefore this basin would be acting as a receptor collecting and holding groundwater during periods of high moisture.

Extent and Magnitude of Soil Contamination

1.15 Were soil borings conducted in or adjacent to the following source areas?

- **1.16 Horizontal Definition**: Based on requirements described in Guidance Document 4-01, were a sufficient number of soil borings completed to define the horizontal extent of soil contamination in all directions? $\bigotimes Yes \square No$
- **1.17 Vertical Definition:** Based on requirements described in Guidance Document 4-01, were all soil borings completed to the required depth? Xes No
- **1.18 Site Stratigraphy:** Based on requirements described in Guidance Document 4-01, was the stratigraphy boring completed to the required depth? \boxtimes *Yes* \square *No*

If you answered *NO* to any of the four previous questions, explain why the borings were not conducted in the required locations or to the required depths. See Guidance Document 4-01 *Soil and Ground Water Assessments Performed during Site Investigations* regarding exceptions and MPCA approval for depth of drilling.

Investigation Report Form Page 10

1.19 Describe the vertical and horizontal extent and magnitude of soil contamination based on field observations, soil headspace measurements (Table 2), and soil analytical results (Tables 3 and 4). If non-petroleum contaminants are present, discuss the possible sources of these compounds. Provide a map and two cross sections that illustrate both soil headspace and laboratory analytical results in Section 4. Include laboratory analytical reports and soil sampling methodology in Section 6.

Soil impacts were found in the native soils in the tank basin following removal of the 10,000 gallon fuel oil and 1,000 gallon diesel tank (Excavation Report/Appendix A). A release was reported and a subsequent LSI was performed to determine the extent and magnitude of soil impacts at the site. Four probes were completed with the first being located in the former basin (GP-1) and the others around the perimeter in the three directions possible. The probe (GP-1) completed in the tank basin was the only probe of the four that showed soil impacts. Soil impacts were present at 13.2 feet bgs with the only/highest OVM reading of 41.0 ppm recorded (Table 2). The soil impacts appear confined to the former tank basin based on the absence of any soil impacts encountered in the perimeter probes (Figure 3). Soil samples collected for laboratory analysis following tank removal did not show soil impacts with the exception of a GRO detection under the diesel tank (Appendix A). This analytical result was reported at 14 ppm along with low level Benzene, Ethylbenzene and Xylenes in this sample and the adjacent sample (See Analytical Table-Excavation Report/Appendix A). In probes completed around the former UST basin, soil samples were collected near the contact between the brown and gray clay units (Table 3). The absence of soil impacts were confirmed by soil sample analysis of samples collected from each of the soil probes at the soil groundwater interface (Table 3). Based on this information, it does not appear that there is a soil contaminant plume outside the tank basin area.

1.20 Is contaminated soil in contact with ground water? \boxtimes Yes \square No

If *YES*, or if ground water contamination appears likely, then complete the **Aquifer Determination** section below.

If NO, complete question 1.21.

- **1.21 a)** What is the distance separating the deepest contamination from the surface of the water table? feet
 - **b**) Was this distance measured during site activities, referenced from geologic information, or estimated based on professional opinion during a site visit?
 - c) In your judgment, is there a sufficient distance separating the petroleum contaminated soil from the underlying aquifer to prevent contamination of the aquifer? \boxtimes *Yes* \square *No*

Please explain in detail. In your explanation, consider the site-specific geology, the data in this section, and the nature of the petroleum release (i.e., volume, age, released product type).

During the advancement of the soil probes, field evidence (stained soils, petroleum odors, positive OVM readings) of soil contamination was observed in only one of the four probes completed for this LSI (Figure 3). The impacts were encountered as described above at 13.2 feet bgs. Soil samples collected for laboratory analysis confirm the absence of soil impacts both in the native soils in the tank basin and around the perimeter of the former tank basin.

Groundwater was encountered in three of the four temporary wells completed for this LSI. Groundwater impacts were not encountered in groundwater samples from the probe completed in the tank basin or in the two temporary wells (GP-2 and GP-3) completed outside the tank basin (Table7). The site is a hospital facility within the city limits of New Prague, MN, approximately one block north of the downtown area (Figure 1). The municipal wells are present northwest and southeast of the site. The site lies within the DWSMA for the wells to the southeast but do not appear to be at risk from impacts present at this site. One private well, two commercial and one industrial well were found within $\frac{1}{2}$ mile of the site when conducting the well search. Based on the information gathered as part of this LSI, the wells found around the site do not appear to be at risk from any impacts.

If *YES*, the Aquifer Determination is not necessary as part of the LSI. If *NO*, complete the Aquifer Determination section below.

1.22 Is contaminated surface soil (0-2 feet) present at the site? \Box Yes \boxtimes No

If *YES*, delineate the extent of contaminated surface soil, identify the extent(s) of contaminated surface soil on a Site Map, and propose a corrective action in Section 3 to mitigate the impacts. If borings were used to define the extent, complete Table 5. See Guidance Document 3-01 *Excavation of Petroleum Contaminated Soil and Tank Removal Sampling* for more information regarding contaminated surface soil identification, delineation, and excavation.

Aquifer Determination

Complete this section if ground water has been contaminated or may become contaminated based on questions 1.20 and 1.21. Aquifer determination is made during the LSI. It is based upon the stratigraphy and a hydraulic conductivity measurement calculated from grain size analyses. The site stratigraphy gives the context within which the hydraulic conductivity measurement can be interpreted. Please refer to Guidance Document 4-01 *Soil and Ground Water Assessments Performed during Site Investigations* for methods and requirements. Provide the results of grain size analyses, calculations, and other information used for the determination of hydraulic conductivity in Section 6. Determine the aquifer thickness (b) from geologic logs of soil borings, water well logs, and available published information.

1.23 Calculate an average hydraulic conductivity value (K). K = 0.02 cm/sec or 55.6 ft/day

Indicate the calculation method (e.g. Hazen, Masch and Denny, Kozeny-Carmen, etc.). **Hazen Grain size approximation**

Three soil samples were collected and analyzed for grain-size. The results of the grain size analysis can be found in Appendix I.

GP-1	16.0 feet	d_{10} = Did not cross the d_{10} .
GP-2	15.8 feet	d_{10} = Did not cross the d_{10} .
GP-3	9.5 feet	d_{10} = Crossed the d_{10} at 0.14 mm.

1.24 Calculate a range for aquifer transmissivity (T) using the equation T = Kb, where b is the thickness of the aquifer.

Both the high and low thicknesses of the sand laminations were used which was two inches thick in both GP-2 at 15.8' and GP-3 at 9.5'.

 $T_{High} =$ **9.26** ft²/day $T_{Low} =$ **9.26** ft²/day

If the transmissivity of a contaminated hydrogeologic unit is greater than 50 ft²/day, it is considered an aquifer for the purpose of the Petroleum Remediation Program. If the hydrogeologic unit meets the definition of an aquifer, then monitoring wells are required if any of the following conditions are met: 1) ground water is impacted at or above Minnesota Department of Health (MDH) Health Risk Limits (HRLs) or 1,000 μ g/L GRO or DRO; 2) ground water is impacted below the HRLs but levels are likely to reach the HRLs; or 3) there is an insufficient distance separating the petroleum contaminated soil (or an impacted non-aquifer) from an underlying aquifer. If monitoring wells were installed complete the **Aquifer Characterization** section below as part of an RI.

Aquifer Characterization

1.25	Discuss the drilling and installation of monitoring wells including the rationale for their
	locations. Summarize their construction in Table 9. Attach boring logs, well construction
	diagrams, and well logs in Section 6.

- **1.26** Is there a clean or nearly clean (below HRLs) downgradient monitoring well located along the longitudinal axis of the contaminant plume (approximately 20 degrees plus or minus the axis)?
- 1.27 Is there a worst case well completed through the source area(s) of the Yes No release?If you answered *NO* to any of the above two questions, please explain why a well was not

completed in the required location.

- **1.28** Provide an estimate of the longitudinal length of the dissolved contaminant feet plume:
- 29 Calculate ground water flow velocity (based on Darcy's Law) using the average hydraulic conductivity (K), average horizontal hydraulic gradient (dh/dl), and effective porosity (n). Provide documentation and show calculations in Section 6.

Hydraulic conductivity	(K) =	ft/day	
(Method if differen	nt than that us	ed in 1.2	23:)
Porosity $(n) = n$	method/refere	ence	
Average horizontal gra	adient (dh/dl)	=	(unitless)
Calculated ground wat	er velocity (v	r) =	ft/day

1.30 Using the calculated ground water flow velocity from question 1.29, is there a receptor(s) located within a five-year travel time from the source area?

If YES, describe the location and type of receptor(s).

1.31 Were any deep monitoring wells completed at the site? \Box *Yes* \Box *No*

If *YES*, list them and indicate their depths:

Contact the MPCA project hydrologist before installing a deep monitoring well. A deep monitoring well **may** be necessary if: 1) contamination exists more than 10 feet below the water table or 2) the impacted aquifer is a drinking water aquifer or is hydraulically connected to the aquifer(s) presently used by a water supply well located within 500 feet of the release source.

 \Box Yes \Box No

If contamination is present at depth in the aquifer or in deeper aquifers, additional deep wells may be required. Provide the following information if deep wells were installed:

Vertical gradient (dv/dl) Inferred ground water flow direction

Provide the following information for the deep aquifer unit if it appears to be hydrogeologically distinct from the upper unit.

Porosity (n): Hydraulic conductivity (K)

ft/day

Submit this RI report after completing a minimum of *two quarterly sampling events*. Quarterly ground water monitoring and sampling should continue until MPCA response is received.

Extent and Magnitude of Ground Water Contamination

1.32 Describe the extent and magnitude of ground water contamination based on the analytical results of samples collected as part of an LSI (Tables 6, 7, and 8) and, if applicable, monitoring well samples collected as part of an RI (Tables 10, 11, and 12). Provide Site Maps that illustrate both the laboratory analytical results and, if applicable, ground water gradients in Section 4.

Groundwater samples were collected from three of the four temporary wells from groundwater that averaged 12.1 feet below grade (Table 6). Three groundwater samples were collected along with a field duplicate and do not show groundwater impacts in the former tank basin, or the two probes north and west of the basin where groundwater was encountered. In the samples collected, analytical results did not show any VOC compounds or DRO detections above the laboratory detection limits.

1.33 If non-petroleum contaminants are present, discuss the possible sources of these compounds.

In groundwater samples collected from three of the four temporary wells there were no VOC detections from any of the groundwater samples collected at the site that included the field duplicate.

1.34 Provide a discussion on QA/QC, including information on the samples collected and laboratory analyses performed. Include laboratory analytical reports and ground water sampling methodology in Section 6.

QA/QC included equipment decontamination between sampling points, the use of dedicated screens, calibration of field equipment, immediate groundwater collection and preservation, placing samples immediately in coolers, recording sampling data and appropriate trip and field blanks were collected along with field duplicates.

1.35 Laboratory certification number: 047-999-395

Evaluation of Natural Attenuation

Refer to the Guidance Document 4-03 *Assessment of Natural Attenuation at Petroleum Release Sites.* **Note**: Evaluation of natural attenuation is not required unless requested by MPCA staff.

- **1.36** Discuss the results of the natural attenuation assessment (Table 13). Specifically, compare the concentrations of the inorganic parameters inside and outside the plume and whether the data indicate natural biodegradation is occurring at the site.
- **1.37** If active remediation is anticipated, discuss reasons why natural attenuation (including biodegradation) can not adequately remediate the contaminants to acceptable risk levels.

Extent and Recovery of Free Product

If free product is encountered during the investigation, include Guidance Document 2-03 *Free Product Recovery Report Worksheet* in Section 6. See Guidance Document 2-02 *Free Product: Evaluation and Recovery* for additional information.

1.38 If free product was encountered during the site investigation, describe the work completed to delineate the extent of the free product zone and what efforts were or are being completed to recover it. Tabulate the volume of product recovered in Table 14. Illustrate the estimated horizontal extent of the free product zone on a Site Map in Section 4.

Section 2: Risk Assessment

Well Receptors

List all properties located within 500 feet of the site in Table 15. Identify all properties listed in Table 15 on the Potential Receptor Map in Section 4.

List all wells located within 500 feet of the site and any municipal or industrial wells within ½ mile in Table 16. All water wells within 500 feet of the release source must be listed even if construction information was not obtained or available. Include all available water supply well logs obtained from Minnesota Geological Survey, MDH, drillers, or county well management authorities, and any other well construction documentation in Section 6. Identify all wells listed in Table 16 on the Well Receptor Survey Map in Section 4.

2.1 Were all property owners within 500 feet of the site successfully contacted to determine if water wells are present?

Yes 🗌 No

If NO, please explain.

While on site completing the LSI, the properties within 500 feet of the site were visited to visually determine if any private wells were present on surrounding properties. Post cards were also sent to properties within 500 feet of the site and the data is presented on Table 15 of this report. None of the returned post cards noted the presence of a private well. We did receive post cards that did indicate the presence of basements and sump pumps. Additionally, all of the surrounding properties were found to be hooked up to municipal water supplies as confirmed by city officials.

2.2 Discuss any physical limitation to the inspection of properties within the 500-foot survey radius.

We did not encounter any limitations with this investigation.

2.3 Discuss the results of the ground water receptor survey. Comment on the risks to water supply wells identified within 500 feet from the site as well as the risk posed by or to any municipal or industrial wells found within ½ mile. Specifically indicate whether identified water supply wells use the impacted aquifer. (Note: an impacted aquifer separated from another aquifer by a clay lens may not be considered a separate aquifer).

The subject site lies just north of the downtown area of New Prague approximately one block in an area that transitions from downtown buildings to a residential area (Figure 1). The municipal wells were found to be located both northwest and southeast of the site (Figure 7). There were five municipal wells, two commercial, one private and one industrial well found within ½ mile of the site. Logs were available for all of these wells found during the well search. Construction details, geology and other data can be found in Appendix K and is summarized on Table 16. All of the wells are bedrock wells drilled through the 150 feet of overlying drift into Cambrian age bedrock. The only exception to this is the industrial well installed for an elevator shaft completed within quaternary clay deposits.

In general, the well logs indicate that the area is underlain by ground moraine materials to approximately 150 feet in depth where Cambrian Age bedrock is present. It appears that the clay layers within the moraine materials may provide protection for the area wells but all of the area wells are found to be at least 150 feet into the bedrock. This was confirmed by the source water assessment for New Prague (Appendix L). There does not appear to be a risk to the drinking water aquifer given the depth (~150 plus feet) and the absence of groundwater impacts at the site (Table 7).

2.4 If water samples were collected from nearby water wells, discuss the analytical results below and tabulate them in Tables 11 and 12.

- **2.5** Is municipal water available in the area?
- **2.6** Based on the public water supply risk assessment, is the site located in a Source Water Assessment Area or Drinking Water Supply Management Area (see Guidance Document 4-18 *Public Water Supply Risk Assessment at Petroleum Remediation Sites*)?

If YES, provide the name of the area and include the required documentation in Section 6.

2.7 Are there any plans for ground water development in the impacted aquifer \Box Yes \boxtimes No within $\frac{1}{2}$ mile of the site or one mile downgradient of the site if the aquifer is fractured?

Provide the name, title and telephone number of the person that was contacted for this information.

Name: Bruce ReimersTitle: Water SuperintendentTelephone: 952-758-1142

Surface Water Receptors

2.8 Are there any surface waters or wetlands located within $\frac{1}{4}$ mile of the site? \Box Yes \boxtimes No

If YES, list them along with their distance and direction from the site in Table 17.

Also, list below any potential pathways such as ditches, drain tiles, storm sewers, etc., that may lead to the identified surface water features.

2.9 If surface water is present downgradient of the site, is there a clean downgradient soil boring or monitoring well located between the site and the surface water?

If *YES*, identify the clean downgradient boring or well, distance to the surface water feature, and discuss the contamination risk potential.

If *NO*, and ground water from a downgradient boring or well is contaminated, we assume that contamination discharges to the surface water. Therefore, provide the following information:

Name of receiving water: Plume width, (W): Plume thickness, (H): Hydraulic conductivity, (K): Horizontal gradient, (dh/dl): Discharge, (Q) = H*W*K*(dh/dl)/1440

Utilities and Subsurface Structures

\boxtimes	Yes		No
-------------	-----	--	----

 \Box Yes \boxtimes No

Investigation Report Form Page 18

2.10 Compare the relationship between the distribution of contaminant phases (soil, ground water, vapor, and non-aqueous phase liquid) to the location of all underground utility lines, utility service lines, and nearby basements and sumps. Include all identified utilities in Table 18. Show all utilities, utility service lines, and other subsurface structures on applicable cross sections in Section 4.

The primary utility at risk from soil impacts found in the UST is the storm sewer located north of the former basin area (Figure 3). This utility is six feet bgs used to drain the roof of the building and flows from the northeast to the southwest north of the tank basin. The storm sewer trench although at risk, does not cut across the former tank basin. This utility is shown on the cross section (Figures 4 and 4a) and the location of soil impacts from the past presence of the fuel oil tank. There also are fiber optic, oxygen and natural gas lines in the area of the former tank basin (figure 3). These do not to be at risk based on the headspace data gather from the UST removal that show soil impacts greater than 40 inches bgs (Appendix A). The sanitary sewer (two lines) & water services (two lines) enter the subject building from the north, east and south of the building as shown on the site detail map (Figure 3). None of these appear to be at risk from impacts from the soil impacts left in place in the former UST basin based on the soil boring and distance to each of these utilities.

2.11 Is there any evidence that free product or contaminated ground water may be \Box *Yes* \boxtimes *No* traveling off site within the utility corridors?

If *YES*, a utility backfill investigation is required (refer to Guidance Document 4-01). Discuss the investigation rationale and results.

2.12 Is there a history of field-detectable vapor impacts in the vicinity of the site? \Box Yes \boxtimes No

If YES, describe:

Conduct a vapor survey if the vapor receptor survey and risk evaluation indicate a risk of vapor impact or an infiltration risk from contaminated ground water or free product to utilities or subsurface structures. See Guidance Document 4-02 *Potential Receptor Surveys and Risk Evaluation Procedures at Petroleum Release Sites*. Identify all vapor monitoring locations on the Vapor Survey Map by labeling each monitoring location with a number that corresponds to vapor monitoring locations listed in Table 19. Vapor monitoring methods, including instruments used, must be discussed in Section 6.

2.13 Provide a detailed description of each vapor monitoring location and indicate if vapors were detected.

Vapor migration accumulation is not a risk given the absence of any positive OVM readings in the native soils or in any of the probes located outside the former tank basin (Table 2/Figure 3). We surveyed the storm manholes and catch basins around the former basin using an OVM and explosimeter. No readings were detected on either instrument at thos locations surveyed. It is our opinion that there is low risk to the utilities around the site based on the absence of soil impacts found in soil probes completed outside the tank basin as part of this LSI.

Vapor Intrusion Receptors

When vapor intrusion receptors are present, a preliminary vapor intrusion risk assessment must be completed (see Guidance Document 4-01a *Vapor Intrusion Assessments Performed during Site Investigations*). If completed, include the Vapor Intrusion Assessment Map in Section 4 that identifies all vapor intrusion samples and receptors at and within the 100-foot preliminary assessment area.

2.14	Was a preliminary vapor intrusion risk assessment completed?	Yes 🗌 No
	The vapor intrusion assessment included the completion of one soil gas vapor probe (Figure 3). This was completed between the tank basin and the hospital building. Low level analytical detections do not indicate a risk to the building based on the results of this probe.	
	If NO, explain why.	
2.15	Do any of the soil gas samples from locations near inhabited buildings exceed the ISVs by ten times (10X) for petroleum related compounds?	Yes 🛛 No

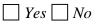
If you answered YES , is additional characterization of the vapor intrusion	Yes	N	10
pathway needed for these buildings (e.g. sub-slab soil gas, an indoor building			
survey, or indoor air sampling)? If YES, complete question 3.4. If NO,			
explain why.			

2.16 Have sufficient data been collected to propose a Conceptual Corrective Action Design for buildings that are likely to be impacted by petroleum vapors?

If YES, describe your justification for corrective action.

2.17 Based on the horizontal extent of impacted ground water or free product from the release, is additional soil gas sampling required beyond the 100-foot preliminary assessment area near inhabited buildings?

If *YES*, describe your proposal for additional vapor intrusion sampling. If *NO*, explain why.


2.18 Were recommended field sampling procedures and laboratory QA/QC from Guidance Document 4-01a followed?

If NO, explain why and discuss implications on data quality.

Site Conceptual Model Discussion

2.19 Provide a detailed site conceptual model (SCM). The SCM should integrate site-specific geology, hydrogeology, and the contaminant distribution with respect to identified exposure pathways (well receptors, surface water receptors, utilities and subsurface receptors, and vapor intrusion receptors). For additional information on SCM development, see Guidance Document 1-01 *Petroleum Remediation Program General Policy*.

The subject site lies just north of the downtown area of New Prague approximately one block in an area that transitions from downtown buildings to a residential area (Figure 1). Soil impacts were found via headspace sampling performed during the UST removal and soil analytical samples showed relatively clean samples at the base of the excavation. One AST was installed over the top of the former basin. Four probes were completed as part of the LSI and site soils were found to be brown clay overlying gray clays to the extent of our probes. Sand seams or laminations were found in two of the four probes completed for this LSI. Mottling was observed in brown clays and not within the underlying gray clays. Groundwater was encountered in three of the four temporary wells completed for this LSI. Groundwater impacts were not encountered in groundwater samples from the probe completed in the tank basin or in the two temporary wells (GP-2 and GP-3) completed outside the tank basin (Table7). The site lies within the DWSMA for the wells to the southeast but do not appear to be at risk from impacts present at this site. One private well, two commercial and one industrial well were found within $\frac{1}{2}$ mile of the site when conducting the well search. Based on the information gathered as part of this LSI, the wells found around the site do not appear to be at risk from any impacts this site.

Xes Yes		No
---------	--	----

The one utility found to be most at risk from impacts at the site is the storm sewer line present just north of the former basin. This storm sewer line is six feet bgs and flows from the northeast corner of the building to the southwest joining a storm line in Church Street (Figure 3). This storm sewer line acts to collect water from the roof drains from the hospital building. There is communication, natural gas and oxygen supply lines also located near the tank basin but these are at low risk based on the results of this LSI. The sanitary sewer and water services enter the subject building from the north, east and south of the building as shown on the site detail map. None of these appear to be at risk from impacts from the soil impacts left in place in the former UST basin. The storm sewer trench although at risk, does not cut across the former tank basin. This utility is shown on the cross section (Figures 4 and 4a) and the location of soil impacts from the past presence of the diesel tank. A soil gas vapor sample (SV-1-8') was also completed near GP-4 to determine if there was a soil gas vapor plume associated with the site that may have migrated towards the building in this direction (Figure 3). The analytical report does not suggest soil gas vapor contaminants in this location.

2.20 Discuss any other site concerns not included in the above discussion.

Section 3: Site Management Decision

The site management decision should be based on the Program's objectives described in Guidance Document 1-01 *Petroleum Remediation Program General Policy*.

- 3.1 Recommendation for site:
 Site closure
 additional ground water monitoring
 additional field-detectable vapor monitoring
 additional soil gas/vapor intrusion investigation
 corrective action
- **3.2** If closure is recommended, summarize significant investigative events and describe how site-specific exposure pathways identified in question 2.19 have been adequately addressed.

Four Geoprobe borings were completed as part of this LSI in response to the UST removal at the site (Figure 3). Soil impacts were observed only in the former tank basin during UST removal and the subsequent probes did not encounter any impacted soils. Soil analytical results confirmed the absence of any soil impacts (Table 3). Additionally, groundwater impacts were not encountered in any of the three groundwater samples that included a sample from the former basin (Table 7). The absence of any soil or groundwater impacts suggest no risk to municipal or area wells including surface water receptors. Based on the information collected from this investigation, we are recommending file closure.

- **3.3** If additional ground water or field-detectable vapor monitoring is recommended, indicate the proposed monitoring locations, sampling frequency, and target analytes. Conduct quarterly ground water monitoring and sampling until the MPCA responds to this report.
- **3.4** If additional vapor intrusion investigation is recommended, provide details of proposed activities such as completing an indoor building survey, sub-slab vapor sampling, indoor air sampling, or locations for additional soil gas sampling.
- **3.5** If corrective action is recommended, provide a conceptual approach by completing Guidance Document 4-19 *Conceptual Corrective Action Design Worksheet* and include in Section 6. See Guidance Document 4-10 *Elements of the Corrective Action Design* for more information on the corrective action design process and other requirements. (Note: MPCA staff will review this report at a higher-than-normal priority to determine if corrective action is required.)

Section 4: Figures

Attach the following figures in order of discussion in the text. All figures must include a north arrow, scale, and legend. Approximate scales are not acceptable.

Site Location Map using a U.S. Geological Survey 7.5 minute quadrangle map.

Aerial photos and Sanborn Fire Insurance MapsTM (if available) of the immediate area.

- One or more Site Maps showing:
 - Structures
 - Locations and depths of on-site buried utilities
 - All past and present petroleum storage tanks, piping, dispensers, and transfer areas
 - Extent of soil excavation
 - Boring and well locations (including any drinking water wells on site)
 - Horizontal extent of soil contamination
 - Extent of contaminated surface soil
 - Horizontal extent of ground water contamination
 - Horizontal extent of NAPL
 - Location of end points for all geologic cross sections
 - Potential pathways that lead to surface water features within ¹/₄ mile of the site

Distinguish sequential elements of investigations by dates, symbols, etc. in the key.

At least two (2) geologic cross sections depicting stratigraphy, soil headspace results, laboratory analytical results, water table elevation, and underground utilities.

Ground water gradient contour maps (for sites with monitoring wells) for each gauging event.

Potential Receptor Map (scale 1 inch = 50 to 100 feet), centered on the release area, showing property boundaries and roads, and potential receptors such as buildings, water wells, underground utilities (distinguish between water, storm sewer, and sanitary sewer), surface waters, ditches, and any other pertinent items within 500 feet of the release source.

Well Receptor Survey Map showing ¹/₂-mile radius, 500-foot radius, water supply wells, and other potential sources of contamination on a U.S. Geological Survey 7.5 minute quadrangle map.

Vapor Survey Map showing utilities and buildings with basements and monitoring locations within 500 feet (if a survey was required). If the survey area has been expanded beyond 500 feet, adjust the map to encompass the entire surveyed area.

Vapor Intrusion Assessment Map showing all vapor intrusion samples and receptors at and within the 100-foot preliminary assessment area. If the assessment area has been expanded beyond 100 feet, adjust the map to encompass the entire assessment area.

Section 5: Tables

Table 1 **Tank Information**

Tank #	Tank Material ¹	UST or AST	Capacity (gallons)	Contents (product type)	Year Installed	Tank Status ²	Tank Condition
001	Steel	UST	10,000	Fuel Oil	1963	Removed	Poor
002	Steel	UST	1,000	Diesel	1963	Removed	Good
003	Steel	AST	500	Diesel	1997	In Use	Good
004	Steel	AST	6,000	Fuel Oil	2013	In Use	Good

¹ "F" for fiberglass or "S" for Steel
 ² Indicate: removed (date), abandoned in place (date), or currently in use.

Add additional rows as needed.

Notes:

Table 2
Results of Soil Headspace Screening

Depth					Soil Bo	ring ID		
(ft)	GP-1	GP-2	GP-3	GP-4				
0-2	0	0	0	0				
2-4	0	0	0	0				
4-6	0	0	0	0				
6-8	0	0	0	0				
8-10	0	0	0	0				
10-12	0	0	0	0				
12-14	41	0	0	0				
14-16	*0	*0	*0	*0				
16-18	0	0	0	0				
18-20	0	0	0	0				
20-22	0	0	0	0				
22-24	0	0	0	0				
24-26	0							
26-28	0							
28-30	0							
30-32	0							
32-34	0							
34-36	0							

List instruments used and discuss field methods and procedures in Section 6. Add additional rows as needed, and copy the entire table if more columns are needed. Notes:

	Sampled									
Boring	Depth	Date			Ethyl-					Lab
ID	(ft)	Sampled	Benzene	Toluene	benzene	Xylenes	MTBE	GRO	DRO	Type ²
GP-1	14.3	06/05/12	<0.031	<0.31	<0.031	<0.092	<0.061	<6.1	<9.8	Fixed
GP-2	15.8	06/05/12	<0.029	<0.29	<0.029	<0.088	<0.059	<5.9	<9.7	Fixed
GP-3	13.2	06/05/12	< 0.032	<0.32	<0.032	<0.096	<0.064	<6.4	<9.9	Fixed
GP-4	15.1	06/05/12	<0.031	<0.31	<0.031	<0.093	<0.062	<6.2	<9.8	Fixed

Table 3 Analytical Results of Soil Samples¹

¹Report results in mg/kg. Use less than symbols to show detection limit.

² Indicate "mobile" or "fixed" in the lab type column.

Add additional rows as needed.

Notes:

Table 4 Other Contaminants Detected in Soils (Petroleum or Non-petroleum Derived)¹

	Sampled		1,2,4 Tri-				
Boring	Depth	Date	methyl-	Naptha-			Lab
ID	(ft)	Sampled	benzene	Lene			Type ²

¹Report results in mg/kg. Use less than symbols to show detection limit.

² Indicate "mobile" or "fixed" in the lab type column.

Indicate other contaminants (either petroleum or non-petroleum derived) detected in soil collected from borings. Add additional rows as needed, and copy the entire table if more columns are needed. Notes:

Table 5Contaminated Surface Soil Results

	Headspace 10 ppm or Greater ¹	Petroleum Saturated
Sample ID	(Y/N)	(Y/N)

¹ As measured with a photoionization detector (PID).

Add additional rows as needed.

					Soil Boring
	GP-1	GP-2	GP-3	GP-4	
Static Water Level Depth ¹ (ft)	9.25	15.91	11.14	Dry	
Sampled Depth (ft)	10.0	16.0	11.4		
Sampling Method ²	Tubing with check valve	Tubing with check valve	Tubing with check valve	Tubing with check valve	

Table 6 Water Level Measurements and Depths of Water Samples Collected from Borings

¹Describe the methods used to measure water levels in borings in Section 6.

² Refer to Guidance Document 4-05 for acceptable ground water sampling methods.

Notes:

Table 7
Analytical Results of Water Samples Collected from Borings ¹

	Date	Sampled Depth			Ethyl-					Lab
Boring ID	Sampled	(ft)	Benzene	Toluene	benzene	Xylenes	MTBE	GRO	DRO	Type ²
GP-1	06/05/12		<1.0	<5.0	<1.0	<3.0	<1.0	NA	<100	Fixed
GP-2	06/05/12		<1.0	<5.0	<1.0	<3.0	<1.0	NA	<100	Fixed
GP-3	06/05/12		<1.0	<5.0	<1.0	<3.0	<1.0	NA	<100	Fixed
Field Dupl.	06/05/12		<1.0	<5.0	<1.0	<3.0	<1.0	NA	<100	Fixed
Lab Blank	06/15/12		<1.0	<5.0	<1.0	<3.0	<1.0	NA	NA	Fixed
HRL ³			2.0	200	50.0	300				

¹ Report results in μ g/L. Use less than symbols to show detection limit. ² Indicate "mobile" or "fixed" in the lab type column.

³ See http://www.health.state.mn.us/divs/eh/groundwater/hrltable.html for list of current HRLs.

Add additional rows as needed.

Notes:

Table 8 **Other Contaminants Detected in Water Samples Collected from Borings (Petroleum or Non-petroleum Derived)**¹

Boring ID	Date Sampled	Sampled Depth (ft)	n-Butyl benzene	Sec- Butyl benzen e	p-Iso propyl toluene	Naph- thalene	1,2,4 Tri- methyl benzene	1,2,3 Tri- methyl benzene	1,3,5 Tri- methyl benzene	Lab Type ²
HRL ³										

¹ Report results in μ g/L. Use less than symbols to show detection limit.

Investigation Report Form Page 27

² Indicate "mobile" or "fixed" in the lab type column.

³ See <u>http://www.health.state.mn.us/divs/eh/groundwater/hrltable.html</u> for list of current HRLs.

Indicate other contaminants (either petroleum or non-petroleum derived) detected in water samples collected from soil borings and temporary wells. Add additional rows as needed, and copy the entire table if more columns are needed. Notes:

Table 9Monitoring Well Completion Information1

Well	MDH Unique Well	Date	Surface	Top of Casing	Bottom of Well	Screen Interval	Total Well Depth from Surface
Number	Number	Installed	Elevation	Elevation	Elevation	(Elev Elev.)	(ft)

¹ Include well construction diagrams and MDH well logs in Section 6.

Add additional rows as needed.

Notes: (location and elevation of benchmark)

¹ Describe the methods used to measure water levels in Section 6.

Add additional rows as needed.

Notes:

Table 11 Analytical Results of Water Samples Collected from Wells¹

Well Number	Date Sampled	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	GRO	DRO	Lab Type ²

¹ Report results in μ g/L. Use less than symbols to show detection limit.

² Indicate "mobile" or "fixed" in the lab type column.

³ See <u>http://www.health.state.mn.us/divs/eh/groundwater/hrltable.html</u> for list of current HRLs.

Add additional rows as needed.

Notes:

Table 12

Other Contaminants Detected in Water Samples Collected from Wells (Petroleum or Non-petroleum Derived)¹

Well	Date				Lab
Number	Sampled				Type ²

¹ Report results in μ g/L. Use less than symbols to show detection limit.

² Indicate "mobile" or "fixed" in the lab type column.

³ See <u>http://www.health.state.mn.us/divs/eh/groundwater/hrltable.html</u> for list of current HRLs.

Indicate other contaminants (either petroleum or non-petroleum derived) detected in water samples collected from wells. Add additional rows as needed, and copy the entire table if more columns are needed. Notes:

Table 13

Natural Attenuation Parameters

				Dissolved			
Well	Sample	Temp.		Oxygen	Nitrate	(Fe II)	(H_2S, HS)
Number	Date	°C	pН	(mg/L)	(mg/L)	(mg/L)	(mg/L)

Describe the methods and procedures used in Section 6. Add additional rows as needed Notes:

Table 14 **Free Product Recovery**

		Pre-Recovery Measurements			Event Recovery ³		Cumulative Recovery ⁴				
Recovery Location ID	Recovery Date	Depth to FP ¹ (ft)	Depth to GW ² (ft)	FP Thickness (ft)	FP Volume (gal)	Recovery Method	FP (gal)	GW (gal)	FP (gal)	GW (gal)	Comments
MW-1											
MW-2											
MW-3											
MW-4											

¹ FP = Free Product

² GW = Ground Water
³ Volume recovered during individual recovery event for that location.
⁴ Cumulative volume recovered at each recovery location (i.e., keep a running total for each recovery point).
Describe the methods and procedures used in Section 6. Add additional rows as needed.

