

SUPPLEMENTAL PHASE II ENVIRONMENTAL SITE ASSESSMENT

INTERSTATE 35W, MINNESOTA RIVER BRIDGE, BURNSVILLE, MINNESOTA S.P. 1981-124

MINNESOTA DEPARTMENT OF TRANSPORTATION

WSP PROJECT NO.: 31401059.001 DATE: APRIL 17, 2018

WSP SUITE 507 123 NORTH THIRD STREET MINNEAPOLIS, MN 55401

TEL.: +1 612 343-0510 FAX: +1 612 343-0506 WSP.COM

SIGNATURES

PREPARED BY

to the

Kevin Walter Associate Consultant

REVIEWED BY

Paula Berger, PG Practice Leader

wsp

TABLE OF CONTENTS

1	INTRODUCTION	1
1.1	Purpose	1
1.2	Site Description	1
1.3	Previous Environmental Reports	2
1.3.1	Phase I Environmental Site Assessment	2
1.3.2	Phase II Environmental Site Assessment	2
2	SUPPLEMENTAL PHASE II INVESTIGATION	
	PROCEDURES	4
2.1	Field Investigation	4
2.1.1	Overview	
2.1.2	Soil Boring Installation	4
2.2	Sample Collection and Analytical Testing	
2.2.1	Soil Samples	
2.2.2	Groundwater Samples	
2.2.3	Soil Gas Samples	6
3	INVESTIGATION RESULTS	7
3.1	Regional Geology	7
3.2	Regional Hydrology	7
3.3	Site Geology	7
3.4	Organic Vapor Screening and Field Observations	8
3.5	Soil Analytical Results	8
3.6	Groundwater Analytical Results	9
3.7	Soil Gas Analytical Results	9
4	CONCLUSIONS	10
4.1	Investigation Results Summary	10
4.1.1	Soil investigation results summary	10
4.1.2	Groundwater Investigation Summary	10
4.1.2 4.1.3	·	10

wsp

4.2.1	Construction Considerations	11
REFE	RENCES	12
ACRC	DNYMS	14

wsp

FIGURES

FIGURE 1	SITE LOCATION
FIGURE 2	PROJECT AREA
FIGURE 3A	BORING LOCATIONS
FIGURE 3B	BORING LOCATIONS
FIGURE 4A	ANALYTICAL SOIL SUMMARY
FIGURE 4B	ANALYTICAL SOIL SUMMARY
FIGURE 5	ANALYTICAL GROUNDWATER SUMMARY
FIGURE 6	ANALYTICAL SOIL GAS SUMMARY

TABLES

TABLE 1A	SUPPLEMENTAL PHASE II SOIL AND
	GROUNDWATER SAMPLING SUMMARY
TABLE 1B	SUPPLEMENTAL PHASE II SOIL GAS
	SAMPLE SUMMARY
TABLE 2	SUPPLEMENTAL PHASE II SOIL BORING
	LOCATION SUMMARY
TABLE 3	SUPPLEMENTAL PHASE II SUMMARY OF
	SOIL SAMPLE FIELD SCREENING RESULTS
TABLE 4	SUPPLEMENTAL PHASE II SOIL SAMPLE
	ANALYTICAL RESULTS
TABLE 5	SUPPLEMENTAL PHASE II GROUNDWATER
	SAMPLE ANALYTICAL RESULTS
TABLE 6	SUPPLEMENTAL PHASE II SOIL GAS
	SAMPLE ANALYTICAL RESULTS

APPENDICES

APPENDIX A	SUPPLEMENTAL PHASE II INVESTIGATION WORK PLAN
APPENDIX B	APPLICABLE WSP STANDARD OPERATING PROCEDURES
APPENDIX C	BORING LOGS
APPENDIX D	SOIL AND GROUNDWATER LABORATORY ANALYTICAL REPORTS
APPENDIX E	SOIL GAS SAMPLE LABORATORY ANALYTICAL REPORTS

1 INTRODUCTION

1.1 PURPOSE

WSP was retained by the Minnesota Department of Transportation (MnDOT) to complete a Supplemental Phase II Environmental Site Assessment (ESA) along a segment of Interstate 35W (I-35W) from Cliff Road to Black Dog Road in Burnsville (SP 1981-124), Dakota County, Minnesota (Figure 1). MnDOT plans to replace the I-35W bridge over the Minnesota River and conduct highway reconstruction to the north and south of the bridge for additional travel lanes and MnPass lanes. WSP conducted Phase I and Phase II ESAs of the area from 106th Street West in Bloomington, Hennepin County, to Cliff Road in Burnsville, Dakota County, in 2014-2015. The 2014-2015 Phase II ESA identified elevated levels of methane in soil gas, diesel range organics (DRO), and metals in soil. The purpose of this Supplemental Phase II ESA was to quantify and better define the area of methane in the soil gas and metal contamination in the soil, determine if groundwater contamination is present, as well as to evaluate the potential presence of other contaminants within the supplemental Phase II ESA project area. The information obtained from this Supplemental Phase II ESA will be used by MnDOT to better evaluate portions of the construction area where environmental monitoring may be needed and to determine how to manage potential contamination during construction activities.

For the purposes of this report, the area of the 2014-2015 Phase I and Phase II ESA is referred to as the "project area" and the area investigated in this Supplemental Phase II ESA is identified as the "supplemental project area". WSP conducted the Supplemental Phase II ESA in a manner consistent with the Scope of Work and general requirements of the Professional and Technical Services Contract between MnDOT and WSP (MnDOT Contract No. 1029789) executed January 4, 2018 and amended on January 23, 2018.

1.2 SITE DESCRIPTION

The I-35W Minnesota River Bridge project area is located south of the Minneapolis metropolitan area, in Hennepin County (Bloomington) and Dakota County (Burnsville), Minnesota (Figure 2). The supplemental project area is an approximate 3-mile segment of I-35W, south of the Minnesota River. The ground surface within the supplemental project area is relatively flat with a slight downward slope to the north toward the Minnesota River. The I-35W roadway sits at a higher elevation than the surrounding area, sloping toward stormwater retention ponds to the east and west of the road.

Various commercial and industrial land use activities are present within and adjacent to the supplemental project area. An active quarry (Kraemer Mining and Minerals Quarry) and a closed landfill (Freeway Sanitary Landfill) are present adjacent to the western side of the supplemental project area, with an active landfill transfer station (Freeway Transfer) operating within a portion of the closed Freeway Landfill. Former landfills (former Astleford Central Dump and former Old Freeway Dump) are present adjacent to the southeast side of the supplemental project area. Grass and tree-covered undeveloped land and portions of the Minnesota Valley Wildlife Refuge are also located within the supplemental project area, including Black Dog Lake, adjacent to the northeastern side of the supplemental project area.

An asphalt-paved, multi-use recreational trail, Black Dog Trail, is present within the MnDOT right of way, adjacent to the eastern side I-35W, extending between Black Dog Road and Cliff Road. A frontage road, Embassy Road, is adjacent to the western side of I-35W, within the southern portion of the supplemental project area. Embassy Road formerly served the Burnsville Volkswagen dealership; however, the entrance to the road is now located on land acquired by the Kraemer quarry and a fence restricts access to the road.

1.3 PREVIOUS ENVIRONMENTAL REPORTS

WSP conducted Phase I and Phase II ESAs for the full project area from 106th Street West in Bloomington, Hennepin County, to Cliff Road in Burnsville, Dakota County, and submitted the findings to MnDOT in November 2014 and February 2015, respectively. A summary of previous reports is provided in this Section.

1.3.1 PHASE I ENVIRONMENTAL SITE ASSESSMENT

WSP completed a Phase I ESA of the project area in November 2014 (WSP, 2014), with Phase I site inspections completed in August 2014. As part of the Phase I ESA, WSP reviewed previous environmental reports at the Dakota County Environmental Management offices and the Minnesota Pollution Control Agency (MPCA) regarding the Kraemer Mining and Minerals Quarry, the former Astleford Central Dump, the former Old Freeway Dump, and the Freeway Sanitary Landfill, and the Freeway Transfer Station. Based on the environmental reports, the Kraemer Quarry was a demolition and construction debris disposal site that has been cleaned up and discontinued. The former Astleford Central Dump (now occupied by Dodge of Burnsville), the Old Freeway Dump, and Freeway Sanitary Landfill are Superfund sites with active remediation activities and known groundwater contamination. The Freeway Transfer Station is an active landfill transfer station within the groundwater area of concern for the former Freeway Sanitary Landfill.

Dakota County Environmental Management records also identified the western portion of the interchange between I-35W and Cliff Road as a former dump location called the "MnDOT Cloverleaf Dump." According to Dakota County information, MnDOT disposed of approximately 4,000 cubic yards of demolition and construction debris within the interchange location from 1990 to 1993. Oil staining was reportedly observed on or adjacent to some of the debris. This site is not identified in any database. There are no additional records to indicate whether the site was cleaned up. Dakota County Environmental Management noted that the site was a "low risk" dump.

MPCA information also indicated a potential for historic dumping of fly ash into the Minnesota Valley Wildlife Refuge wetlands located adjacent to the northeastern portion of the supplemental project area.

Nearly the entire area adjacent to the supplemental project area was identified in the Phase I ESA as high-risk based on the current and historic operations. The exceptions being, the former Burnsville Volkswagen dealership, a closed leaking underground storage tank (LUST) site, located adjacent to the southwestern side of I-35W, on property now owned by Kraemer Quarry (ranked medium) and Kramer Mining and Minerals, Inc. (ranked Low) (Figure 2).

As a result of information gathered during the Phase I ESA, WSP recommended that MnDOT conduct a Phase II ESA for locations where contaminated soil or groundwater may be encountered during the construction.

1.3.2 PHASE II ENVIRONMENTAL SITE ASSESSMENT

WSP completed a Phase II ESA of the project area in February 2015 (WSP, 2015), with subsurface drilling activities being completed in November 2014. The Phase II ESA was conducted to determine if historic activities had impacted soil or groundwater within the project area. The Phase II ESA included completion of 17 soil borings, field screening of soil samples for organic vapors and evidence of soil contamination, collection of soil and groundwater samples for analytical testing, and in-situ field screening of methane in soil gas. A total of seventeen soil samples were collected for analysis of organic compounds and Resource Conservation and Recovery Act (RCRA) metals. Groundwater was encountered in the unconsolidated materials in seven borings, and groundwater samples were collected from temporary wells installed in six of the borings for analysis of organic compounds and RCRA metals.

Methane was encountered in 11 of the 17 soil borings at concentrations ranging from 0.1 percent to 9.7 percent, as measured in the field with a multi-gas meter. Methane was encountered in all borings in proximity to the Freeway Sanitary Landfill at concentrations as high as 6.0 percent (DP-6) and 9.7 percent (DP-17), above the lower explosive limit (LEL) of 5 percent. The presence of methane in some borings may be partially attributed to natural decay processes in the native organic-rich soils. However, the methane present in borings located near the former sanitary landfill, specifically borings DP-6 and DP-17, was attributed to impacts from the former landfill.

No other field indications of soil contamination was encountered in any boring. No volatile organic compounds (VOCs) or semi-volatile organic compounds (SVOCs) were detected in any soil samples above the regulatory reporting limit. DRO were detected above the MPCA unregulated fill criterion in one sample of fill material from boring DP-9.

Concentrations of arsenic, barium, and selenium in soils from DP-6 and concentrations of arsenic and total chromium in soils from DP-15 exceeded the MPCA's Soil Leaching Values (SLVs) and/or Soil Reference Values (SRVs). The concentrations of total chromium exceeded the criterion for hexavalent chromium at DP-15; however, the concentration of hexavalent chromium in that sample is likely far below any SLV or SRV for this analyte. Elevated concentrations of barium and selenium were detected in the fill material.

No organic compounds were detected at concentrations above the reporting limit in any groundwater sample. Concentrations of barium, cadmium, total chromium, and/or selenium in samples from borings DP-2, DP-3, DP-5, and DP-11 exceeded the Minnesota Department of Health (MDH) Health Based Values (HBVs). However, the groundwater samples were not filtered and contained fine sediment from the unconsolidated formation.

WSP recommended potential special handling of impacted soil during construction, as described below and in the 2015 Phase II Report.

- Methane in Soil Gas Because of the high concentration of methane found in borings near the Freeway Sanitary Landfill, it was recommended that MnDOT conduct a methane gas survey within one year prior to beginning construction activities. The survey should consist of installation of temporary soil gas sample points along the construction corridor and collection of soil gas samples for analytical testing in a laboratory. Based on the findings of the soil gas survey, MnDOT may need to consider special provisions to address methane in soil gas during intrusive activities.
- Metals in Fill Materials Elevated concentrations of arsenic, barium, and selenium were encountered in the fill material in soil from boring DP-6. During excavation of soils during road construction, fill material fitting the description of the material found in DP-6 should be segregated and sampled for RCRA metals. Pending the results of the analytical testing, fill material may need to be disposed of offsite.
- Metals in Soil Elevated concentrations of arsenic were detected in a native soil sample collected from DP-15. Although the arsenic concentration detected in this sample is within the range of naturally-occurring arsenic in soil in Minnesota, the concentration detected in DP-15 is approximately an order of magnitude higher than the concentrations of arsenic detected in the other soil samples from the project area and the sample was collected adjacent to a former landfill site (Old Freeway Dump). Because arsenic exceeded the Tier 2 SRV in soil, special provisions for handling and management of soil from the DP-15 area should be incorporated into the construction plan.
- Groundwater Although no evidence of contamination was found in the groundwater, environmental
 investigations conducted at adjacent properties have noted the presence of contamination in the bedrock
 aquifer underlying the unconsolidated materials. If MnDOT anticipates removal of bedrock material or
 dewatering of the bedrock aquifer, it is recommended that additional investigation of the bedrock aquifer be
 conducted. Results of groundwater the investigation could be used to determine whether special provisions
 need to be developed for dewatering operations.

2 SUPPLEMENTAL PHASE II INVESTIGATION PROCEDURES

2.1 FIELD INVESTIGATION

2.1.1 OVERVIEW

The Supplemental Phase II ESA field activities were conducted from February 1 through February 12, 2018. A summary of the borings, samples collected, and drilling methods is included in Tables 1A and 1B. The Supplemental Phase II ESA included the following:

- Completion of 21 soil borings using direct-push drilling technology
- Completion of 16 soil gas sampling points using direct-push drilling technology.
- Collection of soil samples for headspace (organic vapor) screening using a photoionization detector (PID)
- Logging of subsurface materials by a WSP geologist
- Collection of 40 soil samples for analytical testing
- Collection of 5 groundwater samples for analytical testing
- Measurement of the depth to groundwater
- Collection of 16 soil gas samples for analytical testing

The work plan for the Supplemental Phase II ESA was developed in consultation with the MnDOT Project Manager and is included as Appendix A.

The field work was conducted in accordance with applicable MPCA guidance and WSP's Standard Operating Procedures (SOPs; Appendix B). Summaries of boring placement, reason for selection, and total depth are provided in the work plan and in Tables 1A and 1B. Further details such as date of installation, saturated soil depth, measured depth to groundwater (where encountered), maximum PID reading, and soil and groundwater samples submitted for laboratory analysis are provided in Table 1A. Table 1B provides a summary of soil gas sample dates, depths, and PID measurements. Field-measured Universal Transverse Mercator coordinates for each boring are provided in Table 2 and approximate boring location elevations are included on the boring logs provided in Appendix C. The ground surface elevations at each boring were inferred from Google Earth[™] and field observations.

2.1.2 SOIL BORING INSTALLATION

Soil borings were installed by Dakota Technologies, using a truck-mounted and a track-mounted Geoprobe directpush technology drill rig. The locations of public utilities were identified through the Gopher One-Call system prior to beginning the intrusive work. Soil borings installed within the southern portion of the supplemental project area were accessed via Black Dog Trail east of I-35W (borings DP-29 through DP-33) and via Embassy Road west of I-35W (DP-34 through DP-38).

Soil samples were collected continuously through the extent of each boring. Soils were field screened for the presence of volatile organics using a PID equipped with a 10.6 electron-Volt (eV) lamp, calibrated to isobutylene and fresh air. Both ambient air and headspace measurements were collected in accordance with WSP's SOPs

(Appendix B) and applicable MPCA guidance. Soil boring descriptions were recorded for each boring by a WSP geologist and included sample depth, percent recovery, materials classification and description, and relative moisture content, as well as observations regarding staining or odor. The PID headspace measurements are provided in Table 3 and included on the boring logs (Appendix C). Final locations of soil borings are shown on Figures 2, 3A, 3B, 4A, and 4B.

All soil borings were sealed after sampling in accordance with MDH requirements. The MDH Well and Boring Sealing Records are included in Appendix C with the boring logs. Soil cuttings were thinspread on undeveloped surfaces within the MnDOT right-of-way.

2.2 SAMPLE COLLECTION AND ANALYTICAL TESTING

2.2.1 SOIL SAMPLES

A total of 40 soil samples were collected from 20 of the soil borings for laboratory analysis. Soil samples were typically collected from 2 to 3 feet below ground surface (bgs) and at the base of the boring, per the work plan. The soil samples were placed on ice immediately after collection. The soil samples and the analytical tests performed on each sample are listed in Table 1A. Samples were submitted to Pace Laboratories of Minneapolis, Minnesota (Pace) for analytical testing.

The soil samples were analyzed for a combination of the following parameters:

- DRO by the Wisconsin Modified DRO Method (WI Mod DRO) using silica gel cleanup. A silica gel cleanup
 procedure was requested for this analysis to preferentially remove polar and semi-polar compounds, which are
 likely biogenic (naturally occurring), from the sample. The cleanup provides the concentration of non-polar
 or petroleum hydrocarbons in the sample.
- U.S. Environmental Protection Agency (EPA) Priority Pollutant metals antimony, arsenic, beryllium, cadmium, total chromium, copper, lead, nickel, selenium, silver, thallium, and zinc by EPA Method 6010 and mercury by EPA Method 7471, with arsenic and selenium run under Inductively-Coupled Plasma Mass Spectrometry methods.

2.2.2 GROUNDWATER SAMPLES

Temporary wells were installed in five soil borings to facilitate water level measurement and collection of a groundwater grab sample. Groundwater was encountered at depths ranging from approximately 17.6 feet bgs to 19.5 feet bgs (Table 1A), as measured in the borehole with a water-level indicator. Each temporary well was constructed with new, one-inch diameter Schedule 40 polyvinyl chloride casing with a five- or ten-foot length of 0.010-inch slotted screen. Water was drawn from the wells using a check-valve hand pump and dedicated tubing. Upon completion of sampling activities, the wells were removed and the borings backfilled in accordance with MDH regulations.