Notes:

							c Water				
		Distance		Water Supply	Well	St	ıpply			Possible	
Prop ID ¹	Property Address	From Site (ft)	Well Present (Y/N)	How Determined ²	Well Use ³	Utilized (Y/N)	Confirmed by City (Y/N)	Base- ment (Y/N)	Sump (Y/N)	Petroleum Sources (Y/N)	Comments (including property use)
1	405 1 st Ave. N	400	N	Assumed		Y	Y	N	N	N	Residence
2	402-412 Church Ave.	325	N	Visual		Y	Y	Ν	Ν	N	Townhomes
3	407 Church Ave. N	375	Ν	Postcard		Y	Y	Y	Ν	N	Residence
4	410 Columbus Ave. N	375	Ν	Postcard		Y	Y	Y	Ν	N	Residence
5	411 Columbus Ave. N	500	N	Postcard		Y	Y	Y	Ν	N	Residence
6	404 1 st Ave. NE	500	N	Postcard		Y	Y	Y	Y	N	Residence
7	109 3 rd St. NE	475	N	Pers. Contact		Y	Y	Y	N	Ν	Residence
8	111 3 rd St. NE	400	N	Postcard		Y	Y	Y	Y	N	Residence
9	201 3 rd St. NE	300	N	Postcard		Y	Y	Y	Y	N	Residence
10	203 3 rd St. NE	225	Ν	Postcard		Y	Y	Y	Y	N	Residence
11	205 3 rd St. NE	200	N	Assumed		Y	Y	Ν	Ν	N	Residence
12	405 Church Ave. N	300	N	Assumed		Y	Y	Ν	Ν	N	Residence
13	406 Columbus Ave. N	325	Ν	Postcard		Y	Y	Y	Y	N	Residence
14	406 Columbus Ave. N	400	N	Postcard		Y	Y	Y	Ν	N	Residence
15	301 3 rd St. NE	150	N	Postcard		Y	Y	Y	Y	N	Residence
16	303 3 rd St. NE	150	Ν	Postcard		Y	Y	Y	Y	N	Residence
17	305 3 rd St. NE	175	Ν	Postcard		Y	Y	Y	Y	N	Residence
18	407 Columbus Ave. N	375	N	Assumed		Y	Y	N	Ν	N	Residence
19	? 4 th St. NE	500	Ν	Assumed		Y	Y	Ν	N	N	Residence
20	401 Columbus Ave. N	325	Ν	Postcard		Y	Y	Y	Ν	N	Residence
21	403 Columbus Ave. N	300	N	Pers. Contact		Y	Y	Y	Ν	Ν	Residence
22	Part of 19	300	N	Assumed		Y	Y	Ν	Ν	N	Residence
23	108 3 rd St. NE	450	N	Postcard		Y	Y	Y	Ν	N	Residence
24	308 1 st Ave. NE	375	N	Postcard		Y	Y	Y	Y	N	Residence
25	109 2 nd St. NE	425	N	Postcard		Y	Y	Y	N	N	Residence
26	111 2 nd St. NE	350	N	Assumed		Y	Y	Ν	Ν	N	Residence
27	210 1 st Ave. NE	450	N	Postcard		Y	Y	Y	Ν	N	Residence

Table 15Properties Located within 500 feet of the Release Source

							ic Water				
		Distance		Water Supply	Well	Sı	ıpply			Possible	
Prop ID ¹	Property Address	From Site (ft)	Well Present (Y/N)	How Determined ²	Well Use ³	Utilized (Y/N)	Confirmed by City (Y/N)	Base- ment (Y/N)	Sump (Y/N)	Petroleum Sources (Y/N)	Comments (including property use)
28	Part of 35	100	N	Pers. Contact		Ν	Y	Ν	Ν	Ν	Clinic Parking
29	Part of 35	200	N	Pers. Contact		N	Y	Ν	N	N	Vacant
30	201 2 nd St. NE	250	N	Assumed		Y	Y	Ν	N	N	Residence
31	203 2 nd St. NE	100	N	Assumed		Y	Y	Ν	N	N	Residence
32	Part of 35	150	N	Pers. Contact		Y	Y	Y	Y	N	Clinic
33	Part of 35	150	N	Pers. Contact		Y	Y	Y	Y	Ν	Clinic
34	Part of 35		N	Pers. Contact		Y	Y	Y	Y	Ν	Subject Site
35	301 2 nd St. NE	50	N	Pers. Contact		Y	Y	Y	Y	N	Clinic
36	Part of 35	275	N	Pers. Contact		Y	Y	Y	Y	N	Clinic
37	Part of 35	250	N	Pers. Contact		Y	Y	Y	Y	N	Clinic
38	Part of 35	300	N	Pers. Contact		Y	Y	Y	Y	N	Clinic
39	307 2 nd St. NE	450	N	Assumed		Y	Y	Ν	N	N	Residence
40	211 1 st Ave. NE	350	N	Postcard		Y	Y	Y	N	N	Residence
41	209 1 st Ave. NE	400	N	Postcard		Y	Y	Y	N	N	Residence
42	207 1 st Ave. NE	450	Ν	Assumed		Y	Y	Ν	N	N	Residence
43	205 1 st Ave. NE	500	Ν	Postcard		Y	Y	Y	N	N	Residence
44	202 Church Ave. N	300	N	Pers. Contact		Y	Y	Y	Y	N	Church
45	Part of 44	425	Ν	Pers.		Ν	Y	Ν	Ν	N	Park

Table 15Properties Located within 500 feet of the Release Source

Table 15 **Properties Located within 500 feet of the Release Source**

		Distance	storeo Water Supply Well		Well		ic Water 1pply			Possible	
Prop ID ¹	Property Address	From Site (ft)	Well Present (Y/N)	How Determined ²	Well Use ³	Utilized (Y/N)	Confirmed by City (Y/N)	Base- ment (Y/N)	Sump (Y/N)	Petroleum Sources (Y/N)	Comments (including property use)
				Contact							
46	Part of 44	475	Ν	Pers.		Y	Y	Y	Y	N	Church Rectory
				Contact							
47	Part of 44	300	Ν	Pers.		Y	Y	Y	Y	Ν	Church School
				Contact							
48	209 Columbus Ave. N	350	Ν	Postcard		Y	Y	Y	Ν	Ν	Residence
49	207 Columbus Ave. N	425	Ν	Postcard		Y	Y	Y	Ν	N	Residence
50	205 Columbus Ave. N	475	Ν	Postcard		Y	Y	Y	Ν	N	Residence
51	308 2 nd St. NE	500	Ν	Assumed		Y	Y	Ν	N	N	Residence

¹ Property IDs should correspond to labeled properties in the Potential Receptor Map.
 ² For example, visual observation, personal contact, telephone, returned postcard, assumed (i.e., no postcard returned).
 ³ For example, domestic, industrial, municipal, livestock, lawn/gardening, irrigation.

Table 16Water Supply Wells Located within 500 feet of theRelease Source and Municipal or Industrial Wells within ½ mile

	MDH Unique		Total	Base of					Distance and Direction
Property	Well	Ground	Depth	Casing	Static	Aquife			from Source
ID^1	Number	Elevation	(ft)	(ft)	Elevation	r	Use	Owner	(ft)
	178545	975 <u>+</u> 5	376	Unknown	125	MTPL	Domestic	Yackley Residence	0.3 mi W
	215706	975 <u>+</u> 5	306	Unknown	85	CRFN	Commercial	New Prague-Cream	0.4 mi W
	240052	<u>995 +</u> 5	582	167	153	MTPL	Municipal	New Prague # 1	0.1 mi S
	240053	995 <u>+</u> 5	400	Unk.	Unk.	MTPL	Municipal	New Prague # 2	0.1 mi S
	240054	995 <u>+</u> 5	398	153	155	MTPL	Municipal	New Prague # 3	0.12 mi SE
	257593	978 <u>+</u> 5	401	161	Unk	MTPL	Commercial	New Prague-Cream	0.4 mi W
	433280	964 <u>+</u> 5	652	288	187	CMTS	Municipal	New Prague # 4	0.45 mi NW
	674898	965 <u>+</u> 5	27	27	Unk	Quat	Industrial	Elevator	0.45 mi N

¹ Property IDs should correspond to properties listed in Table 15 and labeled properties in the Potential Receptor Map if known or applicable.

Add additional rows as needed.

Table 17
Surface Water Receptor Information

		Distance and Direction from Plume Edge	Clean Boring/Well Between? ³
Map ID ¹	Name and Type ²	(ft)	(Y or N)

¹ Map ID should correspond to a surface water feature ID on the Potential Receptor Map.

² Type includes, but is not limited to, lake, retention pond, infiltration pond, ditch, intermittent stream, river, creek, rain garden, etc.

³ If the surface water feature is upgradient or cross-gradient from the site, indicate so with "NA" for not applicable. Add additional rows as needed.

Table 18Utility Receptor Information

			Depth to		Flow			
		Construction	Top of		Direction	Year	Backfill	Distance to Water
Utility ID ¹	Description	Material	Structure	Diameter	(for liquids)	Installed	Material	Table
	On Site Sanitary Service-						Native	One to eight feet above based
1	North Side	CVP	8 feet	6 inches	East	1940's	clays	on LSI average water levels
	On Site Water Service-						Native	One to eight feet above based
2	North Side	DIP	8 feet	4 inches	South	1940's	clays	on LSI average water levels
							Native	One to eight feet above based
3	Water Main-3 rd Street East	DIP	8 feet	4 inches	East	1940's	clays	on LSI average water levels
	On Site Water Service-						Native	One to eight feet above based
4	East Side	DIP	8 feet	6 inches	West	1940's	clays	on LSI average water levels
				4 & 10			Native	Three to eleven feet above
5	Storm Sewer On site	RCP	6 Feet	inches	West	1940's	clays	based on LSI average water levels
	Storm Sewer-Church Street &						Native	Three to eleven feet above
6	Church & 3 rd St. Intersection	RCP	6 Feet	10 inches	South	1940's	clays	based on LSI average water levels
	On Site Sanitary Service					22.55	Native	
7	-South Side	CVP	8 Feet	6 inches		1940's	clays	One to eight feet above based on LSI average water levels

¹ ID should correspond to an identified utility line on the Potential Receptor Map. Add more rows as needed.

Notes:

Utility ID ¹	Name, title, and telephone number for public entity contacted to obtain information or other source of information
	Glen Sticha, Public Works Director, 952-758-4401

¹ IDs should correspond to the same IDs in the above table.

Add more rows as needed.

Table 19 Vapor Survey Results

Location ID ¹	Description ²	Monitoring Date	PID Reading (ppm)	Percent of the LEL ³
	Storm Manhole-			
1	Courtyard	6/5/12	0.0	0
	Storm Manhole-			
2	Church St.	6/5/12	0.0	0
	Storm Catch			
3	Basins-Church St.	6/5/12	0.0	0

¹ Location IDs must match labeled locations on the Vapor Survey Map. ² Provide a brief description of the monitoring point (e.g., sump, basement corner, sanitary sewer manhole, storm sewer basin, etc.).

 3 LEL = Lower Explosive Limit.

Add additional rows as needed.

Sample ID ²	SV	/-1									
Date	06/0	5/12									
Depth (feet)	8	,									
PID (ppm)											
COMPOUNDS	Result	Report Limit	Result	Report Limit	Result	Repor t Limit	Result	Report Limit	Result	Report Limit	Intrusion Screening Value ³
1,3 Butadiene	<4.4	4.4									0.3 MDH
Acetone	260	30.0									400-EPA
Carbon disulfide	2.6	0.62									700-MDH
n-Hexane	<0.71	0.71									2,000-MDH
Cyclohexane	2.4	0.69									6,000-EPA
1,1,1-Trichloroethane	<1.1	1.1									5,000-EPA
Benzene	3.8	0.64									4.5-MDH
Heptane	9.4	0.82									
Trichloroethylene	<1.1	1.1									3.0-MDH
Toluene	23.0	0.75									5,000-EPA
Tetrachloroethylene	<1.4	1.4									20-MDH
Ethylbenzene	6.5	0.87									1,000-EPA
M&P-Xylene	17.0	1.7									100-EPA
O-Xylene	6.1	0.87									100-EPA
1,3,5 Trimethylbenzene	1.6	0.98									6.0-EPA
1,2,4 Trimethylbenzene	6.9	0.98									7.0-EPA
Benzyl Chloride	<1.1	1.1									0.2-CEPA

Table 20 **Results of Soil Gas Sampling for Vapor Intrusion Screening**¹

¹ Report results in μg/m³. ² Sample IDs should correspond to labeled locations on the Vapor Intrusion Assessment Map.

³ The Intrusion Screening Values can be found in Guidance Document 4-01a Vapor Intrusion Assessments Performed during Site Investigations.

Add additional rows as needed, and copy the entire table if more columns are needed. Notes:

Section 6: Appendices

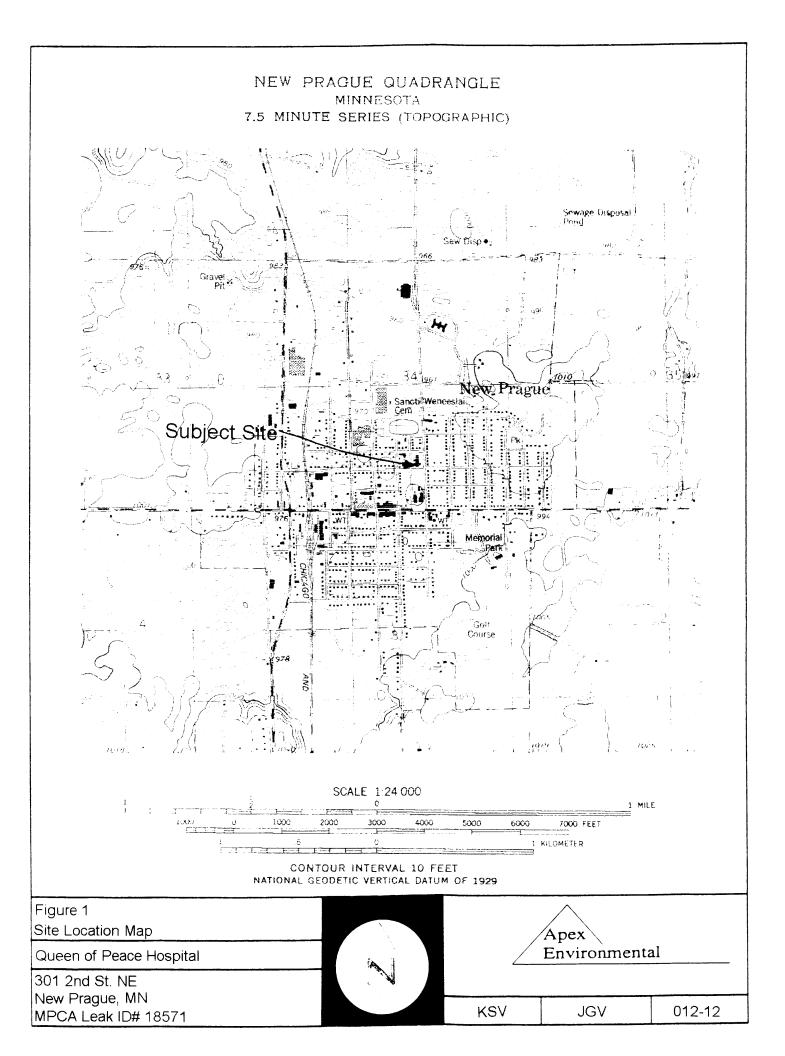
Attach all required or applicable appendices in the following order. Indicate those appendices that are included in this report by marking the check box. All reproduced data must be legible. Reports missing required documentation are subject to rejection.

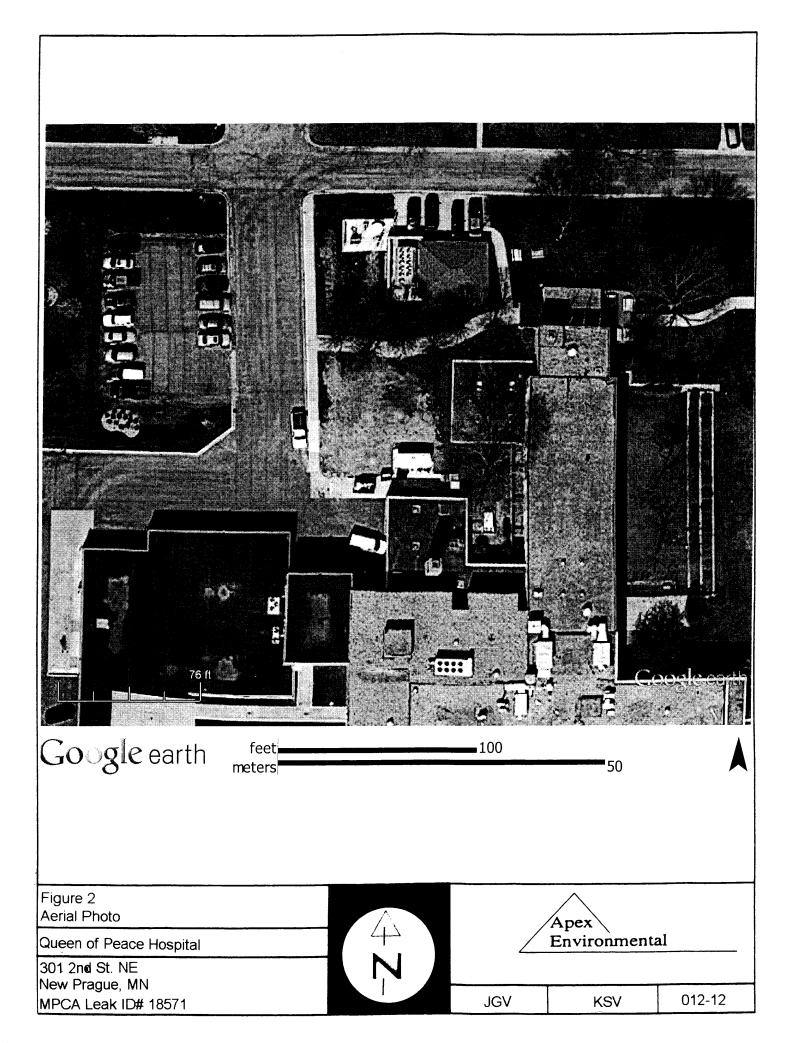
\square	Appendix A	Guidance Document 3-02 General Excavation Report Worksheet.
\square	Appendix B	Guidance Document 1-03a Spatial Data Reporting Form.
\square	Appendix C	Guidance Document 2-05 Release Information Worksheet.
	Appendix D	Copies of applicable Phase I and Phase II reports or supplemental sampling information such as aboveground storage tank (AST) upgrading and decommissioning sampling.
	Appendix E	Geologic Logs of Soil Borings, Including Construction Diagrams of Temporary and Permanent Wells, and Copies of the Minnesota Department of Health Well Record.
	Appendix F	Laboratory Analytical Reports for Soil, Soil Gas/Sub-slab Vapor/Indoor Air/Ambient Air, and Ground Water. Include laboratory QA/QC data, Chromatograms, and laboratory certification number.
	Appendix G	Methodologies and Procedures, Including Field Screening of Soil, Other Field Analyses, Soil Boring, Soil Sampling, Soil Gas/Sub-Slab/Indoor air/Ambient Air Sampling, Vapor Monitoring, Well Installation, and Water Sampling.
	Appendix H	Field or sampling data sheets (sampling forms, field crew notes, etc.).
\square	Appendix I	Grain Size Analysis, Hydraulic Conductivity Measurements, and Other Calculations.
	Appendix J	Guidance Document 2-03 Free Product Recovery Report Worksheet.
\boxtimes	Appendix K	Copies of Water Supply Well Logs with Legible Unique Numbers.
	Appendix L	Results of the Public Water Supply Risk Assessment. If the site is within a designated source water protection area, include a copy of the MDH Source Water Assessment and a map from the MPCA Petroleum Remediation Program Maps Online website.
	Appendix M	Guidance Document 4-19 Conceptual Corrective Action Design Worksheet.

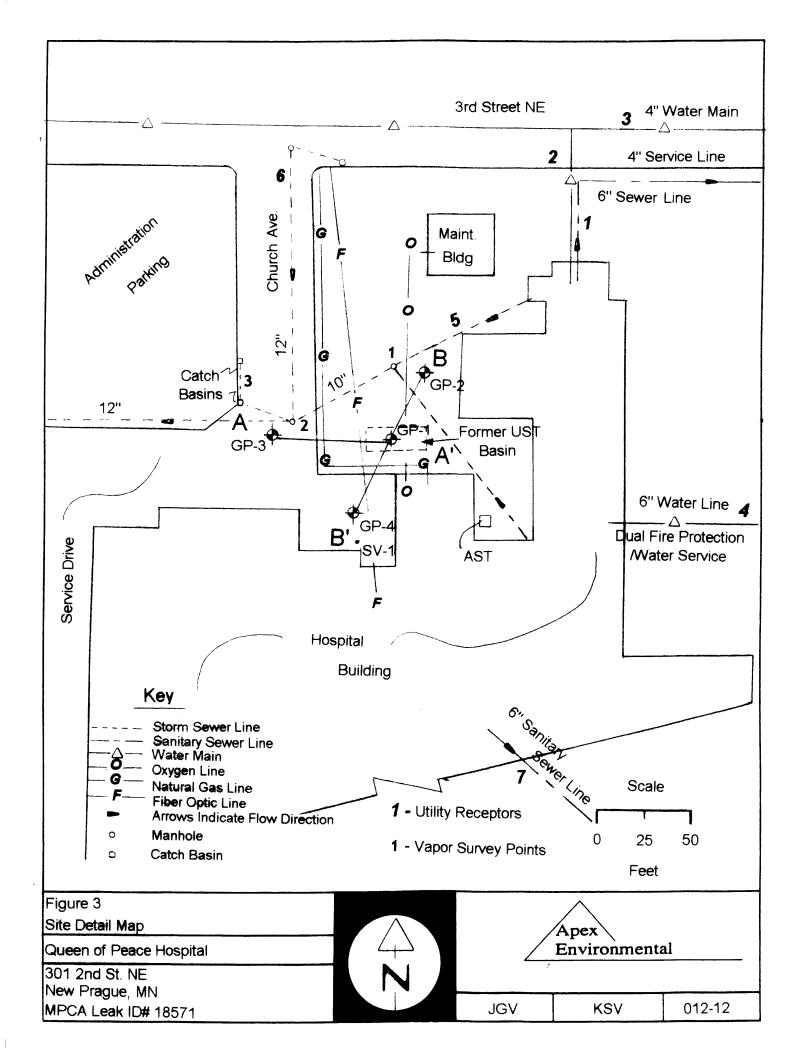
Web pages and phone number	Web	pages	and	phone	numbers
----------------------------	-----	-------	-----	-------	---------

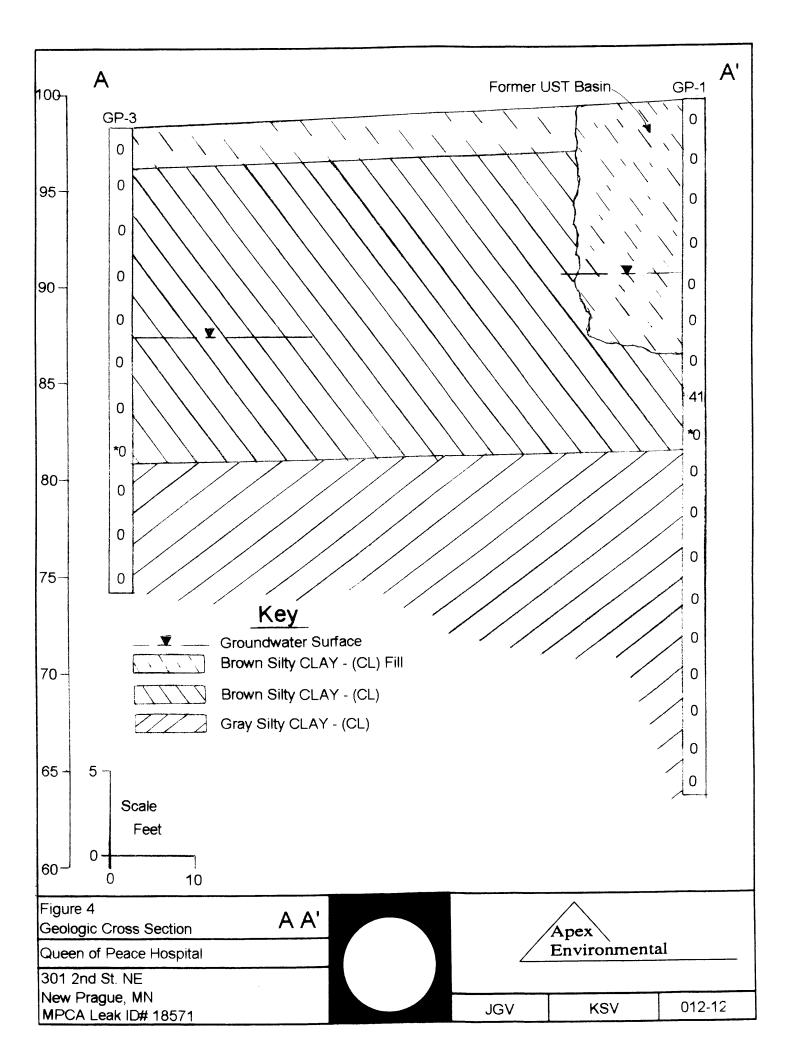
MPCA staff	http://www.pca.state.mn.us/pca/staff/index.cfm
MPCA toll free	1-800-657-3864
Petroleum Remediation	Program web page
	http://www.pca.state.mn.us/programs/lust_p.html
MPCA Info. Request	http://www.pca.state.mn.us/about/inforequest.html
MPCA VIC program	http://www.pca.state.mn.us/cleanup/vic.html
MPCA Petroleum Brow	nfields Program
	http://www.pca.state.mn.us/programs/vpic_p.html
MPCA SRS guidance d	ocuments
	http://www.pca.state.mn.us/cleanup/riskbasedoc.html
	http://www.pca.state.mn.us/cleanup/riskbasedoc.html#surfacewaterpathway
MDH HRLs	http://www.health.state.mn.us/divs/eh/groundwater/hrltable.html
MDH DW hotline	1-800-818-9318
Petrofund Web Page	http://www.state.mn.us/cgi-bin/portal/mn/jsp/content.do?id=-
	536881377&agency=Commerce
Petrofund Phone	651-215-1775 or 1-800-638-0418
State Duty Officer	651-649-5451 or 1-800-422-0798

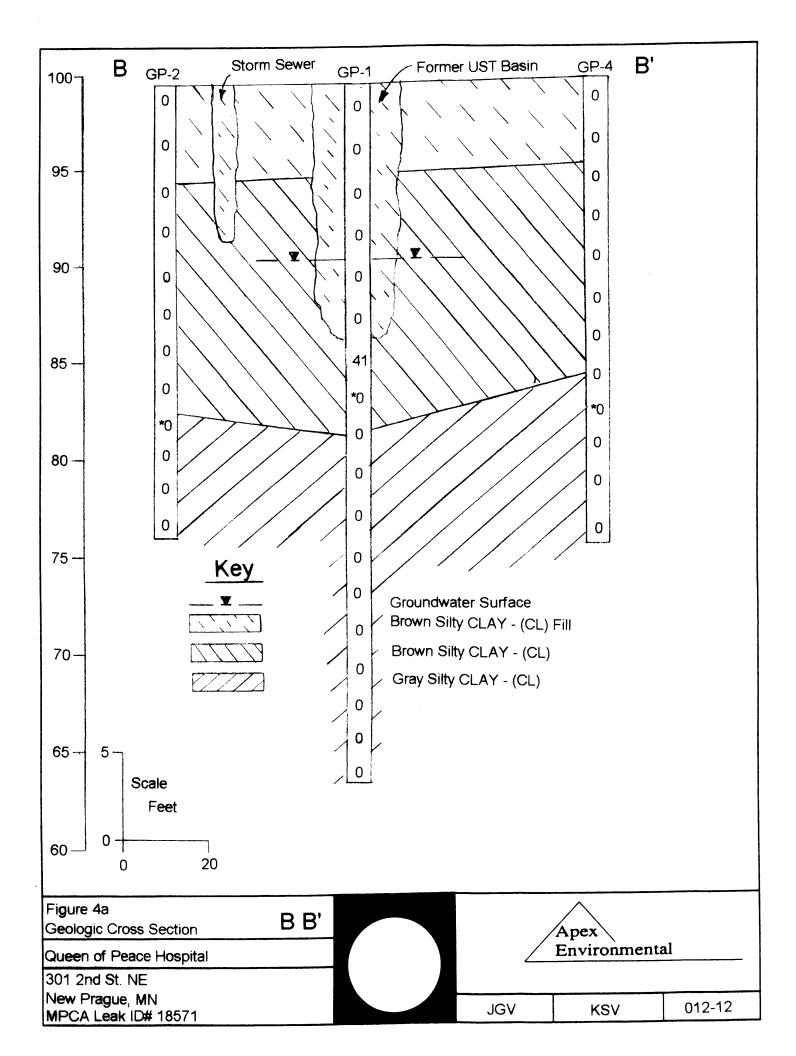
Upon request, this document can be made available in other formats, including Braille, large print and audio tape. TTY users call 651/282-5332 or Greater Minnesota 1-800-657-3864 (voice/TTY).

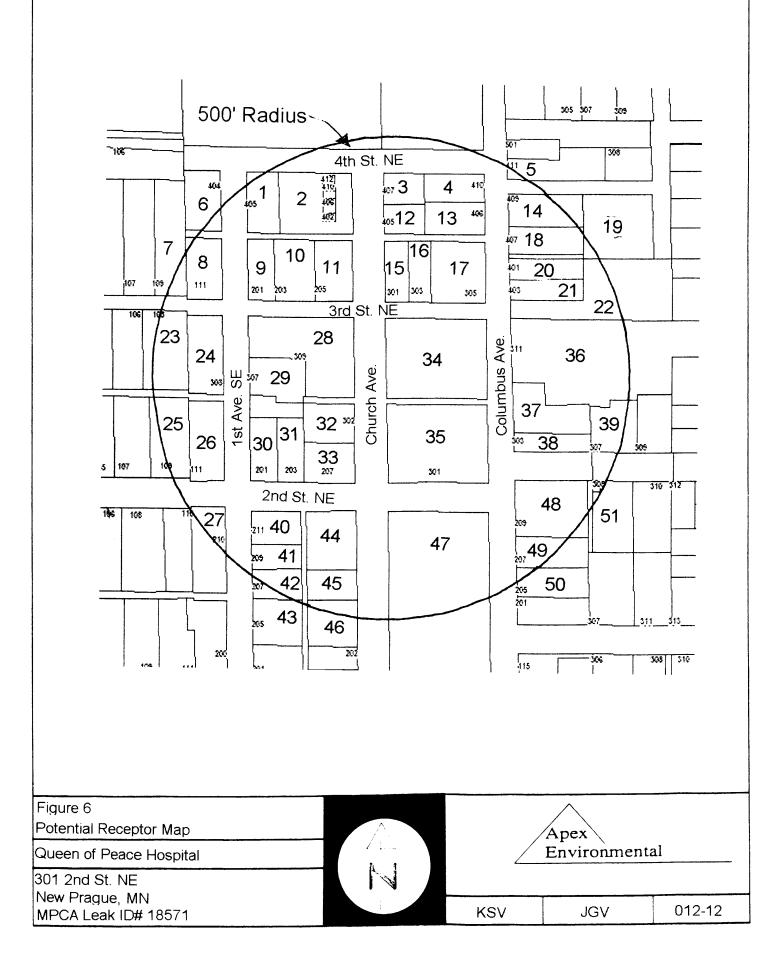

Printed on recycled paper containing at least 10 percent fibers from paper recycled by consumers.

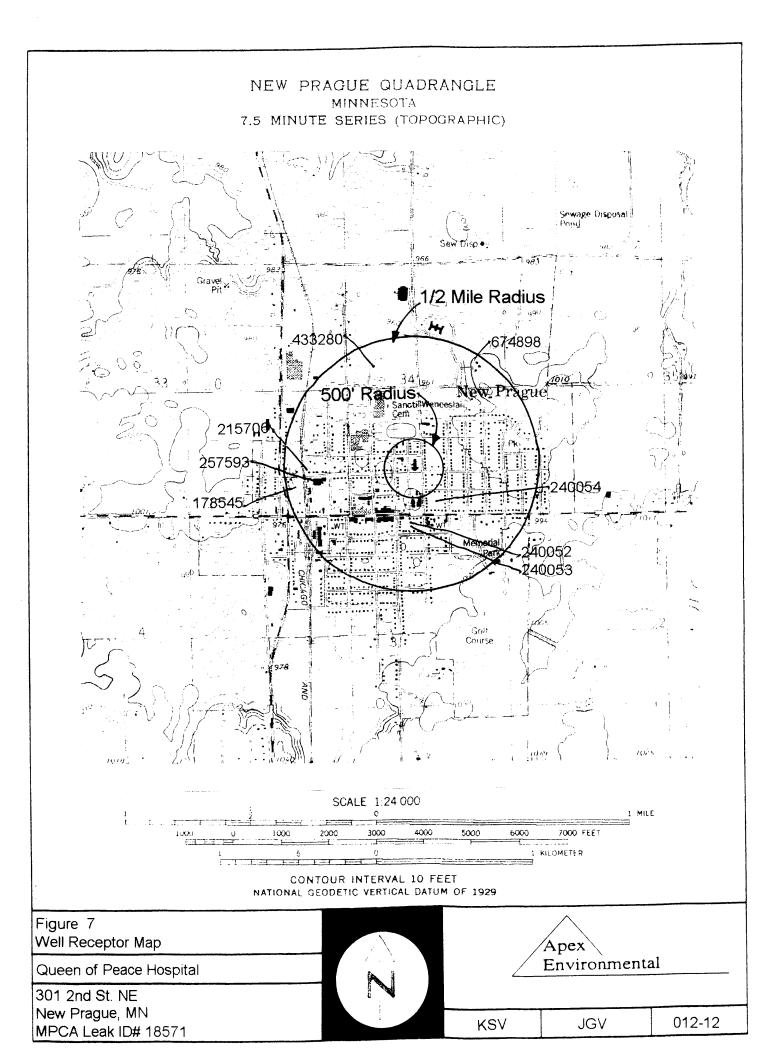

Environmental Professional Information


By signing this document, I/we acknowledge that we are submitting this document on behalf of and as agents of the responsible person or volunteer for this leak site. I/we acknowledge that if information in this document is inaccurate or incomplete, it will delay the completion of remediation and may harm the environment and may result in a reduction in Petrofund reimbursement. In addition, I/we acknowledge on behalf of the responsible person or volunteer for this leak site that if this document is determined to contain a false material statement, representation, or certification, or if it omits material information, the responsible person or volunteer may be found to be in violation of Minn. Stat. § 115.075 (2007) or Minn. R. 7000.0300 (Duty of Candor), and that the responsible person or volunteer may be liable for civil penalties.


MPCA staff are instructed to reject unsigned reports and reports that have been altered.


Name and Title of		
Report Author(s)	Signature	Date Signed
Jeffrey G. Vosburgh	- Allman Closef	2/27/14
Name and Title of		
Report Reviewer(s)	Signature	Date Signed
Name(s) of Field Technician(s): Jef Company and mailing address:	frey G. Vosburgh Apex Environmental, Inc. 60801 County Highway 46 Parkers Prairie, MN 56361	
Phone:	(218) 338-5947	
Fax:	(218) 338-5049	
Project Manager E-mail Address:	apexpp@hotmail.com	
Phone:		
Fax:		





Petroleum Remediation Program

Minnesota Pollution Control Agency

http://www.pca.state.mn.us/programs/lust_p.html

EXCAVATION REPORT WORKSHEET FOR PETROLEUM RELEASE SITES

Guidance Document 3-02

Complete the information below to document excavation and treatment of petroleum contaminated soil. Conduct excavations in accordance with Guidance Document 3-01 *Excavation of Petroleum Contaminated Soil*. Please attach any available preliminary site investigation reports to this excavation report, and attach additional pages if necessary. Please type or print clearly. Do not revise or delete text or questions from this report form.

The excavation worksheet deadline is 10 months from the date of receipt of the MPCA "Petroleum Storage Tank Release Investigation and Corrective Action" letter. MPCA staff may establish a shorter deadline for high priority sites.

PART I: BACKGROUND A. Site: MPCA Site ID#: LEAK 18571 Oueen Of Peace Hospital Street: 301 Second Street NE City, Zip: New Prague, MN 56071 County: Scott

C. Excavating Contractor:
Zahl Equipment Co
Contact: Pat Arntzen
Telephone: 507-387-4478
Tank Contractor Certification Number: 99

B. Tank Owner/Operator: Contact: **Mr. Clay Brister** Street/Box: **Mayo Clinic Health System** Street: **301 Second Street NE** City, Zip: **New Prague, MN 56071** Telephone: 952-758-8196

D. Consultant: **Apex Environmental Inc** Contact: **Mr. Jerald Erickson** Street/Box: **96 Cedar Lane** City, Zip: **Madison Lake, Mn 56063** Telephone: **(507) 340-1113**

E. Others on-site during site work (e.g., fire marshal, local officials, MPCA staff, etc.):

Note: If person other than tank owner and/or operator is conducting the cleanup, provide name, address, and relationship to site on a separate attached sheet.

PART II: DATES

A. Date release reported to MPCA: <u>October 12, 2011</u> # 122476

B. Dates site work performed (tanks removed, piping removed, soil excavation, soil borings, etc.):

Date

October 11, 2011

Work Performed 10,000 gallon fuel oil, and 1000 gallon diesel tank removal assessment

PART III: SITE AND RELEASE INFORMATION

A. Describe the land use and pertinent geographic features within 1,000 feet of the site. (i.e. residential property, industrial, wetlands, etc.)

The site is a hospital, located in a residential area, on the north side of downtown New Prague. The site is bordered by residential property on the west, north and east sides, and Church property to the south.

Tank #	UST or AST	Capacity (gallons)	Contents (product type)	Year installed	Tank Status*	Condition of Tank
1	UST	10,000	Fuel oil	1980	Removed Oct. 2011	leaking
2	UST	1,000	Diesel	1980	Removed Oct. 2011	Not leaking
3	AST	1,000	Diesel	1996	Active	Not leaking

B. Provide the following information for <u>all tanks</u> removed and any remaining at the site:

*Indicate: removed (date), abandoned in place (date), or currently used, upgraded tank, installation of new tank.Notes:

- C. Describe the location and status of the other components of the tank system(s), (i.e., transfer locations, valves, piping and dispensers) for those tanks listed above.
 <u>Piping drained at removal.</u>
- D. Identify and describe the source or suspected source(s) of the release or contamination encountered, and how the release or contamination was discovered. Leaking tank discovered upon removal.
- E. What was the volume of the release? (if known): Unknown gallons
- F. Historic contamination present (unknown origin?) (Yes or No): No
- G. When did the release occur? (if known): Unknown
- H. Describe source of on-site drinking water. City Water Well

PART IV: EXCAVATION INFORMATION

- A. Dimensions of UST excavation(s): Length: 25' Width: 12' Depth: 13' Length: 10' Width: 8' Depth: 8'
 B. Original tank backfill material (sand, gravel, etc.): clay
- C. Native soil type (clay, sand, etc.): Clay

D. Quantity of contaminated soil removed for treatment (cubic yards): $\underline{0}$ (Indicate on the site map where the petroleum contaminated soil was excavated)

How many cubic yards of the removed soil was petroleum saturated? $\underline{0}$ (Indicate on the site map where the petroleum saturated soil was excavated)

[Note: If the volume removed is more than allowed in Guidance Document 3-01 *Excavation of Petroleum Contaminated Soli*, please document MPCA staff approval.]

- E. Were new tanks and/or piping and dispensers installed? **no** If yes, what volume of contaminated soil was excavated to accommodate the installation of the new tanks and piping? **none**
- **F.** If contaminated soil was removed to accommodate the installation of new tanks and/or piping, show your calculations for the amount of soil removal allowed using Table 6.3 in Guidance Document 3-01 *Excavation of Petroleum Contaminated Soil*. **None**
- G. Was ground water encountered or a suspected perched water layer or was there evidence of a seasonally high ground water table (i.e. mottling)? <u>ves</u> At what depth? <u>13 feet</u>
- H. If ground water was not encountered during the excavation, what is the expected depth of ground water? <u>15 feet</u>
- Additional investigation is necessary at sites that have visual or other evidence of contamination remaining in the suspected source area, with sandy or silty sand soil [Unified Soil Classification System/American Society for Testing Materials] and where the water table is within 25 feet of the ground surface. See Table 6.2 in Guidance Document 3-01 *Excavation of Petroleum Contaminated Soil*. If a soil boring is necessary, describe the soil screening and analytical results. Attach the boring logs and laboratory results to this report.
- J. If no soil boring was performed, explain. Soil classifications in the area are predominantly clays.
- K. If ground water was encountered or if a soil boring was conducted, was there evidence of ground water contamination? <u>yes</u> Describe this evidence of contamination, e.g., free product (specify thickness), product sheen, ground water in contact with petroleum contaminated soil, water analytical results, etc. Note: If you observe free product, contact MPCA staff immediately, as outlined in Guidance Document 2-02 *Free Product: Evaluation and Recovery.* Ground water in contact with petroleum contaminated soil.
- L. Was bedrock encountered in the excavation? No At what depth?
- M. Were other unique conditions associated with this site? No If so, explain.