The groundwater samples were analyzed for a combination of the following parameters:

- Per- and polyfluoroalkyl substances (PFAS) by DV-LC-0012 and perfluoroctane sulfonamide
- Dissolved (field-filtered) EPA Priority Pollutant metals: antimony, arsenic, beryllium, cadmium, total chromium, copper, lead, nickel, selenium, silver, thallium, and zinc by EPA Method 6010 and mercury by EPA Method 7470

The groundwater samples were placed on ice immediately after collection. The borings at which groundwater samples were collected, the screened interval, and the analytical tests performed on each sample are listed in Table 1A. Samples collected for metals were field filtered through a new 0.45-micron filter and submitted to Pace for analytical testing. Samples collected for PFAS were submitted to TestAmerica in Arvada, Colorado, for analytical testing.

Groundwater sampling for analysis of PFAS was conducted in consideration of potential contamination concerns from common manufactured supplies and clothes, as recommended in a National Groundwater Association (NGWA) PFAS State of Knowledge and Practice document (NGWA, 2017). Prior to beginning the field work, WSP also contacted the MDH for guidance on PFAS sampling procedures. The MDH stated that no written PFAS sampling procedure has yet been developed and provided a general electronic mail summary of precautions to be taken during sampling. Based on the guidance from MDH and NGWA, precautions taken during groundwater sampling for PFAS analysis using appropriate personal protective equipment (well-laundered clothing without waterproof additives and nitrile gloves), avoiding sun block and moisturizers, appropriate decontamination detergent, avoiding waterproof pens/markers, and not bringing any outside food to the job site.

2.2.3 SOIL GAS SAMPLES

All borings used for collection of soil gas samples were installed using a track-mounted Geoprobe direct-push drill rig in general accordance with MPCA guidance documents (2008, 2010a, 2010b).

At each soil gas sample location, the Geoprobe rod was advanced through a hydrated bentonite seal to the desired depth, the expendable drive point on the rod was disconnected and the rod raised to the desired upper sample interval, creating a void within the soil gas sample interval. Inert, dedicated tubing was inserted in a port at the bottom of the rod fitted with an O-ring to create a vacuum seal that prevents ambient air from entering the sample zone. Soil gas samples were collected from 8 to 10 feet bgs for the "worst-case soil gas sample", as recommended in Appendix D of MPCA's Vapor Intrusion Technical Support Document (2010a).

Prior to collecting the sample, a minimum of two sample port (sampler and tubing) volumes were purged using a graduated syringe to remove ambient air from the sample train. After sampling was complete, an organic vapor measurement was collected using a PID equipped with a 10.6 eV lamp.

Samples were collected in laboratory-supplied 1-liter evacuated canisters. The samples were collected by attaching the top end of the tubing to a laboratory-supplied 1-liter evacuated canister, equipped with a vacuum gauge and a flow regulator to ensure the sample collection rate did not exceed 200 milliliters per minute. The canister vacuum was monitored during sampling and collection was considered complete when the canister vacuum reduced to approximately 4 inches of mercury. Initial and final canister vacuum measurements, PID measurements, canister identification numbers, and sample identification numbers were recorded for all samples both in the field book and on the chain of custody. All soil vapor samples were submitted to Pace for analysis of VOCs by EPA Method TO-15 and methane by EPA Method TO-3M. The list of samples, their locations, sample depths, and post-sampling PID measurements are provided on Table 1B.

3 INVESTIGATION RESULTS

3.1 REGIONAL GEOLOGY

According to the U.S. Geological Survey's Bloomington, Minnesota, quadrangles (7.5-minute series) map, the ground elevation of the supplemental project area ranges from approximately 700 feet above mean sea level (amsl) at the Minnesota River to approximately 720 feet amsl near Cliff Road. Soils in the areas near the Minnesota River are comprised of clay- and organic-rich floodplain alluvium and organic-rich silt and clay and peat deposits (Meyer and Hobbs, 1989; Hobbs et al., 1990). South of the entrance and exit ramps at Black Dog Road, soils are primarily clean sand and gravel terrace deposits from the carving of the Minnesota River valley. Further south, near the entrance and exit ramps at Cliff Road, glacial outwash deposits from the Des Moines Lobe glaciation can be found (Hobbs et al., 1990). The bedrock strata underlying the project area consists of Jordan Sandstone and Prairie du Chien Group dolostone and sandstone. Bedrock depths are variable depending on the location within the project area and range from approximately 4 feet bgs south of the river to 120 feet bgs at the Minnesota Valley Wildlife Refuge north of the river (Bloomgren et al., 1989; Bloomgren et al., 1990).

3.2 REGIONAL HYDROLOGY

The nearest surface water body is the Minnesota River and smaller tributaries of the Minnesota River, located adjacent to the north end of the project area (Figure 1). The depth to groundwater within the project area is variable and dependent on location. The natural direction of groundwater flow in the project area is northward toward the Minnesota River (Palen, 1990). However, groundwater flow in this area is strongly influenced by a dewatering well located at the Kraemer Mining and Minerals Quarry, and flow is toward the dewatering well when it is actively pumping. The depth to groundwater south of the Minnesota River ranges from 4 feet bgs to greater than 30 feet bgs, depending on location.

3.3 SITE GEOLOGY

Field observations including soil type, headspace measurements, and evidence of environmental impact are summarized on soil boring logs in Appendix C. The surface cover of the supplemental project area consists primarily of asphalt roadways with adjacent unpaved shoulders.

In developed portions of the supplemental project area, fill material was present at depths ranging from approximately 1 to 3 feet in the southern portion of the project area to 15 to 20 feet near the Minnesota River. Fill material primarily consisted of poorly graded or well graded sand with silt and clay, with gravel present in some borings. Native material observed in the soil borings consisted of organic-rich soils and peat, grayish brown to gray silt riverbank deposits with sandy and clayey lenses, and sand with silt. Weathered limestone-type bedrock was encountered in several borings in the southern portion of the project area (DP-29 through DP-33, DP-37, and DP-38) at depths from approximately 8 to 10 feet bgs.

Local surface drainage within the supplemental project area is toward drainage ditches along the interstate. The surface water within ditches drains to retention areas within exit/entrance ramp cloverleafs. Drainage from the bridge is diverted to retention ponds on the north and south banks of the Minnesota River. Surface water overflow is presumed to be toward the Minnesota River.

The borings where groundwater was encountered are located relatively close to the Minnesota River and groundwater quality and groundwater level in these areas is expected to be heavily influenced by conditions in the

Minnesota River. Because no borings were installed into bedrock, a bedrock aquifer was not encountered. According to the Minnesota County Well Index, monitoring wells in the area are screened in the bedrock aquifer; therefore groundwater levels and groundwater quality from the temporary borings may not be consistent with the results of ongoing monitoring efforts in the underlying bedrock aquifer.

3.4 ORGANIC VAPOR SCREENING AND FIELD OBSERVATIONS

Elevated organic vapor measurements (greater than 10 parts per million [ppm]) were not encountered in any of the borings (Table 3). No visual or olfactory evidence of impacted soil was observed in any of the soil borings.

3.5 SOIL ANALYTICAL RESULTS

Soil sample analytical results were evaluated with respect to the MPCA's screening SLVs, Tier 1 (residential) SRVs, and Tier 2 (industrial exposure) SRVs (MPCA, 2009b, c). DRO results were compared to the MPCA's 100 milligram per kilogram (mg/kg) limit for GRO and DRO in soil established in the *Best Management Practices for the Off-Site Reuse of Unregulated Fill* (MPCA, 2012). Analytical results of soil sampling are summarized in Table 4 and illustrated on Figures 4A and 4B. Figures 4A and 4B also include analytical results of soil sampling conducted in 2014. Copies of the laboratory analytical reports are included in Appendix D. Soil sample identification consists of the boring number, followed by the depth interval from which the sample was taken. For example, DP-22(9-10) denotes a sample collected from direct-push soil boring DP-22 at the depth interval 9 to 10 feet bgs.

All soil samples were received by the laboratory in acceptable condition and were analyzed within the method hold times. Laboratory qualifiers, where present, are included and defined in the summary of results presented in Table 4. Non-detections are reported to the laboratory practical quantitation limit (PQL) for each analyte.

The analytical results are summarized below.

- DRO: DRO were detected above the PQL in all four soil samples for which they were analyzed (DP-32, DP-33, DP-36, DP-37) at depths of 4 to 5 feet bgs. The soil sample from boring DP-31 contained DRO at a concentration of 801 milligrams per kilogram (mg/kg), above the MPCA's 100 mg/kg *Unregulated Fill* criteria. The DRO concentrations in the other three borings ranged from 21 to 49.8 mg/kg, all below *Unregulated Fill* criteria.
- Metals: One or more Priority Pollutant metals were detected in all of the soil samples. Arsenic was detected in five soil samples exceeding the SLV, three of which also exceeded the SRV. Two soil samples exceeded the Tier 1 SRV of 9 mg/kg for arsenic with concentrations of 12.4 mg/kg [DP-32(9-10)] and 17.6 mg/kg [DP-33(4-5)]. One soil sample contained arsenic at a concentration of 23.8 mg/kg [DP-31(4-5)], above the Tier 2 SRV for industrial exposure of 20 mg/kg. The other two soil samples which exceeded the SLV contained arsenic concentrations ranging from 5.9 mg/kg to 6.6 mg/kg, values below the Background Threshold Value (BTV) established by the MPCA for arsenic in soil in Minnesota, and may be representative of background concentrations rather than soil contamination (MPCA, 2016).

The concentration of total chromium exceeded the SLV for hexavalent chromium in the shallow soil sample from boring DP-31, but not the SLV or SRV for Chromium-III. Selenium was detected at a concentration of 27.8 mg/kg in boring DP-32 from 9 to 10 feet bgs, above the SLV of 2.6 mg/kg for that analyte. No other metals were detected at concentrations above their evaluation criteria.

3.6 GROUNDWATER ANALYTICAL RESULTS

The groundwater sample analytical results were evaluated with respect to the MDH Health Risk Limits (HRLs) and HBVs, as well as the EPA maximum contaminant level (MCL) where HRLs and HBVs are not established (MDH, 2018; EPA, 2018). Groundwater sample analytical results are provided in Table 5. Analytical results for select metals in groundwater are illustrated on Figure 5. Copies of the laboratory analytical reports are included in Appendix D.

All groundwater samples were received by the laboratory in acceptable condition and were analyzed within the method hold times. Laboratory qualifiers, where present, are included and defined in the summary of results presented in Table 4. Non-detections are reported to the PQL for each analyte.

Multiple metals were detected below the PQL at concentrations exceeding their HRLs. All three water samples analyzed for metals contained thallium at concentrations exceeding the HRL, though all were below the PQL. The water sample from DP-24 also contained concentrations of beryllium and cadmium above their HRLs. All of the metals exceeding HRLs were detected below the PQL and are therefore estimated concentrations.

The PFAS perfluorobutyric acid (PFBA) was detected above the PQL in three of the five water samples, all at concentrations well below the regulatory criteria. No other PFAS were detected in any of the water samples.

3.7 SOIL GAS ANALYTICAL RESULTS

Soil gas sample VOC results were evaluated with respect to the MPCA Industrial Indoor Air Intrusion Screening Values (ISVs). Where available, interim indoor air screening values, updated in February 2017, were used (MPCA, 2017). Where not available, MPCA's 2009 indoor air screening values were used (MPCA, 2009a). Methane results were evaluated with respect to the LEL. Analytical results of soil gas sampling are summarized in Table 6 and illustrated on Figure 6. Copies of the laboratory analytical reports are included in Appendix E. Soil gas sample identification consists of the designation "SG".

Several VOCs were detected in each of the soil gas samples at concentrations above the PQL. Only benzene was detected in one sample at a concentration that exceeded ISV criteria for Industrial Indoor Air. Benzene was detected at a concentration of 55.7 micrograms per cubic meter (μ g/m³) in soil gas sample location SG-16, which exceeds the 2017 Interim ISV criterion of 45 μ g/m³.

Methane was detected above the PQL in every soil gas sample. There is no ISV criteria for methane, so analytical results were compared to the LEL for that analyte. The LEL for methane is 5%, or 50,000 parts per million by volume (ppmv; PubChem, 2018). The LEL was exceeded in the soil gas sample from SG-12 with a methane concentration of 95,600 ppmv. The methane concentration from SG-16 was elevated but below the LEL with a concentration of 23,900 ppmv. Concentrations of methane in other samples were well below the LEL, ranging from 24.3 ppmv (SG-6) to 9,220 ppmv (SG-14).

PID measurements collected from the boring after soil gas sampling ranged from 0.0 ppm to 1.4 ppm.

4 CONCLUSIONS

The purpose of this investigation was to supplement soil and groundwater data collected during the previous 2014-2015 Phase II ESA and to better define the area of methane in the soil gas and metal and DRO contamination in the soil, determine if groundwater contamination is present including the potential presence of PFAS in groundwater. The information obtained from this supplemental Phase II ESA will be used by MnDOT to determine how to best address potential soil gas and soil contamination during construction activities. The Supplemental Phase II ESA included completion of 21 soil borings using direct-push drilling technology for collection of soil and groundwater, and installation of 16 soil gas sampling locations for collection of soil gas samples.

4.1 INVESTIGATION RESULTS SUMMARY

4.1.1 SOIL INVESTIGATION RESULTS SUMMARY

None of the headspace PID readings exceeded the MPCA criterion of 10 ppm in either the 2014 or 2018 field activities requiring offsite disposal of excavated soil (MPCA, 2012). No petroleum-saturated soil or soil that exhibited a sheen or petroleum odor was encountered in any boring.

Soil samples were typically collected from shallow soils in the interval of 2 to 3 feet bgs or 4 to 5 feet bgs, and deeper soils at the approximate base of each boring, as stipulated in the work plan.

DRO exceeded the *Unregulated Fill* criteria in the sample from boring DP-32 (4 to 5 feet bgs). DRO also exceeded the *Unregulated Fill* criteria in the 2014-2015 Phase II sample collected from DP-9 (4 to 5 feet bgs), located approximately 250 feet southwest of DP-32. The source of the DRO is unclear, as there is no source of petroleum contamination proximate to this location, there was no field evidence of contamination, and both samples were collected from native materials. No groundwater was encountered in either boring; therefore, migration of DRO to this location via groundwater flow is unlikely.

Arsenic was detected above the SLV in soil from borings DP-31, DP-32, and DP-33, completed in the southern portion of the project area along the Black Dog Trail east of I-35W. Arsenic was detected in soil samples from boring DP-31, and in soil samples from the adjacent 2014 soil boring DP-15, at levels exceeding the Tier 2 SRV. Chromium was also detected in borings DP-15 and DP-31 at levels exceeding the SLV. Selenium was also detected at a concentration exceeding the SLV in soil from boring DP-32.

Arsenic was detected above the SLV in the shallow soil sample from boring DP-24, completed in the northern portion of the project area along the west side of I-35W. The arsenic concentration in soil from the 2014 boring DP-6, approximately 200 feet south of DP-24, also exceeded the SLV.

4.1.2 GROUNDWATER INVESTIGATION SUMMARY

Multiple metals were detected at concentrations exceeding their HRLs. All three water samples (DP-24, DP-25, and DP-26) analyzed for metals contained thallium at concentrations exceeding the HRL, though all were below the PQL. The water sample from DP-24 also contained concentrations of beryllium and cadmium above their HRLs. All of the metals exceeding HRLs were detected below the PQL and are therefore estimated concentrations.

PFBA was detected above the PQL in three of the five water samples, all at concentrations well below the regulatory criteria. No other PFAS were detected in any of the water samples. The supplemental Phase II ESA results indicate that shallow groundwater within the supplemental project area has not been impacted by PFASs.

4.1.3 SOIL GAS INVESTIGATION SUMMARY

Soil gas samples contained several VOCs at concentrations above the PQL, primarily at concentrations below vapor intrusion screening criteria. Benzene was detected at SG-16 at a concentration exceeding the Industrial Indoor Air ISV. The source of benzene at SG-16 is unknown, as there is no identified source of benzene in this area and benzene was not detected in nearby soil samples. Methane was detected at SG-12 at a concentration exceeding the LEL. Methane was also detected slightly below the LEL in SG-16. The source of methane in soil gas samples is likely from the adjacent former landfills surrounding the project area.

4.2 RECOMMENDATIONS

4.2.1 CONSTRUCTION CONSIDERATIONS

The presence of impacted soil and groundwater may require special handling during construction, as described below.

<u>Soil:</u> Soil along the southern portion of the project area is impacted with multiple exceedances of metals as well as DRO of an unknown source area. Soil removed from this area should appropriately managed in accordance with MPCA regulations.

<u>Groundwater</u>: There were multiple exceedances of metals in groundwater above their respective HRLs. If dewatering is required for construction, the groundwater may require filtering and/or sampling prior to discharge.

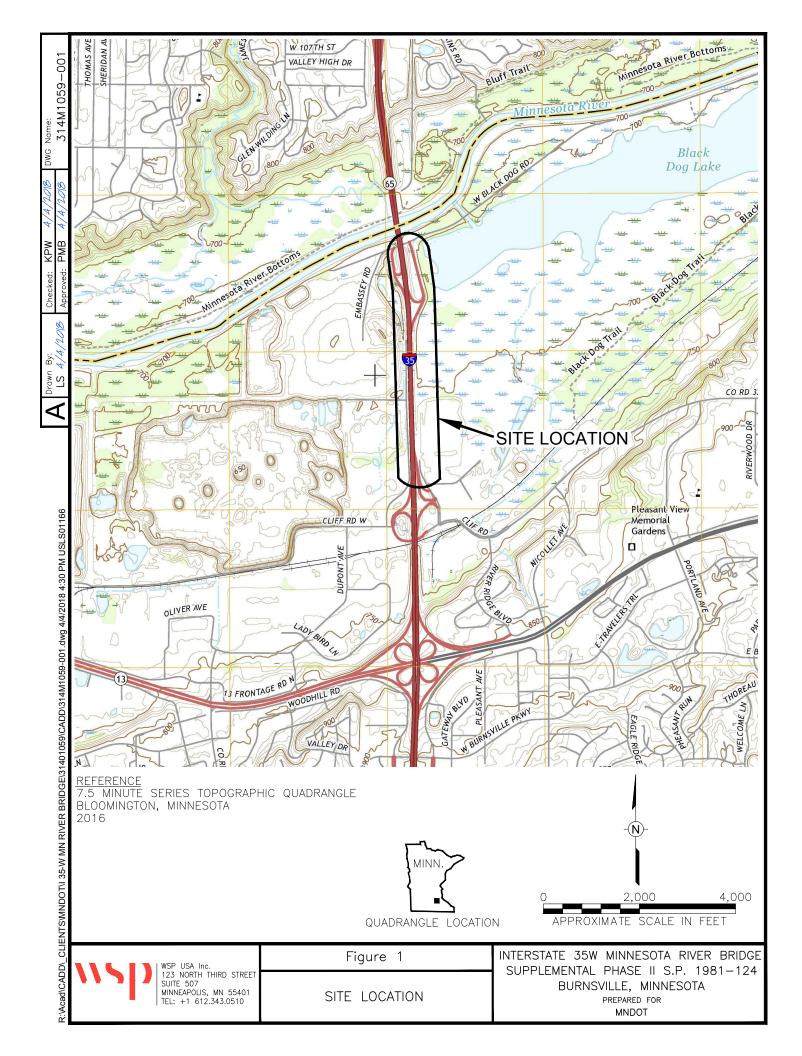
<u>Soil Gas</u>: Methane concentrations exceeded the LEL in samples from one location (SG-12), located adjacent to the west side of I-35W adjacent to the Freeway Sanitary Landfill. Methane concentrations at SG-16, located adjacent to the east side of I-35W were also elevated, but did not exceed the LEL. The concentration of benzene detected in the soil gas sample at SG-16 exceeded the Industrial ISV. Methane monitoring of ambient air within excavations or other subsurface cuts in locations proximate to SG-12 and SG-16, and benzene monitoring in ambient air near SG-16, should be considered during subsurface work in these areas to maintain a safe working environment. WSP recommends that an air monitoring plan be developed in advance of subsurface work in these areas.

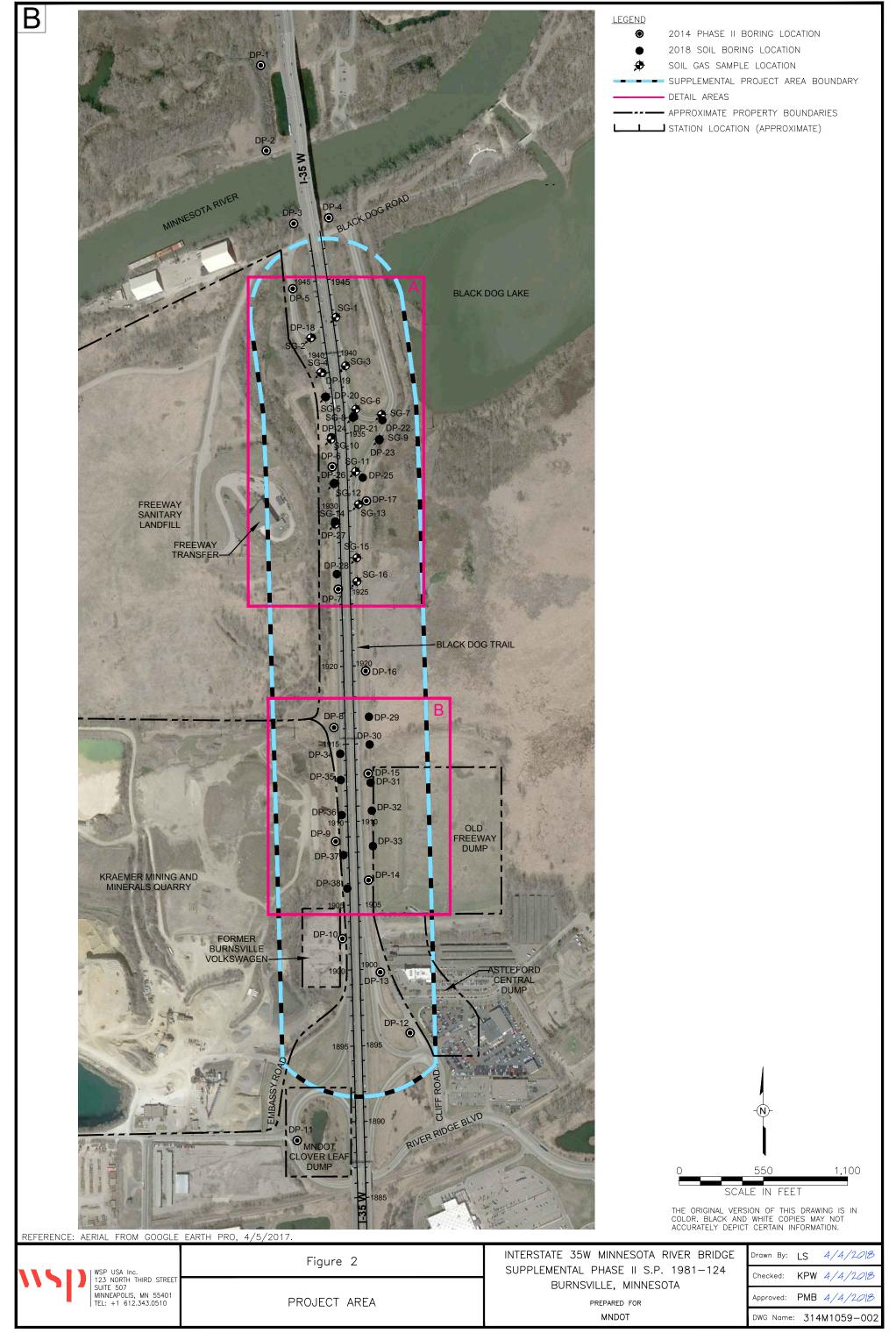
Special provisions should be completed to address proper screening, handling, and disposal of impacted soil and/or groundwater that may be encountered during construction activities. A construction monitoring consultant should be hired to observe work in construction areas where contaminated materials are likely to be encountered or where soil gas concentrations may result in health and safety concerns.

It is recommended that a contingency plan approach be incorporated into MnDOT's special provisions for this project to address the potential for encountering impacted soils, compounds of concern, and/or debris at other locations within the project area that were not detected during this Supplemental Phase II investigation.

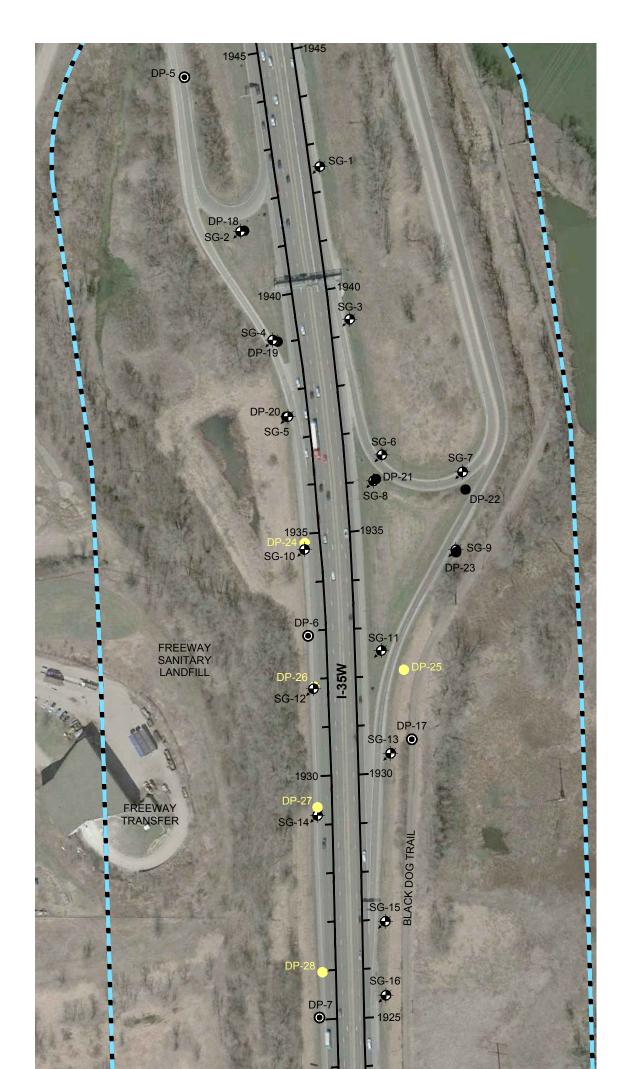
REFERENCES

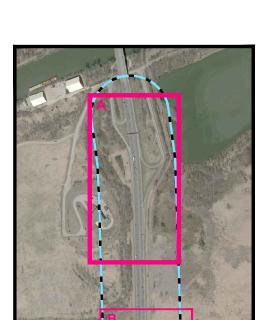
- Bloomgren, Bruce A.; Jane M. Clelan; Bruce M. Olsen. 1989. Bedrock Topography (Plate 4), County Atlas Series Atlas C-4, Hennepin County, Minnesota.
- Bloomgren, Bruce A.; Howard C. Hobbs; John H. Mossler; and Carrie J. Patterson. 1990. Depth to Bedrock and Bedrock Topography (Plate 4), County Atlas Series Atlas C-6, Dakota County, Minnesota.
- Dragun, James and Khaled Chekiri. 2005. Elements in North American Soils. Second Edition. Amherst Scientific Publishers. Amherst, MA.
- Environmental Protection Agency. 2018. National Primary Drinking Water Regulations. (https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations). Accessed in March.
- Hobbs, Howard C.; Saul Aronow; and Carrie J. Patterson. 1990. Surficial Geology (Plate 3), County Atlas Series Atlas C-6, Dakota County, Minnesota.
- Kanivetsky, Roman. 1989. Quaternary Hydrogeology (Plate 5), County Atlas Series Atlas C-4, Hennepin County, Minnesota.
- Meyer, Gary N.; Howard C. Hobbs. 1989. Surficial Geology (Plate 3), County Atlas Series Atlas C-4, Hennepin County, Minnesota.
- Minnesota County Well Index Online System. 2018. Internet Search for Wells within the Project Area. (http://www.health.state.mn.us/divs/eh/cwi/). Accessed in March.
- Minnesota Department of Health. 2006. Environmental Health Information, Offsite Soils: CMC Heartland Lite Yard Site. September.
- Minnesota Department of Health. 2018. Human Health-Based Water Guidance Table. (health.mn.us/divs/eh/risk/guidance/gw/table.html). Accessed in March 2018.
- Minnesota Pollution Control Agency. 2009a. Intrusion Screening Values (ISVs) for Vapor Intrusion Risk Evaluation – February 2009 Version [Microsoft Excel spreadsheet]. (https://www.pca.state.mn.us/waste/intrusion-screening-values). Accessed in March 2018.
- Minnesota Pollution Control Agency. 2009b. Risk-Based Site Evaluation Guidance for the Soil Human Health Pathway, Summary of Tier 1 Residential Soil Reference Value Information [Microsoft Excel spreadsheet]. (https://www.pca.state.mn.us/waste/risk-based-site-evaluation-guidance). Accessed in March 2018.
- Minnesota Pollution Control Agency. 2009c. Risk-Based Site Evaluation Guidance for the Soil Human Health Pathway, Summary of Tier 2 Industrial Soil Reference Value Information [Microsoft Excel spreadsheet]. (https://www.pca.state.mn.us/waste/risk-based-site-evaluation-guidance). Accessed in March 2018.
- Minnesota Pollution Control Agency, 2012; Best Management Practices for the Off-Site Reuse of Unregulated Fill (c-rem1-01). February 2012.
- Minnesota Pollution Control Agency, 2016; Background Threshold Value (BTV) Evaluation, Draft (c-r1-08). September 2016.
- Minnesota Pollution Control Agency, 2017; Interim ISV Short Guidance (c-rem3-12). February 2017.
- National Ground Water Association (NGWA). 2017. Groundwater and PFAS: State of Knowledge and Practice. NGWA Press, ISBN 1-56034-037-1.
- Palen, Barbara. 1990. Quaternary Hydrogeology (Plate 5), County Atlas Series Atlas C-6, Dakota County, Minnesota.

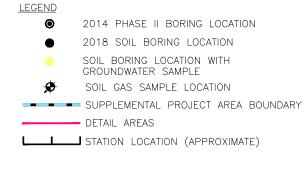

- PubChem. 2018. Compound Summary for Methane. (https://pubchem.ncbi.nlm.nih.gov/compound/methane). Accessed in March.
- U.S. Geological Survey. 1997. Bloomington, Minnesota Quadrangle, 7.5 Minute Series (Topographic). Scale 1:24,000.
- WSP. 2014. Phase I Environmental Assessment, Interstate 35W From Cliff Road to 106th Street, Dakota and Hennepin Counties, Minnesota, State Project Number 1981-124, Minnesota Department of Transportation. November 20.
- WSP. 2015. Phase II Environmental Assessment, Interstate 35W From Cliff Road to 106th Street, Dakota and Hennepin Counties, Minnesota, State Project Number 1981-124. February 12.


ACRONYMS

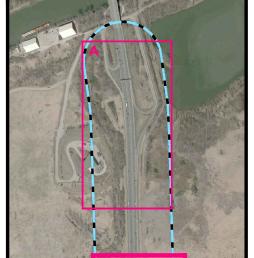
amsl	above mean sea level
BTV	Background Threshold Value
bgs	below ground surface
DRO	diesel range organics
EPA	U.S. Environmental Protection Agency
ESA	Environmental Site Assessment
eV	electron-Volt
HBV	Health-Based Value
HRL	Health Risk Limit
ISV	Intrusion Screening Value
LEL	lower explosive limit
LUST	leaking underground storage tank
$\mu g/m^3$	micrograms per cubic meter
mg/kg	milligrams per kilogram
MCL	Maximum Contaminant Level
MDH	Minnesota Department of Health
MnDOT	Minnesota Department of Transportation
MPCA	Minnesota Pollution Control Agency
NGWA	National Groundwater Association
PFAS	Per- and polyfluoroalkyl substances
PFBA	Perfluorobutyric acid
PID	photoionization detector
ppm	parts per million
ppmv	parts per million by volume
PQL	Practical Quantitation Limit
PRP	Petroleum Remediation Program
RCRA	Resource Conservation and Recovery Act
SLV	Soil Leaching Value
SOP	Standard Operating Procedure
SRV	Soil Reference Value
SVOCs	semi-volatile organic compounds
VOCs	volatile organic compounds

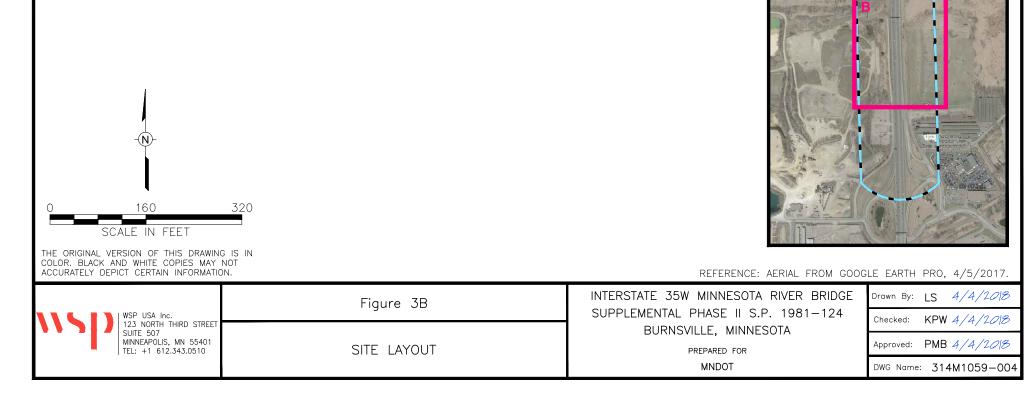


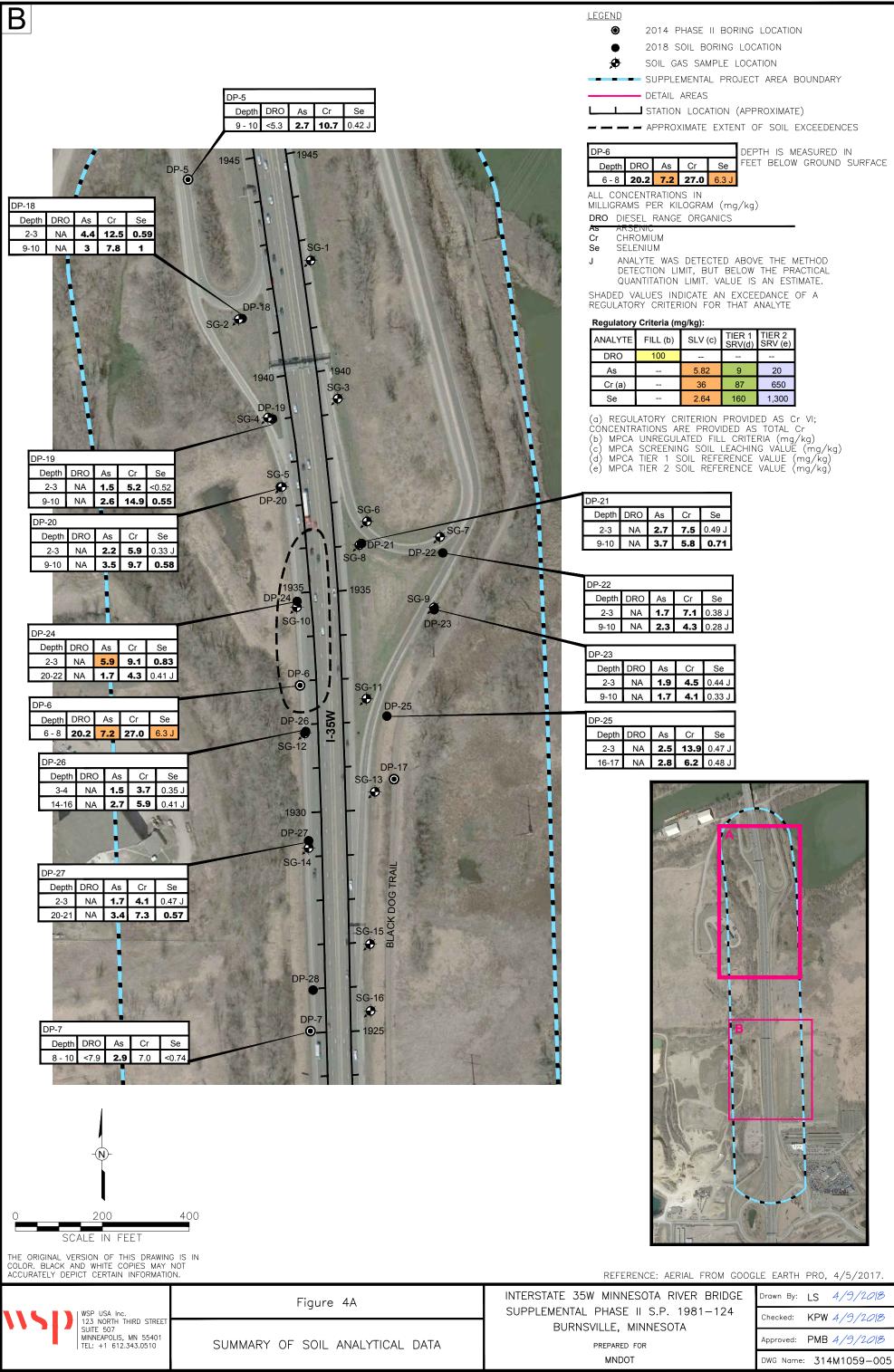




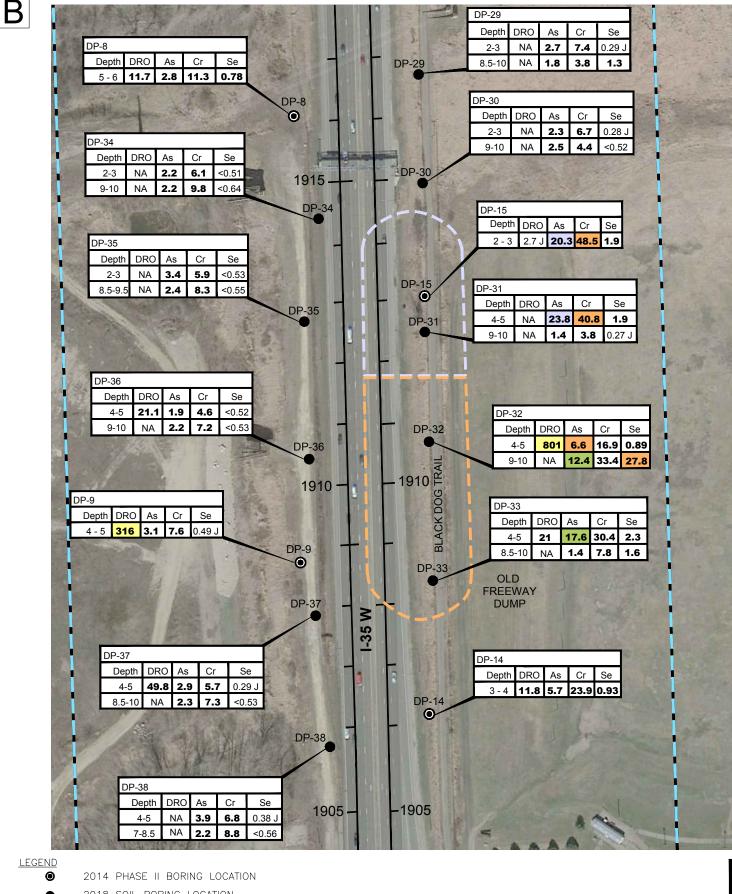

В







0 200 40 SCALE IN FEET THE ORIGINAL VERSION OF THIS DRAWING IS COLOR. BLACK AND WHITE COPIES MAY NOT ACCURATELY DEPICT CERTAIN INFORMATION.		REFERENCE: AERIAL FROM GOOD	GLE EARTH PRO, 4/5/2017.
		INTERSTATE 35W MINNESOTA RIVER BRIDGE	Drawn By: LS 4/4/2018
WSP USA Inc. 123 NORTH THIRD STREET	Figure 3A	SUPPLEMENTAL PHASE II S.P. 1981–124	Checked: KPW 4/4/2018
SUITE 507 MINNEAPOLIS, MN 55401 TEL: +1 612.343.0510	SITE LAYOUT	BURNSVILLE, MINNESOTA prepared for	Approved: PMB 4/4/2018
		MNDOT	DWG Name: 314M1059-003