PART V: SAMPLING INFORMATION

A. Briefly describe the field screening methods used to distinguish contaminated from uncontaminated soil: Soil samples were collected from designated points within the tank basin. A grab soil sample was collected from the middle of the soil contained in the excavator. The soil sample was then immediately placed into a container and sealed for headspace screening analysis. The soil was screened with a photoionization device (PID). The maximum PID values detected were recorded in a field log corresponding to the sample location. Headspace measurements were completed following Minnesota Pollution Control Agency guidance (May 2000). The PID used was an organic vapor monitor (OVM) photo ionization detector equipped with a 10.2 eV lamp. This instrument was calibrated at the beginning of the day, using ambient air as a zero gas and 100 parts per million (ppm) isobutylene in air as the calibration gas. This calibration procedure was followed to allow direct readings of benzene (in ppm on a volume basis).

B. List soil vapor headspace analysis results collected during excavation of tanks, lines and dispensers, valves, and transfer locations. (i.e., soils left in place when excavation is complete). Code the samples with sampling depths in parentheses as follows: sidewall samples S-1 (8 feet), S-2 (4 feet), etc.; bottom samples B-1 (13 feet), B-2 (14 feet), removed soil R-1 (4 feet), R-1 (8 feet), etc.; stockpile samples SP-1, etc; line samples L-1, L2, etc.; transfer locations T-1 (4 feet), T-1 (8 feet), etc.; dispensers D-1 (4 feet), etc. Be sure the sample codes correspond with the site map in part VI, below.

Sample	Soil	Reading	Sample	Soil	Reading
Code	Туре	ppm	Code	Туре	ppm
R1-2'	clay	0	R3-2'	sand	0
R1-6'	clay	0	R3-6'	sand	0
R1-10'	clay	132	R3-8'	clay	0
B1-12'	clay	285		-	
	·		S1-12'	clay	148
R2-2'	clay	0	S2-6'	clay	0
R2-6'	clay	0	S3-6'	clay	0
R2-10'	clay	123	S4-6'	clay	0
B2-12'	clay	154	S5-12'	clay	168
	-		S6-12'	clay	257

C. Was the "removed soil" placed back into the excavation basin? <u>Yes</u> If no, please complete Part VIII: Soil Treatment Information section. If yes, a Limited Site Investigation is necessary (see Guidance Document 4-01 *Soil and Ground Water Investigations Performed During Remedial Investigations*).

- D. Briefly describe the soil analytical sampling and handling procedures used:
- Soil samples for laboratory analysis were collected using a "grab" method and represent samples from the designated soil interval. The soil samples were collected by Apex. The samples were collected by "grabbing" a soil sample from the excavator, while wearing singleuse latex gloves. The soil samples were immediately packed into an appropriate soil sample jar. The sample jars were prepared and received from the laboratory prior to starting the field activities. The single-use gloves were discarded and replaced with new gloves after each sample was obtained. The sample jars were sealed, labeled, and immediately placed on ice in a cooler chest. Chain of custody and sampling documentation were kept for the samples submitted for laboratory analysis. The chain of custody form accompanied these samples at all times. The sampling documentation was kept in the field file. Once completed, the chain of custody documentation was sealed in the cooler for delivery to the laboratory. The sampling documentation was given to the Apex project manager for inclusion in the site file. Upon receipt of the samples, the laboratory completed the chain of custody and returned the documentation with the final laboratory report. The final report was sent to the Apex project manager.
- E. List below all soil sample analytical results from bottom and side wall samples collected after excavation of tanks, lines and dispensers, valves, and transfer locations (i.e., soils left in place when excavation is complete). Code the samples with sampling depths in parentheses as follows: sidewall samples S-1 (8 feet), S-2 (4 feet), etc.; bottom samples B-1 (13 feet), B-2 (14 feet), removed soil R-1 (4 feet), R-1 (8 feet), etc.; stockpile samples SP-1, etc; line samples L-1, L2, etc.; transfer locations T-1 (4 feet), T-1 (8 feet), etc.; dispensers D-1 (4 feet), etc.; Be sure the sample codes correspond to the site map required in part VI.

Sample Code	GRO/ DRO	Benzene mg/kg	Ethyl- benzene mg/kg	Toluene mg/kg	Xylene mg/kg	MTBE mg/kg	Lead
BS-1-13'	BDL-GRO BDL-DRO	0.050	0.034	BDL	0.10	BDL	-
BS-2-13'	14-GRO BDL-DRO	0.038	0.038	BDL	0.11	BDL	-
BS-3-8'	BDL -GRO BDL-DRO	BDL	BDL	BDL	BDL	BDL	-

Note: Attach copies of laboratory reports and chain of custody forms. BDL= Below Detection Limits

PART VI: FIGURES

Attach the following figures to this report:

- 1. Site location map.
- 2. Site map(s) drawn to scale illustrating the following:
 - a. Location (or former location) of all present and former tanks, piping, and dispensers;
 - b. Location of other structures (buildings, canopies, etc.);
 - c. Adjacent city, township, or county roadways;
 - d. Final extent and depth of excavation;
 - e. Location of soil screening samples (e.g. R-1), soil analytical samples (e.g., S-1 or B-1), and any soil borings (e.g., SB-1). Also, attach all boring logs.
 - f. North arrow, bar scale and map legend.
 - g. Provide location of any on-site water wells. If on-site water wells exist, please provide well logs and/or construction diagrams.
 - h. Locations of new tanks, piping and dispensers, if installed.

PART VII: CONCLUSIONS AND RECOMMENDATIONS

Recommendation for site:

site closure additional investigation

Justify the recommendations for the site. If no further action is necessary, the MPCA staff will review this report following notification of soil treatment.

Removed tanks showed signs of leakage. Ground water was present in the tank basin at 12 feet BGL. Soil classifications in the area are predominantly clays. Per MPCA guidance, we have recommended further assessment of the site, because of the potential impacts to the ground water at the site.

PART VIII: SOIL TREATMENT INFORMATION

- A. Soil treatment method used (thermal, land application, composting, other). If you choose "other" specify treatment method: <u>None</u>
- B. Location of treatment site/facility: None
- C. Date MPCA approved soil treatment (if thermal treatment was used after May 1, 1991, indicate date that the MPCA permitted thermal treatment facility agreed to accept soil): **<u>not applicable</u>**
- D. Identify the location of stockpiled contaminated soil: None

PART IX: CONSULTANT (OR OTHER) PREPARING THIS REPORT

By signing this document, I/we acknowledge that we are submitting this document on behalf of and as agents of the responsible person or volunteer for this leak site. I/we acknowledge that if information in this document is inaccurate or incomplete, it will delay the completion of remediation and may harm the environment and may result in reduction of reimbursement awards. In addition, I/we acknowledge on behalf of the responsible person or volunteer for this leak site that if this document is determined to contain a false material statement, representation, or certification, or if it omits material information, the responsible person or volunteer may be found to be in violation of Minn. Stat. § 115.075 (1994) or Minn. 7000.0300 (Duty of Candor), and that the responsible person or volunteer may be liable for civil penalties.

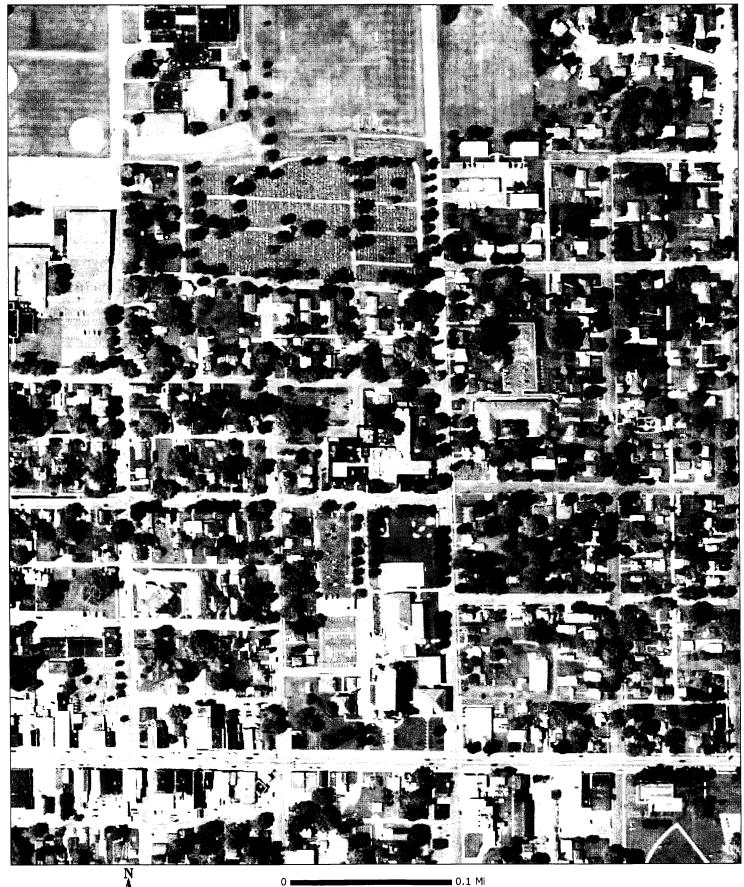
MPCA staff are instructed to reject unsigned excavation reports or if the report form has been altered.

Name and Title:

ignature: Date signed: November 5, 2011

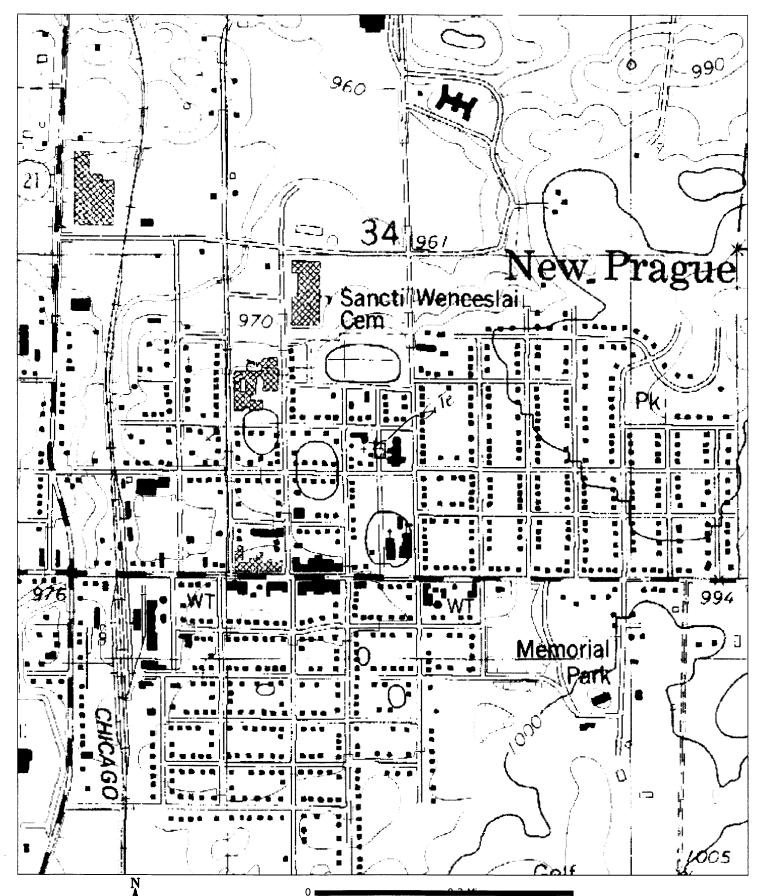
Jerald E. Erickson, Project Manager

Company and mailing address:

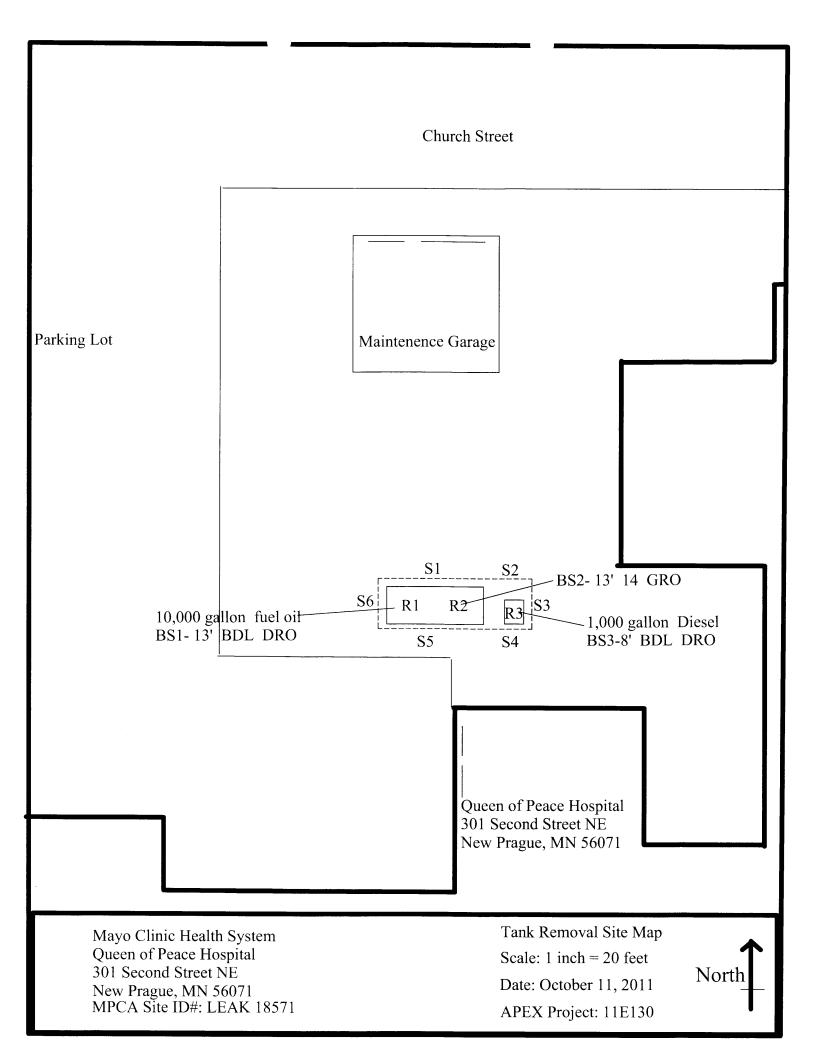

Apex Environmental Inc.
96 Cedar Lane
Madison Lake, Mn 56063
(507) 340-1113
507-243-3277

If additional investigation is not necessary, please mail this form and all necessary attachments to the MPCA project manager. If additional investigation is necessary, include this form as an appendix to Guidance Document 4-06 Investigation Report Form. MPCA staff will not review excavation reports indicating a limited site investigation is necessary unless the limited site investigation has been completed.

	Web pages and phone numbers	
MPCA staff	http://data.pca.state.mn.us/pca/emplsearch.html	
MPCA toll free	1-800-657-3864	
Petroleum Remediation	Program web page	
	http://www.pca.state.mn.us/programs/lust_p.html	
MPCA Infor. Request	http://www.pca.state.mn.us/about/inforequest.html	
MPCA Petroleum Brow	nfields Program	
	http://www.pca.state.mn.us/programs/vpic_p.html	
PetroFund Web Page	http://www.commerce.state.mn.us/mainpf.htm	
PetroFund Phone	651-297-1119, or 1-800-638-0418	
State Duty Officer	651-649-5451 or 1-800-422-0798	


Upon request, this document can be made available in other formats, including Braille, large print and audio tape. TTY users call 651/282-5332 or 1-800-657-3864 (voice/TTY).

Printed on recycled paper containing at least 10 percent fibers from paper recycled by consumers.



Oueen Of Peace Hospital Mayo Clinic Health System 301 Second Street NE New Prague, MN 56071 MPCA Site ID#: LEAK 18571

1

Queen Of Peace Hospital Mayo Clinic Health System 301 Second Street NE New Prague, MN 56071 MPCA Site ID#: LEAK 18571

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Mr. Jerry Erickson Apex Environmental Inc. - Madison Lake 96 Cedar Lane Madison Lake, MN 56063

Report Summary

Monday October 17, 2011

Report Number: L540832 Samples Received: 10/11/11 Client Project: 11E130

Description: Queen of Peace Hospital

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

hn Hawkins , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704, ND - R-140 NJ - TN002,NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032008A, TX - T104704245, OK-9915, PA - 68-02979

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences. Note: The use of the preparatory EPA Method 3511 is not approved or endorsed by the CA ELAP.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

October 17,2011

Mr. Jerry Erickson Apex Environmental Inc. - Madison L 96 Cedar Lane Madison Lake, MN 56063 ESC Sample # : L540832-01 Date Received : October 11, 2011 Description : Queen of Peace Hospital Site ID : Sample ID B51 13FT : Project # : 11E130 Collected By Jerald Erickson : Collection Date : 10/10/11 13:30 Parameter Dry Result Det. Limit Units Method Dil. Date Total Solids 79. શ્વ 2540G 10/17/11 1 PVOCGRO Benzene 0.050 0.031 mg/kg 8021 10/13/11 49.5 Toluene 0.31 0.031 BDL mg/kg 8021 10/13/11 49.5 0.034 0.10 Ethylbenzene mg/kg 8021 10/13/11 49.5 m&p-Xylene 0.062 mg/kg 8021 10/13/11 49.5 o-Xylene 0.053 0.031 mg/kg 8021 10/13/11 49.5 Methyl tert-butyl ether BDL 0.062 mg/kg 8021 10/13/11 49.5 Naphthalene 0.49 0.31 mg/kg 8021 10/13/11 49.5 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene BDL 0.062 mg/kg 8021 10/13/11 49.5 0.21 0.062 mg/kg 8021 10/13/11 49.5 Gasoline (C6-C10) BDL 6.2 8015 mg/kg 10/13/11 49.5 Surrogate recovery-% a, a, a-Trifluorotoluene (PID) 103. % Rec. 8021 10/13/11 49.5 TPH (GC/FID) High Fraction BDL 11. DROWM/8015M 10/12/11 1.06 mg/kg Surrogate recovery(%) Triacontane 95.3 % Rec. DROWM/8015M 10/12/11 1.06

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit (PQL) Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 10/17/11 15:04 Printed: 10/17/11 17:11

Page 2 of 4

VOUR LAB OF CHOICE				12065 Lebar Mt. Juliet, (615) 758-5 1-800-767-5 Fax (615) 7 Tax I.D. 62 Est. 1970	TN 37122 5858 5859 758-5859	
Mr. Jerry Erickson Apex Environmental Inc Madison L 96 Cedar Lane Madison Lake, MN 56063	REPORT	C OF ANALYSIS	Oct	ober 17,2011		
Date Received : October 11, 20 Description : Queen of Peace F Sample ID : B52 13FT			Sit	e ID :	L540832-02	
Collected By : Jerald Erickson Collection Date : 10/10/11 15:00 Parameter	Dry Result	Det. Limit	Pro Units	ject # : 11E Method	130 Date	Dil.
Total Solids	79.	Doct. Limit	*	2540G	10/17/11	
<pre>PVOCGRO Benzene Toluene Ethylbenzene m&p-Xylene o-Xylene Methyl tert-butyl ether Naphthalene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene Gasoline (C6-C10) Surrogate recovery-% a,a,a-Trifluorotoluene(PID)</pre>	0.038 BDL 0.038 0.11 0.054 BDL 1.1 0.072 0.36 14. 102.	$\begin{array}{c} 0.035\\ 0.35\\ 0.035\\ 0.071\\ 0.035\\ 0.071\\ 0.35\\ 0.071\\ 0.071\\ 0.71\\ 7.1\\ \end{array}$	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8021 8021 8021 8021 8021 8021 8021 8021	10/13/11 10/13/11 10/13/11 10/13/11 10/13/11 10/13/11 10/13/11 10/13/11 10/13/11	566 556 556 566 5566 5566 566 566 566 5
TPH (GC/FID) High Fraction Surrogate recovery(%) Triacontane	BDL 101.	10.	mg∕kg % Rec.	DROWM/8015M DROWM/8015M		

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 10/17/11 15:04 Printed: 10/17/11 17:11

Page 3 of 4

VOUR LAB OF CHOICE				12065 Lebar Mt. Juliet, (615) 758-5 1-800-767-5 Fax (615) 7 Tax I.D. 62 Est. 1970	TN 37122 5858 5859 758-5859	
Mr. Jerry Erickson Apex Environmental Inc Madison L 96 Cedar Lane Madison Lake, MN 56063	REPORT	OF ANALYSIS	Oct	ober 17,2011		
Date Received : October 11, 20 Description : Queen of Peace H				Sample # :	L540832-03	3
Sample ID : B52 8FT			Sit	e ID :		
Collected By : Jerald Erickson Collection Date : 10/10/11 16:20			Pro	ject # : 11E	:130	
Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids	78.		÷	2540G	10/17/11	1
PVOCGRO Benzene Toluene Ethylbenzene m&p-Xylene o-Xylene Methyl tert-butyl ether Naphthalene 1,3,5-Trimethylbenzene Gasoline (C6-C10) Surrogate recovery-% a,a,a-Trifluorotoluene(PID) TPH (GC/FID) High Fraction Surrogate recovery(%)	BDL BDL BDL BDL BDL BDL BDL BDL BDL 103.	0.033 0.33 0.066 0.033 0.066 0.33 0.066 0.066 6.6	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % Rec. mg/kg	8021 8021 8021 8021 8021 8021 8021 8021	10/13/11 10/13/11 10/13/11 10/13/11 10/13/11 10/13/11 10/13/11 10/13/11 10/13/11 10/13/11 10/13/11	51.5 51.5
Triacontane	93.9		% Rec.	DROWM/8015M	10/12/11	1

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 10/17/11 15:04 Printed: 10/17/11 17:11

Page 4 of 4

Company Name/Address:		Billi	Billing Information:	:"			Analysis/Container/Preservative	ontainer/Pre	sservative		Chain of Custody Page of
Apex Environmental Inc. Madison Lake	lai IIIC	≥ ō	Mr. Jerry Erickson 96 Cedar Lane	rickson ane							(
96 Cedar Lane Madison Lake.MN 56063	063		ladison La	Madison Lake, MN 56063	33			1000 - 1000 -			
Report to:		Email to:	to:							Nt. Juliet	12065 LEBANON KOAG ML Juliet, TN 37122
Project Description: / //ℓ∂∂/ ∧ / //∂∂∂ Phone: (507) 340-1113 FAX: (507) 243-3277	Client Project #		City/Sate Collected	New Yan	tere 1	74()	97111- 1 1972:01			Phone: (80 Phone: (61) Fax: (61	Phone: (800) 767-5859 Phone: (615) 758-5858 Fax: (615) 758-5859
Collected by: (print)	Site/Facility ID#:	#	P.O.#:				10 . K (
Collected by (signature):	Rush? (La	Be	otified)	Date Results Needed:			ਸੂ ਰੇ ਯ ਤੋਂ ਉ			CoCode APEXMLMN (lab use o	LMN (lab use o)
Intimediately Packed on Ice N Y		Same Day Next Day Two Day.	200% 100% 50%	Email?No FAX?No	Yes		ars -(1)			Template/Prelogin	
Sample ID	Th Comp/Grab	Three Day.	. 25% Depth	0	Time	Cutrs	ires HO			Shipped via. Remarks/Contaminant	Sample # (lab only)
86. L. J.2.	Gøah	<u></u>		2.72 x	1 2.2	c				Version C.	
262-13					282	6 C				CARDON THE	
53 - X					000	s a				ARA Chan	
							•				
											<u>.</u>
*Matrix: SS - Soil/Solid GW - Gro	GW - Groundwater WW - WasteWater DW - Drinking Water	VasteWater DV	V - Drinking	Water OT - Other	her	I			Hq	Temp	dt
Remarks:									Flow	Other	er
Relinquished by: (Signature)	Date:	Time:	Receive	Received by: (Signature)	e)		Samples I	Samples returned via: UPS	via: UPS er	Condition	(lab use only)
Relinquished by: (Signaure)	Date:	Time	Receive	Received by: (Signature) (j)		Temp:		Bottles Received	CoC Seals Intact	YNY
Relinquished by: (Signature)	Date:	Time:	Receiv	Received for lab by: (Signature)	Signature)		Date:		Time:	pH Checked.	NCF:
a se se a company a series a series and a series			-								1

Petroleum Remediation Program

Minnesota Pollution Control Agency

http://www.pca.state.mn.us/programs/lust_p.html

Spatial Data Reporting Form

Guidance Document 1-03a (For complete instructions, see Guidance Document 1-03)

Part 1. Background

Has a site location data point been submitted for this site (circle/highlight)? YES or **NO** If yes, you do not need to complete Part 2 of this form but should complete Part 3 if there are additional site features to report. This form can be submitted electronically if desired (e.g., as an e-mail attachment to the project manager).

MPCA Site ID: LEAK00018571 Site Name: New Queen of Peace Hospital Data Collection Date: October 11, 2011 Name of Person Who Collected Data: Jerald E. Erickson Organization Name: Apex Environmental, Inc. Organization Type: Environmental Consultant

Part 2. Site Location (use one of the three spatial data reporting formats provided)

Point Description: Former Tank Basin Collection Method: On-Line Map Interpolation – Pca.state.mn.us/backyard/neighborhood.html

Datum (circle/highlight): WGS84 NA	AD83
1) Longitude N	Latitude W
2) Longitude (dd.dddddd): 93. 5744	Latitude (dd.dddddd): 44. 5465
3) UTM - X (Easting):	UTM - Y (Northing):
UTM Zone: 15	

Minnesota Pollution Control Agency

Release Information Worksheet

Guidance Document 2-05

Petroleum Remediation Program

The Release Information Worksheet is necessary in order to meet the Public Record Provision of the Energy Policy Act of 2005. Complete the worksheet below to document tank and release information. This form may be included as an appendix in Guidance Document 4-06 or 4-08, or it may be submitted independently. Please type or print clearly. Do not revise or delete text or questions from this form.

Α.	General information		
	Site name/city: Queen of Peace Hospital	MPCA Site ID#: LEAK000	18571
В.	Tank material (check all that apply): X Steel Fiberglass		
C.	Piping material (check all that apply):		
	X Steel Fiberglass Flexible plastic Copper Other	(specify):	
D.	Identify the known source(s) of the release or contamination verified, if source is unknown check Other and describe): Piping Image: Tank Dispenser Submersible turbine pump Other (specify):	Delivery problem	hose options that were
E.	Identify the cause of the release (tank and/or piping) (check all Overfill Mechanical or physical damage Install problem Other (specify):	X Corrosion 🗌 Spill 🗌	
F.	Identify how the release was detected (check all that apply): Image: Second state in the image is a second state in the i		sment
G.	Has the site ever stored E85 in any former or current tank?	🗌 Yes 🛛 No	
н.	Has the site ever stored leaded gasoline in any former or cur	rent tank? 🗌 Yes 🛛 N	0

Web pages and phone numbers:

MPCA staff:	http://www.pca.state.mn.us/pca/staff/index.cfm
MPCA phone:	651-296-6300 or 1-800-657-3864
Petroleum Remediation Program Web page:	http://www.pca.state.mn.us/programs/lust_p.html
MPCA Info. Request:	http://www.pca.state.mn.us/about/inforequest.html
MPCA VIC Program:	http://www.pca.state.mn.us/cleanup/vic.html
MPCA Petroleum Brownfields Program:	http://www.pca.state.mn.us/programs/vpic_p.html
PetroFund Web page:	http://www.state.mn.us/cgi-bin/portal/mn/jsp/content.do?id=-536881377&agency=Commerce
PetroFund phone:	651-215-1775 or 1-800-638-0418
State Duty Officer:	651-649-5451 or 1-800-422-0798

				46		BOREHOLE / WELL LOG	Boring Number: GP-1		
				a 56361		Client: Mayo Clinic Health Systems Site:Queen of Peace Hospital	Sheet: 1 of 1		
Date Star	ted:		Date Finish	ned:		Location:301 Second Street, New Prague, MN 56071			
Sampler:				/5/2012		Surface Elevation-99.55'			
						Drill Rig Co/ Sampling Method:	Borehole Diameter:		
						Bergerson Caswell, Inc-Geoprobe, 4 foot barrel length BOREHOLE LOG	2"		
Sample	<u> </u>		Re-covery	Depth	Symbol		Temp Well Log Well Description-3/		
Number	(ppm)	Lab	"	(feet)		SAND-black with silt & organics, backfill.			
				0	SM	Slight odor.			
						Siight odor.			
	0			2					
				3					
1CS	0		48	4					
				5					
	0			6					
				7					
2CS	0		47	8					
				9	*	Water level at 9.25 feet from top or riser at 3.0 hours.			
	0			10					
				11		No odor.			
3CS	0		46	12					
				13	13.2'				
	41	*		14	CL	SILTY CLAY-dark brown faint tan mottling, stiff.			
				15		No odor.			
4CS	0		47	16		PVC screen set from 10-20 feet			
				17					
	0			18	18.1'				
				19	CL	SILTY CLAY-gray no mottling, stiff.			
5CS	0		48	20		No odor.			
				21					
	0			22					
				23					
6CS	0		48	24		No odor.			
				25					
	0			26					
				27					
7CS	0			28		No odor.			
				29					
	0			30					
				31					
8CS	0			32		No odor.			
				33					
	0			34					
				35					
9CS	0			36		No odor.			
				37		End of probe at 36.0 feet, borehole backfilled with			
				38		bentonite slurry to groundsurface capped with class 5.			

						BOREHOLE / WELL LOG	Boring Number: GP-2	
						Client: Mayo Clinic Health Systems Site:Queen of Peace Hospital	Sheet: 1 of 1	
						Location:301 Second Street, New Prague, MN 56071		
6/5/2012 6/5/2012			Surface Elevation-99.57'					
Sampler: JGV						Drill Rig Co/ Sampling Method:	Borehole Diameter:	
			106			Bergerson Caswell, Inc-Geoprobe, 4 foot barrel length BOREHOLE LOG	2"	
Sample	PID		Re-covery	Depth			Temp Well Log	
Number	(ppm)	Lab	"	(feet)	Symbol	Geologic Description	Well Description-3/4	
				0	CL	CLAY, brown with silt, medium, fill.		
				1		No odor.		
	0			2				
	Ű			3				
1CS	0		48	4				
				5	5.3'			
	0			6	CL	SILTY CLAY-Pale brown, distinct rust mottles.	-	
	U			7	UL	No odor.		
2CS	0		47	8				
				9				
				10				
	0							
				11				
3CS	0		46	12				
				13				
				14		PVC screen set from 14-24 feet		
	0							
				15	*	Wet sand layer 2 inches thick at 15.8'.		
4CS	0	*	47	16		Dry while drilling, 15.91 at 16 hours following completion.		
				17	17.2'			
				18		SILTY CLAY-gray, absent mottling, stiff.	-	
	0				CL			
				19		No odor.		
5CS	0		48	20				
				21				
				22				
	0							
				23				
6CS	0		48	24		No odor.		
			-	25		End of probe at 24.0 feet, borehole backfilled with bentonite		
				26		slurry to groundsurface capped with class 5.		
				27				
				28				
						l		

Apex Environmental, Inc. 60801 Cty Hwy 46 Parkers Prairie, Minnesota 56361						BOREHOLE / WELL LOG	Boring Number: GP-3		
F						Client: Mayo Clinic Health Systems Site:Queen of Peace Hospital	Sheet: 1 of 1		
Date Star	ted:		Date Finish	ned:		Location:301 Second Street, New Prague, MN 56071	1011		
6/5/2012 6/5/2012			/5/2012		Surface Elevation-98.19'				
						Drill Rig Co/ Sampling Method:	Borehole Diameter:		
JGV SAMPLE LOG						Bergerson Caswell, Inc-Geoprobe, 4 foot barrel length BOREHOLE LOG	2" Temp Well Log		
Sample Number	PID (ppm)	Lab	Re-covery	Depth (feet)	Symbol	Geologic Description	Well Description-3/4		
Number	(ppiii)			0	CL	CLAY, brown with silt, medium, fill.			
				1		No odor.			
	0			2	2.0'				
	0			3		SILTY CLAY-Brown, distinct rust mottles.	_		
				4	CL	No odor.			
1CS	0		48						
				5					
	0			6					
				7		No odor.			
2CS	0		47	8					
				9					
	0			10		Wet sand layer 2 inches thick at 9.5'.			
	0			11		Water level at 11.14 feet from top or riser at 3.0 hours.			
				12	•				
3CS	0		46	13					
				10					
	0	*							
				15		PVC screen set from 14-24 feet			
4CS	0		48	16					
				17	17.4'				
	0			18	CL	SILTY CLAY-gray, absent mottling, stiff.	1 -1		
				19		No odor.			
5CS	0		48	20					
				21					
				22					
	0			23					
6CS	0		47	24		No odor.			
				25		End of probe at 24.0 feet, borehole backfilled with bentonite slurry to groundsurface capped with class 5.			
				26					
				27					

Apex Environmental, Inc. 60801 Cty Hwy 46 Parkers Prairie, Minnesota 56361						BOREHOLE / WELL LOG	Boring Number: GP-4		
l	Parkers	Prairi	e, Minnesot	a 56361		Client: Mayo Clinic Health Systems Site:Queen of Peace Hospital	Sheet: 1 of 1		
Date Started: Date Finished:				ned:		Location:301 Second Street, New Prague, MN 56071			
6/5/2012 6/5/2012			Surface Elevation-99.67'						
						Drill Rig Co/ Sampling Method:	Borehole Diameter:		
JGV SAMPLE LOG						Bergerson Caswell, Inc-Geoprobe, 4 foot barrel length BOREHOLE LOG	2" Temp Well Log		
Sample	PID	Lab	Re-covery	Depth	Symbol	Geologic Description	Well Description-		
Number	(ppm)	Lub	"	(feet) 0		CLAY, brown with silt, medium, fill.			
				0	CL				
				1		No odor.			
	0			2					
				3					
				4					
1CS	0		47	4	4.3'				
				5	CL	SILTY CLAY-Pale brown, distinct rust mottles.			
	0			6		No odor.			
				7					
2CS	0		48	8					
				9					
	0			10					
	0			11					
3CS	0		48	12		No odor.			
				13					
	0			14					
	0			15					
					15.2'				
4CS	0	*	47	16	CL	SILTY CLAY-gray, absent mottling, stiff.			
				17		No odor.			
	0			18		PVC screen set from 14-24 feet			
	U			19		Dry while drilling and at 16 hours.			
						by while unling and at 10 hours.			
5CS	0		48	20					
				21					
				22					
	0			23					
				23					
6CS	0		48	24		No odor.			
				25		End of probe at 24.0 feet, borehole backfilled with bentonite			
				26		slurry to groundsurface capped with class 5.			
			ļ						
				27					

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Jeff Vosburgh Apex Environmental Inc - Parkers Prairie 60801 Cty Hwy 46 Parkers Prairie, MN 56361

Report Summary

Friday June 15, 2012

Report Number: L579475 Samples Received: 06/08/12 Client Project: 012-12-AXN

Description: Queen of Peace Hospital

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

John Hawkins

ohn Hawkins , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - 01157CA, CT - PH-0197, FL - E87487, GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704/BIO041, ND - R-140. NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 460132, WV - 233, AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032011-1, TX - T104704245-11-3, OK - 9915, PA - 68-02979

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

Note: The use of the preparatory EPA Method 3511 is not approved or endorsed by the CA ELAP.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Jeff Vosburgh Apex Environmental Inc - Parkers Pr 60801 Cty Hwy 46 Parkers Prairie, MN 56361

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Dil. 1

Est. 1970

June 15,2012

ESC Sample # : L579475-01

Date Received	:	June 08, 2			FD	Sampie #	· L5/94/5-01
Description	:	Queen of Peace	Hospital		Si	te ID :	18571
Sample ID	:	GP-1 14.3 FT			Pro	oject # :	012-12-AXN
Collected By Collection Date		Jeffrey Vosburg 06/05/12 10:05	h				
Parameter			Dry Result	Det. Limit	Units	Method	Date
Total Solids			81.6	0.100	00	2540G	06/13/12
PVOCGRO			זתא	0 031	ma/ka	8021	06/09/12

REPORT OF ANALYSIS

\mathbf{D} - \mathbf{u} = \mathbf{v} = \mathbf{v}	DDI	0 0 2 1		0001	06/00/10	F 0
Benzene	BDL	0.031	mg/kg	8021	06/09/12	50
Toluene	BDL	0.31	mg/kg	8021	06/09/12	50
Ethylbenzene	BDL	0.031	mg/kg	8021	06/09/12	50
m&p-Xylene	BDL	0.061	mg/kg	8021	06/09/12	50
o-Xylene	BDL	0.031	mg/kg	8021	06/09/12	50
Methyl tert-butyl ether	BDL	0.061	mg/kg	8021	06/09/12	50
Naphthalene	BDL	0.31	mg/kg	8021	06/09/12	50
1,3,5-Trimethylbenzene	BDL	0.061	mg/kg	8021	06/09/12	50
1,2,4-Trimethylbenzene	BDL	0.061	mg/kg	8021	06/09/12	50
Gasoline (C6-C10)	BDL	6.1	mg/kg	8015	06/09/12	50
Surrogate recovery-%						
a,a,a-Trifluorotoluene(PID)	104.		% Rec.	8021	06/09/12	50
TPH (GC/FID) High Fraction	BDL	9.8	mg/kg	DROWM/8015M	06/14/12	1
Surrogate recovery(%)						
Triacontane	73.3		% Rec.	DROWM/8015M	06/14/12	1

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/15/12 11:08 Printed: 06/15/12 11:15

Page 2 of 27

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Site ID : 18571

Project # : 012-12-AXN

REPORT OF ANALYSIS Jeff Vosburgh Apex Environmental Inc - Parkers Pr 60801 Cty Hwy 46 Parkers Prairie, MN 56361 June 15,2012 Date Received : June 08, 2012 Description : Queen of Peace Hospital ESC Sample # : L579475-02

: GP-2 15.8 FT Sample ID Collected By : Jeffrey Vosburgh Collection Date : 06/05/12 11:20

Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids	84.1	0.100	00	2540G	06/13/12	1
PVOCGRO						
Benzene	BDL	0.029	mg/kg	8021	06/09/12	49.5
Toluene	BDL	0.29	mg/kg	8021	06/09/12	49.5
Ethylbenzene	BDL	0.029	mg/kg	8021	06/09/12	49.5
m&p-Xylene	BDL	0.059	mg/kg	8021	06/09/12	49.5
o-Xylene	BDL	0.029	mg/kg	8021	06/09/12	49.5
Methyl tert-butyl ether	BDL	0.059	mg/kg	8021	06/09/12	49.5
Naphthalene	BDL	0.29	mg/kg	8021	06/09/12	49.5
1,3,5-Trimethylbenzene	BDL	0.059	mg/kg	8021	06/09/12	49.5
1,2,4-Trimethylbenzene	BDL	0.059	mg/kg	8021	06/09/12	49.5
Gasoline (C6-C10)	BDL	5.9	mg/kg	8015	06/09/12	49.5
Surrogate recovery-%						
a,a,a-Trifluorotoluene(PID)	102.		% Rec.	8021	06/09/12	49.5
TPH (GC/FID) High Fraction Surrogate recovery(%)	BDL	9.7	mg/kg	DROWM/8015M	06/14/12	1.02
Triacontane	76.1		% Rec.	DROWM/8015M	06/14/12	1.02

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/15/12 11:08 Printed: 06/15/12 11:15

Page 3 of 27

Sample ID

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Project # : 012-12-AXN

REPORT OF ANALYSIS Jeff Vosburgh June 15,2012 Apex Environmental Inc - Parkers Pr 60801 Cty Hwy 46 Parkers Prairie, MN 56361 ESC Sample # : L579475-03 Date Received : June 08, 2012 Queen of Peace Hospital : Description Site ID : 18571

GP-3 13.2 FT

:

:

Jeffrey Vosburgh 06/05/12 13:36 Collected By Collection Date : Parameter Dry Result Det. Limit Units Method Date Dil. Total Solids 80.7 0.100 Ŷ 2540G 06/13/12 1 PVOCGRO 0.032 8021 06/09/12 Benzene BDL mg/kg 51.5 Toluene BDL 0.32 8021 06/09/12 51.5 mg/kg Ethylbenzene BDL 0.032 mg/kg 8021 06/09/12 51.5 06/09/12 06/09/12 06/09/12 m&p-Xylene BDL 0.064 mg/kg 8021 51.5 o-Xylene BDI. 0.032 mg/kg 8021 51.5 Methyl tert-butyl ether 8021 51.5 BDL 0.064 mg/kg Naphthalene BDL 0.32 mg/kg 8021 06/09/12 51.5 1,3,5-Trimethylbenzene 0.064 8021 06/09/12 51.5 BDL mg/kg 51.5 1,2,4-Trimethylbenzene BDL 0.064 mg/kg 8021 06/09/12 Gasoline (C6-C10) BDL 6.4 mg/kg 8015 06/09/12 51.5 Surrogate recovery-% a,a,a-Trifluorotoluene(PID) 06/09/12 51.5 103. % Rec. 8021 TPH (GC/FID) High Fraction BDL 9.9 mg/kg DROWM/8015M 06/14/12 1 Surrogate recovery(%) Triacontane 64.3 % Rec. DROWM/8015M 06/14/12 1

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/15/12 11:08 Printed: 06/15/12 11:15

Page 4 of 27

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Jeff Vosburgh Apex Environmental 60801 Cty Hwy 46 Parkers Prairie, M	Inc - Parkers Pr	OF ANALYSIS	June 15,2012
	June 08, 2012 Oueen of Peace Hospital		ESC Sample # : L579475-04
Sample ID :	~ 1		Site ID : 18571
Collected By :	Jeffrey Vosburgh		Project # : 012-12-AXN
Collection Date :	06/05/12 14:51		
Parameter	Dry Result	Det. Limit	Units Method Date Dil.