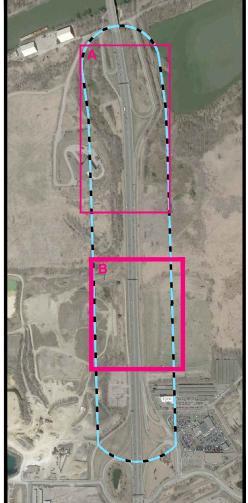
-	Drawn By:	LS 4/9/2018
	Checked:	KPW 4/9/2018
	Approved:	PMB 4/9/2018
	DWG Name	: 314M1059-005

R:\Acad\CADD_CLIENTS\MNDOT\I 35-W MN RIVER BRIDGE\31401059\CADD\314M1059-006.dwg 4/17/2018 8:21 AM USLS01166

2018 SOIL BORING LOCATION ۶ SOIL GAS SAMPLE LOCATION

💻 SUPPLEMENTAL PROJECT AREA BOUNDARY

DETAIL AREAS

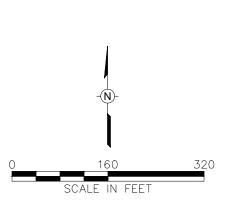

■ STATION LOCATION (APPROXIMATE)

APPROXIMATE EXTENT OF SOIL EXCEEDANCES ABOVE TIER 2 SRV

APPROXIMATE EXTENT OF SOIL EXCEEDANCES BETWEEN SLV AND TIER 2 SRV

DP-9 DEPTH IS MEASURED IN Depth DRO As Cr Se FEET BELOW GROUND SURFACE 4 - 5 **316 3.1 7.6** 0.49 J

ALL CONCENTRATIONS IN MILLIGRAMS PER KILOGRAM (mg/kg) DRO DIESEL RANGE ORGANICS AS ARSENIC

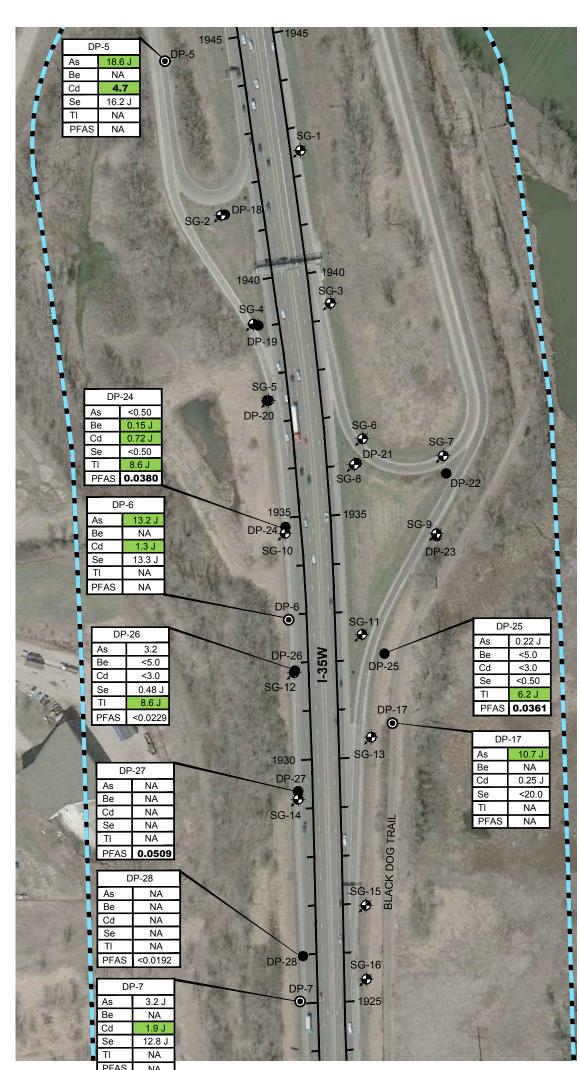

- Cr CHROMIUM
- Se SELENIUM
- ANALYTE WAS DETECTED ABOVE THE METHOD DETECTION LIMIT, BUT BELOW THE PRACTICAL QUANTITATION LIMIT. VALUE IS AN ESTIMATE. J

SHADED VALUES INDICATE AN EXCEEDANCE OF A REGULATORY CRITERION FOR THAT ANALYTE

Regulatory Criteria (mg/kg):

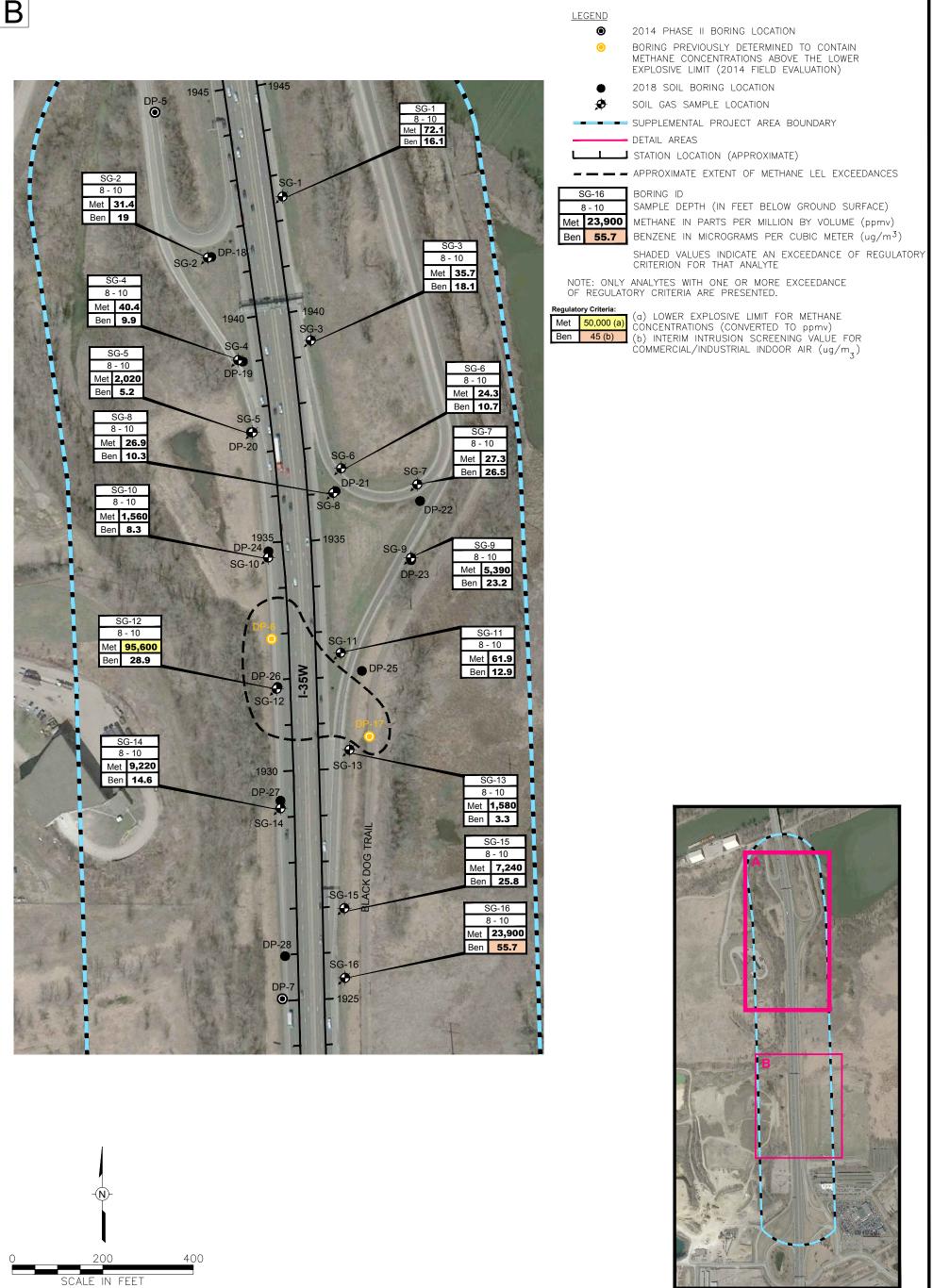
ANALYTE	FILL (b)	SLV (c)	TIER 1 SRV(d)	TIER 2 SRV (e)
DRO	100			
As		5.82	9	20
Cr (a)		36	87	650
Se		2.64	160	1,300

(a) REGULATORY CRITERION PROVIDED AS Cr VI;
CONCENTRATIONS ARE PROVIDED AS TOTAL Cr
(b) MPCA UNREGULATED FILL CRITERIA (mg/kg)
(c) MPCA SCREENING SOIL LEACHING VALUE (mg/kg)
(d) MPCA TIER 1 SOIL REFERENCE VALUE (mg/kg)
(e) MPCA TIER 2 SOIL REFERENCE VALUE (mg/kg)



THE ORIGINAL VERSION OF THIS DRAWING IS IN COLOR. BLACK AND WHITE COPIES MAY NOT ACCURATELY DEPICT CERTAIN INFORMATION.

REFERENCE: AERIAL FROM GOOGLE EARTH PRO, 4/5/2017.


WSP USA Inc. 123 NORTH THIRD STREET	Figure 4B	SUPPLEMENTAL PHASE II S.P. 1981–124	Drawn By: LS 4/9/2018 Checked: KPW 4/9/2018
SUITE 507 MINNEAPOLIS, MN 55401 TEL: +1 612.343.0510	SUMMARY OF SOIL ANALYTICAL DATA	BURNSVILLE, MINNESOTA prepared for MNDOT	Approved: PMB 4/9/2018 DWG Name: 314M1059-006

<u>LEGEND</u>
 2018 SOIL BORING LOCATION SOIL GAS SAMPLE LOCATION
SOIL GAS SAMPLE LOCATION
ETAIL AREAS
STATION LOCATION (APPROXIMATE)
DP-5 BORING ID
As 18.6 J ARSENIC Be NA BERYLLIUM
Cd 4.7 CADMIUM
Se 16.2 J SELENIUM
TI NA THALLIUM PFAS NA PER-AND POLYFLUOROALKYL SUBSTANCES
J ANALYTE WAS DETECTED ABOVE THE METHOD
DETECTION LIMIT, BUT BELOW THE PRACTICAL
QUANTITATION LIMIT. VALUE IS AN ESTIMATE.
NA NOT ANALYZED
ALL CONCENTRATIONS IN MICROGRAMS PER LITER (ug/I)
SHADED VALUES INDICATE AN EXCEEDANCE OF REGULATORY CRITERION FOR THAT ANALYTE
NOTE: ONLY ANALYTES WITH ONE OR MORE EXCEEDANCE
OF REGULATORY CRITERIA ARE PRESENTED TO ILLUSTRATE THE EXTENT OF IMPACTED SOIL.
Regulatory Criteria:
As 10(a) (a) U.S. EPA MAXIMUM CONTAMINANT LEVEL (ug/l)
Be 0.08 (b) (b) MDH HEALTH RISK LIMIT (ug/I)
Cd 0.5 (b) (c) MDH HEALTH BASED VALUE (ug/I) Se 30 (b) (c) (c)
PFAS 7(c)
ANTAN

O 200 SCALE IN FEET THE ORIGINAL VERSION OF THIS DRAWING COLOR. BLACK AND WHITE COPIES MAY ACCURATELY DEPICT CERTAIN INFORMATIC	400 S IS IN		
ACCONTREET BEFICT CENTAIN INFORMATIC	19.	REFERENCE: AERIAL FROM GOOG	
	Figure 5	INTERSTATE 35W MINNESOTA RIVER BRIDGE	Drawn By: LS 4/4/2018
WSP USA Inc. 123 NORTH THIRD STREET	-	SUPPLEMENTAL PHASE II S.P. 1981–124 BURNSVILLE, MINNESOTA	Checked: KPW 4/4/2018
SUITE 507 MINNEAPOLIS, MN 55401 TEL: +1 612.343.0510	EAPOLIS, MN 55401 +1 612.343.0510 SUMMARY OF GROUNDWATER ANALYTICAL DATA	PREPARED FOR	Approved: PMB 4/4/2018
		MNDOT	DWG Name: 314M1059-00

-(N)-	
0 200	400
SCALE IN FEET THE ORIGINAL VERSION OF THIS DRAWIN COLOR. BLACK AND WHITE COPIES MAY ACCURATELY DEPICT CERTAIN INFORMATIC	NOT
WSP USA Inc. 123 NORTH THIRD STREET SUITE 507 MINNEAPOLIS, MN 55401 TEL: +1 612.343.0510	SUMMARY O

REFERENCE: AERIAL FROM GOOGLE EARTH PRO, 4/5/2017.

WSP USA Inc.	Figure 6	INTERSTATE 35W MINNESOTA RIVER BRIDGE SUPPLEMENTAL PHASE II S.P. 1981–124	Drawn By: LS 4/9/2018 Checked: KPW 4/9/2018
123 NORTH THIRD STREET SUITE 507 MINNEAPOLIS, MN 55401 TEL: +1 612.343.0510	SUMMARY OF SOIL GAS ANALYTICAL DATA	BURNSVILLE, MINNESOTA PREPARED FOR	Approved: PMB 4/9/2018
		MNDOT	DWG Name: 314M1059-008

Table 1A Supplemental Phase II Soil Boring Placement and Analytical Testing Summary Minnesota Department of Transportation I 35W, Burnsville, Minnesota S.P. 1981-124

Location ID	Installation Date	Reason for Selection	Saturated Soil Depth (feet bgs) (a)	Depth to Groundwat er (feet bgs)	Total Boring Depth (feet bgs)	Max PID (ppm)	Soil Sample Intervals (feet bgs)	Soil Analytical Testing Parameters	Groundwater Analytical Testing Parameters
DP-18	02/12/18	Provide additional soil evaluation at northern end of construction work, adjacent to landfill area	Not encountered	N/A	10	3	2 - 3 9 - 10	Priority Pollutant Metals	N/A
DP-19	02/12/18	Provide additional soil evaluation at northern end of construction work, adjacent to landfill area	Not encountered	N/A	10	2	2 - 3 9 - 10	Priority Pollutant Metals	N/A
DP-20	02/12/18	Provide additional soil evaluation at northern end of construction work, adjacent to landfill area	Not encountered	N/A	10	1	2 - 3 9 - 10	Priority Pollutant Metals	N/A
DP-21	02/10/18	Provide additional soil evaluation at northern end of construction work, adjacent to landfill area	Not encountered	N/A	10	2	2 - 3 9 - 10	Priority Pollutant Metals	N/A
DP-22	02/10/18	Provide additional soil evaluation at northern end of construction work, adjacent to landfill area	Not encountered	N/A	10	3	2 - 3 9 - 10	Priority Pollutant Metals	N/A
DP-23	02/10/18	Provide additional soil evaluation at northern end of construction work, adjacent to landfill area	Not encountered	N/A	10	1	2 - 3 9 - 10	Priority Pollutant Metals	N/A
DP-24	02/11/18	Provide additional soil evaluation at northern end of construction work, adjacent to landfill area	22	19.5	27	8	2 - 3 20 - 22	Priority Pollutant Metals	PFAS, Priority Pollutant Metals
DP-25	02/12/18	Provide additional soil evaluation at northern end of construction work, adjacent to landfill area	17	17.6	23	9	2 - 3 16 - 17	Priority Pollutant Metals	PFAS, Priority Pollutant Metals
DP-26	02/11/18	Provide additional soil evaluation at northern end of construction work, adjacent to landfill area	16	17.8	20	2	2 - 3 20 - 22	Priority Pollutant Metals	PFAS, Priority Pollutant Metals
DP-27	02/11/18	Provide additional soil evaluation at northern end of construction work, adjacent to landfill area	19	17.6	25	1	2 - 3 20 - 21	Priority Pollutant Metals	PFAS

Table 1A Supplemental Phase II Soil Boring Placement and Analytical Testing Summary Minnesota Department of Transportation I 35W, Burnsville, Minnesota S.P. 1981-124

Location ID	Installation Date	Reason for Selection	Saturated Soil Depth (feet bgs) (a)	Depth to Groundwat er (feet bgs)	Total Boring Depth (feet bgs)	Max PID (ppm)	Soil Sample Intervals (feet bgs)	Soil Analytical Testing Parameters	Groundwater Analytical Testing Parameters
DP-28	02/11/18	Provide information regarding the potential presence and magnitude of PFCs in groundwater adjacent to landfill area	10	18.2	19 (refusal)	2	N/A	N/A	PFAS
DP-29	02/01/18	Provide additional soil evaluation at southern end of construction work, adjacent to landfill area	Not encountered	N/A	10	3	2 - 3 8.5 - 10	Priority Pollutant Metals	N/A
DP-30	02/01/18	Provide additional soil evaluation at southern end of construction work, adjacent to landfill area	Not encountered	N/A	10	1	2 - 3 9 - 10	Priority Pollutant Metals	N/A
DP-31	02/01/18	Provide additional soil evaluation at southern end of construction work, adiacent to landfill area	3.5 - 6	N/A	10	3	4 - 5 9 - 10	Priority Pollutant Metals	N/A
DP-32	02/01/18	Provide additional soil evaluation at southern end of construction work, adjacent to landfill area	5 - 9.6	N/A	10	2	4 - 5 9 - 10	DRO, Priority Pollutant Metals	N/A
DP-33	02/01/18	Provide additional soil evaluation at southern end of construction work, adjacent to landfill area	4 - 5	N/A	10	2	4 - 5 8.5 - 10	DRO, Priority Pollutant Metals	N/A
DP-34	02/01/18	Provide additional soil evaluation at southern end of construction work, adjacent to landfill area	Not encountered	N/A	10	5	2 - 3 9 - 10	Priority Pollutant Metals	N/A
DP-35	02/01/18	Provide additional soil evaluation at southern end of construction work, adjacent to landfill area	5 - 6	N/A	10	3	2 - 3 8.5 - 9.5	Priority Pollutant Metals	N/A
DP-36	02/01/18	Provide additional soil evaluation at southern end of construction work, adjacent to landfill area	Not encountered	N/A	10	0	4 - 5 9 - 10	DRO, Priority Pollutant Metals	N/A
DP-37	02/01/18	Provide additional soil evaluation at southern end of construction work, adjacent to landfill area	5.5 - 8.5	N/A	10	3	4 - 5 8.5 - 10	DRO, Priority Pollutant Metals	N/A

Table 1A Supplemental Phase II Soil Boring Placement and Analytical Testing Summary Minnesota Department of Transportation I 35W, Burnsville, Minnesota S.P. 1981-124

Location ID	Installation Date	Reason for Selection	Saturated Soil Depth (feet bgs) (a)	Groundwat	Total Boring Depth (feet bgs)	Max PID (ppm)	Soil Sample Intervals (feet bgs)	Soil Analytical Testing Parameters	Groundwater Analytical Testing Parameters
DP-38	02/01/18	Provide additional soil evaluation at southern end of construction work, adjacent to landfill area	Not encountered	N/A	10	3	4 - 5 6 - 8.5	Priority Pollutant Metals	N/A

 $a \mid bgs = below ground surface.$

PID = photoionization dectector.

ppm = parts per million

DRO = diesel range organics.