REPORT OF ANALYSIS

Total Solids	81.2	0.100	0/0	2540G	06/13/12	1
PVOCGRO						
Benzene	BDL	0.031	mg/kg	8021	06/09/12	50
Toluene	BDL	0.31	mg/kg	8021	06/09/12	50
Ethylbenzene	BDL	0.031	mg/kg	8021	06/09/12	50
m&p-Xylene	BDL	0.062	mg/kg	8021	06/09/12	50
o-Xylene	BDL	0.031	mg/kg	8021	06/09/12	50
Methyl tert-butyl ether	BDL	0.062	mg/kg	8021	06/09/12	50
Naphthalene	BDL	0.31	mg/kg	8021	06/09/12	50
1,3,5-Trimethylbenzene	BDL	0.062	mg/kg	8021	06/09/12	50
1,2,4-Trimethylbenzene	BDL	0.062	mg/kg	8021	06/09/12	50
Gasoline (C6-C10)	BDL	6.2	mg/kg	8015	06/09/12	50
Surrogate recovery-%						
a,a,a-Trifluorotoluene(PID)	102.		% Rec.	8021	06/09/12	50
TPH (GC/FID) High Fraction Surrogate recovery(%)	BDL	9.8	mg/kg	DROWM/8015M	06/14/12	1
Triacontane	68.9		% Rec.	DROWM/8015M	06/14/12	1

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/15/12 11:08 Printed: 06/15/12 11:15

Page 5 of 27

				Mt. Jul (615) 7 1-800-7		
				Tax I.D	. 62-0814289	
YOUR LAB OF CHOICE				Est. 19	70	
Jeff Vosburgh Apex Environmental Inc - Parkers Pr 60801 Cty Hwy 46 Parkers Prairie, MN 56361	REPOF	RT OF ANALYSIS	Ju	ne 15,2012		
Date Received : June 08, 201 Description : Queen of Peace Ho			ES	C Sample # :	L579475-05	
	ospicai		Si	te ID : 18	3571	
Sample ID : GP-1 Collected By : Jeffrey Vosburgh Collection Date : 06/05/12 10:50			Pro	oject # :	012-12-AXN	
Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Volatile Organics Acetone Acrolein Acrylonitrile Allyl chloride Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene 1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	50. 10. 5.0 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	8260B 8260B	06/08/12 06/08/12	
2,2-Dichloropropane Di-isopropyl ether Ethylbenzene Ethyl ether BDL - Below Detection Limit	BDL BDL BDL BDL	1.0 1.0 1.0 1.0	ug/l ug/l ug/l ug/l	8260B 8260B 8260B 8260B 8260B	06/08/12 06/08/12 06/08/12 06/08/12	1 1 1 1

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

Page 6 of 27

Jeff Vosburgh Apex Environmental Inc - Parkers Pr 60801 Cty Hwy 46 Parkers Prairie, MN 56361 12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

June 15,2012

ESC Sample # : L579475-05

Date Received Description	June 08, 2012 Queen of Peace Hospital	ESC Sampl	e # :	L579475-05	
-	~ *	Site ID :	185	571	
2000 <u>7</u> - 0 - 1		Project #	: ()12-12-AXN	
Collected By Collection Date	Jeffrey Vosburgh 06/05/12 10:50				

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Hexachloro-1,3-butadiene	BDL	1.0	ug/l	8260B	06/08/12	1
Isopropylbenzene	BDL	1.0	ug/l	8260B	06/08/12	1
p-Isopropyltoluene	BDL	1.0	ug/l	8260B	06/08/12	1
2-Butanone (MEK)	BDL	10.	uq/l	8260B	06/08/12	1 1
Methylene Chloride	BDL	5.0	ug/l	8260B	06/08/12	1
2-Hexanone	BDL	10.	ug/l	8260B	06/08/12	1
4-Methyl-2-pentanone (MIBK)	BDL	10.	ug/l	8260B	06/08/12	1 1
Methyl tert-butyl ether	BDL	1.0	ug/l	8260B	06/08/12	1
Naphthalene	BDL	5.0	ug/l	8260B	06/08/12	1
n-Propylbenzene	BDL	1.0	ug/l	8260B	06/08/12	1
Styrene	BDL	1.0	ug/l	8260B	06/08/12	1 1 1 1
1,1,1,2-Tetrachloroethane	BDL	1.0	ug/l	8260B	06/08/12	1
1,1,2,2-Tetrachloroethane	BDL	1.0	ug/l	8260B	06/08/12	1
1,1,2-Trichlorotrifluoroethane	BDL	1.0	ug/l	8260B	06/08/12	1
Tetrachloroethene	BDL	1.0	ug/l	8260B	06/08/12	1 1
Tetrahydrofuran	BDL	5.0	ug/l	8260B	06/08/12	1
Toluene	BDL	5.0	ug/l	8260B	06/08/12	1
1,2,3-Trichlorobenzene	BDL	1.0	ug/l	8260B	06/08/12	1
1,2,4-Trichlorobenzene	BDL	1.0	ug/l	8260B	06/08/12	1 1 1
1,1,1-Trichloroethane	BDL	1.0	ug/l	8260B	06/08/12	1
1,1,2-Trichloroethane	BDL	1.0	ug/l	8260B	06/08/12	1
Trichloroethene	BDL	1.0	ug/l	8260B	06/08/12	1 1 1
Trichlorofluoromethane	BDL	5.0	ug/l	8260B	06/08/12	1
1,2,3-Trichloropropane	BDL	2.5	ug/l	8260B	06/08/12	
1,2,4-Trimethylbenzene	BDL	1.0	ug/l	8260B	06/08/12	1
1,2,3-Trimethylbenzene	BDL	1.0	ug/l	8260B	06/08/12	1
1,3,5-Trimethylbenzene	BDL	1.0	ug/l	8260B	06/08/12	1
Vinyl chloride	BDL	1.0	ug/l	8260B	06/08/12	1
Xylenes, Total	BDL	3.0	ug/l	8260B	06/08/12	1
Surrogate Recovery						
Toluene-d8	104.		% Rec.	8260B	06/08/12	1
Dibromofluoromethane	99.0		% Rec.	8260B	06/08/12	1
4-Bromofluorobenzene	98.3		% Rec.	8260B	06/08/12	1
TPH (GC/FID) High Fraction Surrogate recovery(%)	BDL	100	ug/l	DROWM/8015	06/11/12	1
Triacontane	97.6		% Rec.	DROWM/8015	06/11/12	1

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)
Note:
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.
.
Reported: 06/15/12 11:08 Printed: 06/15/12 11:15

Page 7 of 27

ESC-I+E+N+C+E+S				Mt. Jul (615) 7 1-800-7 Fax (61		
YOUR LAB OF CHOICE				Est. 19	70	
				ESC. 17	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Jeff Vosburgh Apex Environmental Inc - Parkers Pr 60801 Cty Hwy 46 Parkers Prairie, MN 56361	REPOR	T OF ANALYSIS	Ju	ne 15,2012		
Date Received : June 08, 20 Description : Queen of Peace Ho			ES	C Sample # :	L579475-06	
-	5591001		Si	te ID : 18	3571	
Sample ID : GP-2 Collected By : Jeffrey Vosburgh Collection Date : 06/06/12 08:20			Pro	oject # :	012-12-AXN	
Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Volatile Organics	Repaire	Dee. Himie	011100	neenou	Date	
Acrylonitrile Allyl chloride Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloroethyl vinyl ether Chloroform Chloroform Chlorotoluene 4-Chlorotoluene 1.2-Diloromethane	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	10. 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	8260B 8260B	06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12	1 1 1 1 1 1 1 1 1 1 1 1 1
<pre>1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene Dichlorodifluoromethane 1,4-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene cis=1,2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane 1,1-Dichloropropane 1,3-Dichloropropane cis=1,3-Dichloropropene trans-1,3-Dichloropropene 2,2-Dichloropropane Di-isopropyl ether Ethylbenzene Ethyl ether</pre>	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	8260B 8260B	06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12	

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

Page 8 of 27

Jeff Vosburgh Apex Environmental Inc - Parkers Pr 60801 Cty Hwy 46 Parkers Prairie, MN 56361 12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

June 15,2012

 Date Received
 :
 June
 08, 2012
 ESC Sample # :
 L579475-06

 Description
 :
 Queen of Peace Hospital
 Site ID :
 18571

 Sample ID
 :
 GP-2
 Project # :
 012-12-AXN

 Collected By
 :
 Jeffrey Vosburgh
 O6/06/12 08:20
 Ptotet. Limit
 Units
 Method
 Date
 Dilection

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Hexachloro-1,3-butadiene	BDL	1.0	uq/l	8260B	06/09/12	1
Isopropylbenzene	BDL	1.0	ug/l	8260B	06/09/12	1
p-Isopropyltoluene	BDL	1.0	ug/l	8260B	06/09/12	1
2-Butanone (MEK)	BDL	10.	ug/l	8260B	06/09/12	1
Methylene Chloride	BDL	5.0	ug/l	8260B	06/09/12	1
2-Hexanone	BDL	10.	ug/l	8260B	06/09/12	1 1 1
4-Methyl-2-pentanone (MIBK)	BDL	10.	ug/l	8260B	06/09/12	
Methyl tert-butyl ether	BDL	1.0	ug/l	8260B	06/09/12	1 1
Naphthalene	BDL	5.0	ug/l	8260B	06/09/12	1
n-Propylbenzene	BDL	1.0	ug/l	8260B	06/09/12	1
Styrene	BDL	1.0	ug/l	8260B	06/09/12	1
1,1,1,2-Tetrachloroethane	BDL	1.0	ug/l	8260B	06/09/12	1
1,1,2,2-Tetrachloroethane	BDL	1.0	ug/l	8260B	06/09/12	1
1,1,2-Trichlorotrifluoroethane	BDL	1.0	ug/l	8260B	06/09/12	1
Tetrachloroethene	BDL	1.0	ug/l	8260B	06/09/12	1
Tetrahydrofuran	BDL	5.0	ug/l	8260B	06/09/12	1 1 1 1
Toluene	BDL	5.0	ug/l	8260B	06/09/12	1
1,2,3-Trichlorobenzene	BDL	1.0	ug/l	8260B	06/09/12	1 1
1,2,4-Trichlorobenzene	BDL	1.0	ug/l	8260B	06/09/12	1
1,1,1-Trichloroethane	BDL	1.0	ug/l	8260B	06/09/12	1 1
1,1,2-Trichloroethane	BDL	1.0	ug/l	8260B	06/09/12	1
Trichloroethene	BDL	1.0	ug/l	8260B	06/09/12	1
Trichlorofluoromethane	BDL	5.0	ug/l	8260B	06/09/12	1
1,2,3-Trichloropropane	BDL	2.5	ug/l	8260B	06/09/12	1
1,2,4-Trimethylbenzene	BDL	1.0	ug/l	8260B	06/09/12	1
1,2,3-Trimethylbenzene	BDL	1.0	ug/l	8260B	06/09/12	1
1,3,5-Trimethylbenzene	BDL	1.0	ug/l	8260B	06/09/12	1 1
Vinyl chloride	BDL	1.0	ug/l	8260B	06/09/12	1
Xylenes, Total	BDL	3.0	ug/l	8260B	06/09/12	1
Surrogate Recovery						
Toluene-d8	98.5		% Rec.	8260B	06/09/12	1
Dibromofluoromethane	108.		% Rec.	8260B	06/09/12	1
4-Bromofluorobenzene	103.		% Rec.	8260B	06/09/12	1
TPH (GC/FID) High Fraction Surrogate recovery(%)	BDL	100	ug/l	DROWM/8015	06/11/12	1
Triacontane	99.8		% Rec.	DROWM/8015	06/11/12	1

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)
Note:
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.
.
Reported: 06/15/12 11:08 Printed: 06/15/12 11:15

Page 9 of 27

XESC				Mt. Jul (615) 7 1-800-7		
L·A·B S·C·I·E·N·C·E·S				Tax I.D	. 62-0814289	
YOUR LAB OF CHOICE				Est. 19	70	
Jeff Vosburgh Apex Environmental Inc - Parkers Pr 60801 Cty Hwy 46 Parkers Prairie, MN 56361	REPOF	RT OF ANALYSIS	Ju	ne 15,2012		
Date Received : June 08, 201 Description : Queen of Peace Ho			ES	C Sample # :	L579475-07	
-	opical		Si	te ID : 18	3571	
Sample ID : GP-3 Collected By : Jeffrey Vosburgh Collection Date : 06/05/12 00:00			Pro	oject # :	012-12-AXN	
Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Volatile Organics	nobaro	2001 211110	0112.00	noonou	2400	
Acrylonitrile Allyl chloride Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chlorodibromomethane 2-Chlorothyl vinyl ether Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorotane 1,2-Dichlorotane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	10. 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	8260B 8260B	06/09/12 06/09/12	
1,2-Dichloropropane 1,1-Dichloropropane 1,3-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 2,2-Dichloropropane Di-isopropyl ether Ethylbenzene Ethyl ether BDL - Below Detection Limit	BDL BDL BDL BDL BDL BDL BDL BDL BDL	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12 06/09/12	1 1 1 1 1 1 1 1

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

Page 10 of 27

Jeff Vosburgh Apex Environmental Inc - Parkers Pr 60801 Cty Hwy 46 Parkers Prairie, MN 56361 12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

June 15,2012

ESC Sample # : L579475-07

	eceived : June 08,2012 ption : Oueen of Peace Hospital	ESC Sample	#: L57	9475-07	
-		~ -	Site ID :	18571	
2000 <u>7</u> - 0 - 1		GP-3	Project # :	012-12	-AXN
Collection Date		Jeffrey Vosburgh 06/05/12 00:00			

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Hexachloro-1,3-butadiene	BDL	1.0	ug/l	8260B	06/09/12	1
Isopropylbenzene	BDL	1.0	ug/l	8260B	06/09/12	1
p-Isopropyltoluene	BDL	1.0	ug/l	8260B	06/09/12	1
2-Butanone (MEK)	BDL	10.	ug/l	8260B	06/09/12	1 1
Methylene Chloride	BDL	5.0	ug/l	8260B	06/09/12	1
2-Hexanone	BDL	10.	ug/l	8260B	06/09/12	1
4-Methyl-2-pentanone (MIBK)	BDL	10.	ug/l	8260B	06/09/12	1
Methyl tert-butyl ether	BDL	1.0	ug/l	8260B	06/09/12	1
Naphthalene	BDL	5.0	ug/l	8260B	06/09/12	1
n-Propylbenzene	BDL	1.0	ug/l	8260B	06/09/12	1
Styrene	BDL	1.0	ug/l	8260B	06/09/12	1
1,1,1,2-Tetrachloroethane	BDL	1.0	ug/l	8260B	06/09/12	1 1 1 1
1,1,2,2-Tetrachloroethane	BDL	1.0	ug/l	8260B	06/09/12	
1,1,2-Trichlorotrifluoroethane	BDL	1.0	ug/l	8260B	06/09/12	1 1
Tetrachloroethene	BDL	1.0	ug/l	8260B	06/09/12	1
Tetrahydrofuran	BDL	5.0	ug/l	8260B	06/09/12	1
Toluene	BDL	5.0	ug/l	8260B	06/09/12	1
1,2,3-Trichlorobenzene	BDL	1.0	ug/l	8260B	06/09/12	1 1
1,2,4-Trichlorobenzene	BDL	1.0	ug/l	8260B	06/09/12	1
1,1,1-Trichloroethane	BDL	1.0	ug/l	8260B	06/09/12	1
1,1,2-Trichloroethane	BDL	1.0	ug/l	8260B	06/09/12	1 1
Trichloroethene	BDL	1.0	ug/l	8260B	06/09/12	1
Trichlorofluoromethane	BDL	5.0	ug/l	8260B	06/09/12	1
1,2,3-Trichloropropane	BDL	2.5	ug/l	8260B	06/09/12	1
1,2,4-Trimethylbenzene	BDL	1.0	ug/l	8260B	06/09/12	1
1,2,3-Trimethylbenzene	BDL	1.0	ug/l	8260B	06/09/12	1
1,3,5-Trimethylbenzene	BDL	1.0	ug/l	8260B	06/09/12	1
Vinyl chloride	BDL	1.0	ug/l	8260B	06/09/12	1
Xylenes, Total	BDL	3.0	ug/l	8260B	06/09/12	1
Surrogate Recovery						
Toluene-d8	102.		% Rec.	8260B	06/09/12	1
Dibromofluoromethane	98.8		% Rec.	8260B	06/09/12	1
4-Bromofluorobenzene	100.		% Rec.	8260B	06/09/12	1
TPH (GC/FID) High Fraction Surrogate recovery(%)	BDL	100	ug/l	DROWM / 80	06/12/12	1
Triacontane	73.6		% Rec.	DROWM / 80	06/12/12	1

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)
Note:
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.
.
Reported: 06/15/12 11:08 Printed: 06/15/12 11:15

Page 11 of 27

VOUR LAB OF CHOICE				Mt. Jul: (615) 79 1-800-76 Fax (619	57-5859 5) 758-5859 . 62-0814289	
Jeff Vosburgh Apex Environmental Inc - Parkers 60801 Cty Hwy 46 Parkers Prairie, MN 56361		T OF ANALYSIS	Ju	ne 15,2012		
Date Received : June 08, Description : Queen of Peac Sample ID : FIELD DUPLICA Collected By : Jeffrey Vosbu Collection Date : 06/05/12 00:0	TE		Si		L579475-08 571 012-12-AXN	
Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Volatile Organics Acetone Acrolein Acrylonitrile Allyl chloride Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane 2-Chlorotoluene 4-Chlorotoluene 1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropene 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane Di-isopropyl ether Ethylbenzene Ethyl ether	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	50. 10. 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	8260B 8260B	06/09/12 06/09/12	

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

Page 12 of 27

Jeff Vosburgh Apex Environmental Inc - Parkers Pr 60801 Cty Hwy 46 Parkers Prairie, MN 56361 12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

June 15,2012

Date Received
Description:June
08, 2012
Queen of Peace HospitalESC Sample # :L579475-08Sample ID:Queen of Peace HospitalSite ID :18571Sample ID:FIELD DUPLICATEProject # :012-12-AXNCollected By
Collection Date ::Jeffrey Vosburgh
06/05/12 00:00Pet, Limit Units Method Date

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Hexachloro-1,3-butadiene	BDL	1.0	ug/l	8260B	06/09/12	1
Isopropylbenzene	BDL	1.0	uq/l	8260B	06/09/12	1
p-Isopropyltoluene	BDL	1.0	uq/l	8260B	06/09/12	1
2-Butanone (MEK)	BDL	10.	uq/l	8260B	06/09/12	1
Methylene Chloride	BDL	5.0	uq/l	8260B	06/09/12	1
2-Hexanone	BDL	10.	uq/l	8260B	06/09/12	1
4-Methyl-2-pentanone (MIBK)	BDL	10.	ug/l	8260B	06/09/12	1
Methyl tert-butyl ether	BDL	1.0	ug/l	8260B	06/09/12	1
Naphthalene	BDL	5.0	ug/l	8260B	06/09/12	1
n-Propylbenzene	BDL	1.0	uq/l	8260B	06/09/12	1
Styrene	BDL	1.0	uq/l	8260B	06/09/12	1
1,1,1,2-Tetrachloroethane	BDL	1.0	uq/l	8260B	06/09/12	1
1,1,2,2-Tetrachloroethane	BDL	1.0	ug/l	8260B	06/09/12	1
1,1,2-Trichlorotrifluoroethane	BDL	1.0	uq/l	8260B	06/09/12	1
Tetrachloroethene	BDL	1.0	ug/l	8260B	06/09/12	1
Tetrahydrofuran	BDL	5.0	ug/l	8260B	06/09/12	
Toluene	BDL	5.0	ug/l	8260B	06/09/12	1 1
1,2,3-Trichlorobenzene	BDL	1.0	uq/l	8260B	06/09/12	1
1,2,4-Trichlorobenzene	BDL	1.0	ug/l	8260B	06/09/12	1
1,1,1-Trichloroethane	BDL	1.0	uq/l	8260B	06/09/12	1
1,1,2-Trichloroethane	BDL	1.0	ug/l	8260B	06/09/12	1
Trichloroethene	BDL	1.0	ug/l	8260B	06/09/12	1
Trichlorofluoromethane	BDL	5.0	ug/l	8260B	06/09/12	1 1
1,2,3-Trichloropropane	BDL	2.5	ug/l	8260B	06/09/12	1
1,2,4-Trimethylbenzene	BDL	1.0	ug/l	8260B	06/09/12	1
1,2,3-Trimethylbenzene	BDL	1.0	ug/l	8260B	06/09/12	1
1,3,5-Trimethylbenzene	BDL	1.0	ug/l	8260B	06/09/12	1
Vinyl chloride	BDL	1.0	ug/l	8260B	06/09/12	1
Xylenes, Total	BDL	3.0	ug/l	8260B	06/09/12	1
Surrogate Recovery			-			
Toluene-d8	99.0		% Rec.	8260B	06/09/12	1
Dibromofluoromethane	106.		% Rec.	8260B	06/09/12	1
4-Bromofluorobenzene	103.		% Rec.	8260B	06/09/12	1
TPH (GC/FID) High Fraction Surrogate recovery(%)	BDL	100	ug/l	DROWM / 80	06/12/12	1
Triacontane	54.6		% Rec.	DROWM / 80	06/12/12	1

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)
Note:
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.
.
Reported: 06/15/12 11:08 Printed: 06/15/12 11:15

Page 13 of 27

VOUR LAB OF CHOICE				Mt. Jul: (615) 79 1-800-76 Fax (619	67-5859 5) 758-5859 . 62-0814289	
Jeff Vosburgh Apex Environmental Inc - Parkers Pr 60801 Cty Hwy 46 Parkers Prairie, MN 56361	REPOF	RT OF ANALYSIS	Ju	ne 15,2012		
Date Received : June 08, 20. Description : Queen of Peace Ho Sample ID : TRIP BLANK Collected By : Jeffrey Vosburgh Collection Date : 06/05/12 00:00	ospital		Si		L579475-09 571 012-12-AXN	
Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Volatile Organics Acetone Acrolein Acrylonitrile Allyl chloride Benzene Bromobenzene Bromodichloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene carbon tetrachloride Chlorobenzene Chlorodibromomethane Chlorodethane 2-Chlorothane 2-Chlorotoluene 4-Chlorotoluene 1,2-Dibromo-3-Chloropropane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane cis-1,3-Dichloropropane 2,2-Dichloropropane cis-1,3	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	50. 10. 5.0 1	<pre>ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l</pre>	8260B 8260B	06/08/12 06/08/12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

Page 14 of 27

Jeff Vosburgh Apex Environmental Inc - Parkers Pr 60801 Cty Hwy 46 Parkers Prairie, MN 56361 12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

June 15,2012

ESC Sample # : L579475-09

Date Received	:	June 08, 201			ESC	2 Sample #	: L579475-09	9
Description	:	Queen of Peace Ho	spital		Sit	te ID : 1	.8571	
Sample ID	:	TRIP BLANK			Pro	oiect # :	012-12-AXN	
		Jeffrey Vosburgh 06/05/12 00:00						
Parameter			Result	Det Limit	Units	Method	Date	Dil

Result	Det. Limit	Units	Method	Date	Dil.
BDL	1.0	ug/l	8260B	06/08/12	1
BDL	1.0		8260B	06/08/12	1
BDL	1.0	ug/l	8260B	06/08/12	1
BDL	10.	uq/l	8260B	06/08/12	1
BDL	5.0	ug/l	8260B	06/08/12	1
BDL	10.	ug/l	8260B	06/08/12	1
BDL	10.	ug/l	8260B	06/08/12	1
BDL	1.0	ug/l	8260B	06/08/12	1
BDL	5.0	ug/l	8260B	06/08/12	1
BDL	1.0	ug/l	8260B	06/08/12	1
BDL	1.0	ug/l	8260B	06/08/12	1
BDL	1.0	ug/l	8260B	06/08/12	1 1
BDL	1.0	ug/l	8260B	06/08/12	1
BDL	1.0	ug/l	8260B	06/08/12	
BDL	1.0	ug/l	8260B	06/08/12	1 1 1 1
BDL	5.0	ug/l	8260B	06/08/12	1
BDL	5.0	ug/l	8260B	06/08/12	1
BDL	1.0	ug/l	8260B	06/08/12	1
BDL	1.0	ug/l	8260B	06/08/12	1
BDL	1.0	ug/l	8260B	06/08/12	1 1
BDL	1.0	ug/l	8260B	06/08/12	1
BDL	1.0	ug/l	8260B	06/08/12	1
BDL	5.0	ug/l	8260B	06/08/12	1 1
BDL	2.5	ug/l	8260B	06/08/12	1
BDL	1.0	ug/l	8260B	06/08/12	1 1
BDL	1.0	ug/l	8260B	06/08/12	1
BDL	1.0	ug/l	8260B	06/08/12	1
BDL	1.0	ug/l		06/08/12	1
BDL	3.0	ug/l	8260B	06/08/12	1
		% Rec.	8260B	06/08/12	1
104.		% Rec.	8260B	06/08/12	1
97.0		% Rec.	8260B	06/08/12	1
	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	BDL 1.0 BDL 1.0 BDL 10. BDL 1.0 BDL 1	BDL 1.0 ug/l BDL 1.0 ug/l BDL 1.0 ug/l BDL 10. ug/l BDL 1.0 ug/l BDL	BDL 1.0 ug/l 8260B BDL 1.0 ug/l 8260B BDL 1.0 ug/l 8260B BDL 10. ug/l 8260B BDL 1.0 ug/l <	BDL 1.0 ug/l 8260B 06/08/12 BDL 1.0 ug/l 8260B 06/08/12 BDL 1.0 ug/l 8260B 06/08/12 BDL 10. ug/l 8260B 06/08/12 BDL 1.0 u

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)
Note:
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.
.
Reported: 06/15/12 11:08 Printed: 06/15/12 11:15

Page 15 of 27

Attachment A List of Analytes with QC Qualifiers

Sample Number	Work Group	Sample Type	Analyte	Run ID	Qualifier
L579475-05	WG596979	SAMP	Acrolein	R2207173	J3

Page 16 of 27

Attachment B Explanation of QC Qualifier Codes

Qualifier	Meaning
т2	The associated batch QC was outside the established quality control range

Qualifier Report Information

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods, it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable "unless qualified as 'R' (Rejected)."

Definitions

for precision.

- Accuracy The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.
 - Precision The agreement between a set of samples or between duplicate samples. Relates to how close together the results are and is represented by Relative Percent Differrence.
 - Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.
- TIC Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, or surrogates.

Page 17 of 27

EA-B S-C-I-E-N-C-E-S

YOUR LAB OF CHOICE

Apex Environmental Inc - Parkers Prairie Jeff Vosburgh 60801 Cty Hwy 46

Parkers Prairie, MN 56361

L579475

Quality Assurance Report Level II 12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

June 15, 2012

		Laboratory				
Analyte	Result	Units	% Rec	Limit	Batch	Date Analyze
-						
TPH (GC/FID) High Fraction	< .1	ppm				06/11/12 09:
Triacontane		% Rec.	103.8	50-150	WG597058	06/11/12 09:
IPH (GC/FID) High Fraction	< .1	ppm				06/12/12 06:
Triacontane		% Rec.	62.14	50-150	WG597209	06/12/12 06:
1,2,4-Trimethylbenzene	< .001	mg/kg			WG596996	06/09/12 14:
1,3,5-Trimethylbenzene	< .001	mg/kg			WG596996	06/09/12 14:
Benzene	< .0005	mg/kg			WG596996	06/09/12 14:
Ethylbenzene	< .0005	mg/kg			WG596996	06/09/12 14:
Gasoline (C6-C10)	< .1	mg/kg			WG596996	06/09/12 14:
m&p-Xylene	< .001	mg/kg			WG596996	06/09/12 14:
Methyl tert-butyl ether	< .001	mg/kg			WG596996	06/09/12 14:
Naphthalene	< .005	mg/kg			WG596996	06/09/12 14:
o-Xylene	< .0005	mg/kg			WG596996	06/09/12 14:
Toluene	< .005	mg/kg			WG596996	06/09/12 14:
a,a,a-Trifluorotoluene(PID)		% Rec.	102.6	80-120	WG596996	06/09/12 14:
1,1,1,2-Tetrachloroethane	< .001	mg/l			WG596979	06/08/12 18:
1,1,1-Trichloroethane	< .001	mg/l			WG596979	06/08/12 18:
1,1,2,2-Tetrachloroethane	< .001	mg/l			WG596979	06/08/12 18:
1,1,2-Trichloroethane	< .001	mg/l				06/08/12 18:
1,1,2-Trichlorotrifluoroethane	< .001	mg/l				06/08/12 18:
1,1-Dichloroethane	< .001	mg/l				06/08/12 18:
1,1-Dichloroethene	< .001	mg/l				06/08/12 18:
1,1-Dichloropropene	< .001	mg/l				06/08/12 18:
1,2,3-Trichlorobenzene	< .001	mg/l				06/08/12 18:
1,2,3-Trichloropropane	< .001	mg/l				06/08/12 18:
1,2,3-Trimethylbenzene	< .001	mg/l			WG596979	06/08/12 18:
1,2,4-Trichlorobenzene	< .001	mg/l			WG596979	06/08/12 18:
1,2,4-Trimethylbenzene	< .001	mg/l			WG596979	06/08/12 18:
1,2-Dibromo-3-Chloropropane	< .005	mg/l			WG596979	06/08/12 18:
1,2-Dibromoethane	< .001	mg/l			WG596979	06/08/12 18:
1,2-Dichlorobenzene	< .001	mg/l			WG596979	06/08/12 18:
1,2-Dichloroethane	< .001	mg/l			WG596979	06/08/12 18:
1,2-Dichloropropane	< .001	mg/l			WG596979	06/08/12 18:
1,3,5-Trimethylbenzene	< .001	mg/l				06/08/12 18:
1,3-Dichlorobenzene	< .001	mg/l			WG596979	06/08/12 18:
1,3-Dichloropropane	< .001	mg/l			WG596979	06/08/12 18:
1,4-Dichlorobenzene	< .001	mg/l			WG596979	06/08/12 18:
2,2-Dichloropropane	< .001	mg/l			WG596979	06/08/12 18:
2-Butanone (MEK)	< .01	mg/l			WG596979	06/08/12 18:
2-Chloroethyl vinyl ether	< .05	mg/l			WG596979	06/08/12 18:
2-Chlorotoluene	< .001	mg/l			WG596979	06/08/12 18:
2-Hexanone	< .01	mg/l			WG596979	06/08/12 18:
4-Chlorotoluene	< .001	mg/l			WG596979	06/08/12 18:
4-Methyl-2-pentanone (MIBK)	< .01	mg/l				06/08/12 18:
Acetone	< .05	mg/l				06/08/12 18:
Acrolein	< .025	mg/l				06/08/12 18:
Acrylonitrile	< .01	mg/l				06/08/12 18:
Allyl chloride	< .005	mg/l				06/08/12 18:
Benzene	< .001	mg/l				06/08/12 18:
Bromobenzene	< .001	mg/l				06/08/12 18:
Bromochloromethane	< .001	mg/l				06/08/12 18:
Bromodichloromethane	< .001	mg/l				06/08/12 18:
Bromoform	< .001	mg/l				06/08/12 18:

* Performance of this Analyte is outside of established criteria.

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 18 of 27

R S.C.I.E.N.C.E.S

YOUR LAB OF CHOICE

Apex Environmental Inc - Parkers Prairie Jeff Vosburgh 60801 Cty Hwy 46

Parkers Prairie, MN 56361

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

June 15, 2012

Quality Assurance Report Level II

L579475

		Laborat	ory Blank			
Analyte	Result	Units	% Rec	Limit	Batch	Date Analyzed
Bromomethane	< .005	mg/l			WG596979	06/08/12 18:14
Carbon tetrachloride	< .001	mg/l				06/08/12 18:14
Chlorobenzene	< .001	mg/1				06/08/12 18:14
Chlorodibromomethane	< .001	mg/l			WG596979	06/08/12 18:14
Chloroethane	< .005	mg/l			WG596979	06/08/12 18:14
Chloroform	< .005	mg/l			WG596979	06/08/12 18:14
Chloromethane	< .0025	mg/l			WG596979	06/08/12 18:14
cis-1,2-Dichloroethene	< .001	mg/l			WG596979	06/08/12 18:14
cis-1,3-Dichloropropene	< .001	mg/l			WG596979	06/08/12 18:14
Di-isopropyl ether	< .001	mg/l			WG596979	06/08/12 18:14
Dibromomethane	< .001	mg/l			WG596979	06/08/12 18:14
Dichlorodifluoromethane	< .005	mg/l			WG596979	06/08/12 18:14
Ethyl ether	< .001	mg/l			WG596979	06/08/12 18:14
Ethylbenzene	< .001	mg/l			WG596979	06/08/12 18:14
Hexachloro-1,3-butadiene	< .001	mg/l				06/08/12 18:14
Isopropylbenzene	< .001	mg/l				06/08/12 18:14
Methyl tert-butyl ether	< .001	mg/l				06/08/12 18:14
Methylene Chloride	< .005	mg/1				06/08/12 18:14
n-Butylbenzene	< .001	mg/l				06/08/12 18:14
n-Propylbenzene	< .001	mg/1				06/08/12 18:14
Naphthalene	< .005	mg/1				06/08/12 18:14
p-Isopropyltoluene	< .001	mg/1				06/08/12 18:14
sec-Butylbenzene	< .001	mg/1				06/08/12 18:14
Styrene	< .001	mg/1				06/08/12 18:14
tert-Butylbenzene	< .001	mg/1				06/08/12 18:14
Tetrachloroethene	< .001	mg/1				06/08/12 18:14
Tetrahydrofuran	< .001	mg/1				06/08/12 18:14
Toluene	< .005	mg/1				06/08/12 18:14
trans-1,2-Dichloroethene	< .001	mg/1				06/08/12 18:14
trans-1,3-Dichloropropene	< .001	mg/1				06/08/12 18:14
Trichloroethene	< .001	mg/1				06/08/12 18:14
Trichlorofluoromethane	< .001	mg/1				06/08/12 18:14
Vinyl chloride	< .005	mg/1				06/08/12 18:14
Xylenes, Total	< .001	mg/l				06/08/12 18:14
4-Bromofluorobenzene	< .003	% Rec.	. 98.42	82-12		06/08/12 18:14
Dibromofluoromethane		% Rec. % Rec.				06/08/12 18:14
Toluene-d8		% Rec.				06/08/12 18:14
101uelle-do		% REC.	. 99.40	92-11.	2 WG590975	00/00/12 10:14
Total Solids	< .1	8			WG597382	2 06/13/12 11:26
TPH (GC/FID) High Fraction	< 4	ppm				06/14/12 14:51
Triacontane		% Rec.	. 70.13	50-15) WG597269	06/14/12 14:51
		D	olicate			
Analyte	Units	Result		RPD Li	nit Ref San	np Batch
	311200		-			
Total Solids	0,0	83.0	81.7	1.13 5	L579455	<u>-02 WG597382</u>
		Laboratorv	Control Sampl	e		
Analyte	Units	Known Val	Resu		Limit	Batch
		1	0.000	0.0	75.115	Marosof
TPH (GC/FID) High Fraction	mg/l	1	0.880	88.0	75-115	WG597058
Triacontane				100.1	50-150	WG597058

101. 77.15

75-115 50-150

WG597209

WG597209

TPH (GC/FID) High Fraction mg/l 1 1.01

Triacontane

* Performance of this Analyte is outside of established criteria.

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

SICIIEINICES

YOUR LAB OF CHOICE

Apex Environmental Inc - Parkers Prairie Jeff Vosburgh 60801 Cty Hwy 46

Parkers Prairie, MN 56361

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L579475

June 15, 2012

		Laboratory Con	trol Sample			
Analyte	Units	Known Val	Result	% Rec	Limit	Batch
1,2,4-Trimethylbenzene	mg/kg	.05	0.0463	92.7	80-120	WG5969
1,3,5-Trimethylbenzene	mq/kq	.05	0.0464	92.9	80-120	WG5969
Benzene	mg/kg	.05	0.0443	88.6	76-113	WG596
Ethylbenzene	mg/kg	.05	0.0432	86.5	78-115	WG5969
Gasoline (C6-C10)	mg/kg	.5	0.465	93.0	80-120	WG5969
n&p-Xylene	mg/kg	.1	0.0918	91.8	81-120	WG5969
Methyl tert-butyl ether	mg/kg	.05	0.0445	89.0	37-145	WG5969
Naphthalene	mg/kg	.05	0.0496	99.2	80-120	WG5969
o-Xylene	mg/kg	.05	0.0454	90.7	79-115	WG5969
Toluene	mg/kg	.05	0.0451	90.1	76-114	WG5969
a,a,a-Trifluorotoluene(PID)				104.1	80-120	WG5969
1,1,1,2-Tetrachloroethane	mg/l	.025	0.0246	98.3	77-128	WG5969
1,1,1-Trichloroethane	mg/l	.025	0.0233	93.3	71-126	WG5969
1,1,2,2-Tetrachloroethane	mg/l	.025	0.0263	105.	78-130	WG5969
1,1,2-Trichloroethane	mg/l	.025	0.0235	94.0	81-121	WG5969
1,1,2-Trichlorotrifluoroethane	mg/l	.025	0.0237	94.7	53-143	WG5969
1,1-Dichloroethane	mg/l	.025	0.0240	96.0	73-123	WG5969
1,1-Dichloroethene	mg/l	.025	0.0206	82.3	54-134	WG5969
1,1-Dichloropropene	mg/l	.025	0.0224	89.6	67-127	WG5969
1,2,3-Trichlorobenzene	mg/l	.025	0.0249	99.4	77-130	WG5969
1,2,3-Trichloropropane	mg/l	.025	0.0220	87.9	68-130	WG5969
1,2,3-Trimethylbenzene	mg/l	.025	0.0229	91.5	77-126	WG5969
L,2,4-Trichlorobenzene	mg/l	.025	0.0254	102.	76-127	WG5969
L,2,4-Trimethylbenzene	mg/l	.025	0.0223	89.2	77-129	WG5969
L,2-Dibromo-3-Chloropropane	mg/l	.025	0.0247	98.9	55-142	WG5969
1,2-Dibromoethane	mg/l	.025	0.0228	91.3	78-124	WG5969
L,2-Dichlorobenzene	mg/l	.025	0.0233	93.2	82-121	WG5969
1,2-Dichloroethane	mg/l	.025	0.0229	91.7	69-128	WG5969
1,2-Dichloropropane	mg/l	.025	0.0253	101.	77-121	WG5969
1,3,5-Trimethylbenzene	mg/l	.025	0.0228	91.3	78-127	WG5969
1,3-Dichlorobenzene	mg/l	.025	0.0236	94.4	77-127	WG5969
1,3-Dichloropropane	mg/l	.025	0.0225	89.9	78-117	WG5969
1,4-Dichlorobenzene	mg/l	.025	0.0226	90.5	79-117	WG5969
2,2-Dichloropropane	mg/l	.025	0.0252	101.	63-130	WG5969
2-Butanone (MEK)	mg/l	.125	0.115	92.4 93.3	58-144	WG5969
2-Chloroethyl vinyl ether 2-Chlorotoluene	mg/l mg/l	.125 .025	0.117 0.0236	94.4	26-172 78-123	WG5969 WG5969
2-Hexanone	mg/l	.125	0.118	94.4	62-144	WG5969
4-Chlorotoluene	mg/l	.025	0.0230	91.9	78-122	WG5969
4-Methyl-2-pentanone (MIBK)	mg/l	.125	0.113	90.7	58-147	WG5969
Acetone	mg/l	.125	0.110	88.0	49-153	WG5969
Acrolein	mg/l	.125	0.121	96.6	10-181	WG5969
Acrylonitrile	mg/l	.125	0.112	89.6	53-153	WG5969
Benzene	mg/l	.025	0.0230	91.9	72-119	WG5969
Bromobenzene	mg/l	.025	0.0227	90.8	76-121	WG5969
Bromochloromethane	mg/l	.025	0.0225	90.0	79-124	WG5969
Bromodichloromethane	mg/l	.025	0.0234	93.8	75-127	WG5969
Bromoform	mg/l	.025	0.0249	99.5	61-136	WG5969
Bromomethane	mg/1	.025	0.0198	79.2	42-172	WG5969
Zarbon tetrachloride	mg/l	.025	0.0228	91.3	63-129	WG5969
Chlorobenzene	mg/l	.025	0.0231	92.4	78-123	WG5969
Chlorodibromomethane	mg/l	.025	0.0241	96.3	73-128	WG5969
Chloroethane	mg/l	.025	0.0217	86.7	52-164	WG5969
Chloroform	mg/l	.025	0.0239	95.8	76-122	WG5969
Chloromethane	mg/l	.025	0.0238	95.3	50-141	WG5969
cis-1,2-Dichloroethene	mg/l	.025	0.0239	95.6	75-121	WG5969
cis-1,3-Dichloropropene	mg/l	.025	0.0237	94.6	74-124	WG5969

* Performance of this Analyte is outside of established criteria. For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 20 of 27

S.C.I.E.N.C.E.S R

YOUR LAB OF CHOICE

Apex Environmental Inc - Parkers Prairie Jeff Vosburgh

60801 Cty Hwy 46

Parkers Prairie, MN 56361

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L579475

June 15, 2012

		Laboratory Co	ntrol Sample				
Analyte	Units	Known Val	Result	% Rec	I	imit	Batch
Di-isopropyl ether	mg/l	.025	0.0241	96.4	6	6-129	WG59697
Dibromomethane	mg/l	.025	0.0233	93.2	7	7-124	WG59697
Dichlorodifluoromethane	mg/l	.025	0.0289	116.	3	3-173	WG59697
Ethyl ether	mg/l	.025	0.0224	89.6	5	6-144	WG59697
Ethylbenzene	mg/l	.025	0.0235	94.0	7	7-124	WG59697
Hexachloro-1,3-butadiene	mg/l	.025	0.0238	95.2	7	1-134	WG59697
Isopropylbenzene	mg/l	.025	0.0233	93.2	7	4-126	WG59697
Methyl tert-butyl ether	mg/l	.025	0.0229	91.7	6	7-127	WG59697
Methylene Chloride	mg/l	.025	0.0216	86.3	6	7-122	WG59697
n-Butylbenzene	mg/l	.025	0.0235	93.9	7	4-130	WG59697
n-Propylbenzene	mg/l	.025	0.0232	92.8	7	7-125	WG59697
Naphthalene	mg/l	.025	0.0243	97.4	7	0-134	WG59697
p-Isopropyltoluene	mg/l	.025	0.0238	95.3	7	7-132	WG59697
sec-Butylbenzene	mg/l	.025	0.0240	96.0	7	7-130	WG59697
Styrene	mg/l	.025	0.0241	96.3	6	9-145	WG59697
tert-Butylbenzene	mg/l	.025	0.0242	96.6		6-131	WG59697
Tetrachloroethene	mg/l	.025	0.0239	95.7	6	9-131	WG59697
Tetrahydrofuran	mg/l	.025	0.0227	90.6	4	1-147	WG59697
Toluene	mg/l	.025	0.0221	88.3		5-114	WG59697
trans-1,2-Dichloroethene	mg/l	.025	0.0223	89.4		3-127	WG59697
trans-1,3-Dichloropropene	mg/l	.025	0.0230	92.0		9-124	WG59697
Trichloroethene	mg/l	.025	0.0221	88.6		9-131	WG59697
Trichlorofluoromethane	mg/l	.025	0.0232	92.9	5	3-161	WG59697
Vinyl chloride	mg/l	.025	0.0222	88.9	5	5-142	WG59697
Xylenes, Total	mg/l	.075	0.0679	90.6		7-123	WG59697
4-Bromofluorobenzene		.075	010075	98.42		2-120	WG59697
Dibromofluoromethane				97.60		2-126	WG59697
Toluene-d8				100.7		2-112	WG59697
Total Solids	8	50	50.0	100.	8	5-115	WG59738
TPH (GC/FID) High Fraction	mg/kg	40	30.0	75.0	7	0-120	WG59726
Triacontane	liig/kg	40	30.0	69.08		0-150	WG59726 WG59726
	т	aboratory Control	Cample Duplicate				
Analyte	Units 1		%Rec	Limit	RPD	Limit	Batch
TPH (GC/FID) High Fraction	mg/l	0.951 0.880	95.0	75-115	7.81	20	WG59705
Triacontane	1119/I	0.000	104.0	50-150	/.01	20	WG59705
TPH (GC/FID) High Fraction	mg/l	0.968 1.01	97.0	75-115	4.21	20	WG59720
Triacontane			69.24	50-150	1.41	20	WG59720

0.0463

0.0464

0 0443

0.0432

91.0

92.0

89.0

87.0

103.9

80-120

80-120

76-113

78-115

80-120

81-120

37-145

80-120

79-115

76-114

80-120

1.46

0.790

0.510

0.750

1.13

1.27

0.610

0.910

0.230

0.250

20

20

20

20

20

20

24

20

20

20

WG596996

mg/kg Gasoline (C6-C10) mq/kq 0.460 0.465 92.0 0.0906 0.0918 91.0 m&p-Xylene mg/kg Methyl tert-butyl ether mg/kg 0.0448 0.0445 90.0 Naphthalene mg/kg 0.0492 0.0496 98.0 o-Xylene mg/kg 0.0452 0.0454 90.0 Toluene mg/kg 0.0452 0.0451 90.0

mg/kg

mg/kg

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Benzene

Ethylbenzene

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 21 of 27

mg/kg 0.0457

0.0461

0.0445

0.0436

L·A·B SICILEINICES

YOUR LAB OF CHOICE

Apex Environmental Inc - Parkers Prairie Jeff Vosburgh 60801 Cty Hwy 46

Parkers Prairie, MN 56361

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L579475

June 15, 2012

		Laboratory	Control Sa					
Analyte	Units	Result	Ref	%Rec	Limit	RPD	Limit	Batc
,1,1,2-Tetrachloroethane	mg/l	0.0231	0.0246	92.0	77-128	6.07	20	WG59
,1,1-Trichloroethane	mg/l	0.0241	0.0233	96.0	71-126	3.37	20	WG59
,1,2,2-Tetrachloroethane	mg/l	0.0226	0.0263	90.0	78-130	15.3	20	WG59
,1,2-Trichloroethane	mg/l	0.0218	0.0235	87.0	81-121	7.70	20	WG59
,1,2-Trichlorotrifluoroethane	mg/l	0.0201	0.0237	80.0	53-143	16.4	20	WG59
,1-Dichloroethane	mg/l	0.0243	0.0240	97.0	73-123	1.32	20	WG59
,1-Dichloroethene	mg/l	0.0200	0.0206	80.0	54-134	2.71	20	WG59
,1-Dichloropropene	mg/l	0.0223	0.0224	89.0	67-127	0.430	20	WG59
,2,3-Trichlorobenzene	mg/l	0.0236	0.0249	94.0	77-130	5.25	20	WG59
,2,3-Trichloropropane	mg/l	0.0199	0.0220	79.0	68-130	10.1	20	WG59
,2,3-Trimethylbenzene	mg/l	0.0220	0.0229	88.0	77-126	4.12	20	WG59
,2,4-Trichlorobenzene	mg/l	0.0237	0.0254	95.0	76-127	6.83	20	WG59
,2,4-Trimethylbenzene	mg/l	0.0212	0.0223	85.0	77-129	5.01	20	WG59
,2-Dibromo-3-Chloropropane	mg/l	0.0222	0.0247	89.0	55-142	10.8	20	WG59
,2-Dibromoethane	mg/l	0.0220	0.0228	88.0	78-124	3.67	20	WG59
,2-Dichlorobenzene	mg/l	0.0225	0.0233	90.0	82-121	3.50	20	WG59
,2-Dichloroethane	mg/l	0.0237	0.0229	95.0	69-128	3.58	20	WG59
,2-Dichloropropane	mg/l	0.0246	0.0253	98.0	77-121	2.74	20	WG59
,3,5-Trimethylbenzene	mg/l	0.0212	0.0228	85.0	78-127	7.26	20	WG59
,3-Dichlorobenzene	mg/l	0.0218	0.0236	87.0	77-127	7.81	20	WG59
,3-Dichloropropane	mg/l	0.0210	0.0225	84.0	78-117	6.82	20	WG59
,4-Dichlorobenzene	mg/l	0.0211	0.0226	84.0	79-117	6.79	20	WG59
,2-Dichloropropane	mg/l	0.0255	0.0252	102.	63-130	1.27	20	WG59
-Butanone (MEK)	mg/l	0.118	0.115	94.0	58-144	2.36	20	WG59
-Chloroethyl vinyl ether	mg/l	0.135	0.117	108.	26-172	14.5	22	WG59
-Chlorotoluene	mg/l	0.0211	0.0236	84.0	78-123	11.3	20	WG59
-Hexanone	mg/l	0.102	0.118	82.0	62-144	14.3	20	WG59
-Chlorotoluene	mg/l	0.0216	0.0230	86.0	78-122	5.97	20	WG59
-Methyl-2-pentanone (MIBK)	mg/l	0.111	0.113	89.0	58-147	1.84	20	WG59
cetone	mg/l	0.102	0.110	81.0	49-153	7.87	21	WG59
crolein	mg/l	0.109	0.121	87.0	10-181	10.2	30	WG59
crylonitrile	mg/l	0.114	0.112	91.0	53-153	1.60	20	WG59
enzene	mg/l	0.0229	0.0230	92.0	72-119	0.160	20	WG59
romobenzene	mg/l	0.0216	0.0227	86.0	76-121	4.77	20	WG59
romochloromethane	mg/l	0.0232	0.0225	93.0	79-124	2.94	20	WG59
romodichloromethane	mg/l	0.0241	0.0234	96.0	75-127	2.64	20	WG59
romoform	mg/l	0.0221	0.0249	88.0	61-136	12.0	20	WG59
romomethane	mg/l	0.0195	0.0198	78.0	42-172	1.40	20	WG59
arbon tetrachloride	mg/l	0.0227	0.0228	91.0	63-129	0.680	20	WG59
hlorobenzene	mg/l	0.0222	0.0231	89.0	78-123	3.78	20	WG59
hlorodibromomethane	mg/l	0.0234	0.0241	94.0	73-128	2.65	20	WG59
hloroethane	mg/l	0.0225	0.0217	90.0	52-164	3.80	20	WG59
hloroform	mg/l	0.0239	0.0239	95.0	76-122	0.350	20	WG59
hloromethane	mg/l	0.0233	0.0238	93.0	50-141	2.38	20	WG59
is-1,2-Dichloroethene	mg/l	0.0229	0.0239	91.0	75-121	4.43	20	WG59
is-1,3-Dichloropropene	mg/l	0.0235	0.0237	94.0	74-124	0.570	20	WG59
i-isopropyl ether	mg/l	0.0246	0.0241	98.0	66-129	2.21	20	WG59
ibromomethane	mg/l	0.0230	0.0233	92.0	77-124	1.38	20	WG59
ichlorodifluoromethane	mg/l	0.0270	0.0289	108.	33-173	6.92	20	WG59
thyl ether	mg/l	0.0230	0.0224	92.0	56-144	2.81	20	WG59
hylbenzene	mg/l	0.0206	0.0235	82.0	77-124	13.1	20	WG59
exachloro-1,3-butadiene	mg/l	0.0224	0.0238	90.0	71-134	6.00	20	WG59
sopropylbenzene	mg/l	0.0213	0.0233	85.0	74-126	8.77	20	WG59
ethyl tert-butyl ether	mg/l	0.0241	0.0229	96.0	67-127	4.97	20	WG59
ethylene Chloride	mg/l	0.0224	0.0216	90.0	67-122	3.68	20	WG59
-Butylbenzene	mg/l	0.0219	0.0235	88.0	74-130	7.02	20	WG59
-Propylbenzene	mg/l	0.0214	0.0232	86.0	77-125	7.89	20	WG59

* Performance of this Analyte is outside of established criteria. For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 22 of 27

A · B SICILEINICIES

YOUR LAB OF CHOICE

Apex Environmental Inc - Parkers Prairie Jeff Vosburgh 60801 Cty Hwy 46

Parkers Prairie, MN 56361

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L579475

June 15, 2012

			Control Sa		lcate				
Analyte	Units	Result	Ref	%Rec		Limit	RPD	Limit	Batch
p-Isopropyltoluene	mg/l	0.0216	0.0238	86.0		77-132	9.62	20	WG596
sec-Butylbenzene	mg/1	0.0218	0.0240	87.0		77-130	9.67	20	WG596
Styrene	mg/l	0.0229	0.0241	92.0		69-145	4.92	20	WG596
tert-Butylbenzene	mg/l	0.0221	0.0242	88.0		76-131	8.83	20	WG596
Tetrachloroethene	mg/l	0.0219	0.0239	87.0		69-131	8.98	20	WG596
Tetrahydrofuran	mg/l	0.0213	0.0227	85.0		41-147	6.30	22	WG596
Toluene	mg/l	0.0225	0.0221	90.0		75-114	1.80	20	WG596
trans-1,2-Dichloroethene	mg/l	0.0223	0.0221	89.0		63-127	0.820	20	WG596
trans-1,3-Dichloropropene	mg/l	0.0236	0.0223	94.0		69-124	2.58	20	WG596 WG596
Trichloroethene	mg/l	0.0236	0.0230	86.0		69-131	2.58	20	WG596
	-								
Trichlorofluoromethane	mg/l	0.0227	0.0232	91.0		53-161	2.45	20 20	WG596
Vinyl chloride	mg/l	0.0222	0.0222	89.0		55-142	0.200		WG596
Xylenes, Total	mg/l	0.0643	0.0679	86.0		77-123	5.43	20	WG596
4-Bromofluorobenzene				95.65		82-120			WG596
Dibromofluoromethane				100.1		82-126			WG596
Toluene-d8				99.65		92-112			WG596
TPH (GC/FID) High Fraction	mq/kq	32.9	30.0	82.0		70-120	9.10	23	WG597
Triacontane	liig/kg	52.9	50.0	77.58		50-150	9.10	23	WG597 WG597
			Matrix Spil						
Analyte	Units	MS Res	Ref Res	TV	% Rec	Limit		Ref Samp	Batch
1,2,4-Trimethylbenzene	mq/kq	2.37	0	.05	94.8	80-120		L579475-01	WG596
· · · · ·	5.5								
1,3,5-Trimethylbenzene	mg/kg	2.38	0	.05	95.0	80-120		L579475-01	WG596
Benzene	mg/kg	2.25	0	.05	90.0	32-137		L579475-01	WG596
Ethylbenzene	mg/kg	2.20	0	.05	87.8	10-150		L579475-01	WG596
Gasoline (C6-C10)	mg/kg	23.3	0	.5	93.4	80-120		L579475-01	WG596
m&p-Xylene	mg/kg	4.67	0	.1	93.3	14-141		L579475-01	WG596
Methyl tert-butyl ether	mg/kg	2.12	0	.05	85.0	24-151		L579475-01	WG596
Naphthalene	mg/kg	2.52	0	.05	101.	80-120		L579475-01	WG596
o-Xylene	mg/kg	2.29	0	.05	91.8	10-157		L579475-01	WG596
Toluene	mg/kg	2.29	0	.05	91.6	20-142		L579475-01	WG596
a,a,a-Trifluorotoluene(PID)					104.3	80-120			WG596
1,1,1,2-Tetrachloroethane	mg/l	0.0264	0	.025	106.	71-130		L579475-05	WG596
1,1,1-Trichloroethane	mg/l	0.0204	0	.025	100.	58-137		L579475-05	WG590 WG596
	-		0		113.				
1,1,2,2-Tetrachloroethane	mg/l	0.0283	0	.025	106.	64-149		L579475-05	WG596
1,1,2-Trichloroethane	mg/l	0.0266		.025		73-128		L579475-05	WG596
1,1,2-Trichlorotrifluoroethane	mg/l	0.0268	0	.025	107.	36-159		L579475-05	WG596
1,1-Dichloroethane	mg/l	0.0270	0	.025	108.	58-133		L579475-05	WG596
1,1-Dichloroethene	mg/l	0.0249	0	.025	99.5	32-152		L579475-05	WG596
1,1-Dichloropropene	mg/l	0.0271	0	.025	108.	50-140		L579475-05	WG596
1,2,3-Trichlorobenzene	mg/l	0.0243	0	.025	97.1	68-135		L579475-05	WG596
1,2,3-Trichloropropane	mg/l	0.0270	0	.025	108.	74-137		L579475-05	WG596
1,2,3-Trimethylbenzene	mg/l	0.0244	0	.025	97.5	67-133		L579475-05	WG596
1,2,4-Trichlorobenzene	mg/l	0.0258	0	.025	103.	67-133		L579475-05	WG596
1,2,4-Trimethylbenzene	mg/l	0.0261	0	.025	104.	62-141		L579475-05	WG596
1,2-Dibromo-3-Chloropropane	mg/1	0.0286	0	.025	114.	55-148		L579475-05	WG596
1,2-Dibromoethane	mg/1	0.0272	0	.025	109.	71-129		L579475-05	WG596
1,2-Dichlorobenzene	mg/l	0.0251	0	.025	100.	75-125		L579475-05	WG596
1,2-Dichloroethane	mg/l	0.0251	0	.025	110.	59-135		L579475-05	WG596
•	mg/l	0.0279	0	.025	110.	68-126		L579475-05	WG596 WG596
1,2-Dichloropropane			0		102.				
1,3,5-Trimethylbenzene	mg/l	0.0255	-	.025		67-136		L579475-05	WG596
1,3-Dichlorobenzene	mg/l	0.0267	0	.025	107.	69-131		L579475-05	WG596
1,3-Dichloropropane	mg/l	0.0265	0	.025	106.	70-122		L579475-05	WG596
1,4-Dichlorobenzene	mg/l	0.0240	0	.025	96.1	70-123		L579475-05	WG596

* Performance of this Analyte is outside of established criteria. For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 23 of 27

A · B SICIIEINICES

YOUR LAB OF CHOICE

Apex Environmental Inc - Parkers Prairie Jeff Vosburgh 60801 Cty Hwy 46

Parkers Prairie, MN 56361

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

32-137 4.04 39 L579475-01 WG596996

Quality Assurance Report Level II

L579475

June 15, 2012

			Matrix S	Spike						
Analyte	Units	MS Res			% Rec	Limit		Ref Samp	Batch	
2,2-Dichloropropane	mg/l	0.0285	0	.025	114.	51-141		L579475-05	WG5969	
2-Butanone (MEK)	mg/l	0.159	0	.125	127.	51-149		L579475-05	WG5969	
2-Chloroethyl vinyl ether	mg/l	0.125	0	.125	100.	10-161		L579475-05	WG596	
2-Chlorotoluene	mg/l	0.0258	0	.025	103.	65-133		L579475-05	WG5969	
2-Hexanone	mg/l	0.150	0	.125	120.	58-148		L579475-05	WG5969	
4-Chlorotoluene	mg/l	0.0269	0	.025	107.	67-129		L579475-05	WG5969	
4-Methyl-2-pentanone (MIBK)	mg/l	0.148	0	.125	118.	53-154		L579475-05	WG5969	
Acetone	mg/l	0.194	0	.125	155.*	34-146		L579475-05	WG5969	
Acrolein	mg/l	0.159	0	.125	127.	10-189		L579475-05	WG5969	
Acrylonitrile	mg/l	0.151	0	.125	121.	49-162		L579475-05	WG5969	
Benzene	mg/l	0.0263	0	.025	105.	51-134		L579475-05	WG5969	
Bromobenzene	mg/l	0.0259	0	.025	104.	64-130		L579475-05	WG5969	
Bromochloromethane	mg/l	0.0265	0	.025	106.	67-131		L579475-05	WG5969	
Bromodichloromethane	mg/l	0.0265	0	.025	106.	67-132		L579475-05	WG5969	
Bromoform	mg/l	0.0268	0	.025	107.	59-137		L579475-05	WG5969	
Bromomethane	mg/l	0.0253	0	.025	101.	23-177		L579475-05	WG5969	
Carbon tetrachloride	mg/l	0.0269	0	.025	108.	49-140		L579475-05	WG5969	
Chlorobenzene	mg/1	0.0263	0	.025	105.	69-126		L579475-05	WG5969	
Chlorodibromomethane	mg/l	0.0279	0	.025	112.	68-130		L579475-05	WG5969	
Chloroethane	mg/1	0.0262		.025	105.	32-177		L579475-05	WG5969	
Chloroform	mg/1	0.0266		.025	106.	64-130		L579475-05	WG5969	
Chloromethane	mg/l	0.0284		.025	114.	27-155		L579475-05	WG5969	
cis-1,2-Dichloroethene	mg/1	0.0265		.025	106.	54-137		L579475-05	WG5969	
cis-1,3-Dichloropropene	mg/1	0.0285	0	.025	114.	63-127		L579475-05	WG5969	
Di-isopropyl ether	mg/1	0.0276	-	.025	110.	58-133		L579475-05	WG5969	
Dibromomethane	mg/l	0.0279	0	.025	112.	68-131		L579475-05	WG5969	
Dichlorodifluoromethane	mg/1	0.0320	0	.025	128.	16-188		L579475-05	WG5969	
Ethyl ether	mg/1	0.0271	0	.025	108.	47-147		L579475-05	WG5969	
Ethylbenzene	mg/l	0.0256		.025	102.	64-135		L579475-05	WG5969	
Hexachloro-1,3-butadiene	mg/1	0.0244	0	.025	97.7	64-140		L579475-05	WG5969	
Isopropylbenzene	mg/l	0.0260		.025	104.	62-134		L579475-05	WG5969	
Methyl tert-butyl ether	mg/1	0.0281	0	.025	112.	55-136		L579475-05	WG5969	
Methylene Chloride	mg/1	0.0268	0	.025	107.	52-130		L579475-05	WG5969	
n-Butylbenzene	mg/l	0.0250	0	.025	100.	62-142		L579475-05	WG5969	
n-Propylbenzene	mg/l	0.0250	0	.025	100.	62-137		L579475-05	WG5969	
Naphthalene	mg/l	0.0246		.025	98.3	65-140		L579475-05	WG5969	
p-Isopropyltoluene	mg/1	0.0240	0	.025	104.	64-142		L579475-05	WG5969	
sec-Butylbenzene	mg/l	0.0266		.025	104.	67-139		L579475-05	WG5969	
Styrene	mg/1	0.0200	0	.025	110.	58-152		L579475-05	WG5969	
tert-Butylbenzene	mg/1	0.0270	0	.025	109.	66-139		L579475-05	WG5969	
Tetrachloroethene	mg/l	0.0275		.025	110.	56-139		L579475-05	WG5969	
		0.0275	0	.025	110.	32-163		L579475-05	WG5969	
Fetrahydrofuran Foluene	mg/l	0.0298	0	.025	106.	61-126		L579475-05		
	mg/l		0	.025	103.	45-137			WG5969	
trans-1,2-Dichloroethene	mg/l	0.0257	0		103.	45-137 59-130		L579475-05	WG5969	
trans-1,3-Dichloropropene	mg/l	0.0281	-	.025				L579475-05	WG5969	
Trichloroethene	mg/l	0.0269	0	.025	108.	40-155		L579475-05	WG5969	
Frichlorofluoromethane	mg/l	0.0262		.025	105.	35-177		L579475-05	WG5969	
/inyl chloride	mg/l	0.0271	0	.025	108.	32-159		L579475-05	WG5969	
Kylenes, Total	mg/l	0.0774	0	.075	103.	64-133		L579475-05	WG5969	
4-Bromofluorobenzene					103.8	82-120			WG5969	
Dibromofluoromethane					103.2	82-126			WG5969	
Toluene-d8					101.2	92-112			WG5969	
Analyte	Units	Mat MSD	rix Spike Ref	Duplicate %Rec	Limit	RPD	T.imi+	. Ref Samp	Batch	
indry cc	011115	1100	NCL	01100	DIULU	ILE D		. Net bamp	Daten	
1,2,4-Trimethylbenzene	mg/kg	2.47	2.37	98.7	80-120	4.01	20	L579475-01	WG5969	
1,3,5-Trimethylbenzene	mg/kg	2.46	2.38	98.5	80-120	3.66	20	L579475-01	WG5969	
-, -,			2.00		00 120	5.00				

 * Performance of this Analyte is outside of established criteria.
 Benzene

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 24 of 27

L·A·B SICILEINICES

YOUR LAB OF CHOICE

Apex Environmental Inc - Parkers Prairie Jeff Vosburgh 60801 Cty Hwy 46

Parkers Prairie, MN 56361

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L579475

June 15, 2012

			trix Spike	e Duplicate					
Analyte	Units	MSD	Ref	%Rec	Limit	RPD	Limit	Ref Samp	Batch
Ethylbenzene	mg/kg	2.29	2.20	91.5	10-150	4.14	44	L579475-01	WG596
Gasoline (C6-C10)	mg/kg	23.6	23.3	94.4	80-120	1.15	20	L579475-01	WG596
m&p-Xylene	mg/kg	4.85	4.67	97.0	14-141	3.79	44	L579475-01	WG596
Methyl tert-butyl ether	mg/kg	2.24	2.12	89.6	24-151	5.30	37	L579475-01	WG596
Naphthalene	mg/kg	2.66	2.52	106.	80-120	5.41	20	L579475-01	WG596
o-Xylene	mg/kg	2.39	2.29	95.6	10-157	4.13	44	L579475-01	WG596
Toluene	mg/kg	2.38	2.29	95.3	20-142	4.00	42	L579475-01	WG596
a,a,a-Trifluorotoluene(PID)	5, 5			104.2	80-120				WG596
l,1,1,2-Tetrachloroethane	mg/l	0.0256	0.0264	102.	71-130	2.98	20	L579475-05	WG596
,1,1-Trichloroethane	mg/l	0.0269	0.0271	107.	58-137	0.790	20	L579475-05	WG596
1,1,2,2-Tetrachloroethane	mg/l	0.0265	0.0283	106.	64-149	6.31	20	L579475-05	WG596
,1,2-Trichloroethane	mg/l	0.0245	0.0266	97.8	73-128	8.33	20	L579475-05	WG596
,1,2-Trichlorotrifluoroethane	mg/l	0.0269	0.0268	108.	36-159	0.500	21	L579475-05	WG596
l,1-Dichloroethane	mg/l	0.0277	0.0270	111.	58-133	2.35	20	L579475-05	WG596
1,1-Dichloroethene	mg/l	0.0244	0.0249	97.6	32-152	1.91	20	L579475-05	WG596
l,1-Dichloropropene	mg/l	0.0265	0.0271	106.	50-140	2.15	20	L579475-05	WG596
l,2,3-Trichlorobenzene	mg/l	0.0246	0.0243	98.2	68-135	1.13	20	L579475-05	WG596
1,2,3-Trichloropropane	mg/l	0.0236	0.0270	94.3	74-137	13.5	20	L579475-05	WG596
1,2,3-Trimethylbenzene	mg/l	0.0239	0.0244	95.6	67-133	2.02	20	L579475-05	WG596
,2,4-Trichlorobenzene	mg/l	0.0248	0.0258	99.2	67-133	3.84	20	L579475-05	WG596
1,2,4-Trimethylbenzene	mg/l	0.0242	0.0261	96.7	62-141	7.85	20	L579475-05	WG596
,2-Dibromo-3-Chloropropane	mg/l	0.0256	0.0286	102.	55-148	10.8	22	L579475-05	WG596
,2-Dibromoethane	mg/l	0.0254	0.0272	102.	71-129	6.88	20	L579475-05	WG596
,2-Dichlorobenzene	mg/l	0.0233	0.0251	93.1	75-125	7.64	20	L579475-05	WG596
,2-Dichloroethane	mg/l	0.0270	0.0275	108.	59-135	1.62	20	L579475-05	WG596
,2-Dichloropropane	mg/l	0.0268	0.0279	107.	68-126	4.07	20	L579475-05	WG596
,3,5-Trimethylbenzene	mg/l	0.0239	0.0255	95.6	67-136	6.34	20	L579475-05	WG596
,3-Dichlorobenzene	mg/l	0.0247	0.0267	98.8	69-131	7.60	20	L579475-05	WG596
,3-Dichloropropane	mg/l	0.0250	0.0265	100.	70-122	5.64	20	L579475-05	WG596
,4-Dichlorobenzene	mg/l	0.0231	0.0240	92.5	70-123	3.85	20	L579475-05	WG596
2,2-Dichloropropane	mg/l	0.0296	0.0285	118.	51-141	3.57	20	L579475-05	WG596
-Butanone (MEK)	mg/l	0.144	0.159	115.	51-149	10.1	22	L579475-05	WG596
-Chloroethyl vinyl ether	mg/l	0.140	0.125	112.	10-161	11.2	40	L579475-05	WG596
-Chlorotoluene	mg/l	0.0248	0.0258	99.1	65-133	4.06	20	L579475-05	WG596
2-Hexanone	mg/l	0.127	0.150	102.	58-148	16.3	24	L579475-05	WG596
-Chlorotoluene	mg/l	0.0244	0.0269	97.6	67-129	9.59	20	L579475-05	WG596
-Methyl-2-pentanone (MIBK)	mg/l	0.132	0.148	106.	53-154	11.0	21	L579475-05	WG596
Acetone	mg/l	0.156	0.194	125.	34-146	21.6	22	L579475-05	WG596
Acrolein	mg/l	0.111	0.159	89.1	10-189	35.1*	30	L579475-05	WG596
Acrylonitrile	mg/l	0.135	0.151	108.	49-162	11.4	20	L579475-05	WG596
Benzene	mg/l	0.0261	0.0263	104.	51-134	0.670	20	L579475-05	WG596
Bromobenzene	mg/l	0.0241	0.0259	96.5	64-130	7.19	20	L579475-05	WG596
Bromochloromethane	mg/l	0.0256	0.0265	102.	67-131	3.42	20	L579475-05	WG596
Bromodichloromethane	mg/l	0.0250	0.0265	100.	67-132	5.83	20	L579475-05	WG596
Bromoform	mg/l	0.0248	0.0268	99.2	59-137	7.92	20	L579475-05	WG596
Bromomethane	mg/l	0.0235	0.0253	93.9	23-177	7.39	21	L579475-05	WG596
Carbon tetrachloride	mg/l	0.0270	0.0269	108.	49-140	0.180	20	L579475-05	WG596
Chlorobenzene	mg/l	0.0248	0.0263	99.1	69-126	6.17	20	L579475-05	WG596
hlorodibromomethane	mg/1	0.0263	0.0279	105.	68-130	5.82	20	L579475-05	WG596
Chloroethane	mg/l	0.0251	0.0262	100.	32-177	4.10	21	L579475-05	WG596
Chloroform	mg/l	0.0264	0.0266	106.	64-130	0.770	20	L579475-05	WG596
Chloromethane	mg/l	0.0279	0.0284	111.	27-155	1.88	20	L579475-05	WG596
is-1,2-Dichloroethene	mg/l	0.0262	0.0265	105.	54-137	1.07	20	L579475-05	WG596
cis-1,3-Dichloropropene	mg/l	0.0255	0.0285	102.	63-127	11.0	20	L579475-05	WG596
Di-isopropyl ether	mg/l	0.0233	0.0205	102.	58-133	1.25	20	L579475-05	WG596
Dibromomethane	mg/l	0.0273	0.0270	109.	68-131	6.69	20	L579475-05	WG596
DIDI ONONC CHAIC		0.0201	0.0419	TOI .	00 TOT	0.09	20	レン・シェノン=レン	WG290

* Performance of this Analyte is outside of established criteria. For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 25 of 27

EXESSENCE IN CITE OF CALLER OF CALLE

YOUR LAB OF CHOICE

Apex Environmental Inc - Parkers Prairie Jeff Vosburgh

60801 Cty Hwy 46

Parkers Prairie, MN 56361

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L579475

June 15, 2012

Analyte	Units	MSD	Ref	e Duplicate %Rec	Limit	RPD	Timit	Ref Samp	Batch
Апатусе	UIILS	MSD	REL	SREC	LIMIC	RPD	LILLILL	Kei Samp	Batch
Ethyl ether	mg/l	0.0275	0.0271	110.	47-147	1.44	20	L579475-05	WG5969
Ethylbenzene	mg/l	0.0242	0.0256	96.6	64-135	5.90	20	L579475-05	WG5969
Hexachloro-1,3-butadiene	mg/l	0.0233	0.0244	93.3	64-140	4.62	20	L579475-05	WG5969
Isopropylbenzene	mg/l	0.0244	0.0260	97.6	62-134	6.19	20	L579475-05	WG5969
Methyl tert-butyl ether	mg/l	0.0274	0.0281	110.	55-136	2.75	20	L579475-05	WG5969
Methylene Chloride	mg/l	0.0269	0.0268	108.	52-130	0.240	20	L579475-05	WG5969
n-Butylbenzene	mg/l	0.0243	0.0250	97.3	62-142	2.96	20	L579475-05	WG5969
n-Propylbenzene	mg/l	0.0249	0.0264	99.7	62-137	5.67	20	L579475-05	WG5969
Naphthalene	mg/l	0.0246	0.0246	98.6	65-140	0.280	20	L579475-05	WG5969
-Isopropyltoluene	mg/l	0.0244	0.0260	97.5	64-142	6.37	20	L579475-05	WG5969
sec-Butylbenzene	mg/l	0.0249	0.0266	99.6	67-139	6.57	20	L579475-05	WG5969
Styrene	mg/l	0.0258	0.0276	103.	58-152	6.96	20	L579475-05	WG5969
tert-Butylbenzene	mg/l	0.0256	0.0273	102.	66-139	6.40	20	L579475-05	WG5969
[etrachloroethene	mg/l	0.0264	0.0275	106.	56-139	4.06	20	L579475-05	WG5969
Tetrahydrofuran	mg/l	0.0341	0.0298	136.	32-163	13.5	23	L579475-05	WG5969
Foluene	mg/l	0.0251	0.0264	100.	61-126	5.05	20	L579475-05	WG5969
rans-1,2-Dichloroethene	mg/l	0.0256	0.0257	102.	45-137	0.510	20	L579475-05	WG5969
rans-1,3-Dichloropropene	mg/l	0.0260	0.0281	104.	59-130	7.83	20	L579475-05	WG5969
Frichloroethene	mg/l	0.0254	0.0269	102.	40-155	5.60	20	L579475-05	WG5969
Frichlorofluoromethane	mg/l	0.0274	0.0262	110.	35-177	4.71	23	L579475-05	WG5969
/inyl chloride	mg/l	0.0256	0.0271	102.	32-159	5.65	21	L579475-05	WG5969
Ylenes, Total	mg/l	0.0736	0.0774	98.1	64-133	5.09	20	L579475-05	WG5969
-Bromofluorobenzene				98.17	82-120				WG5969
Dibromofluoromethane				106.8	82-126				WG5969
Coluene-d8				101.7	92-112				WG5969

Batch number /Run number / Sample number cross reference

WG597058: R2204695: L579475-05 06 WG597209: R2206355: L579475-07 08 WG596996: R2206839: L579475-01 02 03 04 WG596979: R2207173: L579475-05 06 07 08 09 WG597382: R2208596: L579475-01 02 03 04 WG597269: R2211093: L579475-01 02 03 04

* Calculations are performed prior to rounding of reported values.
* Performance of this Analyte is outside of established criteria.