N/A = Not applicable

Table 1B Supplemental Phase II Soil Gas Sample Placement and Analytical Testing Summary Minnesota Department of Transportation I 35W, Burnsville, Minnesota

S.P. 1981-124 (a)

Sample ID	Sample Date	Reason for Selection	Soil Vapor Sample Interval (feet bgs)	PID Measurement (ppm)	Soil Gas Analytical Testing Parameters
SG-1	02/10/18	Investigate whether soil gas has been affected by adjacent landfill and determine potential risk to construction workers.	8 - 10	0.6	VOCs, methane
SG-2	02/12/18	Investigate whether soil gas has been affected by adjacent landfill and determine potential risk to construction workers.	8 - 10	1.4	VOCs, methane
SG-3	02/10/18	Investigate whether soil gas has been affected by adjacent landfill and determine potential risk to construction workers.	8 - 10	1.0	VOCs, methane
SG-4	02/12/18	Investigate whether soil gas has been affected by adjacent landfill and determine potential risk to construction workers.	8 - 10	1.2	VOCs, methane
SG-5	02/12/18	Investigate whether soil gas has been affected by adjacent landfill and determine potential risk to construction workers.	8 - 10	0.8	VOCs, methane
SG-6	02/10/18	Investigate whether soil gas has been affected by adjacent landfill and determine potential risk to construction workers.	8 - 10	0.5	VOCs, methane
SG-7	02/10/18	Investigate whether soil gas has been affected by adjacent landfill and determine potential risk to construction workers.	8 - 10	0.5	VOCs, methane
SG-8	02/10/18	Investigate whether soil gas has been affected by adjacent landfill and determine potential risk to construction workers.	8 - 10	0.3	VOCs, methane
SG-9	02/10/18	Investigate whether soil gas has been affected by adjacent landfill and determine potential risk to construction workers.	8 - 10	0.4	VOCs, methane
SG-10	02/11/18	Investigate whether soil gas has been affected by adjacent landfill and determine potential risk to construction workers.	8 - 10	0.2	VOCs, methane
SG-11	02/10/18	Investigate whether soil gas has been affected by adjacent landfill and determine potential risk to construction workers.	8 - 10	0.0	VOCs, methane
SG-12	02/11/18	Investigate whether soil gas has been affected by adjacent landfill and determine potential risk to construction workers.	8 - 10	0.0	VOCs, methane
SG-13	02/10/18	Investigate whether soil gas has been affected by adjacent landfill and determine potential risk to construction workers.	8 - 10	0.0	VOCs, methane
SG-14	02/11/18	Investigate whether soil gas has been affected by adjacent landfill and determine potential risk to construction workers.	8 - 10	0.0	VOCs, methane
SG-15	02/10/18	Investigate whether soil gas has been affected by adjacent landfill and determine potential risk to construction workers.	8 - 10	0.0	VOCs, methane
SG-16	02/10/18	Investigate whether soil gas has been affected by adjacent landfill and determine potential risk to construction workers.	8 - 10	1.4	VOCs, methane

 $a \mid bgs = below ground surface.$

PID = photoionization dectector.

ppm = parts per million.

VOCs = volatile organic compounds.

Table 2 Supplemental Phase II Soil Boring Location Summary Minnesota Department of Transportation I-35W, Burnsville, Minnesota SP 1981-124 (a)

	Measurement	Zon	e 15 T
Location ID	Date	Easting (meters E)	Northing (meters N)
DP-18	02/17/18	477083.71	4960477.98
DP-19	02/17/18	477104.10	4960407.37
DP-20	02/17/18	477108.82	4960359.74
DP-21	02/17/18	477165.35	4960319.36
DP-22	02/17/18	477222.18	4960312.09
DP-23	02/17/18	477215.64	4960272.39
DP-24	02/17/18	477119.64	4960279.39
DP-25	02/17/18	477181.68	4960198.20
DP-26	02/17/18	477124.63	4960188.03
DP-27	02/17/18	477125.76	4960111.48
DP-28	02/17/18	477127.54	4960006.89
DP-29	02/17/18	477188.03	4959722.12
DP-30	02/17/18	477188.81	4959666.96
DP-31	02/17/18	477189.84	4959590.90
DP-32	02/17/18	477191.55	4959535.21
DP-33	02/17/18	477193.02	4959464.63
DP-34	02/17/18	477130.08	4959649.10
DP-35	02/17/18	477130.45	4959596.98
DP-36	02/17/18	477131.35	4959527.06
DP-37	02/17/18	477133.89	4959447.51
DP-38	02/17/18	477140.88	4959380.87
SG-01	02/17/18	477132.16	4960518.14
SG-02	02/17/18	477081.41	4960477.64
SG-03	02/17/18	477149.99	4960421.07
SG-04	02/17/18	477100.90	4960408.42
SG-05	02/17/18	477110.01	4960356.01
SG-06	02/17/18	477169.29	4960334.75
SG-07	02/17/18	477220.33	4960323.27
SG-08	02/17/18	477163.90	4960318.35
SG-09	02/17/18	477215.51	4960273.88
SG-10	02/17/18	477119.53	4960275.30
SG-11	02/17/18	477167.47	4960210.52
SG-12	02/17/18	477124.06	4960186.79
SG-13	02/17/18	477172.63	4960145.20
SG-14	02/17/18	477125.69	4960106.33
SG-15	02/17/18	477167.87	4960038.59
SG-16	02/17/18	477167.69	4959991.71

a/ All measurements collected using a Trimble Juno 3B.

Table 3Supplemental Phase II Summary of Soil Sample Field Screening Results
Minnesota Department of Transportation
I 35W, Burnsville, Minnesota
S.P. 1981-124 (a)

			PID Headspace
<u>Boring ID</u>	Date	<u>Depth in ft-bgs</u>	<u>(ppm)</u>
DP-18	02/12/18	0 - 2.5	2
DP-18	02/12/18	2.5 - 5	1
DP-18	02/12/18	5 - 10	3
DP-19	02/12/18	0 - 2.5	2
DP-19	02/12/18	2.5 - 5	2
DP-19	02/12/18	5 - 7.5	2
DP-19	02/12/18	7.5 - 10	2
DP-20	02/12/18	0 - 2.5	0
DP-20	02/12/18	2.5 - 5	0
DP-20	02/12/18	5 - 10	1
DP-21	02/10/18	0 - 2.5	1
DP-21	02/10/18	2.5 - 5	1
DP-21	02/10/18	5 - 7.5	1
DP-21	02/10/18	7.5 - 10	2
DP-22	02/10/18	0 - 2.5	1
DP-22	02/10/18	2.5 - 5	2
DP-22	02/10/18	5 - 10	3
DP-23	02/10/18	0 - 2.5	0
DP-23	02/10/18	2.5 - 5	0
DP-23	02/10/18	5 - 7.5	1
DP-23	02/10/18	7.5 - 10	0
DP-24	02/11/18	0 - 2.5	4
DP-24	02/11/18	2.5 - 5	3
DP-24	02/11/18	5 - 10	4
DP-24	02/11/18	10 - 15	4
DP-24	02/11/18	15 - 20	4
DP-24	02/11/18	20 - 25	8
DP-24	02/11/18	25 - 27	5
DP-25	02/12/18	0 - 2.5	6
DP-25	02/12/18	2.5 - 5	8
DP-25	02/12/18	5 - 10	3
DP-25	02/12/18	10 - 12.5	3
DP-25	02/12/18	12.5 - 15	6
DP-25	02/12/18	15 - 17.5	7
DP-25	02/12/18	17.5 - 20	7
DP-25	02/12/18	20 - 23	9
DP-26	02/11/18	3 - 5	0
DP-26	02/11/18	5 - 10	2
DP-26	02/11/18	10 - 15	1
DP-26	02/11/18	15 - 20	2

Table 3Supplemental Phase II Summary of Soil Sample Field Screening Results
Minnesota Department of Transportation
I 35W, Burnsville, Minnesota
S.P. 1981-124 (a)

Boring ID	Date		
		<u>Depth in ft-bgs</u>	<u>(ppm)</u>
DP-27	02/11/18	0 - 2.5	0
DP-27	02/11/18	2.5 - 5	0
DP-27	02/11/18	5 - 10	1
DP-27	02/11/18	10 - 15	1
DP-27	02/11/18	15 - 20	1
DP-27	02/11/18	20 - 25	0
DP-28	02/11/18	5 - 10	2
DP-28	02/11/18	10 - 15	1
DP-28	02/11/18	15 - 29	2
DP-29	02/01/18	0 - 5	2
DP-29	02/01/18	5 - 10	3
DP-30	02/01/18	0 - 5	1
DP-30	02/01/18	5 - 10	1
DP-31	02/01/18	0 - 5	3
DP-31	02/01/18	5 - 10	3
DP-32	02/01/18	0 - 5	2
DP-32	02/01/18	5 - 10	1
DP-33	02/01/18	0 - 5	2
DP-33	02/01/18	5 - 10	2
DP-34	02/01/18	0 - 5	5
DP-34	02/01/18	5 - 10	5
DP-35	02/01/18	0 - 5	2
DP-35	02/01/18	5 - 10	3
DP-36	02/01/18	0 - 5	0
DP-36	02/01/18	5 - 10	0
DP-37	02/01/18	0 - 5	0
DP-37	02/01/18	5 - 10	3
DP-38	02/01/18	0 - 5	3
DP-38	02/01/18	5 - 10	1

a\ PID = photoionization detector equipped with a 10.6 eV bulb and calibrated to isobutylene and fresh air.

PID measurements are rounded to the nearest whole number.

ft-bgs = feet below ground surface.

ppm = parts per million.

									Boring ID and S	Sample Depth	(in feet below g	ground surface				
			MPCA Tier 2												ļ ,	
		MPCA Tier 1	Soil		DP-5	DP-6	DP-7	DP-8	DP-9	DP-14	DP-15	DP-17	DP-18	DP-18	DP-19	DP-19
	MPCA Screening Soil		Reference Value	GRO/DRO	(9-10)	(6-8)	(8-10)	(5-6)	(4-5)	(3-4)	(2-3)	(6-7)	(2-3)	(9-10)	(2-3)	(9-10)
	Leaching Value (b)	Value (c)	(d)	Criteria (e)	11/13/14	11/13/14	11/13/14	11/14/14	11/14/14	11/11/14	11/11/14	11/11/14	02/12/18	02/12/18	02/12/18	02/12/18
Petroleum Hydrocarbon	s (WI Mod DRO)															
Diesel Range Organics	NE	NE	NE	100	<5.3	20.2	<7.9	11.7	316	11.8	2.7 J	18.0	NA	NA	NA	NA

Priority Pollutant Metal	s (EPA Methods 6010, 7	471, SW7196A)														
Antimory	5.4	12	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA	<1.1	<1.1	0.17 J	<1.0
Arsenic	5.8	9	20	N/A	2.7	7.2	2.9	2.8	3.1	5.7	20.3	1.9	4.4	3.0	1.5	2.6
Beryllium	2.7	55	230	N/A	NA	NA	NA	NA	NA	NA	NA	NA	0.040 J	0.035 J	< 0.25	0.060 J
Cadmium	8.8	25	200	N/A	0.10 J	0.33	0.11 J	0.20	0.077 J	0.79	2.2	0.21	0.21	0.12 J	0.058 J	0.074 J
Chromium, Total	1,000,000,000/36 (f)	44,000/87 (f)	100,000/650 (f)	N/A	10.7	27.0	7.0	11.3	7.6	23.9	48.5	11.1	12.5	7.8	5.2	14.9
Copper	700	100	9,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	14.4	7.5	5.5	17.3
Lead	2,700	300	700	N/A	3.0	10.5	3.1	6.2	5.4	49.4	27.4	7.9	55.0	3.4	2.0	3.9
Nickel	180	560	2,500	N/A	NA	NA	NA	NA	NA	NA	NA	NA	10.1	7.8	6.5	14.2
Selenium	2.6	160	1,300	N/A	0.010 J	6.3 J	< 0.74	0.78	0.49 J	0.93	1.9	0.90	0.59	1.0	< 0.52	0.55
Silver	7.9	160	1,300	N/A	0.42 J	< 0.76	< 0.49	< 0.44	< 0.40	< 0.48	< 0.60	< 0.49	< 0.53	< 0.54	< 0.49	0.054 J
Thallium	89	3	21	N/A	NA	NA	NA	NA	NA	NA	NA	NA	<1.1	<1.1	< 0.98	0.28 J
Zinc	3,000	8,700	75,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	53.2	21.2	11.1	21.9
Mercury	3.3	0.5	1.5	N/A	< 0.55	0.056	0.0087 J	0.018 J	0.0079 J	0.020 J	0.049	0.012 J	0.038	0.017 J	< 0.019	0.012 J

									Borin	g ID and Samp	le Depth (in fe	et bgs)				
		MPCA Tier 1	MPCA Tier 2 Soil		DP-20	DP-20	DP-21	DP-21	DP-22	DP-22	DP-23	DP-23	DP-24	DP-24	DP-25	DP-25
	MPCA Screening Soil			GRO/DRO	(2-3)	(9-10)	(2-3)	(9-10)	(2-3)	(9-10)	(2-3)	(9-10)	(2-3)	(20-22)	(2-3)	(16-17)
	Leaching Value (b)	Value (c)	(d)	Criteria (e)	02/12/18	02/12/18	02/10/18	02/10/18	02/10/18	02/10/18	02/10/18	02/10/18	02/11/18	02/11/18	02/12/18	02/12/18
Petroleum Hydrocarbons (WI Mod DRO)																
Diesel Range Organics	NE	NE	NE	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Priority Pollutant Metals	s (EPA Methods 6010, 74	471, SW7196A)														
Antimory	5.4	12	100	N/A	<1.1	<1.1	0.41 J	0.24 J	<4.9	0.46 J	0.18 J	0.12 J	0.38 J	<1.1	<1.1	0.12 J
Arsenic	5.8	9	20	N/A	2.2	3.5	2.7	3.7	1.7	2.3	1.9	1.7	5.9	1.7	2.5	2.8
Damillin	27	55	220	NI/A	<0.27	0.094.1	0.044 I	0.040 I	<1.2	<0.27	<0.26	<0.26	0 11 I	<0.29	0.001 I	<0.26

Priority Pollutant Metals	s (EPA Methods 6010, 7	'471, SW7196A)														
Antimory	5.4	12	100	N/A	<1.1	<1.1	0.41 J	0.24 J	<4.9	0.46 J	0.18 J	0.12 J	0.38 J	<1.1	<1.1	0.12 J
Arsenic	5.8	9	20	N/A	2.2	3.5	2.7	3.7	1.7	2.3	1.9	1.7	5.9	1.7	2.5	2.8
Beryllium	2.7	55	230	N/A	< 0.27	0.084 J	0.044 J	0.049 J	<1.2	< 0.27	< 0.26	< 0.26	0.11 J	< 0.28	0.091 J	< 0.26
Cadmium	8.8	25	200	N/A	0.085 J	0.13 J	0.053 J	0.077 J	0.096 J	0.058 J	0.089 J	0.060 J	0.15 J	0.036 J	0.14 J	0.058 J
Chromium, Total	1,000,000,000/36 (f)	44,000/87 (f)	100,000/650 (f)	N/A	5.9	9.7	7.5	5.8	7.1	4.3	4.5	4.1	9.1	4.3	13.9	6.2
Copper	700	100	9,000	N/A	6.0	9.9	6.8	6.5	8.7	5.0	9.8	3.5	10.7	3.6	13.8	7.0
Lead	2,700	300	700	N/A	5.1	5.0	6.1	4.1	2.9	2.5	2.3	2.1	5.3	3.0	13.7	3.4
Nickel	180	560	2,500	N/A	6.2	13.4	8.2	8.5	8.1	7.3	7.5	7.8	14.0	4.2	10.7	8.3
Selenium	2.6	160	1,300	N/A	0.33 J	0.58	0.49 J	0.71	0.38 J	0.28 J	0.44 J	0.33 J	0.83	0.41 J	0.47 J	0.48 J
Silver	7.9	160	1,300	N/A	< 0.53	< 0.55	< 0.52	< 0.54	<2.5	< 0.53	0.046 J	0.041 J	0.052 J	< 0.56	0.059 J	< 0.51
Thallium	89	3	21	N/A	<1.1	<1.1	0.27 J	<1.1	<4.9	<1.1	<1.0	<1.0	<1.1	<1.1	0.27 J	<1.0
Zinc	3,000	8,700	75,000	N/A	24.3	22.8	17.3	15.8	15.6	11.1	12.0	10.1	23.3	12.0	27.8	17.3
Mercury	3.3	0.5	1.5	N/A	0.011 J	< 0.021	0.013 J	0.013 J	< 0.019	< 0.021	< 0.019	< 0.020	0.024	< 0.023	0.029	0.013 J