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 26 of 27

Apex Environmental Inc - Parkers Prairie Jeff Vosburgh 60801 Cty Hwy 46

Parkers Prairie, MN 56361

Quality Assurance Report Level II

L579475

The data package includes a summary of the analytic results of the quality control samples required by the SW-846 or CWA methods. The quality control samples include a method blank, a laboratory control sample, and the matrix spike/matrix spike duplicate analysis. If a target parameter is outside the method limits, every sample that is effected is flagged with the appropriate qualifier in Appendix B of the analytic report.

Method Blank - an aliquot of reagent water carried through the entire analytic process. The method blank results indicate if any possible contamination exposure during the sample handling, digestion or extraction process, and analysis. Concentrations of target analytes above the reporting limit in the method blank are qualified with the "B" qualifier.

Laboratory Control Sample - is a sample of known concentration that is carried through the digestion/extraction and analysis process. The percent recovery, expressed as a percentage of the theoretical concentration, has statistical control limits indicating that the analytic process is "in control". If a target analyte is outside the control limits for the laboratory control sample or any other control sample, the parameter is flagged with a "J4" qualifier for all effected samples.

Matrix Spike and Matrix Spike Duplicate - is two aliquots of an environmental sample that is spiked with known concentrations of target analytes. The percent recovery of the target analytes also has statistical control limits. If any recoveries that are outside the method control limits, the sample that was selected for matrix spike/matrix spike duplicate analysis is flagged with either a "J5" or a "J6". The relative percent difference (%RPD) between the matrix spike and the matrix spike duplicate recoveries is all calculated. If the RPD is above the method limit, the effected samples are flagged with a "J3" qualifier. 12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

June 15, 2012

Page 27 of 27

Company Name/Address:		Bill	ing Informat	tion:			-	Ana	vsis/Cc	ontainer/Pr	eservative	A064	Chain of Custody
Apex Environmenta	l Inc -											1	Page of
Parkers Prairie	÷ 5		leff Vosbu 60801 Cty										
60801 Ctv Hwv 46			·	•									SC
Parkers Prairie.MN 5636	51	F	Parkers P	rairie,MN 5	6361								SC
				-(Qf	PH)								I·E·N·C·E·S anon Road
REPORTE AS ABOU	3(Ema	il to.										TN 37122
Project Description: QUEEN of F	ease H	DSPITAL	City/Sate Collected	EWR	MQUE	MA	V					Phone: (80) Phone: (61)	5) 758-5858
Phone: (218) 338-5947	Client Project #:	v	ESC Key		1 1							Fax: (61!	6) 758-5859
FAX: (218) 338-5049	012-1	2-AX	J						1. Alton				
Collected by: (printy UOS BURG	Site/Facility ID#	3571	P.O.#;										and the second second
Confected by (Signature).	Rush? (Lab	MUSIBEN		Date Resul	ts Needed:							CoCode APEXPE	MN (lab use only)
-guget (Jody		ne Day t Day		Email?N	No_Yes	No.		Q	\mathbf{C}			Template/Prelogin	
Intrivertately Padded on ice NY		o Day ee Day		FAX?		of Cntrs	3	DR	2			Shipped Via:	CT2
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time		8		-			Remarks/Contaminant	Sample # (lab only)
GP-1 14:3	GRAR	55	<u> </u>	6/5/12	10:05	3	×	X		-			(579475-
6P-2 15.8	· –	55	۵		11:20	3	X	X					:02
6P-3 13.2		SS			1:36	3	X	X					- 23
6P-4 15.1	7	(h)		Ý	2:51	3	×	X					oy
6P-1 6/2	1	GW		6/5/12	10:50	4-		X	X				05
6P-2 6/W		600		6/6/12	8:20A	An		X	X				<u> </u>
6P-3 6/W	3	600		6/5/12		4		×	X				- 27
FIELD DUPLICATE		6w	×			4		X	X				A
TRIP BLANK						1			X				DG
*Matrix: SS - Soil/Solid GW - Ground	lwater WW - Wa	asteWater D	N - Drinking	Water OT -	Other	- I	<u></u>				pH	Tem	
Remarks:			-					1	a (11)/	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			· · · · · · · · · · · · · · · · · · ·
Relinquighed by: (Signature)	Date: ,	Time:	Receiv	ed by: (Signa	turo				1776 Sample	7825 es returned	1066 1100 Via: ロUPS	Condition:	
4×1 200	6/7/1								Fedl	Ex 🗆 Cour	ier 🗆	-	(lab use only) TP
Relinquished by: (Signature)	Date	Time:	Receiv	ed by: (Signat	ture)				Temp:	le.	Bottles Receiv	ed: CoC Seals Intact 🗸	Y_N_NA
Relinquished by: (Signature)	Date:	Time:		ved for lab by					Date:		Time	pH Checked:	NCF:
			_ ph	n Wi	w~				6/8	10	0900		1. Sec.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Jeff Vosburgh Apex Environmental Inc - Parkers Prairie 60801 Cty Hwy 46 Parkers Prairie, MN 56361

Report Summary

Tuesday June 12, 2012

Report Number: L579284 Samples Received: 06/08/12 Client Project: 012-12-AXN

Description: Queen of Peace Hospital

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

John Hawkins

ohn Hawkins , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - 01157CA, CT - PH-0197, FL - E87487, GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704/BIO041, ND - R-140. NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 460132, WV - 233, AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032011-1, TX - T104704245-11-3, OK - 9915, PA - 68-02979

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

Note: The use of the preparatory EPA Method 3511 is not approved or endorsed by the CA ELAP.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

XESC						(615) 758 1-800-76	et, TN 37122 3-5858	
L·A·B S·C·I·E·N·C·E·S						Tax I.D.	62-0814289	
YOUR LAB OF CHOICE						Est. 1970)	
Jeff Vosburgh Apex Environmental Inc - Parkers B 60801 Cty Hwy 46 Parkers Prairie, MN 56361		PORT OF	ANALYSIS	June	12, 2012			
Date Received : June 08,	2012			ESC S	ample # :	L579284-	01	
	e nospital			Site	ID : 18	3571		
Sample ID : SV-1 8FT				Proje	ct # : (012-12-AXN		
Collected By : Jeffery G. Vos Collection Date : 06/05/12 13:53								
Parameter	Cas# 1	Mol Wgh	t RDL1 RDL2	ppbv	ug/m3	Method	Date	Dil.
Volatile Organics Acetone Ally1 chloride Benzene Benzy1 Chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorobenzene Chlorotoluene Cyclohexane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene trans-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene 1,4-Dioxane Ethanol Ethylbenzene 4-Ethyltoluene Trichlorofluoromethane 1,1,2-Trichlorotrifluoroethane 1,2-Dichlorotetrafluoroethane Heptane Hexachloro-1,3-butadiene n-Hexane Isoproylbenzene Methylene Chloride Methyl Butyl Ketone	67-64-1 107-05-1 71-43-2 100-44-7 75-27-4 75-25-2 74-83-9 106-99-0 75-15-0 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3 95-49-8 110-82-7 124-48-1 106-93-4 95-50-1 541-73-1 106-46-7 107-06-2 75-34-3 75-35-4 156-60-5 78-87-5 10061-01-5 10061-02-6 123-91-1 64-17-5 100-41-4 622-96-8 75-69-4 75-71-8 76-13-1 76-14-2 142-82-5 87-68-3 110-54-3 98-82-8 75-09-2 591-78-6	111 88.1 46.1 106 120 137.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>110 < 0.20 1.2 < 0.20 </pre>	$\begin{array}{c} 260 \\ < 0.63 \\ 3.8 \\ < 1.0 \\ < 1.3 \\ < 6.2 \\ < 0.78 \\ < 4.4 \\ 2.6 \\ < 1.3 \\ < 0.92 \\ < 0.53 \\ < 0.97 \\ < 0.41 \\ < 1.0 \\ 2.4 \\ < 1.7 \\ < 1.5 \\ < 1.2 \\ < 1.2 \\ < 1.2 \\ < 0.81 \\ < 0.80 \\ < 0.79 \\ < 0.79 \\ < 0.92 \\ < 0.91 \\ < 0.72 \\ 13. \\ 6.5 \\ 2.1 \\ 1.9 \\ 180 \\ < 1.5 \\ < 1.4 \\ 9.4 \\ < 6.7 \\ < 0.71 \\ < 0.98 \\ < 0.69 \\ 7.8 \end{array}$	$\begin{array}{c} TO-15\\ TO$	06/12/12 06/08/12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RDL1 = ppbv , RDL2 = ug/m3								

RDL1 = ppbv , RDL2 = ug/m3
Note:
Units are based on (STP) - Standard Temperature and Pressure
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 06/12/12 13:55 Printed: 06/12/12 14:26

Page 2 of 8

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Jeff Vosburgh Apex Environmental Inc - Parkers 60801 Cty Hwy 46		EPORT OF ANALYSIS	June	12, 2012			
Parkers Prairie, MN 56361							
Date Received : June 08 Description : Queen of Peac	, 2012 ce Hospital		ESC S	ample # :	L579284-	01	
Sample ID : SV-1 8FT	-		Site	ID : 18	3571		
Collected By : Jeffery G. Vo Collection Date : 06/05/12 13:			Proje	ct # : ()12-12-AXN		
Parameter	Cas#	Mol Wght RDL1 RDL2	ppbv	ug/m3	Method	Date	Dil.
<pre>2-Butanone (MEK) 4-Methyl-2-pentanone (MIBK) Methyl methacrylate MTBE Naphthalene 2-Propanol Propene Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethylene Tetrahydrofuran Toluene 1,2,4-Trichlorobenzene 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 2,2,4-Trimethylbenzene 2,2,4-Trimethylpentane Vinyl chloride Vinyl Bromide Vinyl acetate m&p-Xylene</pre>	$\begin{array}{c} 78-93-3\\ 108-10-1\\ 80-62-6\\ 1634-04-4\\ 91-20-3\\ 67-63-0\\ 115-07-1\\ 100-42-5\\ 79-34-5\\ 127-18-4\\ 109-99-9\\ 108-88-3\\ 120-82-1\\ 71-55-6\\ 79-01-6\\ 95-63-6\\ 108-67-8\\ 540-84-1\\ 75-01-4\\ 593-60-2\\ 108-05-4\\ 1330-20-7\\ 95-47-6\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 17.\\ 1.6\\ < 0.20\\ < 0.63\\ 1.6\\ 15.\\ 1.5\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20\\ < 0.20$	50. 6.6 < 0.82 < 0.72 < 3.3 926. 6.4 < 1.4 < 1.4 < 0.59 23. < 4.7 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 0.51 < 0.51 < 0.87 < 0.70 17. 6.1	$\begin{array}{c} TO-15\\ TO$	06/12/12 06/08/12	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TPH (GC/MS) Low Fraction 1,4-Bromofluorobenzene	8006-61-9 460-00-4	101 50.0 210.	140 96.59	580 % Rec.	TO-15 TO-15	06/08/12 06/08/12	1 1

RDL1 = ppbv , RDL2 = ug/m3 Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 06/12/12 13:55 Printed: 06/12/12 14:26

Page 3 of 8

ESC SICILIE IN COLES

YOUR LAB OF CHOICE

Apex Environmental Inc - Parkers Prairie Jeff Vosburgh 60801 Cty Hwy 46

Parkers Prairie, MN 56361

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L579284

June 12, 2012

1,1,2,2-Tetrachlorosethane <.2 ppb MC596517 0/0/08.12 1,1,2-Trichlorosethane <.2 ppb MC596517 0/0/08.12 1,1,2-Trichlorosethane <.2 ppb MC596517 0/0/08.12 1,1,2-Trichlorosethane <.2 ppb MC596517 0/0/08.12 1,2-Trichlorosethane <.3 ppb MC596517 0/0/08.12 1,2-Trichlorosethane <.2 ppb MC596617 0/0/08.12			Tabawatawa	Dlamb			
1.1Trichlorosthane < .2 ppb ws59617 06/08/12 1.1.2Trichlorosthane < .2 ppb ws59617 06/08/12 1.1.2Trichlorosthane < .2 ppb ws59617 06/08/12 1.1.2-Trichlorosthane < .2 ppb ws59617 06/08/12 1.1.1-bithlorosthane < .2 ppb ws59617 06/08/12 1.2.4-Trischlorosthane < .2 ppb ws59617 06/08/12 1.2.4-Trischlorosthane < .2 ppb ws59617 06/08/12 1.2.4-Trischlorosthane < .2 ppb ws59617 06/08/12 1.2.5-bithlorosthane < .2 ppb ws59617 06/08/12 1.2-bithlorosthane < .2 ppb ws59617 06/08/12 1.3-bithlorosthane < .2 ppb ws59617 06/08/12 1.4-bithlorost	Analyte	Pegul+			Limit	Batch Date Anal	1770
1,1,2,-Tetrichloroethane 2 ppb WG55617 0/0/8.12 1,1,2-Trichloroethane <.2 ppb WG56617 0/0/8.12 1,1,2-Trichloroethane <.2 ppb WG56617 0/0/8.12 1,1,2-Trichloroethane <.2 ppb WG56617 0/0/8.12 1,2,4-Trinehylbenzene <.2 ppb WG56617 0/0/8.12 1,2-Dichloroethane <.2 ppb WG55617 0/0/8.12 1,3-Dichinethehenenee <.2	Analyce	Result	011105	1 1/20	шинс	Daten Date Anar	<u>y</u> 200
1,1,2,-Tetrichloroethane 2 ppb WG55617 0/0/8.12 1,1,2-Trichloroethane <.2	1,1,1-Trichloroethane	< .2	dqq			WG596917 06/08/12	13:1
1,1,2-Trichlorotthane 2 ppb WG55037 0/06/12 1,1-Dichlorottrifluorotthane 2 ppb WG56037 0/06/12 1,1-Dichlorotthane 2 ppb WG56037 0/06/12 1,1-Dichlorotthane 2 ppb WG56037 0/06/12 1,2,4-Trichlorothane 2 ppb WG56037 0/06/12 1,2-Dichomochhane 2 ppb WG56037 0/06/12 1,2-Dichomochhane 2 ppb WG56037 0/06/12 1,2-Dichomochhane 2 ppb WG56037 0/06/12 1,2-Dichomochtaraf Lucorothane 2 ppb WG56037 0/06/12 1,3-Dichlorothertaraf Lucorothane 2 ppb WG56037 0/06/12 1,3-Dichlorothertaraf Lucorothane 2 ppb WG56037 0/06/12 1,3-Dichlorothertaral 2 ppb WG56037 0/06/12 1,3-Dichlorothertaral 2 ppb WG56037 0/06/12 1,3-Dichlorothertaral 2 ppb WG56037 0/06/12 1,3-Dichlorothertara	1,1,2,2-Tetrachloroethane	< .2				WG596917 06/08/12	
1, 1, -Trichloroctriane <.2						WG596917 06/08/12	13:1
1,1-bichlorochtane <.2	1,1,2-Trichlorotrifluoroethane	< .2				WG596917 06/08/12	13:1
1,2,4-Trichlorobenzene <.83	1,1-Dichloroethane	< .2	ppb			WG596917 06/08/12	13:1
1,2,4-Trimethylbenzene <.2	1,1-Dichloroethene	< .2				WG596917 06/08/12	13:1
1,2,4-Trimethylbensene <.2	1,2,4-Trichlorobenzene	< .63	ppb			WG596917 06/08/12	13:1
1,2-bichloropertane <.2	1,2,4-Trimethylbenzene	< .2	ppb			WG596917 06/08/12	13:1
1,2-Dichloroethane <.2	1,2-Dibromoethane	< .2	ppb			WG596917 06/08/12	13:1
1,2-bichloropropane <.2	1,2-Dichlorobenzene	< .2	ppb			WG596917 06/08/12	13:1
1,2-Dichlorostrafluoroethane <.2	1,2-Dichloroethane	< .2	ppb			WG596917 06/08/12	13:1
1,3-5-trimethylbenzene <.2	1,2-Dichloropropane	< .2	ppb			WG596917 06/08/12	13:1
1,3-BitAldiene 2 ppb WG596917 06/08/12 1,4-Dichlorobenzene <.2	1,2-Dichlorotetrafluoroethane	< .2	ppb			WG596917 06/08/12	13:1
1.3-Dicklorobenzene < .2	1,3,5-Trimethylbenzene	< .2	ppb			WG596917 06/08/12	13:1
1.4-Dicklorobenzene <.2	1,3-Butadiene	< 2	ppb			WG596917 06/08/12	13:1
1.4 - Dioxane < .2	1,3-Dichlorobenzene	< .2	ppb			WG596917 06/08/12	13:1
1,4-Dioxane < .2	1,4-Dichlorobenzene	< .2	ppb			WG596917 06/08/12	13:1
2,2,4-Trimethylpentane < .2	1,4-Dioxane	< .2				WG596917 06/08/12	13:1
2-Propanol < 1.25	2,2,4-Trimethylpentane	< .2				WG596917 06/08/12	13:1
4 Ethyltoluene < 2	2-Chlorotoluene	< .2	ppb			WG596917 06/08/12	13:1
4-Ethyltoluene < .2	2-Propanol	< 1.25				WG596917 06/08/12	13:1
Ally1 chloride < .2	4-Ethyltoluene	< .2				WG596917 06/08/12	13:1
Ally1 chloride < .2	4-Methyl-2-pentanone (MIBK)	< 1.25	ppb			WG596917 06/08/12	13:1
Benzene < .2	Allyl chloride		ppb			WG596917 06/08/12	13:1
Benzyl Chloride < .2	Benzene	< .2				WG596917 06/08/12	13:1
Bromoform < .6	Benzyl Chloride	< .2				WG596917 06/08/12	13:1
Brommethane .2 pb WG59617 06/08/12 Carbon disulfide <.2	Bromodichloromethane	< .2	ppb			WG596917 06/08/12	13:1
Carbon disulfide < .2	Bromoform	< .6	ppb			WG596917 06/08/12	13:1
Carbon tetrachloride < .2	Bromomethane	< .2				WG596917 06/08/12	13:1
Carbon tetrachloride < .2	Carbon disulfide	< .2	ppb			WG596917 06/08/12	13:1
Dibromochloromethane < .2	Carbon tetrachloride	< .2				WG596917 06/08/12	13:1
Chloroethane < .2	Chlorobenzene	< .2	ppb			WG596917 06/08/12	13:1
Chloroform < .2	Dibromochloromethane	< .2	ppb			WG596917 06/08/12	13:1
Chloromethane < .2	Chloroethane	< .2	ppb			WG596917 06/08/12	13:1
cis-1,2-Dichloroethene 2 ppb WG596917 06/08/12 cis-1,3-Dichloropropene 2 ppb WG596917 06/08/12 Cyclohexane 2 ppb WG596917 06/08/12 Ethanol .63 ppb WG596917 06/08/12 Ethylbenzene .2 ppb WG596917 06/08/12 Heptane .2 ppb WG596917 06/08/12 Isopropylbenzene .2 ppb WG596917 06/08/12 Isopropylbenzene .2 ppb WG596917 06/08/12 Methyl Butyl Ketone 1.25 ppb WG596917 06/08/12 MTBE .2 ppb WG596917 06/08/12 Naphthalene .2 ppb WG596917 06/08/12 Naphthalene .2 ppb WG596917 06/08/12 Naphthalene .2 ppb WG596917 06/08/12 Napthalene .2 ppb <t< td=""><td>Chloroform</td><td>< .2</td><td>ppb</td><td></td><td></td><td>WG596917 06/08/12</td><td>13:1</td></t<>	Chloroform	< .2	ppb			WG596917 06/08/12	13:1
cis-1,3-Dichloropropene < .2	Chloromethane	< .2	ppb			WG596917 06/08/12	13:1
Cyclohexane < .2	cis-1,2-Dichloroethene	< .2	ppb			WG596917 06/08/12	13:1
Ethanol < .63	cis-1,3-Dichloropropene	< .2	ppb			WG596917 06/08/12	13:1
Ethylbenzene < .2	Cyclohexane	< .2	ppb			WG596917 06/08/12	13:1
Heptane < .2	Ethanol	< .63	ppb			WG596917 06/08/12	13:1
Hexachloro-1,3-butadiene < .63	Ethylbenzene	< .2	ppb			WG596917 06/08/12	13:1
Isopropylbenzene < .2	Heptane	< .2	ppb			WG596917 06/08/12	13:1
mkp-Xylene < .4	Hexachloro-1,3-butadiene	< .63	ppb			WG596917 06/08/12	13:1
Methyl Butyl Ketone < 1.25	Isopropylbenzene	< .2	ppb			WG596917 06/08/12	13:1
Methyl methacrylate < .2	m&p-Xylene		ppb			WG596917 06/08/12	13:1
Methyl methacrylate < .2	Methyl Butyl Ketone	< 1.25	ppb			WG596917 06/08/12	13:1
Methylene Chloride < .2 ppb WG596917 06/08/12 n-Hexane < .2	Methyl methacrylate	< .2				WG596917 06/08/12	13:1
n-Hexane < .2	MTBE	< .2	ppb			WG596917 06/08/12	13:1
Naphthalene < .63	Methylene Chloride	< .2	ppb			WG596917 06/08/12	13:1
Naphthalene < .63	n-Hexane					WG596917 06/08/12	13:1
Propene < .4 ppb WG596917 06/08/12 Styrene < .2	Naphthalene					WG596917 06/08/12	13:1
Propene < .4 ppb WG596917 06/08/12 Styrene < .2	o-Xylene	< .2				WG596917 06/08/12	13:1
Styrene < .2 ppb WG596917 06/08/12 Tetrachloroethylene < .2	Propene	< .4				WG596917 06/08/12	13:1
Image: Petrachloroethylene < .2 ppb WG596917 06/08/12 Internative of the standard of the standa						WG596917 06/08/12	13:1
Iterahydrofuran < .2 ppb WG596917 06/08/12 Ioluene < .2	-	< .2				WG596917 06/08/12	
Toluene < .2 ppb WG596917 06/08/12 IPH (GC/MS) Low Fraction < 50	-					WG596917 06/08/12	
IPH (GC/MS) Low Fraction < 50 ppb WG596917 06/08/12						WG596917 06/08/12	
						WG596917 06/08/12	
trans-1,2-Dichloroethene < .2 ppb WG596917 06/08/12	trans-1,2-Dichloroethene	< .2	ppb			WG596917 06/08/12	

* Performance of this Analyte is outside of established criteria.

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

SICIIEINICES

YOUR LAB OF CHOICE

Apex Environmental Inc - Parkers Prairie Jeff Vosburgh 60801 Cty Hwy 46

Parkers Prairie, MN 56361

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L579284

June 12, 2012

		T - 1				
Analyte	Result	Laboratory Units	% Rec	Limit	Batch D	ate Analyzed
trans-1,3-Dichloropropene	< .2	ppb			WG596917 0	6/08/12 13:11
Trichloroethylene	< .2	ppb				6/08/12 13:11
Trichlorofluoromethane	< .2	ppb				6/08/12 13:11 6/08/12 13:11
Vinyl acetate	< .2	ddd				6/08/12 13:11
Vinyl Bromide	< .2	ddd pbp				6/08/12 13:11 6/08/12 13:11
Vinyl chloride	< .2	dqq				6/08/12 13:11 6/08/12 13:11
1,4-Bromofluorobenzene	< . 2	% Rec.	89.23	60-140		6/08/12 13:11
1,4-BIOMOIIU010Denzene		% Rec.	09.23	00-140	WG390917 U	0/00/12 13.11
2-Butanone (MEK)	< 1.25	ppb				6/11/12 16:52
Acetone	< 1.25	ppb				6/11/12 16:52
Dichlorodifluoromethane	< .2	ppb				6/11/12 16:52
1,4-Bromofluorobenzene		% Rec.	84.29	60-140	WG597265 0	<u>6/11/12</u> 16:52
		Laboratory Con	trol Sample			
Analyte	Units	Known Val	Result	% Rec	Limit	Batch
1,1,1-Trichloroethane	ppb	3.75	3.73	99.6	70-130	WG596917
1,1,2,2-Tetrachloroethane	ppb	3.75	4.09	109.	70-130	WG596917
1,1,2-Trichloroethane	ppb	3.75	3.88	103.	70-130	WG596917
1,1,2-Trichlorotrifluoroethane	ppb	3.75	3.73	99.4	70-130	WG596917
1,1-Dichloroethane	ppb	3.75	3.48	92.8	70-130	WG596917
1,1-Dichloroethene	ppb	3.75	3.48	92.7	70-130	WG596917 WG596917
1,2,4-Trichlorobenzene	ppb	3.75	4.24	113.	54-153	WG596917
1,2,4-Trimethylbenzene	ppb	3.75	4.32	115.	70-130	WG596917
1,2-Dibromoethane	ppb	3.75	3.92	105.	70-130	WG596917 WG596917
1,2-Dichlorobenzene	ppb	3.75	4.32	115.	70-130	WG596917
1,2-Dichloroethane	ppb	3.75	3.58	95.4	70-130	WG596917
1,2-Dichloropropane	ppb	3.75	3.58	95.4	70-130	WG596917
1,2-Dichlorotetrafluoroethane	ppb	3.75	3.67	97.9	70-130	WG596917
1,3,5-Trimethylbenzene	ppb	3.75	4.27	114.	70-130	WG596917 WG596917
1,3-Butadiene	ppb	3.75	3.76	100.	70-130	WG596917
1,3-Dichlorobenzene	ppb	3.75	4.27	114.	70-130	WG596917
1,4-Dichlorobenzene	ppb	3.75	4.34	114.	70-130	WG596917 WG596917
2,2,4-Trimethylpentane	ppb	3.75	3.71	98.9	70-130	WG596917 WG596917
2-Chlorotoluene		3.75	4.25	113.	70-130	WG596917 WG596917
2-Propanol	ppb ppb	3.75	3.33	88.8	70-130	WG596917 WG596917
4-Ethyltoluene		3.75	4.16	111.	70-130	WG596917 WG596917
4-Methyl-2-pentanone (MIBK)	dqq ppb	3.75	3.41	91.0	36-158	WG596917 WG596917
Allyl chloride		3.75	3.45	92.1	70-130	WG596917 WG596917
Benzene	ppb ppb	3.75	3.69	98.3	70-130	WG596917 WG596917
Benzyl Chloride	ppb	3.75	4.29	114.	70-130	WG596917 WG596917
Bromodichloromethane		3.75	3.71	98.9	70-130	WG596917 WG596917
Bromoform	ppb	3.75	4.39	117.	70-130	WG596917 WG596917
Bromomethane	ppb	3.75	3.97	106.	70-130	WG596917 WG596917
Carbon disulfide	ppb	3.75	3.61	96.2	70-130	
Carbon tetrachloride	ppb	3.75	3.66	97.5	70-130	WG596917
	ppb		3.92	105.		WG596917
Chlorobenzene	ppb	3.75			70-130	WG596917
Dibromochloromethane	ppb	3.75	3.98	106.	70-130	WG596917
Chloroethane	ppb	3.75	4.02	107.	70-130	WG596917
Chloroform	ppb	3.75	3.62	96.6	70-130	WG596917
Chloromethane	ppb	3.75	3.47	92.4	70-130	WG596917
cis-1,2-Dichloroethene	ppb	3.75	3.55	94.7	70-130	WG596917
cis-1,3-Dichloropropene	ppb	3.75	3.66	97.6	70-130	WG596917
Cyclohexane	ppb	3.75	3.24	86.3	70-130	WG596917
Ethanol	ppb	3.75	3.71	99.0	70-130	WG596917
Ethylbenzene	ppb	3.75	3.82	102.	70-130	WG596917
Heptane	ppb	3.75	3.49	93.1	70-130	WG596917
Hexachloro-1,3-butadiene	ppb	3.75	4.34	116.	50-149	WG596917

* Performance of this Analyte is outside of established criteria. For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

SICIIEINICES

YOUR LAB OF CHOICE

Apex Environmental Inc - Parkers Prairie Jeff Vosburgh 60801 Cty Hwy 46

Parkers Prairie, MN 56361

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L579284

June 12, 2012

		Laboratory Con				
Analyte	Units	Known Val	Result	% Rec	Limit	Batch
Isopropylbenzene	ppb	3.75	4.12	110.	70-130	WG59691
m&p-Xylene	ppb	7.5	7.74	103.	70-130	WG59691
Methyl Butyl Ketone	ppb	3.75	3.40	90.7	38-153	WG59691
Methyl methacrylate	ppb	3.75	3.66	97.6	70-130	WG59691
MTBE	ppb	3.75	3.80	101.	70-130	WG59691
Methylene Chloride	ppb	3.75	3.17	84.5	70-130	WG59691
n-Hexane	ppb	3.75	3.50	93.5	70-130	WG59691
Naphthalene	ppb	3.75	3.71	98.8	54-154	WG59691
o-Xylene	dqq	3.75	3.94	105.	70-130	WG59691
Propene	dqq	3.75	3.25	86.7	70-130	WG59691
Styrene	ppb	3.75	4.13	110.	70-130	WG59691
Tetrachloroethylene	ppb	3.75	4.00	107.	70-130	WG59691
Tetrahydrofuran	dqq	3.75	3.67	97.9	70-130	WG59691
Foluene	ppb	3.75	3.85	103.	70-130	WG59691
TPH (GC/MS) Low Fraction	ppb	150	146.	97.4	70-130	WG59691
crans-1,2-Dichloroethene	dqq	3.75	3.47	92.6	70-130	WG59691
trans-1,3-Dichloropropene	ppb	3.75	3.85	103.	70-130	WG59691
Trichloroethylene	ppb	3.75	3.72	99.3	70-130	WG59691
Frichlorofluoromethane	dqq	3.75	3.98	106.	70-130	WG59691
Vinyl acetate	dqq	3.75	3.79	101.	70-130	WG59691
Jinyl Bromide	ppb	3.75	3.95	105.	70-130	WG59691
Vinyl chloride	dqq	3.75	3.79	101.	70-130	WG59691
l,4-Bromofluorobenzene				103.5	60-140	WG59691
2-Butanone (MEK)	ppb	3.75	3.90	104.	70-130	WG59726
Acetone	ppb	3.75	3.45	91.9	70-130	WG59726
Dichlorodifluoromethane	ppb	3.75	3.71	99.0	70-130	WG59726
.4-Bromofluorobenzene				98.93	60-140	WG59726

Laboratory Control Sample Duplicate										
Analyte	Units	Result	Ref	%Rec	Limit	RPD	Limit	Batch		
1,1,1-Trichloroethane	ppb	3.78	3.73	101.	70-130	1.23	25	WG596917		
1,1,2,2-Tetrachloroethane	ppb	4.19	4.09	112.	70-130	2.47	25	WG596917		
1,1,2-Trichloroethane	ppb	3.99	3.88	106.	70-130	2.81	25	WG596917		
1,1,2-Trichlorotrifluoroethane	ppb	3.81	3.73	102.	70-130	2.19	25	WG596917		
1,1-Dichloroethane	ppb	3.59	3.48	96.0	70-130	3.18	25	WG596917		
1,1-Dichloroethene	ppb	3.53	3.48	94.0	70-130	1.53	25	WG596917		
1,2,4-Trichlorobenzene	ppb	4.32	4.24	115.	54-153	1.89	25	WG596917		
1,2,4-Trimethylbenzene	ppb	4.41	4.32	118.	70-130	1.89	25	WG596917		
1,2-Dibromoethane	ppb	4.05	3.92	108.	70-130	3.21	25	WG596917		
1,2-Dichlorobenzene	ppb	4.43	4.32	118.	70-130	2.36	25	WG596917		
1,2-Dichloroethane	ppb	3.70	3.58	98.0	70-130	3.22	25	WG596917		
1,2-Dichloropropane	ppb	3.75	3.58	100.	70-130	4.86	25	WG596917		
1,2-Dichlorotetrafluoroethane	ppb	3.76	3.67	100.	70-130	2.45	25	WG596917		
1,3,5-Trimethylbenzene	ppb	4.42	4.27	118.	70-130	3.31	25	WG596917		
1,3-Butadiene	ppb	3.88	3.76	103.	70-130	2.95	25	WG596917		
1,3-Dichlorobenzene	ppb	4.36	4.27	116.	70-130	2.05	25	WG596917		
1,4-Dichlorobenzene	ppb	4.44	4.34	118.	70-130	2.25	25	WG596917		
2,2,4-Trimethylpentane	ppb	3.68	3.71	98.0	70-130	0.860	25	WG596917		
2-Chlorotoluene	ppb	4.37	4.25	116.	70-130	2.60	25	WG596917		
2-Propanol	ppb	3.47	3.33	92.0	70-130	4.14	25	WG596917		
4-Ethyltoluene	ppb	4.30	4.16	114.	70-130	3.31	25	WG596917		
4-Methyl-2-pentanone (MIBK)	ppb	3.61	3.41	96.0	36-158	5.59	25	WG596917		
Allyl chloride	ppb	3.46	3.45	92.0	70-130	0.130	25	WG596917		
Benzene	ppb	3.80	3.69	101.	70-130	2.94	25	WG596917		
Benzyl Chloride	ppb	4.36	4.29	116.	70-130	1.59	25	WG596917		
Bromodichloromethane	ppb	3.86	3.71	103.	70-130	4.05	25	WG596917		
* Derformende of this Applite i	a outaido	of ogtobly	ahad anit	omio						

* Performance of this Analyte is outside of established criteria. For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 6 of 8

A · B SICILEINICIES

YOUR LAB OF CHOICE

Apex Environmental Inc - Parkers Prairie Jeff Vosburgh 60801 Cty Hwy 46

Parkers Prairie, MN 56361

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L579284

June 12, 2012

Analyte	Theite	Result	Ref	Sample Duplicat %Rec	Limit	RPD	Limit	Batch
Analyte	UNILS	Result	Rel	*Rec	LIMIC	RPD	LIUITC	Batch
Bromoform	dqq	4.54	4.39	121.	70-130	3.29	25	WG5969
Bromomethane	dqq	4.07	3.97	108.	70-130	2.42	25	WG5969
Carbon disulfide	dqq	3.63	3.61	97.0	70-130	0.670	25	WG5969
Carbon tetrachloride	dqq	3.73	3.66	99.0	70-130	1.89	25	WG5969
Chlorobenzene	dqq	4.04	3.92	108.	70-130	2.98	25	WG5969
Dibromochloromethane	dqq	4.12	3.98	110.	70-130	3.53	25	WG5969
Chloroethane	dqq	4.18	4.02	111.	70-130	3.99	25	WG5969
Chloroform	dqq	3.71	3.62	99.0	70-130	2.40	25	WG5969
Chloromethane	dqq	3.53	3.47	94.0	70-130	1.86	25	WG5969
is-1,2-Dichloroethene	dqq	3.61	3.55	96.0	70-130	1.71	25	WG5969
is-1,3-Dichloropropene	dqq	3.86	3.66	103.	70-130	5.24	25	WG5969
Cyclohexane	dqq	3.37	3.24	90.0	70-130	4.01	25	WG5969
Thanol	dqq	3.35	3.71	89.0	70-130	10.3	25	WG5969
Ithylbenzene	dqq	3.91	3.82	104.	70-130	2.35	25	WG5969
leptane	dqq	3.66	3.49	98.0	70-130	4.71	25	WG5969
<pre>Iexachloro-1,3-butadiene</pre>	dqq	4.44	4.34	118.	50-149	2.31	25	WG5969
Isopropylbenzene	dqq	4.25	4.12	113.	70-130	3.04	25	WG5969
n&p-Xylene	ppb	7.91	7.74	105.	70-130	2.08	25	WG5969
Methyl Butyl Ketone	dqq	3.60	3.40	96.0	38-153	5.60	25	WG5969
Methyl methacrylate	dqq	3.66	3.66	97.0	70-130	0.100	25	WG5969
/TBE	dqq	3.93	3.80	105.	70-130	3.37	25	WG59693
Methylene Chloride	dqq	3.29	3.17	88.0	70-130	3.68	25	WG5969
1-Hexane	dqq	3.52	3.50	94.0	70-130	0.300	25	WG59693
Japhthalene	dqq	3.75	3.71	100.	54-154	1.26	26	WG5969
-Xylene	dqq	4.01	3.94	107.	70-130	1.75	25	WG5969
Propene	dqq	3.39	3.25	90.0	70-130	4.28	25	WG5969
Styrene	dqq	4.17	4.13	111.	70-130	1.04	25	WG5969
Tetrachloroethylene	ppb ppb	4.10	4.00	109.	70-130	2.40	25	WG5969
Tetrahydrofuran	dqq dqq	3.65	3.67	97.0	70-130	0.480	25	WG59691
Foluene	dqq	3.99	3.85	106.	70-130	3.46	25	WG59691
TPH (GC/MS) Low Fraction	dqq	140.	146.	93.0	70-130	4.12	25	WG59691
crans-1,2-Dichloroethene	dqq dqq	3.55	3.47	95.0	70-130	2.16	25	WG59691
rans-1,3-Dichloropropene	dqq	4.02	3.85	107.	70-130	4.24	25	WG5969
Trichloroethylene	dqq	3.83	3.72	107.	70-130	2.73	25	WG59691
Trichlorofluoromethane	dqq dqq	4.05	3.98	102.	70-130	1.75	25	WG5969
Vinyl acetate	ddd gdd	3.80	3.79	103.	70-130	0.420	25	WG5969
'inyl Bromide	dqq dqq	4.10	3.95	101.	70-130	3.69	25	WG5969
'inyl chloride		3.83	3.79	109.	70-130	0.990	25	WG5969
.,4-Bromofluorobenzene	ppb	2.02	5.19	102.8	60-140	0.990	20	WG5969 WG5969
,4-Bromorruorobenzene				102.0	00-140			WG5909.
-Butanone (MEK)	dqq	3.75	3.90	100.	70-130	3.96	25	WG5972
cetone	dqq	3.34	3.45	89.0	70-130	3.24	25	WG5972
Dichlorodifluoromethane	dqq	3.56	3.71	95.0	70-130	4.17	25	WG5972
1,4-Bromofluorobenzene	PPD	5.50	5.71	97.05	60-140	1.1/	25	WG59720

Batch number /Run number / Sample number cross reference

WG596917: R2204957: L579284-01 WG597265: R2206536: L579284-01

 \ast \ast Calculations are performed prior to rounding of reported values. * Performance of this Analyte is outside of established criteria. For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 7 of 8

Apex Environmental Inc - Parkers Prairie Jeff Vosburgh 60801 Cty Hwy 46

Parkers Prairie, MN 56361

Quality Assurance Report Level II

L579284

The data package includes a summary of the analytic results of the quality control samples required by the SW-846 or CWA methods. The quality control samples include a method blank, a laboratory control sample, and the matrix spike/matrix spike duplicate analysis. If a target parameter is outside the method limits, every sample that is effected is flagged with the appropriate qualifier in Appendix B of the analytic report.

Method Blank - an aliquot of reagent water carried through the entire analytic process. The method blank results indicate if any possible contamination exposure during the sample handling, digestion or extraction process, and analysis. Concentrations of target analytes above the reporting limit in the method blank are qualified with the "B" qualifier.

Laboratory Control Sample - is a sample of known concentration that is carried through the digestion/extraction and analysis process. The percent recovery, expressed as a percentage of the theoretical concentration, has statistical control limits indicating that the analytic process is "in control". If a target analyte is outside the control limits for the laboratory control sample or any other control sample, the parameter is flagged with a "J4" qualifier for all effected samples.

Matrix Spike and Matrix Spike Duplicate - is two aliquots of an environmental sample that is spiked with known concentrations of target analytes. The percent recovery of the target analytes also has statistical control limits. If any recoveries that are outside the method control limits, the sample that was selected for matrix spike/matrix spike duplicate analysis is flagged with either a "J5" or a "J6". The relative percent difference (%RPD) between the matrix spike and the matrix spike duplicate recoveries is all calculated. If the RPD is above the method limit, the effected samples are flagged with a "J3" qualifier. 12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

June 12, 2012

Company Name/Address:		Billing	Informatio	on:			Ana	alvsis/Cor	ntainer/Pro	eservative		Chain of Custody Page of
Apex Environmental In Parkers Prairie 60801 Ctv Hwy 46	nc -	Jef 608	f Vosbur 801 Cty I	gh Hwy 46								SC
Parkers Prairie.MN 56361		Par	Parkers Prairie,MN 56361								LIAIB SIG	J-E-N-C-E-S
FAX: (218) 338-5049	$\frac{PCE}{Project #:}$	AXN	ity/Sate ollected N ESC Key:	EW PR	Aque,	Mr	SUMA				Mt. Juliet, Phone: (800 Phone: (615 Fax: (615) 767-5859
Collected by (print) 6 0 80 8 1 Site Collected by (signature):		571 ST Be Not	P.O.#: tified)	Date Result	ts Needed:						CoCode APEXPP	MN (lab use only)
Immediately Packed on the N Y	Same D Next Da Two Day	ay2 y	00% 00% 0%	Email?N FAX?N	lo_Yes	No. of	5-0				Template/Prelogin Shipped Via:	
Sample ID Con			25% Depth	Date	Time	Cntrs					Remarks/Contaminant	Sampie # (lab only)
SV-18 0	GRAS A	IR		6/5/12	1:53	1	X					1579284-01
								Contentr				de la
										-		
					- <i>i</i>							
*Matrix: SS - Soil/Solid GW - Groundwat	er WMV - Wastel		- Drinking	Water OT	Other		L			pH	Ter	up
Remarks:			erinking		•	っと	87		2 - 5	Flov		
Rendquined by: (Signature)	Date: 6/5/12	Time:	Receive	ed by: (Signa		/ /	01	Sampl	es returned Ex Cou	I via: TUPS	Condition	(lab use only)
Relinquished by: (Signature)	 Date:	Time:	Receive	ed by: (Signa	ture)			Temp:		Bottles Recei	ved: CoC Seals Intact	
Relinquished by: (Signature)	Date:	Time:	Receiv	/ed for lab_by	(Signature)			Date:		Time: ÖNW	pH Checked:	NCF:

Appendix G Methodologies and Procedures

.

.

STANDARD OPERATING PROCEDURE FOR FIELD SCREENING SOIL SAMPLES

The Field screening techniques for soils are as follows: (1) Visual Examination; (2) Headspace Organic Vapor Screening; and, (3) we will also observe for <u>incidental</u> odor. The results of these three screening procedures may be used to screen soil samples for possible contamination.

Visual Examination: A visual examination of the soil sample will include noting any discoloration of the soil or visible oiliness or tar.

Odor: The sampler will note odor <u>**onlv**</u> if noticed incidentally while handling the soil sample. Samplers will <u>**not**</u> unduly expose themselves to sample odors. Odor will be described as light, moderate, or strong and appropriate description of the type and odor, if evident.

Headspace Organic Vapor Screening: The headspace organic vapor screening method will be used in the field to screen soils suspected to contain volatile organic compounds. The screen method is intended to be used in conjunction with other "real time" observations.

The following equipment is required to conduct headspace organic vapor screening: a photoionization detector (PID); clean new pint-size baggies with a ziplock top; a log book or record sheet, and the appropriate personal protective equipment necessary for collection and handling of soil samples as described in the Project Health and Safety Plan (PHASP). The meter shall be calibrated daily or more frequently if suspect data is obtained (see SOP for PID operation.

The following will be used for conducting headspace organic vapor screening:

- 1. Soil samples collected from hand auger, surface soil excavations or backhoe bucket subsamples will be collected immediately after exposing fresh soil. Soil samples collected from split spoons or acetate liners will be collected immediately after opening the sampling device.
- 2. Half fill a clean baggie with the sample to be analyzed using a stainless steel spoon or by hand(s) wearing a clean new disposable vinyl or latex glove. Quickly seal the baggie.
- 3. Agitate the baggie for approximately 15 seconds, breaking up the soil as much as possible.
- 4. Allow headspace development for approximately 5-10 minutes. The sample should be kept in a shaded area out of direct sunlight. Ambient temperature during headspace development should be recorded.

When ambient temperatures are below 50° F, headspace development should be conducted inside a heated vehicle or building.

- 5. Agitate the baggie for an additional approximate 15 seconds, further breaking up the soil.
- 6. Quickly puncture the baggie seal with the sampling probe to a point about one-half of the headspace depth. Exercise care to avoid uptake of water droplets or soil particles.
- 7. Record the <u>highest</u> meter response as the headspace concentration. The maximum response will likely occur between zero to five seconds, if meter readings are erratic note this in the logbook, denoting which headspace sample the note applies to.

STANDARD OPERATING PROCEDURE FOR COLLECTION OF SOIL SAMPLES FOR LABORATORY ANALYSES

All sampling tools including picks, shovels, stainless steel spoons and scoops will be cleaned before use and between samples in the following manner: (1) Clean with tap water and Alconox, using a brush if necessary to remove particulate matter and films. (2) Rinse with tap water; and (3) rinse with deionized water. To prevent sample cross-contamination, the sampler will discard the outer pair of sample gloves and put on a clean new pair of either latex or vinyl disposable gloves between each sample event.

Note: Soil sample collection should follow field screening of the soil sample interval. The sampler should carefully follow guidance given in the Health and Safety Plan regarding exposure to contaminants that may exist in soil samples.

Collecting Volitile Organic Samples (Cut Syringe or Hand Method)

The following procedure applies to the collection of soil for volatile analysis from the following samplers: a backhoe bucket, Geoprobe Macrocore or large bore sampler or split spoon.

- 1. Collect a large sample from the sampler directly from the fresh soil surface using the criteria identified below, **prior** to homogenizing for other analyses.
 - a) If sample recovery is 80% or greater in the sampler and the material is uniform collect the sample from the center of the recovered material in the sampler.
 - b) If sample recovery is less than 80% collect the sample approximately 2 inches from the bottom of the recovered material.
 - c) If there is an area in the recovered material in the sampler which has visible staining or observed incidental odors, collect the sample from this area.
 - d) If there is an observed strata change within the soil recovered in the sampler collect the sample from the base of the upper strata.
 - c) If groundwater is encountered in the sampler collect the soil sample from the material just above the saturated material.
- 2. Using either a cut syringe or a hand wearing a clean new disposable glove, weigh 25 grams of a representative soil sample on a field balance. If the sample is collected by hand skip to step number 4. If the sample is collected with a cut syringe continue with step 2. Once a weight/volume estimate has been established, discard the soil and collect untouhed soil, from the same sample source. Proceed to step number 3.
- Using a cut syringe, place the predetermined volume (as determined in step number 2) of soil in a laboratory-provided sample container.

3.

4. Add a pre-determined volume, as provided by the laboratory, of methanol to the sample jar.

,

- 5. Wipe the jar lip and screw threads to remove soi and provide a good sealing surface, and immediately screw on the lid.
- 6. Complete the information on the sample container label and place the sample container in a water tight bag.
- 7. Cool the sample to approximately 4°C immediately after collection, by placing the sample in a cooler with ice.

Soil Sampling

To collect continuous soil samples, a core sample barrel 54 inches in length, will be attached to the leading end of the probe rods. The sampler will be advanced at four foot vertical intervals to collect a continuous soil sample 1.5 inches in diameter. The continuous barrel sampler and probe rods will be advanced allowing soil to enter a plastic inner sleeve as the sampler is driven. The barrel sampler is then retracted, the plastic sleeve removed and submitted to APEX Environmental's on-site geologist for soils classification, headspace analysis and sample collection for on-site chemical analysis.

Soil Classification

As samples are obtained in the field, visual and manual classification by their crew chief in accordance with ASTM:D2487-84 and ASTM:D2488 will be conducted. Representative portions of these samples will then be returned to the laboratory for further examination and verification of the field classification. Logs of the borings indicating the depth and identification of the various strata, water level information and pertinent information regarding the method of maintaining and advancing the drill holes will be attached.

Soil Sample Collection

The soil samples for field screening will be collected in laboratory cleaned, glass soil jars with teflon-lined lids. The soil samples obtained for laboratory analysis will be collected in laboratory cleaned, four ounce glass jars with teflon-lined lids.

Soil Sample Screening

The soil samples will be screened for the presence of organic vapors as indications of hydrocarbon contamination using an OVM Model 580b Photoionization Detector (PID) equipped with a 10.6 eV lamp. This instrument provides readings which are parts per million equivalents of the calibration gas. The lower detectable limit is approximately 1 ppm. The soil samples will be collected and screened according to the Polyethylene Bag Method recommended by the MPCA.

Groundwater Sample Collection

To collect groundwater samples, the lead probe rod will have either a retractable drive point at the tip or a slotted (0.020" vertical slots) probe rod similar to a well screen. The retractable drive point or slotted screened section is driven below the water table, if a retractable drive point is used the rods are retracted approximately two inches to disengage the drive point exposing the end of the probe rods to the water bearing soils. Clean polyethylene tubing is inserted into the probe rods and connected to a hand actuated vacuum pump to collect a groundwater sample. New, clean polyethylene tubing is used at each sample location. Groundwater samples collected in the polyethylene tubing will be emptied into clean, VOA glass vials, having Teflon@-lined caps, labeled, and will be placed in a cooler on ice.

PRELIMINARY INSPECTION AND MEASUREMENTS

Water Level Measurements

Static water levels are measured in each well immediately prior to pumping or bailing. During initial static water level measurements, a minimum of two water level measurements are made at each well. If there is poor agreement between the first and second static water level measurements (i.e., a difference of more than 0.01 feet), data are reevaluated for measurement errors, unsuspected pumping that may be causing transient changes in gradient, etc. If the discrepancy cannot be rectified, a third static water level measurement is made at each questionable sampling point to assess the true water level, verify non-steady state conditions, etc.

Water level probes are decontaminated between water level measurements in different wells. Water levels are measured with an electric water level indicator and recorded to the nearest 0.01 foot. The water level probe is lowered into the well until the indicator lamp lights and/or a tone sounds indicating contact with the water surface.

Depth to water is measured from a point marked on the top of the innermost well casing (riser). Where a measuring point has not been marked at the top of the casing, the measuring point is assumed to be at the north side of the inner casing. When reporting absolute water level elevation, this measurement is converted to water level elevation (MSL) from the surveyed elevation of the top of well casing.

FIELD WATER QUALITY MEASUREMENTS

Specific conductance, pH, temperature, dissolved oxygen (DO) is measured in the field immediately before sample collection. Calibration information and all measurements are recorded on the GSIF in the field.

General care, maintenance, calibration procedures, and operation of each measurement device also follows manufacturers specifications as detailed in the instruction/owner's manual for each device. Where there are differences in procedures, as defined in this document compared to manuals accompanying measurement devices, the procedures in this document will take precedence.

WELL PURGING AND STABILIZATION

Before sampling a well for dissolved phase constituents, an appropriate volume of water is evacuated to ensure that collected samples contain fresh formation water. While the well is being purged, water quality parameters described in "Field Water Quality Measurements", and the quantity of water evacuated is recorded on the GSIF. Sampling personnel do not touch the inside of sampling containers, inside of bottle caps or rims of sample containers. If contact occurs, sample containers are replaced.

At the well, bottles are labeled and the field personnel fill out chain-of-custody forms according to "Documentation of Sampling Event". To prevent sample bottle misidentification, no sampling-point specific information such as "well name" is completed in advance. Chain-of-custody information is completed before leaving the sampling point. Laboratory prepared bottles assures quality control.

The order of filling water sample bottles for laboratory analysis is as follows:

- 1. Miscellaneous Parameters (GRO,DRO)
- 2. VOC

The sample water discharge tube is held as close as possible, but not contacting the sample container. Sampling personnel shield the sampling container from wind and airborne dust while filling. When strong winds, heavy rain, or dusty conditions are present, additional measures are implemented to prevent background interference.

Volatile Organic Compounds

New factory clean 100 ml glass vials with Teflon septum covers are filled while minimizing turbulence, entrapment of air and overfilling. The vials are not rinsed in the field but are filled completely leaving a positive meniscus at the top of the vial.

Hydrochloric acid specifically prepared and analyzed by the manufacturer (IChem Scientific) is used to preserve volatile organics samples. The acid is added to vials by the manufacturer in advance of sampling. Extra caution is exercised to minimize overfilling.

FIELD QUALITY CONTROL SAMPLES

Sample blanks are collected for detection of background or method contamination. Replicate samples are collected to evaluate variability in analytical methods. QA/QC samples are collected at sampling points suspected of having higher contamination concentrations to provide <u>Trip Blanks</u>, pre-filled 100 ml vials will accompany each cooler containing VOC samples. A field equipment/methods blank sample is collected sometime during the first day of each sampling event (round of sampling) and at every tenth sampling point.

Field Duplicate Samples

Field duplicate samples of actual ground water are collected for all sample parameter types. Duplicate samples are collected by sequentially filling containers, as soon as practical after the primary sample, with a water stream that is as steady and continuous as practical. The

WATER QUALITY MONITORING PROTOCOL

INTRODUCTION

This document defines standard procedures used for water quality measurements and for collecting and handling samples obtained from all required monitoring sites. The laboratory project manager or the field services coordinator, if required by unforeseen circumstances, may approve deviations from the written procedures as described below. When prior approvals are not possible, records of deviations from the established procedures conducted in the field require documentation on the groundwater sampling information form (GSIF) and evaluation to determine if resampling is necessary.

GROUNDWATER SAMPLING PROCEDURES

Properly identify the monitoring point before starting field procedures.

Sample in the order specified in the site-specific protocol. Protocol dictates the sampling order to eliminate the risk of cross contamination. Conceptually the sampling order progresses from the least contaminated to the most contaminated monitoring point.

All sampling vehicles are parked at least 25 feet from the monitoring point with engines off before field procedures commence. No sampling is conducted in close proximity of operating heavy equipment or in any conditions unfavorable to representative sample collection.

Wells are inspected for obvious defects or damage and the observations are noted on the appropriate field form.

Static water depth is measured to the nearest +/- 0.01 foot from the top of the inner well casing using an intrinsically safe, electronic water level indicator. The water level indicator probe is lowered slowly down the well casing until the red indicator lights and/or the audio alarm sounds. Raise the probe up until the indicators go off and then lower the probe again just until the indicators give a full detection signal. The depth is read from the measuring tape lead at its intersection with the top of the inner well casing. Record the result on the appropriate field sheet.

Following static water level measurement, continue to lower the water level probe to the bottom of well and record the total depth of well on the appropriate field sheet. Clean the water level indicator probe and measuring tape prior to moving to the next monitoring point.

Calculate the water volume in the well. Subtract the static water level from the total depth of the well and record the volume on the field form. The volume is determined by multiplying the height of the water column by the following factors:

- 2" casing: height (ft) x 0.16 gallons/foot
- 3" casing: height (ft) x 0.37 gallons/foot

Purging of wells is performed using either the stabilization test method or the recovery test method depending on the yield of the well. These tests determine the amount of pumping or bailing required for collection of a representative sample. The same pump used for purging is used for sampling. Pumping rate is continuous and sampling immediately follows purging. The pump is removed immediately after sample collection and the water level measured. Any non-continuous purging is noted on the field form. The purge rate is determined from the draw down characteristics of each well. Sampling rates for all wells should not exceed 100 ml/min. Stabilization times and results are recorded on a stabilization test field form (see Appendix I).

The stabilization test method is performed on wells that have a high yield or that recover very quickly. Either a pump or bailer evacuates the water from the well. If the well recovers rapidly the stabilization test is performed by measuring pH, temperature, and conductivity each time one well volume has been removed. A minimum of three well volumes must be removed before sample collection.

Disposable bailers with new retrieval line are used to stabilize and sample some groundwater wells. All bailer line is kept away from potential contamination sources outside the well including well casings, ground surface and sampling personnel. Powderless latex or nitrile sampling gloves are worn while purging and sampling with bailers. The gloves are discarded after each well is sampled. The bailer must enter the water gently to avoid turbulence or volatilization from the sample. The first three bailer volumes are discarded as rinse water. Teflon bailers are also used to sample some wells after stabilization with a submersible pump.

Methodologies including the sample collection order used for groundwater monitoring are designed to minimize the potential for cross contamination and provide the highest quality analytical results possible.

Samples for organic analyses are collected first. Three volatile organic compound (VOC) sample vials are filled at each sampling, point with water as soon as it reaches the surface. The sample collection is conducted as carefully as possible to avoid any agitation of the water, which could cause volatilization from the sample. The vial must have a positive meniscus before tightening the lid to assure the vial is headspace free (no air bubbles). After the lid is tightened the vial is inverted and tapped to check for entrapped air bubbles. The three individual sample vials are placed in a *Nasco WHIRL-PAK*®, (or equivalent) plastic bag. The VOC samples are transported to the laboratory in a dedicated cooler at 4° C.

After all sample collection is complete the vented inner well casing (riser pipe) cap is replaced and the outer protective well casing cover is re-locked.

Any discrepancies or deviations from standard procedures are documented on the appropriate field form for the monitoring point.

The Geopump is used for purging and sampling all monitoring wells. Well evacuation is continuous during purging and sampling. The same pump is used for both purging and sampling at each individual well.

Field water quality parameters are measured for stabilization after each well volume is purged. One well volume is defined as the water column volume equal to the depth of the static water column inside the well times the volume of the well casing per foot. The typical two inch monitoring well has a volume of 0.1632 gal/ft. The following target criteria for three consecutive measurements (one water-column volume apart) is used to demonstrate stabilization:

- Dissolved Oxvgen ± 0.5 mg/L
- Temperature ± 0.1 degrees Celsius
- Specific conductance (temperature corrected EC) $\pm 5\%$

Samples for laboratory analysis are collected immediately following purging of a minimum of three water column volumes and stabilization of field water quality parameters. If field parameters do not stabilize, after approximately five water column volumes, the field staff will check operator procedures, equipment functioning and well construction information for potential problems. In particular, field staff will verify that water withdrawal is from the appropriate depth to evacuate the well.

MONITORING WELL SAMPLE COLLECTION

A Geopump pump system is used for purging and sample collection. Groundwater is flushed through the in-line filter for at least two minutes before filling sample bottles.

Filling Sample Containers

Individual sample bottles remain closed until they are ready for sample collection. The area surrounding the wellhead is kept as clean as practical to minimize the potential for contamination of samples.

To minimize airborne contamination, containers are filled upwind from engine exhaust sources including vehicles or generators that are left running during sample collection. If conditions are dusty, it is necessary to shield the sample collection area from windborne contamination.

Clean pairs of disposable, powderless latex gloves are used from the onset of sampling activities at each new sampling point. Sampling personnel keep their hands as clean as practical and replace gloves as necessary while performing sampling activities.

Field Duplicate Samples

Field duplicate samples of actual ground water are collected for all sample parameter types. Duplicate samples are collected by sequentially filling containers, as soon as practical after the primary sample, with a water stream that is as steady and continuous as practical. The sequence number (first, second, etc.) and time filled are listed in the field notebook and on the Chain-of-Custody Record in the same manner as primary samples. One field duplicate sample is collected for every site.

DOCUMENTATION OF SAMPLING EVENT

This sampling protocol includes the use of GSIF. The forms are designed for documentation of field activities and collection of field data. They also provide a means to verify whether protocol was followed during essential steps in the groundwater sampling event. Protocol verification requires that all entries on the forms are completed before leaving the sampling point.

Sample Identification

The CoC Records are completed as described previously in the Documentation of Sampling Event section. All primary and QA/QC samples collected at a given sampling point over a discrete interval of time are assigned the same sample event ID #. This number is used to link that set of containers together and associate them with all of the information contained on the Reort of Analysis. All QA/QC samples are collected in the same type of container as the corresponding primary samples. All QA/QC samples are assigned identification aliases on the sample bottle label and on the chain-of-custody form.

Field Blank Samples

Methods that are used for preparing field blank samples are described below.

<u>VOC Trip Blanks</u> are filled and sealed by Apex with laboratory controlled HPLC grade organic-free water. The 100 ml blank sample vials are transported with the actual sample vials in the same cooler so that the blanks are exposed to the same conditions. The blanks remain sealed until they are analyzed with the actual VOC samples they have accompanied.

The CoC is a three-part (carbonless copy) form. When samples are transferred to an analytical laboratory, the laboratory will receive only the laboratory part(s) of the form.

Label information is completed at the sampling point when the sample is collected with the following exceptions. For containers receiving preservatives in advance, the laboratory staff labels "analyses required" and "preservation method" on the sample labels. For containers

receiving preservatives in the field, "preservation method" is labeled when the individual sample container is filled.

Chain-of-Custody Documentation

A Chain-of-Custody (CoC) Record is completed in the field at the time of sampling. A copy will accompany each set of samples (cooler) shipped to the laboratory.

Each time responsibility for custody of the samples changes, the new and previous custodians will sign the record and denote the date and time. The receiving laboratory makes a copy of the signed CoC record. The final signed CoC is submitted with analytical results in the Sampling and Analysis Report.

Signatures in ink are required for change sample custody on the CoC. One or more signatures are entered to identify the person or persons who are collecting the samples. Each time the custody of a sample or group of samples is transferred, a signature, date and time is entered to document the transfer. A sample is considered in custody if it is in any of the following conditions:

- In actual physical possession.
- In view, after being in physical possession.
- In physical possession and secured (locked) against tampering.
- In a secured area, restricted from unauthorized personnel.

A secured area such as a locked storage shed or vehicle specified in the "comments" column, are approved temporary storage facilities. When using such an area, the time, date, and location of the secured area is recorded in the "relinquished by" space. The time at which an individual regains custody is recorded in the "received by" space on the form.

Chain-of-Custody During Shipping

When samples are shipped, the person sealing the shipping container enters the time, date and their signature on the CoC. The laboratory part of the CoC is transported in the container with the samples. The first page is transferred to site project manager. A post office receipt, bill-of-lading or similar document from the shipper is retained as part of the permanent CoC documentation.

The receiving laboratory is notified in advance of chain-of-custody procedures required for each group of samples. The laboratory is required to sign the appropriate blank on the CoC at the time of receipt. A copy of the original signed CoC record is returned to the project manager.

EQUIPMENT DECONTAMINATION

All sampling equipment is laboratory decontaminated before use in the field. All equipment is stored to preclude contact with any possible source of contamination before transport to the landfill.

All sampling related equipment undergoes the appropriate field decontamination procedures before re-used. Field decontamination is performed immediately prior to the purging/sampling procedure as close to the sampling site as possible without impacting the sampling zone.

Strict adherence to cleaning and decontamination procedures is essential for valid sample collection. Depending on the type of exposure to contamination and their intended use, some equipment may require solvent, steam, or acid cleaning.

SAMPLING AND PURGING EQUIPMENT

Teflon Bailers

Apex uses teflon bailers for certain volatile organic compounds (VOC) sample collection. Galtec, Inc., Johnson Screens and ISCO, Inc. manufacture Teflon bailers used by Apex. The bailers are 1.66 inches in diameter, 1 to 4 feet long, and have ball check-valve inlets with Vnotch tops. Volume capacities range from 250 ml to 1000 ml.

Only new or laboratory pre-cleaned bailers are used for one monitoring point each day. Cleaning procedures include cleaning in the laboratory with a Liquinox detergent solution, hot tap water, and industrial strength cylindrical brushes. The bailers are then rinsed with three volumes of de-ionized water, immersed in isopropyl alcohol and then rinsed thoroughly again with three volumes of de-ionized water. After the final rinse, the bailers are dried at 103° C in an air-dry oven for a minimum of 20 minutes. After drying, bailers are wrapped in new aluminum foil until use.

Bailer Line

Bailer line consists of nylon cord, lightweight rope or braided stainless steel line for down riggers. Line contact with the ground or other dirty surfaces is prevented. Nylon bailer line is disposable and used only once. Stainless steel leaders are used between the bailers and the down-rigger line. Each sampling point uses a separate leader. Cleaning procedures for stainless steel lines and leaders are the same as for Teflon bailers.

Geopump Peristaltic Pump System

Apex is equipped with a Geopump Peristaltic Pump. The Geopump is designed for single and multi-stage pressure or vacuum pumping of liquids from wells with limited or slow yields. The pump operates by mechanical peristalsis so the sample only comes in contact with the tubing. this allows for sample integrity. The pump system incorporates vary lengths of disposable silicone discharge tubing stored in new, disposable polyethylene packages.

Cleaning the Geopump Peristaltic Pump system in a controlled laboratory area uses the following steps:

- 1. The outside of the pump is cleaned with a hot water pressure rinse.
- 2. The interiors of the pump and discharge line are cleaned with soapy tap water (Alconox solution).
- 3. The pump and discharge lines are rinsed with clean tap water, followed by a deionized water rinse.
- 4. The equipment is air dried after completion of the final rinse
- 5. The pump is transported in a dedicated PVC case.
- 6. In addition, if the PVC transport case undergoes the same decontamination process as the pump before reuse.
- 7. Visual verification of soapy residue and/or other potential contamination removal follows each decontamination step.

Transported and storage of all pump equipment is performed to minimize the potential for contamination. Pump system field procedures minimize cross-contamination and avoids surface or ambient air contamination from entering wells. When necessary, the pump system field cleaning consists of the following:

- All parts of the pump system that contact groundwater or the inner well casing are cleaned with an Alconox solution applied with a scrub brush or with a steam cleaner inside and out.
- The water source for cleaning is of potable water quality.
- After the washing procedure, the pumping equipment is rinsed three (3) times with clean, potable water.
- A final rinse follows using de-ionized water.
- Visual inspection follows each step of the field decontamination cycle to ensure that contamination from soapy residue, etc. have been removed before insertion of the pumping system into a subsequent well.

Water Level Indicators

Static groundwater levels and depths are measured at the monitoring well locations before purging and sampling procedures commence. Static water level measurements are conducted using a Solinist Model 12454 electronic meter providing intrinsically safe measurements to 0.01 ft. A built-in sensitivity control allows adjustment for varying conductivity conditions. The probe is made of stainless steel and attached to flat tape of stranded stainless steel coated with polyethylene. Before each sampling event, the stainless steel probes and measuring tape are decontaminated in the laboratory.

Laboratory cleaning is accomplished using a solution that contains 5 parts HCL, 3 parts isopropyl alcohol, and 92 parts de-ionized water. After cleaning, the probes and measuring tape are rinsed at least three (3) times with de-ionized water and air dried. In the field, the probe and measuring tape are cleaned thoroughly with de-ionized water and dried with disposable towels after every measurement.

Hana Water Quality Meter

The Hana Water Quality Meter is an electronic instrument for simultaneous multi-parameter measurement of water quality. The Hana measures four different parameters of water samples: pH, conductivity, dissolved oxygen, and temperature. All four parameters are measured simultaneously. These parameters may be stored in memory, printed, or viewed on the LCD of the instrument.

Calibration of the Hana is either manual or automatic. The 4-parameter auto-calibration procedure should be sufficient for most measurement operations. Manual calibration is more accurate and is used for laboratory precision calibration prior to fieldwork. The auto-calibration is utilized in the field to update the instrument as necessary (every three hours minimum).

FIELD PROCEDURE QUALITY ASSURANCE

Commonly background or cross-contamination can compromise water samples integrity. Some examples include:

- Improper storage or transport of equipment.
- Contaminating equipment or sample bottles on site by setting them on or near potential contamination sources such as uncovered ground, a vehicle, or vehicle exhaust.
- Handling bottles or equipment with dirty hands or gloves.
- Inadequate cleaning of well purging or sampling equipment.

Special care is required to prevent cross-contamination of sampling equipment, sample bottles, or anything else that could potentially compromise the integrity of samples. Field personnel should assume that contamination exists in soil and vegetation near sampling points, wash water, etc. The following precautions minimize the potential for cross-contamination:

- Minimizing the amount of rinse water left on washed materials.
- Minimizing the time sample containers are exposed to airborne dust or volatile contaminants in ambient air.
- Avoid placing any sampling equipment directly on the ground.

All field crew will wear new clean gloves made of appropriately inert material.

Only new clean gloves are used while handling equipment with potential for contact with samples.

Gloves are replaced if they become soiled and between each sampling site.

SOIL GAS SAMPLING

SOP#: 2042 DATE: 06/01/96 REV. #: 0.0

1.0 SCOPE AND APPLICATION

Soil gas monitoring provides a quick means of waste site evaluation. Using this method, underground contamination can be identified, and the source, extent, and movement of the pollutants can be traced.

This standard operating procedure (SOP) outlines the methods used by U.S. EPA/ERT in installing soil gas wells; measuring organic vapor levels in the soil gas using a Photoionization Detector (PID), Flame Ionization Detector (FID) and/or other air monitoring devices; and sampling the soil gas using Tedlar bags, Tenax sorbent tubes, and/or Summa canisters.

These are standard (i.e., typically applicable) operating procedures which may be varied or changed as required, dependent on site conditions, equipment limitations or limitations imposed by the procedure. In all instances, the ultimate procedures employed should be documented and associated with the final report.

Mention of trade names or commercial products does not constitute U.S. EPA endorsement or recommendation for use.

2.0 METHOD SUMMARY

A 3/8" diameter hole is driven into the ground to a depth of four to five feet using a commercially available slam bar. Soil gas can also be sampled at other depths by the use of a longer bar or bar attachments. A 1/4" O.D. stainless steel probe is inserted into the hole. The hole is then sealed around the top of the probe using modeling clay. The gas contained in the interstitial spaces of the soil is sampled by pulling the sample through the probe using an air sampling pump. The sample may be stored in Tedlar bags, drawn through sorbent cartridges, or analyzed directly using a direct reading instrument. The air sampling pump is not used for Summa canister sampling of soil gas. Sampling is

achieved by soil gas equilibration with the evacuated Summa canister.

Other field air monitoring devices, such as the combustible gas indicator (MSA CGI/02 Meter, Model 260) and the Organic Vapor Analyzer (Foxboro OVA, Model 128), can also be used dependent on specific site conditions. Measurement of soil temperature using a temperature probe may also be desirable. Bagged samples are usually analyzed in a field laboratory using a portable Photovac GC.

Power driven sampling probes may be utilized when soil conditions make sampling by hand unfeasible (i.e., frozen ground, very dense clays, pavement, etc.). Commercially available soil gas sampling probes (hollow, 1/2 = O.D. steel probes) can be driven to the desired depth using a power hammer (e.g., Bosch Demolition Hammer or GeoprobeTM). Samples can be drawn through the probe itself, or through Teflon tubing inserted through the probe and attached to the probe point. Samples are collected and analyzed as described above.

3.0 SAMPLE PRESERVATION, CONTAINERS, HANDLING, AND STORAGE

3.1 Tedlar Bags

Soil gas samples are generally contained in 1.0-L Tedlar bags. Bagged samples are best stored in dark plastic bags placed in coolers to protect the bags from any damage that may occur in the field or in transit. In addition, coolers insure the integrity of the samples by keeping them at a cool temperature and out of direct sunlight. Samples should be analyzed as soon as possible, preferably within 24 - 48 hours.

3.2 Tenax Tubes

Bagged samples can also be drawn onto Tenax or

other sorbent tubes to undergo lab GC/MS analysis. If Tenax tubes are to be utilized, special care must be taken to avoid contamination. Handling of the tubes should be kept to a minimum and only while wearing nylon or other lint-free gloves. After sampling, each tube should be stored in a clean, sealed culture tube; the ends packed with clean glass wool to protect the sorbent tube from breakage. The culture tubes should be kept cool and wrapped in aluminum foil to prevent any photodegradation of samples (see Section 7.4.).

3.3 Summa Canisters

The Summa canisters used for soil gas sampling have a 6 liter sample capacity and are certified clean by GC/MS analysis before being utilized in the field. After sampling is completed, they are stored and shipped in travel cases.

4.0 INTERFERENCES AND POTENTIAL PROBLEMS

4.1 **PID Measurements**

A number of factors can affect the response of a PID (such as the HNu PI 101). High humidity can cause lamp fogging and decreased sensitivity. This can be significant when soil moisture levels are high, or when a soil gas well is actually in groundwater. High concentrations of methane can cause a downscale deflection of the meter. High and low temperature, electrical fields, FM radio transmission, and naturally occurring compounds, such as terpenes in wooded areas, will also affect instrument response.

Other field screening instruments can be affected by interferences. Consult the manufacturers manuals.

4.2 FID Measurements

A number of factors can affect the response of an FID (such as the OVA model 128). High humidity can cause the FID to flame out or not ignite at all. This can be significant when soil moisture levels are high, or when a soil gas well is actually in groundwater. The FID can only read organic based compounds (they must contain carbon in the molecular structure). The FID also responds poorly to hydrocarbons and halogenated hydrocarbons (such as gasoline, propane fuel). High and low temperature, electrical fields and FM radio transmission will also affect instrument response.