									Bori	ng ID and Sam	ple Depth (in f	eet bgs)				
Petroleum Hydrocarbon	· · · · · · · · · · · · · · · · · · ·	Value (c)	(d)	Criteria (e)	DP-26 (3-4) 02/11/18	DP-26 (14-16) 02/11/18	DP-27 (2-3) 02/11/18	DP-27 (20-21) 02/11/18	DP-29 (2-3) 02/01/18	DP-29 (8.5-10) 02/01/18	DP-30 (2-3) 02/01/18	DP-30 (9-10) 02/01/18	DP-31 (4-5) 02/01/18	DP-31 (9-10) 02/01/18	DP-32 (4-5) 02/01/18	DP-32 (9-10) 02/01/18
Diesel Range Organics	NE	NE	NE	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	801	NA
Priority Pollutant Metal	s (EPA Methods 6010, 7	471. SW7196A)														
Antimory	5.4	12	100	N/A	0.33 J	<1.1	0.37 J	0.26 J	<1.0	0.37 J	<1.0	0.33 J	0.98 J	0.28 J	<1.1	0.96 J
Arsenic	5.8	9	20	N/A	1.5	2.7	1.7	3.4	2.7	1.8	2.3	2.5	23.8	1.4	6.6	12.4
Beryllium	2.7	55	230	N/A	< 0.26	< 0.26	< 0.26	0.048 J	0.24 J	< 0.37	0.20 J	< 0.26	2.6	< 0.26	0.89	1.9
Cadmium	8.8	25	200	N/A	0.044 J	0.053 J	0.069 J	0.072 J	0.074 J	0.57	0.056 J	0.057 J	1.7	0.051 J	0.57	1.2
Chromium, Total	1,000,000,000/36 (f)	44,000/87 (f)	100,000/650 (f)	N/A	3.7	5.9	4.1	7.3	7.4	3.8	6.7	4.4	40.8	3.8	16.9	33.4
Copper	700	100	9,000	N/A	1.6	7.0	2.2	7.0	7.9	9.3	7.2	8.5	19.4	5.4	16.2	16.4
Lead	2,700	300	700	N/A	2.2	2.9	2.4	3.8	7.3	2.2	5.8	3.4	24.5	3.7	43	16.7
Nickel	180	560	2,500	N/A	4.0	7.2	5.4	9.4	9.6	19.4	8.3	3.7	18.4	1.4	15.6	26.5
Selenium	2.6	160	1,300	N/A	0.35 J	0.41 J	0.47 J	0.57	0.29 J	1.3	0.28 J	< 0.52	1.9	0.27 J	0.89	27.8
Silver	7.9	160	1,300	N/A	< 0.52	< 0.53	< 0.51	< 0.54	< 0.51	< 0.73	< 0.52	< 0.53	< 0.71	< 0.51	< 0.56	< 0.70
Thallium	89	3	21	N/A	<1.0	<1.1	<1.0	<1.1	<1.0	<1.5	<1.0	<1.1	2.6	<1.0	<1.1	1.2 J
Zinc	3,000	8,700	75,000	N/A	9.9	13.3	11.1	17.7	23.5	9.6	19.1	4.6	150	3.8	77.7	115
Mercury	3.3	0.5	1.5	N/A	< 0.021	< 0.023	< 0.019	0.019 J	0.015 J	< 0.028	< 0.022	< 0.020	0.047	< 0.021	0.010 J	0.047

									Bor	ing ID and Sam	ple Depth (in fo	eet bgs)				
			MPCA Tier 2													
		MPCA Tier 1			DP-33	DP-33	DP-34	DP-34	DP-35	DP-35	DP-36	DP-36	DP-37	DP-37	DP-38	DP-38
	MPCA Screening Soil	Soil Reference	Reference Value	GRO/DRO	(4-5)	(8.5-10)	(2-3)	(9-10)	(2-3)	(8.5-9.5)	(4-5)	(9-10)	(4-5)	(8.5-10)	(4-5)	(7-8.5)
	Leaching Value (b)	Value (c)	(d)	Criteria (e)	02/01/18	02/01/18	02/01/18	02/01/18	02/01/18	02/01/18	02/01/18	02/01/18	02/01/18	02/01/18	02/01/18	02/01/18
Petroleum Hydrocarbon	s (WI Mod DRO)															
Diesel Range Organics	NE	NE	NE	100	21	NA	NA	NA	NA	NA	21.1	NA	49.8	NA	NA	NA

Priority Pollutant Metals (EPA Methods 6010, 7471, SW7196A)

Priority Pollutant Metals	s (EPA Methods 6010, 7	4/1, SW/190A)														
Antimory	5.4	12	100	N/A	<1.4	0.51 J	<1.0	<1.3	<1.0	0.13 J	<1.1	<1.0	0.14 J	<1.1	<1.3	<1.1
Arsenic	5.8	9	20	N/A	17.6	1.4	2.2	2.2	3.4	2.4	1.9	2.2	2.9	2.3	3.9	2.2
Beryllium	2.7	55	230	N/A	2.1	0.55	0.15 J	0.39	0.14 J	0.24 J	0.13 J	0.18 J	0.074 J	0.30	0.20 J	0.20 J
Cadmium	8.8	25	200	N/A	1.1	0.41	0.076 J	0.15 J	0.10 J	0.15 J	0.042 J	0.070 J	0.089 J	0.14 J	0.098 J	0.096 J
Chromium, Total	1,000,000,000/36 (f)	44,000/87 (f)	100,000/650 (f)	N/A	30.4	7.8	6.1	9.8	5.9	8.3	4.6	7.2	5.7	7.3	6.8	8.8
Copper	700	100	9,000	N/A	16.7	24.5	6.4	14.6	6.1	9.8	4.5	7.4	5.4	8.0	7.2	11.8
Lead	2,700	300	700	N/A	24.7	7.1	11.2	6.7	4.7	8.8	3.6	5.0	3.1	65.9	5.6	3.1
Nickel	180	560	2,500	N/A	17	15.6	8.7	29.8	9.7	11.7	7.8	8.1	7.8	8.6	11	9.2
Selenium	2.6	160	1,300	N/A	2.3	1.6	< 0.51	< 0.64	< 0.53	< 0.55	< 0.52	< 0.53	0.29 J	< 0.53	0.38 J	< 0.56
Silver	7.9	160	1,300	N/A	< 0.70	< 0.83	< 0.51	< 0.64	< 0.51	< 0.55	< 0.53	< 0.52	< 0.51	< 0.54	<0.64	< 0.57
Thallium	89	3	21	N/A	0.99 J	<1.7	<1.0	<1.3	<1.0	<1.1	<1.1	<1.0	<1.0	<1.1	<1.3	<1.1
Zinc	3,000	8,700	75,000	N/A	114	15.6	18.1	28.6	15.8	28.5	13.6	18.5	13.9	30.9	16.8	21.5
Mercury	3.3	0.5	1.5	N/A	0.049	0.022 J	< 0.018	0.025	< 0.021	0.013 J	< 0.022	< 0.019	< 0.022	< 0.019	< 0.024	< 0.022

(a) All results reported in milligrams per kilogram.

MPCA = Minnesota Pollution Control Agency.

DRO = Diesel range organics.

feet bgs = feet below ground surface.

NA = Not analyzed.

N/A = Not applicable.

EPA = U.S. Environmental Protection Agency.

(b) MPCA Screening Soil Leaching Values, updated 2013.

(c) MPCA Tier 1 Residential Soil Reference Values, updated 2009.

(d) MPCA Tier 2 Soil Reference Value for Industrial Exposure, updated 2009.

(e) Evaluation criteria per MPCA Remediation Guidance Document 1-01 Best Management Practices for the Off-Site Reuse of Unregulated Fill, February 2012.

- (f) MPCA Soil Leaching Values and Soil Reference Values are for Chromium III and Chromium VI, respectively. Sample concentrations reported as total chromium.
- **Boldface** type denotes a detection above the practical quantitation limit.

Shaded cells indicate exceedance of regulatory criteria, matches respective criteria column shading.

Laboratory Data Qualifiers:

J = Analyte was detected above the method detection limit, but below the practical quantitation limit. Listed value is an estimate.

			Sample	ID and Date (Collected		S	ample ID and	Date Collecte	d
	Drinking Water	DP-5	DP-6	DP-7	DP-17	DP-24	DP-25	DP-26	DP-27	DP-28
	Criteria (b,c)	11/14/14	11/13/14	11/13/14	11/11/14	02/11/18	02/12/18	02/11/18	02/11/18	02/11/18
Metals (Dissolved; EPA Metho	ds 6010, 7470)									
Antimony	6 (b)	NA	NA	NA	NA	3.3 J	<20.0	3.2 J	NA	NA
Arsenic	10 (c)	18.6 J	13.2 J	3.2 J	10.7 J	< 0.50	0.22 J	3.2	NA	NA
Beryllium	0.08 (b)	NA	NA	NA	NA	0.15 J	<5.0	<5.0	NA	NA
Cadmium	0.5 (b)	4.7	1.3 J	1.9 J	0.25 J	0.72 J	<3.0	<3.0	NA	NA
Chromium (Total)	20,000/100 (b,d)	57.7	31.2	16.6	13.9	<10.0	<10.0	<10.0	NA	NA
Copper	1,300 (c)	NA	NA	NA	NA	3.5 J	2.6 J	2.6 J	NA	NA
Lead	15 (c)	28.3	28.3	11.4	13.7	<10.0	<10.0	<10.0	NA	NA
Nickel	100 (b)	NA	NA	NA	NA	39.0	12.7 J	15.8 J	NA	NA
Selenium	30 (b)	16.2 J	13.3 J	12.8 J	<20.0	< 0.50	< 0.50	0.48 J	NA	NA
Silver	30 (b)	<10.0	<10.0	<10.0	<10.0	0.55 J	0.28 J	0.29 J	NA	NA
Thallium	0.6 (b)	NA	NA	NA	NA	8.6 J	6.2 J	8.6 J	NA	NA
Zinc	2000 (b)	NA	NA	NA	NA	3.8 J	2.4 J	2.9 J	NA	NA
Mercury	2 (c)	1.2	0.027 J	0.042 J	< 0.20	< 0.20	< 0.20	< 0.20	NA	NA
Per- and polyfluorinated alkyl	substances (Method D	V-LC-0012, P	FC-FOSA)							
Perfluorobutane Sulfonate	2 (b)	NA	NA	NA	NA	< 0.0200	< 0.0223	< 0.0229	< 0.0206	< 0.0192
Perfluorobutyric acid	7 (b)	NA	NA	NA	NA	0.0380	0.0361	< 0.0229	0.0509	< 0.0192
Perfluorodecane Sulfonate	NE	NA	NA	NA	NA	< 0.0200	< 0.0223	< 0.0229	< 0.0206	< 0.0192
Perfluorodecanoic acid	NE	NA	NA	NA	NA	< 0.0200	< 0.0223	< 0.0229	< 0.0206	< 0.0192
Perfluorododecanoic acid	NE	NA	NA	NA	NA	< 0.0300	< 0.0335	< 0.0343	< 0.0309	< 0.0289
Perfluoroheptanoic acid	NE	NA	NA	NA	NA	< 0.0300	< 0.0335	< 0.0343	< 0.0309	< 0.0289
Perfluorohexane Sulfonate	NE	NA	NA	NA	NA	< 0.0300	< 0.0335	< 0.0343	< 0.0309	< 0.0289
Perfluorohexanoic acid	NE	NA	NA	NA	NA	< 0.0200	< 0.0223	< 0.0229	< 0.0206	< 0.0192
Perfluorononanoic acid	NE	NA	NA	NA	NA	< 0.0400	< 0.0446	< 0.0458	< 0.0412	< 0.0385
Perfluorooctane Sulfonamide	NE	NA	NA	NA	NA	< 0.0524	< 0.0611	< 0.0597	< 0.0486	< 0.0513
Perfluorooctane sulfonic acid	0.027 (b)	NA	NA	NA	NA	< 0.0300	< 0.0335	< 0.0343	< 0.0309	< 0.0289
Perfluorooctanoic acid	0.035 (b)	NA	NA	NA	NA	< 0.0200	< 0.0223	< 0.0229	< 0.0206	< 0.0192
Perfluoropentanoic acid	NE	NA	NA	NA	NA	< 0.0300	< 0.0335	< 0.0343	< 0.0309	< 0.0289
Perfluorotetradecanoic acid	NE	NA	NA	NA	NA	< 0.0300	< 0.0335	< 0.0343	< 0.0309	< 0.0289
Perfluorotridecanoic acid	NE	NA	NA	NA	NA	< 0.0400	< 0.0446	< 0.0458	< 0.0412	< 0.0385
Perfluoroundecanoic acid	NE	NA	NA	NA	NA	< 0.0200	< 0.0223	< 0.0229	< 0.0206	< 0.0192

(a) All results reported in micrograms per liter.

MDH = Minnesota Department of Health.

EPA = U.S. Environmental Protection Agency.

NA = not analyzed.

(b) MDH Health Risk Limit or Health Based Value;

Minnesota Administrative Rule 4717.7860 (most conservative exposure duration).

(c) U.S. EPA Maximum Contaminant Level.

(d) MDH Health Risk Limits are for Chromium III and Chromium VI, respectively.

Sample concentrations are reported as total chromium.

Boldface type denotes a detection above the practical quantitation limit.

Indicates a detection in exceedance of the drinking water criterion for that compound.

Laboratory Data Qualifiers:

J = Analyte was detected above the method detection limit, but below the practical quantitation limit. Listed value is an estimate.

			Sample I	D, Date Collec	ted, and Samp	le Interval (fee	t below ground	surface)
	Industrial Indoor Air ISV	Lower Explosive Limit (b)	SG-1 02/10/18 8 - 10	SG-2 02/12/18 8 - 10	SG-3 02/10/18 8 - 10	SG-4 02/12/18 8 - 10	SG-5 02/12/18 8 - 10	SG-6 02/10/18 8 - 10
Methane (EPA Method TO-3)		50.000	70.1	21.4	25.5	40.4	2 0 2 0	24.2
Methane	NE	50,000	72.1	31.4	35.7	40.4	2,020	24.3
VOCs (EPA Method TO-15)			100	00 -	110	100	1.40	100
Acetone Benzene	87,000 (c) 45 (d)	NA NA	122 16.1	<u>90.7</u> 19	110 18.1	<u>133</u> 9.9	149 5.2	100 10.7
Benzyl chloride	3 (c)	NA	<1.9	<1.8	<1.8	<1.7	<1.8	<1.9
Bromodichloromethane	NE	NA	<2.4	<2.4	<2.4	<2.2	<2.3	<2.4
Bromoform	30 (c)	NA	<9.3	<9.1	<9.1	<8.6	<8.8	<9.5
Bromomethane	10 (c)	NA	<1.4	<1.4	<1.4	<1.3	<1.3	<1.4
1,3-Butadiene	2.7 (d)	NA	<2.0	<2.0	<2.0	<1.8	<1.9	<2.0
2-Butanone (MEK)	10,000 (c)	NA	26.7	30	29.4	18.4	78.4	22.4
Carbon disulfide Carbon tetrachloride	2,000 (c) 16 (d)	NA NA	<1.1 <1.1	10 <1.1	<1.1	<1.0 <1.0	<1.1 <1.1	6.7 <1.2
Chlorobenzene	180 (d)	NA	<1.7	<1.1	1.2 J	<1.0	<1.1	<1.2
Chloroethane	30,000 (c)	NA	<2.4	<2.3	<2.3	<2.2	<2.3	<2.4
Chloroform	300 (c)	NA	<0.88	<0.86	<0.86	<0.81	<0.83	<0.89
Chloromethane	300 (c)	NA	< 0.74	< 0.73	< 0.73	<0.68	< 0.71	< 0.76
Cyclohexane	20,000 (c)	NA	10.0	9.0	<1.2	<1.1	<1.2	<1.3
Dibromochloromethane	NE	NA	<3.1	<3.0	<3.0	<2.8	<2.9	<3.1
1,2-Dibromoethane (EDB)	0.16 (d)	NA	<2.8	<2.7	<2.7	<2.5	<2.6	<2.8
1,2-Dichlorobenzene 1,3-Dichlorobenzene	600 (c) NE	NA NA	<2.2 <2.2	<2.1	<2.1 <2.1	<2.0 <2.0	<2.0 <2.0	<2.2 <2.2
1,4-Dichlorobenzene	200 (c)	NA	<2.2	<2.1	<2.1	<2.0	<2.0	<2.2
Dichlorodifluoromethane (Freon 12)	1,000 (c)	NA	<1.8	<1.8	<1.8	<1.6	<1.7	<1.8
1,1-Dichloroethane	1 (c)	NA	<1.5	<1.4	<1.4	<1.3	<1.4	<1.5
1,2-Dichloroethane	3.8 (d)	NA	< 0.73	< 0.72	< 0.72	<0.67	< 0.69	< 0.74
1,1-Dichloroethene	NE	NA	<1.4	<1.4	<1.4	<1.3	<1.4	<1.5
cis-1,2-Dichloroethene	NE (d)	NA	<1.4	<1.4	<1.4	<1.3	<1.4	<1.5
trans-1,2-Dichloroethene 1,2-Dichloropropane	NE (d)	NA NA	<1.4 <1.7	<1.4 <1.6	<1.4 <1.6	<1.3 <1.5	<1.4 <1.6	<1.5 <1.7
cis-1,3-Dichloropropene	10 (c) 60 (c)	NA	<1.7	<1.6	<1.6	<1.5	<1.6	<1.7
trans-1,3-Dichloropropene	60 (c)	NA	<1.6	<1.6	<1.6	<1.5	<1.6	<1.7
Dichlorotetrafluoroethane	NE	NA	<2.5	<2.5	<2.5	<2.3	<2.4	<2.6
Ethanol	42,000 (c)	NA	17.1	<3.3	<3.3	24.0	<3.2	<3.4
Ethyl acetate	8,000 (c)	NA	<1.3	<1.3	<1.3	<1.2	<1.2	<1.3
Ethylbenzene	39 (d)	NA	5.5	2.4	9.2	3.3	2.2	3.4
4-Ethyltoluene	NE	NA	<1.8	<1.7	<1.7	<1.6	<1.7	<1.8
n-Heptane Hexachloro-1,3,-butadiene	<u>NE</u> 1 (c)	NA NA	12.3 <3.8	12.4 <3.8	13.9 <3.8	6.6 <3.5	5.9 <3.6	6.2 <3.9
n-Hexane	6,000 (c)	NA	<u> </u>	28.7	27.7	<u> </u>	< <u>-</u> 3.0 16.0	13.1
2-Hexanone	110 (d)	NA	<7.4	<7.2	<7.2	<6.8	<7.0	<7.5
Methylene Chloride (dichloromethane)	2,100 (d)	NA	77.9	<6.1	<6.1	118	<5.9	<6.4
4-Methyl-2-pentanone (MIBK)	8,000 (c)	NA	<7.4	<7.2	<7.2	<6.8	<7.0	<7.5
Methyl tert-butyl ether	8,000 (c)	NA	<6.5	<6.4	<6.4	<6.0	<6.1	<6.6
Naphthalene	30(c)	NA	<4.7	<4.6	<4.6	<4.3	<4.5	<4.8
2-Propanol Propylene	20,000 (c) 8,000 (c)	NA NA	6.8 <0.62	<4.4 460	<4.4 380	<4.1 <0.57	<4.2 <0.59	7.8 237
Styrene	3,000 (c)	NA	<0.62	<1.5	<1.5	<0.37	<0.39	<1.6
1,1,2,2-Tetrachloroethane	1 (c)	NA	<1.2	<1.2	<1.2	<1.1	<1.2	<1.3
Tetrachloroethene	33 (d)	NA	<1.2	1.5	<1.2	<1.1	<1.2	<1.2
Tetrahydrofuran	NE	NA	<1.1	<1.0	<1.0	< 0.98	<1.0	<1.1
Toluene	18,000 (d)	NA	28.4	13	25.9	14.0	6.6	28.9
1,2,4-Trichlorobenzene	<u>10 (c)</u>	NA	<6.7	<6.6	<6.6	<6.1	<6.3	<6.8
1,1,1-Trichloroethane 1,1,2-Trichloroethane	10,000 (c)	NA NA	<2.0	<1.9 <0.97	<1.9 <0.97	<1.8 <0.90	<1.9 <0.93	<2.0 <1.0
Trichloroethene	2 (c) 7.0 (d)	NA NA	<0.98 <0.97	<0.97	<0.97	<0.90 <0.89	<0.93	<1.0
Trichlorofluoromethane (Freon 11)	2,000 (c)	NA	<0.97	<0.93	<0.93	<0.89	<0.92	<0.98
1,1,2-Trichlorotrifluoroethane (Freon	80,000 (c)	NA	<2.8	<2.7	<2.7	<2.5	<2.6	<2.8
1,2,4-Trimethylbenzene	210 (d)	NA	1.5 J	<1.7	1.0 J	<1.6	<1.7	0.96 J
1,3,5-Trimethylbenzene	210 (d)	NA	<1.8	<1.7	<1.7	<1.6	<1.7	<1.8
Vinyl acetate	600 (c)	NA	<1.3	<1.2	<1.2	<1.2	<1.2	<1.3
Vinyl chloride	22 (d)	NA	<2.3	<2.3	<2.3	<2.1	<2.2	<2.3
m&p-Xylene	350 (d)	NA	6.0	3.1	18.5	2.8 J	3.1	5.2
o-Xylene	350 (d)	NA	1.3 J	<1.5	9.4	<1.4	<1.5	<1.6

			Sample I	D, Date Collec	ted, and Samp	e Interval (fee	t below ground	surface)
	Industrial Indoor Air ISV	Lower Explosive Limit (b)	SG-7 02/10/18 8 - 10	SG-8 02/10/18 8 - 10	SG-9 02/10/18 8 - 10	SG-10 02/11/18 8 - 10	SG-11 02/10/18 8 - 10	SG-12 02/11/18 8 - 10
Methane (EPA Method TO-3)		50.000	25.2	2(0	5 200	1 5(0	(1.0	05 (00
Methane	NE	50,000	27.3	26.9	5,390	1,560	61.9	95,600
VOCs (EPA Method TO-15)								
Acetone	87,000 (c)	NA	49.6	88.4	155	72.9	119	109
Benzene Denzul aklarida	45 (d)	NA	26.5	10.3	23.2	8.3	12.9	28.9
Benzyl chloride Bromodichloromethane	3 (c) NE	NA NA	<1.8 <2.3	<1.8 <2.4	<1.9 <2.4	<1.8 <2.3	<1.8 <2.3	<1.8 <2.4
Bromoform	30 (c)	NA	<8.8	<9.1	<9.5	<8.8	<8.8	<9.1
Bromomethane	10 (c)	NA	<1.3	<1.4	<1.4	<1.3	<1.3	<1.4
1,3-Butadiene	2.7 (d)	NA	<1.9	<2.0	<2.0	<1.9	<1.9	<2.0
2-Butanone (MEK)	10,000 (c)	NA	9.6	19.7	35.5	24.4	25.8	29.9
Carbon disulfide	2,000 (c)	NA	<1.1	<1.1	<1.1	7.4	7.4	37.5
Carbon tetrachloride	16 (d)	NA	<1.1	<1.1	<1.2	<1.1	<1.1	<1.1
Chlorobenzene Chloroethane	180 (d)	NA	<1.6 <2.3	<1.6	<1.7 <2.4	<1.6 <2.3	<1.6	<1.6
Chloroform	30,000 (c) 300 (c)	NA NA	<0.83	<2.3 <0.86	<2.4	<2.3	<2.3 <0.83	<2.3 <0.86
Chloromethane	300 (c)	NA	<0.83	<0.80	< 0.39	<0.83	<0.83	<0.80
Cyclohexane	20,000 (c)	NA	15.9	<1.2	23.0	<1.2	<1.2	90.6
Dibromochloromethane	NE	NA	<2.9	<3.0	<3.1	<2.9	<2.9	<3.0
1,2-Dibromoethane (EDB)	0.16 (d)	NA	<2.6	<2.7	<2.8	<2.6	<2.6	<2.7
1,2-Dichlorobenzene	600 (c)	NA	<2.0	<2.1	<2.2	<2.0	<2.0	<2.1
1,3-Dichlorobenzene	NE	NA	<2.0	<2.1	<2.2	<2.0	<2.0	<2.1
1,4-Dichlorobenzene Dichlorodifluoromethane (Freon 12)	200 (c)	NA	<2.0 <1.7	<2.1 <1.8	<2.2 <1.8	<2.0 <1.7	<2.0 <1.7	<2.1 <1.8
1,1-Dichloroethane	1,000 (c) 1 (c)	NA NA	<1.7	<1.8	<1.8	<1.7	<1.7	<1.8
1,2-Dichloroethane	3.8 (d)	NA	<0.69	<0.72	<0.74	<0.69	<0.69	<0.72
1,1-Dichloroethene	NE	NA	<1.4	<1.4	<1.5	<1.4	<1.4	<1.4
cis-1,2-Dichloroethene	NE (d)	NA	<1.4	<1.4	<1.5	<1.4	<1.4	<1.4
trans-1,2-Dichloroethene	NE (d)	NA	<1.4	<1.4	<1.5	<1.4	<1.4	<1.4
1,2-Dichloropropane	10 (c)	NA	<1.6	<1.6	<1.7	<1.6	<1.6	<1.6
cis-1,3-Dichloropropene	60 (c)	NA	<1.6	<1.6	<1.7	<1.6	<1.6	<1.6
trans-1,3-Dichloropropene Dichlorotetrafluoroethane	60 (c) NE	NA NA	<1.6 <2.4	<1.6 <2.5	<1.7 <2.6	<1.6 <2.4	<1.6 <2.4	<1.6 <2.5
Ethanol	42,000 (c)	NA	<3.2	<3.3	<u>36.8</u>	<3.2	<3.2	<3.3
Ethyl acetate	8,000 (c)	NA	<1.2	<1.3	<1.3	<1.2	<1.2	<1.3
Ethylbenzene	39 (d)	NA	16.6	3.7	19.7	1.6	4.3	3.7
4-Ethyltoluene	NE	NA	<1.7	<1.7	<1.8	<1.7	<1.7	<1.7
n-Heptane	NE	NA	17.6	6.6	27.7	6.7	9.2	37.8
Hexachloro-1,3,-butadiene	1 (c)	NA	<3.6	<3.8	<3.9	<3.6	<3.6	<3.8
n-Hexane 2-Hexanone	6,000 (c)	NA	34.5	15.7	52.0	16.0	21.9	111
Methylene Chloride (dichloromethane)	110 (d) 2,100 (d)	NA NA	<7.0 <5.9	<7.2 <6.1	<7.5 <6.4	<7.0 <5.9	<7.0 <5.9	<7.2 <6.1
4-Methyl-2-pentanone (MIBK)	8,000 (c)	NA	<7.0	<7.2	<7.5	<7.0	<7.0	<7.2
Methyl tert-butyl ether	8,000 (c)	NA	<6.1	<6.4	<6.6	<6.1	<6.1	<6.4
Naphthalene	30 (c)	NA	<4.5	<4.6	<4.8	<4.5	<4.5	<4.6
2-Propanol	20,000 (c)	NA	<4.2	6.7	<4.5	<4.2	8.1	<4.4
Propylene	8,000 (c)	NA	265	264	275	180	323	< 0.61
Styrene 1,1,2,2-Tetrachloroethane	3,000 (c)	NA	<1.5	<1.5	<1.6	<1.5	<1.5	<1.5
Tetrachloroethene	1 (c) 33 (d)	NA NA	<1.2 <1.2	<1.2 <1.2	<1.3 <1.2	<1.2 <1.2	<1.2 <1.2	<1.2 <1.2
Tetrahydrofuran	33 (d) NE	NA	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2
Toluene	18,000 (d)	NA	37.0	32.0	54.9	9.7	34.7	32.9
1,2,4-Trichlorobenzene	10 (c)	NA	<6.3	<6.6	<6.8	<6.3	<6.3	<6.6
1,1,1-Trichloroethane	10,000 (c)	NA	<1.9	<1.9	<2.0	<1.9	<1.9	<1.9
1,1,2-Trichloroethane	2 (c)	NA	< 0.93	< 0.97	<1.0	< 0.93	< 0.93	< 0.97
Trichloroethene	7.0 (d)	NA	< 0.92	<0.95	<0.98	< 0.92	< 0.92	<0.95
Trichlorofluoromethane (Freon 11) 1,1,2-Trichlorotrifluoroethane (Freon	2,000 (c) 80,000 (c)	NA	<1.9	<2.0	<2.1	<1.9	<1.9	<2.0
1,2,4-Trichlorotrifluoroethane (Freon	80,000 (c) 210 (d)	NA NA	<2.6 1.4 J	<2.7 <1.7	<2.8 1.3 J	<2.6 <1.7	<2.6 0.95 J	<2.7 <1.7
1,3,5-Trimethylbenzene	210 (d) 210 (d)	NA	<1.4 J	<1.7	<1.8	<1.7	<1.7	<1.7
Vinyl acetate	600 (c)	NA	<1.7	<1.2	<1.3	<1.2	<1.2	<1.2
Vinyl chloride	22 (d)	NA	<2.2	<2.3	<2.3	<2.2	<2.2	<2.3
m&p-Xylene	350 (d)	NA	6.7	5.4	9.2	2.9 J	7.1	7.3
o-Xylene	350 (d)	NA	1.3 J	<1.5	2.1	<1.5	0.78 J	1.7

			Sumple 12,		ind surface)	
			~~	~~	~~	
	Industrial		SG-13	SG-14	SG-15	SG-16
	Indoor Air	Lower Explosive	02/10/18	02/11/18	02/10/18	02/10/18
Mathema (EDA Mathed TO 2)	ISV	Limit (b)	8 - 10	8 - 10	8 - 10	8 - 10
Methane (EPA Method TO-3) Methane	NE	50,000	1,580	9,220	7,240	23,900
Wiethalie	INE	50,000	1,300	9,220	7,240	23,900
VOCs (EPA Method TO-15)						
Acetone	87,000 (c)	NA	138	428	105	523
Benzene	45 (d)	NA	3.3	14.6	25.8	55.7
Benzyl chloride	3 (c)	NA	<1.9	<1.9	<2.0	<1.7
Bromodichloromethane	NE	NA	<2.4	<2.4	<2.6	<2.2
Bromoform	30 (c)	NA	<9.3	<9.3	<10.2	<8.6
Bromomethane	10 (c)	NA	<1.4	<1.4	<1.5	<1.3
1,3-Butadiene	2.7 (d)	NA	<2.0	<2.0	<2.2	<1.8
2-Butanone (MEK)	10,000 (c)	NA	11.3	82.1	23.7	145
Carbon disulfide	2,000 (c)	NA	<1.1	12.8	15.7	56.3
Carbon tetrachloride	16 (d)	NA	<1.1	<1.1	<1.2	<1.0
Chlorobenzene	180 (d)	NA	<1.7	<1.7	<1.8	<1.5
Chloroethane	30,000 (c)	NA	<2.4	<2.4	<2.6	79.0
Chloroform	300 (c)	NA	<0.88	<0.88	<0.96	< 0.81
Chloromethane	300 (c)	NA	<0.74	< 0.74	<0.81	< 0.68
Cyclohexane	20,000 (c)	NA	<1.2	<1.2	<1.4	388
Dibromochloromethane	NE	NA	<3.1	<3.1	<3.4	<2.8
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	0.16 (d)	NA	<2.8	<2.8	<3.0	<2.5
1,3-Dichlorobenzene	600 (c) NE	NA	<2.2	<2.2	<2.4	<2.0 <2.0
1,4-Dichlorobenzene	NE 200 (c)	NA NA	<2.2 <2.2	<2.2 <2.2	<2.4 <2.4	<2.0
Dichlorodifluoromethane (Freon 12)	1,000 (c)	NA	<1.8	<1.8	<2.4	<1.6
1,1-Dichloroethane	1,000 (c) 1 (c)	NA	<1.8	<1.8	<2.0	<1.0
1,2-Dichloroethane	3.8 (d)	NA	<0.73	<0.73	<0.80	<0.67
1,1-Dichloroethene	NE	NA	<1.4	<0.73	<1.6	<1.3
cis-1,2-Dichloroethene	NE (d)	NA	<1.4	<1.4	<1.6	<1.3
trans-1,2-Dichloroethene	NE (d)	NA	<1.4	<1.4	<1.6	<1.3
1,2-Dichloropropane	10 (c)	NA	<1.7	<1.7	<1.8	<1.5
cis-1,3-Dichloropropene	60 (c)	NA	<1.6	<1.6	<1.8	<1.5
trans-1,3-Dichloropropene	60 (c)	NA	<1.6	<1.6	<1.8	<1.5
Dichlorotetrafluoroethane	NE	NA	<2.5	<2.5	<2.8	<2.3
Ethanol	42,000 (c)	NA	40.0	<3.4	<3.7	60.5
Ethyl acetate	8,000 (c)	NA	<1.3	<1.3	<1.4	<1.2
Ethylbenzene	39 (d)	NA	2.6	2.9	3.6	8.7
4-Ethyltoluene	NE	NA	<1.8	<1.8	<1.9	<1.6
n-Heptane	NE	NA	3.2	16.5	13.0	157
Hexachloro-1,3,-butadiene	1 (c)	NA	<3.8	<3.8	<4.2	<3.5
n-Hexane	6,000 (c)	NA	<1.3	30.0	30.6	506
2-Hexanone	110 (d)	NA	<7.4	<7.4	<8.1	<6.8
Methylene Chloride (dichloromethane)	2,100 (d)	NA	<6.2	<6.2	<6.8	<5.8
4-Methyl-2-pentanone (MIBK)	8,000 (c)	NA	<7.4	<7.4	4.9 J	16.4
Methyl tert-butyl ether	8,000 (c)	NA	<6.5	<6.5	<7.1	<6.0
Naphthalene	30 (c)	NA	<4.7	<4.7	<5.2	<4.3
2-Propanol	20,000 (c)	NA	20.9	<4.4	8.7	<4.1
Propylene	8,000 (c)	NA	< 0.62	< 0.62	432	1,460
Styrene	3,000 (c)	NA	<1.5	<1.5	<1.7	<1.4
1,1,2,2-Tetrachloroethane	1 (c)	NA	<1.2	<1.2	<1.4	<1.1
Tetrachloroethene	33 (d)	NA	6.6	<1.2	<1.3	<1.1
Tetrahydrofuran	NE	NA	<1.1	<1.1	<1.2	< 0.98

Sample ID, Date Collected, and Sample Interval (feet

renanyuroruran	INE	INA	<1.1	<1.1	<i>∼1.∠</i>	~0.98
Toluene	18,000 (d)	NA	20.9	17.8	24.2	139
1,2,4-Trichlorobenzene	10 (c)	NA	<6.7	<6.7	<7.3	<6.1
1,1,1-Trichloroethane	10,000 (c)	NA	<2.0	<2.0	<2.2	<1.8
1,1,2-Trichloroethane	2 (c)	NA	< 0.98	< 0.98	<1.1	< 0.90
Trichloroethene	7.0 (d)	NA	< 0.97	< 0.97	<1.1	< 0.89
Trichlorofluoromethane (Freon 11)	2,000 (c)	NA	<2.0	<2.0	<2.2	<1.9
1,1,2-Trichlorotrifluoroethane (Freon	80,000 (c)	NA	<2.8	<2.8	<3.0	<2.5
1,2,4-Trimethylbenzene	210 (d)	NA	0.98 J	0.90 J	3.0	3.8
1,3,5-Trimethylbenzene	210 (d)	NA	<1.8	<1.8	<1.9	1.2 J
Vinyl acetate	600 (c)	NA	<1.3	8.6	<1.4	<1.2
Vinyl chloride	22 (d)	NA	<2.3	<2.3	<2.5	<2.1
m&p-Xylene	350 (d)	NA	6.1	6.7	10.0	15.5
o-Xylene	350 (d)	NA	<1.6	1.0 J	2.0	4.5

- (a) Methane results reported in parts per million by volume.
 - All VOCs results reported in micrograms per cubic meter.
 - ISV = Intrusion Screening Value.
 - EPA = U.S. Environmental Protection Agency.

NE = not established.

VOCs = volatile organic compounds.

MPCA = Minnesota Pollution Control Agency.

(b) Lower Explosive Limit for methane shown as parts per million by volume.

(c) MPCA Interim ISV, updated February 2009 (used where no 2017 values are available).

(d) MPCA Interim ISV, updated February 2017 (Guidance Document c-rem3-12).
 Bold values indicate a detection above the practical quantitation limit (PQL).