4.3 Factors Affecting Organic Concentrations in Soil Gas

Concentrations in soil gas are affected by dissolution, adsorption, and partitioning. Partitioning refers to the ratio of component found in a saturated vapor above an aqueous solution to the amount in the solution; this can, in theory, be calculated using the Henry's Law constants. Contaminants can also be adsorbed onto inorganic soil components or "dissolved" in organic components. These factors can result in a lowering of the partitioning coefficient.

Soil "tightness" or amount of void space in the soil matrix, will affect the rate of recharging of gas into the soil gas well.

Existence of a high, or perched, water table, or of an impermeable underlying layer (such as a clay lens or layer of buried slag) may interfere with sampling of the soil gas. Knowledge of site geology is useful in such situations, and can prevent inaccurate sampling.

4.4 Soil Probe Clogging

A common problem with this sampling method is soil probe clogging. A clogged probe can be identified by using an in-line vacuum gauge or by listening for the sound of the pump laboring. This problem can usually be eliminated by using a wire cable to clear probe (see Section 7.1.3.).

4.5 Underground Utilities

Prior to selecting sample locations, an underground utility search is recommended. The local utility companies can be contacted and requested to mark the locations of their underground lines. Sampling plans can then be drawn up accordingly. Each sample location should also be screened with a metal detector or magnetometer to verify that no underground pipes or drums exist.

5.0 EQUIPMENT/APPARATUS

5.1 Slam Bar Method

- **C** Slam Bar (1 per sampling team).
- C Soil gas probes, stainless steel tubing, 1/4" O.D., 5 ft length.
- **C** Flexible wire or cable used for clearing the

tubing during insertion into the well.

- C "Quick Connect" fittings to connect sampling probe tubing, monitoring instruments, and Gilian pumps to appropriate fittings on vacuum box.
- C Modeling clay. C Vacuum box fo
- Vacuum box for drawing a vacuum around Tedlar bag for sample collection (1 per sampling team).
- C Gilian pump Model HFS113A adjusted to approximately 3.0 L/min (1 to 2 per sample team).
- **C** 1/4" Teflon tubing, 2 ft to 3 ft lengths, for replacement of contaminated sample line.
- C 1/4" Tygon tubing, to connect Teflon tubing to probes and quick connect fittings.
- C Tedlar bags, 1.0 L, at least 1 bag per sample point.
- C Soil Gas Sampling labels, field data sheets, logbook, etc.
- C PID/FID, or other field air monitoring devices, (1 per sampling team).
- C Ice chest, for carrying equipment and for protection of samples (2 per sampling team).
- C Metal detector or magnetometer, for detecting underground utilities/pipes/drums (1 per sampling team).
- C Photovac GC, for field-lab analysis of bagged samples.
- C Summa canisters (plus their shipping cases) for sample, storage and transportation.
- C Large dark plastic garbage bags

5.2 Power Hammer Method

- **C** Bosch demolition hammer.
- C 1/2" O.D. steel probes, extensions, and points.
- C Dedicated aluminum sampling points.
- **C** Teflon tubing, 1/4".
- C "Quick Connect" fittings to connect sampling probe tubing, monitoring instruments, and Gilian pumps to appropriate fittings on vacuum box.
- C Modeling clay.
- C Vacuum box for drawing a vacuum around Tedlar bag for sample collection (1 per sampling team).
- C Gilian pump Model HFS113A adjusted to approximately 3.0 L/min (1 to 2 per sample team).
- C 1/4" Teflon tubing, 2 ft to 3 ft lengths, for

replacement of contaminated sample line.

- C 1/4" Tygon tubing, to connect Teflon tubing to probes and quick connect fittings.
- C Tedlar bags, 1.0 L, at least 1 bag per sample point.
- C Soil Gas Sampling labels, field data sheets, logbook, etc.
- C HNu Model P1101, or other field air monitoring devices, (1 per sampling team).
- C Ice chest, for carrying equipment and for protection of samples (2 per sampling team).
- C Metal detector or magnetometer, for detecting underground utilities/pipes/drums (1 per sampling team).
- C Photovac GC, for field-lab analysis of bagged samples.
- C Summa canisters (plus their shipping cases) for sample, storage and transportation.
- C Generator w/extension cords.
- **C** High lift jack assembly for removing probes.

5.3 GeoprobeTM Method

The Geoprobe is a hydraulically-operated sampling device mounted in a customized four-wheel drive vehicle. The sampling device can be deployed from the truck and positioned over a sample location. The base of the sampling device is positioned on the ground. The weight of the vehicle is hydraulically raised on the base. As the weight of the vehicle is transferred to the probe, the probe is pushed into the ground. A built-in hammer mechanism allows the probe to be driven past some dense stratigraphic horizons. When the probe reaches the sample depth, up to 50 feet under favorable geologic situations, samples can be collected.

Soil gas can be collected from specific depths in two general ways. One method involves withdrawing a sample directly from the probe rods, after evacuating a sufficient volume of air from the probe rods. The other method involves collecting a sample through tubing attached by an adaptor to the bottom probe rod section. Correctly used, this method provides more reliable results. Manufacturer's instructions and the SOP for the Model 5400 GeoprobeTM Operation should be followed when using this method.

6.0 **REAGENTS**

C PID/FID or calibration gases for field air monitoring devices (such as methane and

isobutylene).

- C Deionized organic-free water, for decontamination.
- C Methanol, HPLC grade, for decontamination.
- C Ultra-zero grade compressed air, for field blanks.
- C Standard gas preparations for Photovac GC calibration and Tedlar bag spikes.
- C Propane Torch (for decontamination of steel probes)

7.0 **PROCEDURES**

7.1 Soil Gas Well Installation

- 1. Initially a hole slightly deeper than the desired depth is made. For sampling up to 5 feet, a 5-ft single piston slam bar is used. For deeper depths, a piston slam bar with threaded 4-foot-long extensions can be used. Other techniques can be used, so long as holes are of narrow diameter and no contamination is introduced.
- 2. After the hole is made, the slam bar is carefully withdrawn to prevent collapse of the walls of the hole. The soil gas probe is then inserted.
- 3. It is necessary to prevent plugging of the probe, especially for deeper holes. A metal wire or cable, slightly longer than the probe, is placed in the probe prior to inserting into the hole. The probe is inserted to full depth, then pulled up three to six inches, then cleared by moving the cable up and down. The cable is removed before sampling.
- 4. The top of the sample hole is sealed at the surface against ambient air infiltration by using modeling clay molded around the probe at the surface of the hole.
- 5. If conditions preclude hand installation of the soil gas wells, the power driven system may be employed. The generator powered demolition hammer is used to drive the probe to the desired depth (up to 12 Ft may be attained with extensions). The probe is pulled up 1-3 inches if the retractable point is used. No clay is needed to seal the hole. After sampling, the probe is retrieved using

the high lift jack assembly.

6. If semi-permanent soil gas wells are required, the dedicated aluminum probe points are used. These points are inserted into the bottom of the power driven probe and attached to the Teflon tubing. The probe is inserted as in step 5. When the probe is removed, the point and Teflon tube remain in the hole, which may be sealed by backfilling with clean sand, soil, or bentonite.

7.2 Screening with Field Instruments

- 1. The well volume <u>must</u> be evacuated prior to sampling. Connect the Gilian pump, adjusted to 3.0 L/min, to the sample probe using a section of Teflon tubing as a connector. The pump is turned on, and a vacuum is pulled through the probe for approximately 15 seconds. Longer time is required for sample wells of greater depths.
- 2. After evacuation, the monitoring instrument(s) (i.e. HNu or OVA) is connected to the probe using a Teflon connector. When the reading is stable, or peaks, the reading is recorded on soil gas data sheets.
- 3. Of course, readings may be above or below the range set on the field instruments. The range may be reset, or the response recorded as a greater than or less than figure. Recharge rate of the well with soil gas must be considered when resampling at a different range setting.

7.3 Tedlar Bag Sampling

- 1. Follow step 7.2.1 to evacuate well volume. If air monitoring instrument screening was performed prior to sample taking, evacuation is not necessary.
- Use the vacuum box and sampling train (Figure 1) to take the sample. The sampling train is designed to minimize the introduction of contaminants and losses due to adsorption. All wetted parts are either Teflon or stainless steel. The vacuum is drawn indirectly to avoid contamination from sample pumps.

- 3. The Tedlar bag is placed inside the vacuum box, and attached to the sampling port. The sample probe is attached to the sampling port via Teflon tubing and a "Quick Connect" fitting.
- 4. A vacuum is drawn around the outside of the bag, using a Gilian pump connected to the vacuum box evacuation port, via Tygon tubing and a "Quick Connect" fitting. The vacuum causes the bag to inflate, drawing the sample.
- 5. Break the vacuum by removing the Tygon line from the pump. Remove the bagged sample from the box and close valve. Record data on data sheets or in logbooks. Record the date, time, sample location ID, and the PID/FID instrument reading(s) on sample bag label.

CAUTION: Labels should not be pasted directly onto the bags, nor should bags be labeled directly using a marker or pen. Inks and adhesive may diffuse through the bag material, contaminating the sample. Place labels on the edge of the bags, or tie the labels to the metal eyelets provided on the bags. Markers with inks containing volatile organics (i.e., permanent ink markers) should not be used.

Chain of Custody Sheets must accompany all samples submitted to the field laboratory for analysis.

7.4 Tenax Tube Sampling

Samples collected in Tedlar bags may be adsorbed onto Tenax tubes for further analysis by GC/MS.

- 7.4.1 Additional Apparatus
- A. Syringe with a luer-lock tip capable of drawing a soil gas or air sample from a Tedlar bag onto a Tenax/CMS sorbent tube. The syringe capacity is dependent upon the volume of sample begin drawn onto the sorbent tube.
- B. Adapters for fitting the sorbent tube between the Tedlar bag and the sampling syringe. The adapter attaching the Tedlar bag to the sorbent tube consists of a reducing union (1/4" to 1/16" O.D. -- Swagelok cat. #

SS-400-6-ILV or equivalent) with a length of 1/4" O.D. Teflon tubing replacing the nut on the 1/6" (Tedlar bag) side. A 1/4" I.D. silicone O-ring replaces the ferrules in the nut on the 1/4" (sorbent tube) side of the union.

The adapter attaching the sampling syringe to the sorbent tube consists of a reducing union (1/4" to 1/16" O.D. -- Swagelok Cat. # SS-400-6-ILV or equivalent) with a 1/4" I.D. silicone O-ring replacing the ferrules in the nut on the 1/4" (sorbent tube) side and the needle of a luer-lock syringe needle inserted into the 1/16" side. (Held in place with a 1/16" ferrule.) The luer-lock end of the needle can be attached to the sampling syringe. It is useful to have a luer-lock on/off valve situated between the syringe and the needle.

C. Two-stage glass sampling cartridge (1/4" O.D. x 1/8" I.D. x 5 1/8") contained in a flame-sealed tube (Manufacturer: Supelco Custom Tenax/Spherocarb Tubes) containing two sorbent sections retained by glass wool:

> Front section: 150 mg of Tenax-GC Back section: 150 mg of CMS (Carbonized Molecular Sieve)

These tubes are prepared and cleaned in accordance with EPA Method EMSL/RTP-SOP-EMD-013 by the vendor. The vendor sends ten tubes per lot made to the REAC GC/MS Laboratory and they are tested for cleanliness, precision, and reproductability.

- D. Teflon-capped culture tubes or stainless steel tube containers for sorbent tube storage and shipping. These containers should be conditioned by baking at 120 degrees C for at least two hours. The culture tubes should contain a glass wool plug to prevent sorbent tube breakage during transport. Reconditioning of the containers should occur between uses or after extended periods of disuse (i.e., two weeks or more).
- E. Nylon gloves or lint-free cloth. (Hewlett Packard Part # 8650-0030 or equivalent.)

5

7.4.2 Sample Collection

Handle sorbent tubes with care, using nylon gloves (or other lint-free material) to avoid contamination.

Immediately before sampling, break one end of the sealed tube and remove the Tenax cartridge.

Connect the valve on the Tedlar bag to the sorbent tube adapter. Connect the sorbent tube to the sorbent tube adapter with the Tenax (white granular) side of the tube facing the Tedlar bag. Connect the sampling syringe assembly to the CMS (black) side of the sorbent tube. Fittings on the adapters should be finer-tight. Open the valve on the Tedlar bag. Open the on/off valve of the sampling syringe. Depending on work plan stipulations, at least 10% of the soil gas samples analyzed by this GC method must be submitted for confirmational GC/MS analysis (according to modified methods TO-1 [Tenax absorbent] and TO-2 [Carbon Molecular Sieve (CMS) absorbent]). Each soil gas sample must be absorbed on replicate Tenax/CMS tubes. The volume absorbed on a Tenax/CMS tube is dependent on the total concentration of the compounds measured by the photovac/GC or other applicable GC:

Total Concentration (ppm)	<u>Sample Volume (mL)</u>
>10	Use Serial Dilution
10	10 - 50
5	20-100
1.	100-250

After sampling, remove the tube from the sampling train with gloves or a clean cloth. DO NOT LABEL OR WRITE ON THE TENAX/CMS TUBE.

Place the sorbent tube in a conditioned stainless steel tube holder or culture tube. Culture tube caps should be sealed with Teflon tape.

7.4.3 Sample Labeling

Each sample tube container (not tube) must be labeled with the site name, sample station number, date sampled, and volume sampled.

Chain of custody sheets must accompany all samples to the laboratory.

7.4.4 Quality Assurance (QA)

Before field use, a QA check should be performed on each batch of sorbent tubes by analyzing a tube by thermal desorption/cryogenic trapping GC/MS.

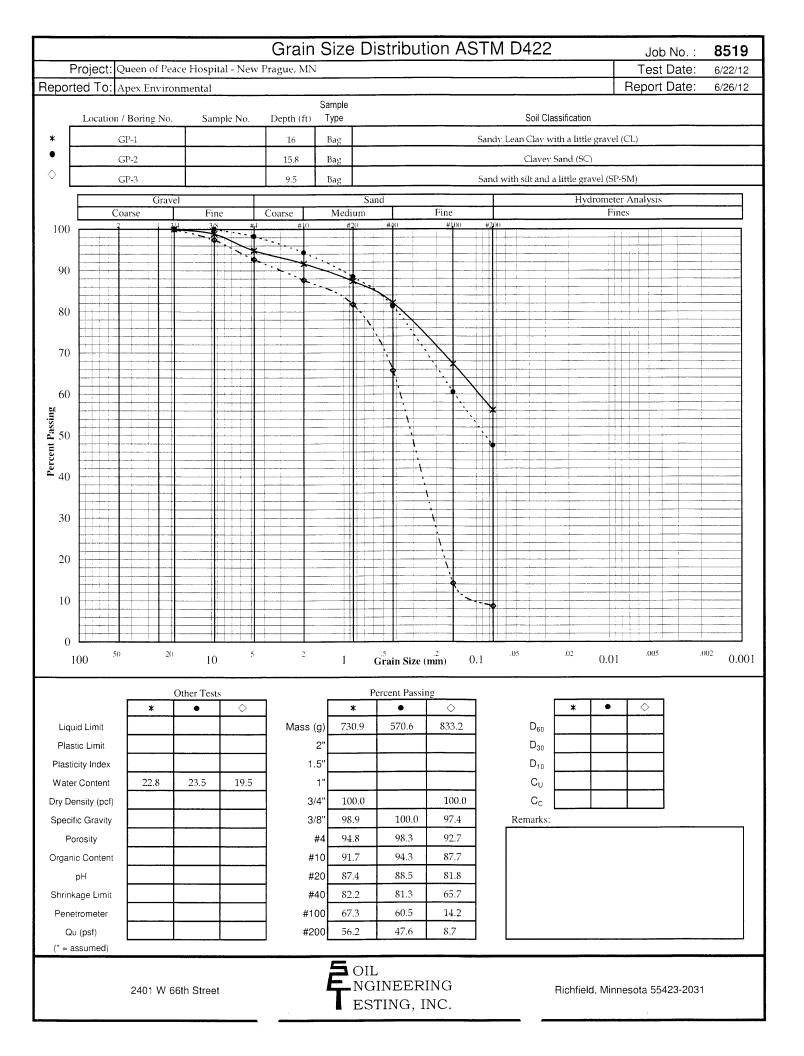
At least one blank sample must be submitted with each set of samples collected at a site. This trip blank must be treated the same as the sample tubes except no sample will be drawn through the tube.

Sample tubes should be stored out of UV light (i.e., sunlight) and kept on ice until analysis. Samples should be taken in duplicate, when possible.

7.5 Summa Canister Sampling

- 1. Follow step 7.2.1 to evacuate well volume. If PID/FID readings were taken prior to taking a sample, evacuation is not necessary.
- 2. Attach a certified clean, evacuated 6-liter Summa canister via the 1/4" Teflon tubing.
- 3. Open valve on Summa canister. The soil gas sample is drawn into the canister by pressure equilibration. The approximate sampling time for a 6 liter canister is 20 minutes.
- 4. Site name, sample location, number, and date must be recorded on a chain of custody form and on a blank tag attached to the canister.

8.0 CALCULATIONS


8.1 Field Screening Instruments

Instrument readings are usually read directly from the meter. In some cases, the background level at the soil gas station may be subtracted:

Final Reading = Sample Reading - Background

8.2 Photovac GC Analysis

Calculations used to determine concentrations of individual components by Photovac GC analysis are beyond the scope of this SOP and are covered in ERT SOP #2109, *Photovac GC Analysis for Soil Water and Air/Soil Gas*.

Unique No. 00178545					Update Date	1991/08/18	
County Name Scott			Statutes Chapter 1031	RD	Entry Date	1988/02/11	
Township Name Township Ra	nge Dir Section 23 W 34	on Subsection CCB	Well Depth 376 ft	Depth Comple 376 f		I Completed	
Well Name YACKLEY, JOHN	}		Drilling Method				
			Drilling Fluid		ell Hydrofractured rom ft		No ft
			Use Domestic				
			Casing Drive	shoe? Y	es N Ho	le Diameter	
			Screen	Oper	Hole From	ft. to	ft
			Make		Туре		
			Static Water Level 12	5 ft. from Land	surface	Date 1981/0	04/03
			PUMPING LEVEL (be				
			ft. after	hrs pu	mping g j	o.m	
			Well Head Completio Pitless adapter mfr Casing Protection		Mode 12	in, above grade	
			At-grade(Environn Grouting Information			No	
			-	-			
			Nearest Known Sour 75 ft	direction	typ		
			•	istalled	Yes Date Install	No	
			Mfr name Model		HP	Volts	
			Drop Pipe Length Type	ft.	Capac	ity g.p.n	n
			Any not in use and not	t sealed well(s) o	on property?	Yes No	
USGS Quad New Prague	Elevation		Was a variance grante	ed from the MDH	for this Well?	Yes No	
Aquifer.	Alt Id		Well CONTRACTOR License Business Na		N Lic Or Reg.	No	
Керс	ort Copy		Name of Driller				

Unique No.	00215706							U	pdate Date	2003/05/21	
County Name	Scott					BORING R Statutes Chapter		E	ntry Date	1989/03/31	
Township Nan	ne Township 113	Range Dir 23 W	Section 34		ection CBDCA	Well Depth 306 ft	-	th Completed ft	Date Well	Completed	
Well Name	NEW PRAGUE	CREAMERY				Drilling Metho	d Non-sp	ecified Rotary			
						Drilling Fluid		Well Hy	drofractured	Yes	No
#Name? #Name?								From	ft	0	ft
and an e						Use Public	Supply/non c	omm -non-transi	ent		
						Casing	Drive Sho	e? Yes	N Ho	e Diameter	
GEOLOGICAI	LMATERIAL	COLOR HAR	DNESS	FRO	м то						
DRIFT				0	230						
SANDSTONE		WHITE		230	306						
						Screen		Open Hole	From	ft to	ft
						Make		Ty	ре		
						Static Mistor L	Not 95 4 4	rom Land surfa	<u></u>	Date	
									CC.	Date	
						ft a		hrs pumping) gr	m	
						Well Head Co	mpletion				
						Pitless adapte Casing Protec			Mode	n above grad	
								Wells and Borir		ii above grau	ie
						Grouting Info	rmation	Well grouted?	Yes	No)
						Nearest Know	n Source of	Contamination			
								ection	type	2	
						Well disinfec	ted upon com	npletion?	Yes	No	
						Pump Mfr.name	Not Installe	d	Date Installe	d	
						Model		HP		Volts	
REMARKS , E M G S BULLE		URCE OF DAT	A, etc.			Drop Pipe Le Type	ength	ft.	Capaci	sy gip	m
						Any not in use	and not seale	ed well(s) on pro	perty?	Yes No	
USGS Quad	New Procus		ition 97	5		Was a varianc	e granted from	m the MDH for th	nis Well?	Yes No	
Aquifer:	CFRN	Eleva Alt Id		5 00082	S01	Well CONTRA	ACTOR CERT		ic Or Reg I	No. MGS	
	Ror	port Cop	אר			License Busi Name of Dril					
	1/6		JY						- , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

Unique No. 240052			DEPARTMENT OF		П	Upda	te Date	2003/05/21	1
County Name Lesueur			Statutes Chapter		D	Entry	Date	2003/04/11	1
ownship Name Township 112	Range Dir S	Section Subsection 3 ABBAAB	Well Depth 582 ft	C	Depth Comp	l eted D ft	ate Well C	Completed	
Vell Name NEW PRAGU			Drilling Metho	bd					
			Drilling Fluid		v	Veli Hydrofi	actured?	Yes	
					I	From	ft to		
			Use Commu	unity Supp	ly (municipa	I)			
			Casing	Drive S	hoe?	Yes N	I Hole	Diameter	
			Casing Diame 10 in to		Weight ft	(Ibs/ft)			
			Screen Make		Ope	n Hole Fra Type	ym	ft to	
			Status Water La	uci 152 A					
			Static Water Lev PUMPING LEV					Date	
			ft. aft		hrs pu		g.p.m		
			Well Head Com Pitless adapter Casing Protect At-grade(Er	r mfr tion	tal Wells and	d Borings O		above grade	е
			Grouting Inform	nation	Well gro	outed?	Yes	No	
			Nearest Knowr		of Contamin	ation	type		
			Well disinfecte			Yes	No		
			Pump Mfr name Model	Not Install	led	Date HP	Installed	Volts	
EMARKS, ELEVATION, SO	URCE OF DATA, e	etc.	Drop Pipe Len	gth	ft		Capacity	g p r	m
AMMA LOGGED 12/30/87			Туре						
			Any not in use a	nd hot sea	aied weilts) c	in property?	Yes	s No	
SGS Quad	Elevatio	995	Was a variance	granted fro	om the MDH	for this We	ll? Ye	s No	
quifer	Alt Id	1400013S01	Well CONTRAC			N Lic Or	Reg No		
-	ort Copy		cleense busine	ess name					

Unique No. 002400 County Name	53	WELL AND	EPARTMENT OF HEA BORING REC Statutes Chapter 103 ⁻	ORD	Update Date Entry Date	2003/05/21 2003/04/22	
Township Name Town WELL Well Name		Section Subsection	Well Depth	/ Depth Completed स्	-	Completed	
			Drilling Method				
			Drilling Fluid	Weil+ From	Hydrofractured? ft. to		No ft
			Use Community :	Supply imunicipali			
			Casing Dri	ve Shoe? Yes	N Hole	Diameter	
			Screen	Open Ho	le From	ft to t	ft.
			Make	i	уре		
			Static Water Level	ft_from		Date	
			PUMPING LEVEL (b ft_after		g gpm		
			Well Head Completion Pitless adapter mfr Casing Protection At-grade(Environ	on mental Wells and Bor	Model 12 in Pgs ONLY)	above grade	
			Grouting Information	n Well grouted	? Yes	Ne	
			Nearest Known Sour ft	rce of Contamination	'ype		
			Well disinfected upo		⊻es No		
			Pump Not La Mfriname Model	rstalled HP	Date Installed	lota	
			Drop Pipe Length Type	ft	Capacity	Voits g.p.m	
			Any not in use and not	sealed well(s) on proj	perty? Yes	No	
USGS Quad	Elevatio	on	Was a variance grante	ed from the MDH for th	is Well? Yes	s No	
Aquifer	Ait Id.		Well CONTRACTOR		c Or Reg No		
	sport cop	<u> </u>	Name of Driller				ļ

Unique No. 00	240054			MINN	ESOTA DE	PARTMENT	OF HEALT	н	1	Jpdate Date	2003/05	5/21
				WEL	L AND	BORING	RECO	RD	, c	opuate Date	2003/03	1121
County Name Sci	ott			М	innesota S	tatutes Chap	oter 1031		E	Entry Date	1989/12	!/28
Township Name	Township 113	Range Dir 23 V	Section		ection CDBB	Well Depth 398	ft	Depth Com 398	npleted ft	Date We 1948/0	II Complete	ed
Well Name NEW	V PRAGUE	3				Drilling Me	thod					
Contact's Name #Name? #Name?	NEV	W PRAGUE	3			Drilling Flu	iid		Well Hy From	ydrofracturec ft	1? Yes to	No ft
						Use Con	nmunity Su	pply (municip	oal)			
						Casing	Drive	Shoe?	Yes	N Ho	ole Diamete	۶r
GEOLOGICAL MA	TERIAL	COLOR H	ARDNESS	FROM	1 то	Casing Dia		-	ht(lbs/ft	:)		
DRIFT				0	146	16 in	to 153	ft				
SHALE + LIMERO	СК			146	190							
SHALE + LIMERO	СК			190	330							
SANDROCK				330	368							
SANDROCK + SHA	ALE			368	398	Screen N		O	oen Hole	e From	153 ft to	398 ft
						Make			Тy	pe		
						Static Water	Level 158	5 ft from La	nd surfa	се	Date	/19/48
								ow land sur				
						221 ft			pumping	g 500 g	5.m	
						Well Head (Pitless ada	-	n				
						Casing Pro	tection	iental Wells a	and Bori		in, above gi	rade
						Grouting In			grouted	-		No
						Nearest Kn		ce of Contan	nination			
						Well disinf	ft. ected upon	direction completion?	,	typ Yes	e No	
						Pump	Not Ins					
						Mfr name	NOTINE	staneu		Date Installe)d	
						Model	Longth	~	HP	-	Volts	
						Drop Pipe Type	Length	ft.		Capac	ty g	g.p m
						Any not in u	se and not	sealed well(s	s) on pro	perty?	Yes	No
USGS Quad New	Praque	F 1-	evation 995	ā		Was a varia	nce grante	d from the M	DH for th	s Well?	Yes I	No
Aquifer. MTP	-	Alt	- at off	6297		Well CONT	RACTOR	CERTIFICAT		ic Or Reg	No <u>27022</u>	1
							usiness Na	me				
	кер	ort Co	ру			Name of D)riller					0/00

HE-01205-06 (Rev. 9/96)

Well Log Report - 00257593

Minnesota Unique Well No. County Scott 257593 Quad New Prague Quad ID 90D	MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING RECORD Minnesota Statutes Chapter 103/
Well Name NEW PRAGUE CREAMERY NO.2 Township Range Dir Section Subsections Elevation 978 ft. 113 23 W 34 CCACDC Elevation Method 7.5 minute topographic map (+/.5 feet)	Well Depth Depth Completed Date Well Completed 401 ft. 401 ft. Drilling Method Cable Tool
Geological MaterialColor HardnessFrom ToGLACIAL DRIFT0160ST. LAWRENCE FORMATION160194FRANCONIA FORMATION194329IRONTON-GALESVILLE FORMATIONS329396EAU CLAIRE FORMATION396401	8 in. to 161 ft. Ibs./ft.
	Static Water Level ft. from Date Measured PUMPING LEVEL (below land surface) ft. after hrs. pumping g.p.m. Well Head Completion Pittless adapter manufacturer Model Casing Protection ✓ 12 in. above grade At-grade (Environmental Wells and Borings ONLY)
R E M A R K S GAMMA, CALIPER, & MULTI TOOL LOGGED 11-13-2007. LOGGED FOR ROGER HARTMANN. SEALING NO. H-263225.	Grouting Information Well Grouted? Yes No
Located by: Minnesota Geological SurveyMethod: Digitization (Screen) - Map (1:24,000)Unique Number Verification: Information from ownerInput Date: 11/13/2007System: UTM - Nad83, Zone15, MetersX: 453842Y: 4932642	Nearest Known Source of Contamination _feet _direction _type Well disinfected upon completion? Yes No Pump Not Installed Manufacturer's name Model number Length of drop Pipe_ft. Capacity_g.p.m. Type Material
Borehole Geophysics Yes First Bedrock St.Lawrence Formation Aquifer Multiple Last Strat Eau Claire Formation Depth to Bedrock 160 ft.	Abandoned Wells Does property have any not in use and not sealed well(s)? Yes No Variance Was a variance granted from the MDH for this well? Yes No Well Contractor Certification Minnesota Geological Survey MGS License Business Name Lic. Or Reg. No. Name of Driller
County Well Index Online Report	257593 Printed 1/11/2014 HE-01205-07

Unique No. 00433280				PARTMENT OF HEALTH Update Date 2003/05/21
County Name Scott				BORING RECORD Statutes Chapter 1031 Entry Date 1990/06/29
Fownship Name Township 113	Range Dir Section 23 W 34	Subse		Well Depth Depth Completed Date Well Completed 652 ft 652 ft 1988/10/16
Well Name NEW PRAGUE	<u> </u>			Drilling Method
Well Owner's Name CI #Name? #Name?	TY OF NEW PRAGUE			Drilling Fluid Well Hydrofractured? Yes No From ft to ft
	TY OF NEW PRAGUE			Use Community Supply (municipal)
#Name? #Name?	TT OF NEW FIXOUE			Casing Drive Shoe? ✓ Yes N Hole Diameter
GEOLOGICAL MATERIAL	COLOR HARDNESS	FROM	то	Casing Diameter Weight(Ibs/ft) in to 652 ft
CLAY		0	134	30 in to 288 ft 118
SAND + GRAVEL + CLAY		134	193	18 in to 485 ft 94
SHALE		193	303	
SHALE + SANDSTONE		303	361	
SHALE		361	371	Screen N Open Hole From 228 ft. to 452 ft.
SHALE		371	439	Make Type
SANDSTONE + SHALE		439	449	
SANDSTONE + SHALE		449	456	
SANDSTONE	GRAY	456	540	Static Water Level 187 ft, from Land surface Date 1988/09/
SANDSTONE	TAN	540	607	PUMPING LEVEL (below land surface)
SANDSTONE	YELLO	607	630	234 ft after 4 hrs pumping 1200 g.p.m
SANDSTONE	RED	630	650	Well Head Completion
SHALE	RED	650	652	Pitless adapter mfr BAKER Model Casing Protection 12 in above grade At-grade(Environmental Wells and Borings ONLY)
				Grouting InformationWell grouted?✓ YesNoMaterialFrom To (ft.)Amount(yds/bags)G048540Y
				Nearest Known Source of Contamination 100 ft direction N type Well disinfected upon completion? Yes No
				Pump Not Installed Date Installed Y Mfr name GRUNDFOS Installed Y
				Model P-8841WO HP 60 Volts 460
REMARKS, ELEVATION, S	OURCE OF DATA, etc.			Drop Pipe Length 252 ft Capacity g p m
GAMMA LOGGED 7-7-88				Type S
M.G.S. NO. 2809				Any not in use and not sealed well(s) on property? Yes No
USGS Quad New Prague	Elevation 96	54		Was a variance granted from the MDH for this Well? Yes No
Aquifer CMTS		9-629		Well CONTRACTOR CERTIFICATION Lic. Or Reg. No 62012 License Business Name
Re	port Copy			Name of Driller KEYS_G

674898	County Quad Quad ID	Scott New Prague 90D		MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING RECORD RECORD MINNESOTA DEPARTMENT OF HEALTH Update Date Received Date Received Date
Well Name FRANA & SONS. INC.				Minnesota Statutes Chapter 103/
Township Range Dir Section Sub	sections Elevat	ion	965 ft.	Well Depth Depth Completed Date Well Completed
113 23 W 34 ACE			7.5 minute	27 ft. 25 ft. 04/25:2002
113 23 W 34 ACE	BCD Elevat	on Method	topographic ma (+/- 5 feet)	Drilling Method Cable Tool
Well Address 1001 COLUMBUS AV N NEW PRAGUE MN				Drilling Fluid Well Hydrofractured? Yes No
Geological Material	Color			Use Elevator
CLAY	Color BROWN	Hardness MEDIUM	From To 0 14	Casing Type Steel (black or low carbon) Joint Welded Drive Shoe?
CLAY	GRAY	SOFT	14 27	Yes No Above/Below ft.
				Casing Diameter Weight Hole Diameter
				16 in. to 27 ft. 62 58 lbs /ft. Open Hole from ft. to ft
				Open Hole from ft to ft Screen Make Type
				Diameter Slot/Gauze Length Set Between
				Static Water Level ft from Date Measured PUMPING LEVEL (below land surface) ft after hrs pumping g p m
				Well Head Completion Pitless adapter manufacturer Model
				Casing Protection 12 in. above grade
				At-grade (Environmental Wells and Borings ONLY)
R E M A R K S PIT 4' BELOW GRADE				Grouting Information Well Grouted? Yes No
Located by: Minnesota Geological : Unique Number Verification: Addr	ess (1:24.0)	'		Grout Material. Neat Cement from 25 to 27 ft 2 bag
verification		ate: 07/21/2005		Nearest Known Source of Contamination
System: UTM - Nad83. Zone15. Me	ters X: 454	493 Y : 493353	5	_feet _direction _type
				Well disinfected upon completion? Yes No
				Pump Not Installed Date Installed Manufacturer's name Model number HP Volts Length of drop Pipe ft Capacity g p m Type Material
				Abandoned Wells. Does property have any not in use and not sealed well(s)?
				Variance Was a variance granted from the MDH for this well? Yes
irst Bedrock				Well Contractor Certification
	Aquifer	Dealers of the		Midwest Drilling L0004 STANGRET, S.
ast Strat clay-gray				
ast Strat clay-gray County Well Index	Depth to I			License Business Name Lic. Or Reg. No. Name of Driller

January 9, 2014

To: Property Owners within 500 feet of the Mayo Clinic Health property, in New Prague, MN

From: Jeff Vosburgh at Apex Environmental, Inc.

I am an environmental consultant, conducting an investigation at the above referenced site in New Prague, Minnesota. As part of the investigation, I am required to contact property owners within 500 feet of the subject site. Since there has been a petroleum release at this site, we are inquiring to the existence of any nearby private wells and basements. Enclosed please find a selfaddressed, stamped post card. If would please check yes or no on the back of the card, as to whether you do or do not have a private well, basement or sump pump, and mail this card back to me, I would sincerely appreciate it. If you do not respond to this request, we will assume that you do not have either a private well, basement or sump pump. If you should have any questions regarding this request please call me at (218) 338-5947.

Sincerely,

Jeffrey G. Vosburgh

Geologist

Pc: Mr. Clay Brister - Mayo Clinic Health System Mr. Allen Dotson - MPCA Project Manager, St. Paul, MN

ID Number:	1400013
Facility Contact:	Bruce Reimers (952) 758-1142 New Prague New Prague Water Superintendent c/o Mr. Bruce Reimers New Prague City Hall 118 Central Avenue North New Prague, MN 56071
MDH Contact:	Pat Bailey (507) 206-2741 18 Woodlake Drive Southeast Rochester, MN 55904 <u>pat.bailey@state.mn.us</u>

Status of the Source Water Protection Plan:

The water supply system is implementing the wellhead protection plan that has been approved by the Minnesota Department of Health under Minnesota Rules 4720.

Source Water Protection Area: - Click <u>Map1</u> to view SWPA map(s).

Yes - A Source Water Protection Area has been designated for this well.

Description of the source water - The water supply for New Prague is obtained from 6 primary wells. Well depth (in feet), well status, aquifer(s) used, and sensitivity of the source(s) of drinking water are listed in the following table.

Unique Well No	Well ID	Depth	Well Use	Aquifer	Aquifer Sensitivity	*Well Sensitivity	SWPA
00240052	Well #1	555	Primary	Bedrock	Low	See (2)	Yes
00240053	Well #2	400	Primary	Bedrock	Low	See (2)	Yes
00240054	Well #3	398	Primary	Bedrock	Low	See (2)	Yes
00433280	Well #4	652	Primary	Bedrock	Low	See (2)	Yes
00680502	Well #5	424	Primary	Bedrock	Low	See (2)	Yes
00749843	Well #6	640	Primary	Bedrock	Low	See (2)	No

Well construction assessment - The water wells used by the New Prague meet current standards for construction and maintenance. These factors do not contribute to the susceptibility of the source water to contamination.

Well Sensitivity - Well sensitivity refers to the integrity of the well due to its construction and maintenance. It is based on the results of the well construction assessment. It can be one of the following:

(1) The well is susceptible to contamination because it does not meet current construction standards or

no information about well construction is available, regardless of aquifer sensitivity. (2) The well is not susceptible because it meets well construction standards and does not present a pathway for contamination to readily enter the water supply.

Aquifer Sensitivity - Aquifer sensitivity refers to the degree of geological protection afforded the aquifer(s) used by the public water supply.

Low - The bedrock aquifer is covered by one or more layers of fine-grained material that probably protect it from potential sources of contamination.

Source Water Susceptibility - Source water susceptibility refers to the likelihood that a contaminant will reach the source of drinking water. It reflects the results of assessing well sensitivity, aquifer sensitivity, and water quality data.

Low - The source of drinking water is covered by one or more layers of fine-grained material that probably protect it from potential sources of contamination.

Contaminants of concern - The following statement summarizes the potential contaminants for which a source of drinking water may be at risk:

None of the contaminants regulated under the federal Safe Drinking Water Act for this public water supply system have been detected in the source water. A listing of these contaminants can be found at <u>http://www.epa.gov/safewater.</u>

Last Date when data was updated: 12/30/2013