Shaded cells indicate exceedance of regulatory criteria, matching respective criteria column colorin

A SUPPLEMENTAL PHASE II INVESTIGATION WORK PLAN

Table 1

Proposed Supplemental Phase II Sampling Plan - Soil and Groundwater Sampling Minnesota Department of Transportation I-35W at Minnesota River Bridge Burnsville, Minnesota S.P. 1981-124 (a)

Boring I.D. (b)	Location	Justification	Boring Depth (fbg)	Soil Sample Depth (c)	Soil Analyses	Groundwater Analyses
DP-18	Exit ramp shoulder from southbound I-35W to Black Dog Road. Co-located with SG-2	Provide additional soil evaluation at northern end of construction work, adjacent to landfill area	10 fbg or groundwater, whichever is shallower	Highest evidence of impact or 2-3 fbg, and base of boring.	Priority pollutant metals (EPA 6010B/7471A)	NA
DP-19	North shoulder of Black Dog Road entrance ramp to southbound I-35W. Co-located with SG 4	Provide additional soil evaluation at northern end of construction work, adjacent to landfill area	10 fbg or groundwater, whichever is shallower	Highest evidence of impact or 2-3 fbg, and base of boring.	Priority pollutant metals (EPA 6010B/7471A)	NA
DP-20	South shoulder of Black Dog Road entrance ramp to southbound I-35W. Co-located with SG- 5	Provide additional soil evaluation at northern end of construction work, adjacent to landfill area	10 fbg or groundwater, whichever is shallower	Highest evidence of impact or 2-3 fbg, and base of boring.	Priority pollutant metals (EPA 6010B/7471A)	NA
DP-21	South shoulder of Black Dog Road entrance ramp to northbound I-35W. Co-located with SG- 8.	Provide additional soil evaluation at northern end of construction work, adjacent to landfill area	10 fbg or groundwater, whichever is shallower	Highest evidence of impact or 2-3 fbg, and base of boring.	Priority pollutant metals (EPA 6010B/7471A)	NA
DP-22	South shoulder of Black Dog Road entrance ramp to northbound I-35W.	Provide additional soil evaluation at northern end of construction work, adjacent to landfill area	10 fbg or groundwater, whichever is shallower	Highest evidence of impact or 2-3 fbg, and base of boring.	Priority pollutant metals (EPA 6010B/7471A)	NA
DP-23	East shoulder of Black Dog Road exit ramp from northbound I-35W. Co-located with SG-9	Provide additional soil evaluation at northern end of construction work, adjacent to landfill area	10 fbg or groundwater, whichever is shallower	Highest evidence of impact or 2-3 fbg, and base of boring.	Priority pollutant metals (EPA 6010B/7471A)	NA
DP-24	Southbound I-35W shoulder, approx. 280 feet south of Black Dog Road entrance ramp. Co- located with SG-10.	Provide additional soil evaluation at northern end of construction work, adjacent to landfill area	Groundwater or bedrock, whichever is shallower	Highest evidence of impact or 2-3 fbg, and base of boring.	Priority pollutant metals (EPA 6010B/7471A)	Priority pollutant metals (field filtered), PFC using Method DV-LC- 0012
DP-25	East shoulder of Black Dog Road exit ramp from northbound I-35W approx 245 feet south of DP- 23	Provide additional soil evaluation at northern end of construction work, adjacent to landfill area	Groundwater or bedrock, whichever is shallower	Highest evidence of impact or 2-3 fbg, and base of boring.	Priority pollutant metals (EPA 6010B/7471A)	Priority pollutant metals (field filtered), PFC using Method DV-LC- 0012
DP-26	Southbound I-35W shoulder, approx. 300 feet south of DP-24. Co-located with SG-12.	Provide additional soil evaluation at northern end of construction work, adjacent to landfill area	Groundwater or bedrock, whichever is shallower	Highest evidence of impact or 2-3 fbg, and base of boring.	Priority pollutant metals (EPA 6010B/7471A)	Priority pollutant metals (field filtered), PFC using Method DV-LC- 0012

Table 1

Proposed Supplemental Phase II Sampling Plan - Soil and Groundwater Sampling Minnesota Department of Transportation I-35W at Minnesota River Bridge Burnsville, Minnesota S.P. 1981-124 (a)

Boring I.D. (b)	Location	Justification	Boring Depth (fbg)	Soil Sample Depth (c)	Soil Analyses	Groundwater Analyses
DP-27	Southbound I-35W shoulder, approx. 250 feet south of DP-26. Co-located with SG-14	Provide additional soil evaluation at northern end of construction work, adjacent to landfill area	Groundwater or bedrock, whichever is shallower	Highest evidence of impact or 2-3 fbg, and base of boring.	Priority pollutant metals (EPA 6010B/7471A)	PFC using Method DV- LC-0012
DP-28	Southbound I-35W shoulder, approx. 330 feet south of DP-27. Co-located with SG-14	Provide information regarding the potential presence and magnitude of PFCs in groundwater adjacent to landfill area	Groundwater or bedrock, whichever is shallower	NA	NA	PFC using Method DV- LC-0012
DP-29	Adjacent to muti-use trail parallel to the east side of I-35W, approximately 1,330 feet north of trail entrance	Provide additional soil evaluation at southern end of construction work, adjacent to landfill area	10 fbg or groundwater, whichever is shallower	Highest evidence of impact or 2-3 fbg, and base of boring.	Priority pollutant metals (EPA 6010B/7471A)	NA
DP-30	Adjacent to muti-use trail parallel to the east side of I-35W, approximately 180 feet south of DP-29	Provide additional soil evaluation at southern end of construction work, adjacent to landfill area	10 fbg or groundwater, whichever is shallower	Highest evidence of impact or 2-3 fbg, and base of boring.	Priority pollutant metals (EPA 6010B/7471A)	NA
DP-31	Adjacent to muti-use trail parallel to the east side of I-35W, approximately 250 feet south of DP-30	Provide additional soil evaluation at southern end of construction work, adjacent to landfill area	10 fbg or groundwater, whichever is shallower	Highest evidence of impact or 4-5 fbg, and base of boring.	Priority pollutant metals (EPA 6010B/7471A)	NA
DP-32	Adjacent to muti-use trail parallel to the east side of I-35W, approximately 175 feet south of DP-31	Provide additional soil evaluation at southern end of construction work, adjacent to landfill area	10 fbg or groundwater, whichever is shallower	Highest evidence of impact or 4-5 fbg, and base of boring. DRO sample from highest evidence of impact or 4-5 fbg.	Priority pollutant metals (EPA 6010B/7471A), DRO (silica gel cleanup)	NA
DP-33	Adjacent to muti-use trail parallel to the east side of I-35W, approximately 180 feet south of DP-32	Provide additional soil evaluation at southern end of construction work, adjacent to landfill area	10 fbg or groundwater, whichever is shallower	Highest evidence of impact or 4-5 fbg, and base of boring. DRO sample from highest evidence of impact or 4-5 fbg.	Priority pollutant metals (EPA 6010B/7471A), DRO (silica gel cleanup)	NA

Table 1

Proposed Supplemental Phase II Sampling Plan - Soil and Groundwater Sampling Minnesota Department of Transportation I-35W at Minnesota River Bridge Burnsville, Minnesota S.P. 1981-124 (a)

Boring I.D. (b)	Location	Justification	Boring Depth (fbg)	Soil Sample Depth (c)	Soil Analyses	Groundwater Analyses
DP-34	Adjacent to unpaved road parallel to the west side of I-35W, approx. 130 feet south of road termius (south of DP-8)	Provide additional soil evaluation at southern end of construction work, adjacent to landfill area	10 fbg or groundwater, whichever is shallower	Highest evidence of impact or 2-3 fbg, and base of boring.	Priority pollutant metals (EPA 6010B/7471A)	NA
DP-35	Adjacent to unpaved road parallel to the west side of I-35W, approx. 190 feet south of DP-34	Provide additional soil evaluation at southern end of construction work, adjacent to landfill area	10 fbg or groundwater, whichever is shallower	Highest evidence of impact or 2-3 fbg, and base of boring.	Priority pollutant metals (EPA 6010B/7471A)	NA
DP-36	Adjacent to unpaved road parallel to the west side of I-35W, approx. 200 feet south of DP-35	Provide additional soil evaluation at southern end of construction work, adjacent to landfill area	10 fbg or groundwater, whichever is shallower	Highest evidence of impact or 4-5 fbg, and base of boring. DRO sample from highest evidence of impact or 4-5 fbg.	Priority pollutant metals (EPA 6010B/7471A), DRO (silica gel cleanup)	NA
DP-37	Adjacent to unpaved road parallel to the west side of I-35W, approx. 275 feet south of DP-36	Provide additional soil evaluation at southern end of construction work, adjacent to landfill area	10 fbg or groundwater, whichever is shallower	Highest evidence of impact or 4-5 fbg, and base of boring. DRO sample from highest evidence of impact or 4-5 fbg.	Priority pollutant metals (EPA 6010B/7471A), DRO (silica gel cleanup)	NA
DP-38	Adjacent to unpaved road parallel to the west side of I-35W, approx. 215 feet south of DP-37	Provide additional soil evaluation at southern end of construction work, adjacent to landfill area	10 fbg or groundwater, whichever is shallower	Highest evidence of impact or 4-5 fbg, and base of boring.	Priority pollutant metals (EPA 6010B/7471A)	NA

a\ fbg = feet below grade. NA = not applicable.

DRO = diesel range organic compounds.

b\ Soil boring identification number and locations may change as determined by field observations and conditions.

c\ Not all samples may not be analyzed pending discussion with MnDOT.

B APPLICABLE WSP STANDARD OPERATING PROCEDURES

FIELD STANDARD OPERATING PROCEDURE #4

SAMPLE COLLECTION AND QUALITY ASSURANCE PROCEDURE

The purpose of this procedure is to assure that sample volumes and preservatives are sufficient for analytical services required under U.S. Environmental Protection Agency (EPA) or other agency approved protocols. This operating procedure describes sample identification procedures, sampling order for select analytes, quality control and quality assurance (QA/QC) sampling procedures, and custody documentation for environmental sampling. The user is advised to read the entire standard operating procedure (SOP) and review the site health and safety plan (HASP) before beginning any onsite activities. In accordance with the HASP, proper personal protective equipment (PPE) must be selected and used appropriately.

4.1 ACRONYMS AND ABBREVIATIONS

°C	Degrees Celsius
СОС	Chain-of-custody [form]
DI	Deionized water
DOT	U.S. Department of Transportation
EDD	Electronic data deliverable
EPA	U.S. Environmental Protection Agency
HASP	Health and safety plan
ID	Identification [number]
MS/MSD	Matrix spike and matrix spike duplicate
MSA	Master Services Agreement
PPE	Personal protective equipment
QA	Quality assurance
QA/QC	Quality assurance/quality control
QAPP	Quality assurance project plan
SOP	Standard operating procedure
VOCs	Volatile organic compounds

4.2 MATERIALS

- Field book
- Indelible (waterproof) markers or pens
- PPE
- Sample containers
- Sample labels
- Clear tape
- Deionized (DI) water
- Cleaned or dedicated sampling equipment

4.3 PRECONDITIONS AND BACKGROUND

This SOP has been prepared as part of the company's USA Corp. Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field personnel and will ensure that the tasks are performed in a safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of employees and will be revised periodically to reflect updates to company policies, work practices, and the applicable state and/or federal guidance. Employees must verify that this document is the most recent version of the company's SOPs. Employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

This SOP is designed to provide the user with a general outline for collecting environmental and quality assurance samples and assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1), sample shipment procedures (SOP 3), investigation derived waste management procedures (SOP 5), and equipment decontamination (SOP 6). This SOP does not cover investigation planning, nor does it cover the analysis of the analytical results. These topics are more appropriately addressed in a site-specific work plan or a dedicated quality assurance project plan (QAPP).

4.4 SAMPLE IDENTIFICATION PROCEDURES

Information on the sample container labels must include the site/project name, project/task number, unique alpha-numeric sample identification (ID) number, sample collection date, time of collection using the military or 24-hour clock system (i.e., 0000 to 2400 hours), analytical parameters, preservative, and the initials of the sampling personnel. Employees are advised to use preprinted waterproof mailing labels (e.g., Avery[®] 5xxx-series Waterproof Address Labels) for all sample identification. Label templates are available.

The sample identification (ID) number must, unless otherwise approved by your project manager or specified in your site-specific work plan, follow the company's naming protocol. This protocol was developed to aid in determining the type of sample collected (e.g., soil, groundwater, vapor, etc.), the sample location, and, where appropriate, the sample depth. The protocol was also designed to ensure consistency across the company.

Construct sample IDs in the following format:

SB-10A (4-6)

Where, in this example:

- SB = the first two or three characters will define the sample type (see list of approved prefixes below); in this case, a soil boring
- 10A = the next two or three alpha-numeric digits (separated by a dash from the sample type identifier) indicate the location of the boring on the site; in this case, boring number 10A
- (4-6) = the depth the sample was collected, with the first number (including decimals, if necessary) indicating the top of the sample interval (in feet) and the second number indicating the bottom of the sample interval (in feet); not all sample types will include depth information.

Additional label information may be added after the last character of the sample ID number (e.g., sample date, underground storage tank number, area of concern number, "Area" number, client identifier, etc.). Separate any additional information from the required portion of the sample name by dash(es).

Sample Prefix	Permitted Use
AA	Ambient outdoor air sample
СС	Concrete core/chip sample
CS	Confirmation/verification soil sample collected from an excavation
HA	Soil sample collected with a hand auger

Sample Prefix	Permitted Use
IAB	Indoor air sample – basement
IAC	Indoor air sample – crawl space
IAF	Indoor air sample – first floor
MW	Soil sample collected from a monitoring well borehole or a groundwater sample collected from a monitoring well
PZ	Groundwater sample collected from a piezometer
SB	Soil sample collected from boreholes that will not be converted to monitoring wells
SED	Sediment sample
SG	Soil gas sample other than a sub-slab sample (e.g., sample collected from a temporary or permanent polyvinyl chloride sample point or stainless steel screen implant)
SL	Sludge sample
SS	Surface soil sample collected using hand tools (e.g., trowel, spoon, etc.) and typically at depths less than 2 feet below ground surface
SSV	Sub-slab vapor sample
SW	Surface water sample
TC	Tree core sample
ТР	Soil sample collected from a test pit
WC	Waste characterization sample
WP	Wipe sample
WW	Wastewater

4.5 SAMPLE CONTAINERS, PRESERVATIVES, AND HOLDING TIMES

The first step in sample collection is to verify that the analytical laboratory has provided the correct number and type of sample containers and each contains the appropriate preservatives for the proposed project (i.e., check against the sampling plan requirements outlined in the site-specific QAPP or, for those projects without a site-specific QAPP, the laboratory Task Order). Inspect all containers and lids for flaws (cracks, chips, etc.) before use. Do not use any container with visible defects or discoloration. Report any discrepancies, or non-receipt, of specific types of sample containers to the team leader or project manager immediately. Make arrangements with the laboratory to immediately ship missing or additional sampling containers.

Precautions must be taken to prevent cross-contamination and contamination of the environment when collecting samples. Wear a clean pair of new, disposable gloves each time a different sample is collected and don the gloves immediately prior to sampling. The gloves must not come in contact with the medium being sampled and must be changed any time during sample collection when their cleanliness is compromised. Sample collection must follow all appropriate SOPs, state and federal regulations, or guidance, for the collection of environmental samples; the recommended order of sample collection is:

- Geochemical measurements (e.g., temperature, pH, specific conductance)
- Volatile organic compounds (VOCs)
- Extractable organics, petroleum hydrocarbons, aggregate organics, and oil and grease
- Total metals
- Dissolved metals
- Inorganic non-metallic and physical and aggregate properties
- Microbiological samples
- Radionuclides

Collected samples that require thermal preservation must be immediately (within 15 minutes) placed in a cooler with wet ice and maintained at a preservation temperature of 4° Celsius ($^{\circ}$ C).

4.6 FIELD QUALITY ASSURANCE/QUALITY CONTROL SAMPLES

Field quality assurance/quality control (QA/QC) samples include equipment blanks, trip blanks, duplicates, and split samples. The project manager or QAPP must specify the type and frequency of QA/QC sample collection. The QA/QC sample identification number must, unless otherwise approved by your project manager or specified in your site-specific work plan, follow the company's naming protocol as discussed in the sections below. QA/QC samples must be clearly identified on our copy of the COC form and in the field book. Failure to properly collect and submit required QA/QC samples can result in invalidation of an entire sampling event.

Collect, preserve, transport and document split samples using the same protocols as the related samples.

4.6.1 EQUIPMENT BLANKS

Equipment blanks are used to document contamination attributable to using non-dedicated equipment (i.e., equipment that must be decontaminated after each use). Collect equipment blanks in the field at a rate of one per type of sampling equipment per day, unless otherwise specified. If the site-specific work plan or QAPP indicates that an equipment blank is to be collected from dedicated sampling equipment, collect the equipment blank in the field before sampling begins. If field decontamination of sampling equipment is required, prepare the equipment blanks after the equipment has been used and field-decontaminated at least once. Prepare equipment blanks by filling or rinsing the pre-cleaned equipment with laboratory-provided analyte-free water, deionized water (DI) and collecting the rinsate in the appropriate sample containers. The samples must be labeled, preserved, and filtered (if required) in the same manner as the environmental samples. Record the type of sampling equipment used to prepare the blank. Have the equipment blanks analyzed for all the analytes for which the environmental samples are being analyzed, unless otherwise specified. Decontamination of the equipment following equipment blank procurement is not required. If laboratorygrade DI water is unavailable, store-grade distilled water can be used to prepare these blanks. If store-grade distilled water is used, be sure to record the source and lot number in the field book. Designate equipment blanks using "EB", followed by the date, and in the order of equipment blanks collected that day. For example, the first equipment blank collected on July 4, 2015, would be designated EB070415-1.

4.6.2 TRIP BLANKS

Trip blanks are used to document VOC contamination attributable to shipping and field handling procedures. Trip blanks are only required when analyzing samples for VOCs. Trip blank(s) are prepared by the laboratory and sent to the facility along with sample containers. Never open trip blank sample bottles; label them in the field and return them to the laboratory in the same shipping container in which the trip blank sample bottles arrived at the site. Keep the trip blank sample bottles in the same shipping container used to ship and store VOC sample bottles during the sampling event. Unless more stringent project requirements are in place, submit one trip blank in each shipping container of VOC samples. To minimize the number of trip blanks needed per shipment, if possible, ship all of the VOC samples in the same shipping container with the trip blank. If laboratory-provided trip blanks are not available, DI water, or store-grade distilled water and clean, empty VOC sample bottles can be used to prepare additional trip blanks. If store-grade distilled water is used, be sure to record the source and lot number in the field book. Identify trip blanks using "TB", followed by the date. For example, the trip blank shipped with a cooler of samples on July 4, 2015, would be designated TB070415-1. If a second trip blank is needed on that same day, the designation would be TB070415-2.

4.6.3 TEMPERATURE BLANK

Temperature blanks are used to determine if proper sample thermal preservation has been maintained by measuring the temperature of the sample container upon arrival at the laboratory. A temperature blank should be included in each sample cooler used to ship and store the sample bottles during the sampling event. If laboratory-provided temperature blanks are not available, fill a clean, unpreserved sample bottle with potable, DI, or store-grade distilled water and identify the bottle as a temperature blank.

4.6.4 DUPLICATES

Duplicates are useful for measuring the variability and documenting the precision of the sampling process. Unless more stringent project requirements are in place, collect duplicate samples at a rate of at least 1 per 20 samples collected. Under no circumstances can equipment or trip blanks be used as duplicates. Sample locations where sufficient sample volume is available and where expected contamination is present should be selected for sample duplication.

Collect each duplicate sample at the same time, from the same sample aliquot and in the same order as the corresponding field environmental sample. When collecting aqueous duplicate samples, alternately fill sample bottle sets (i.e., the actual sample bottle and the bottle to be used for the duplicate) with aqueous samples from the same sampling device. If the sampling device does not hold enough volume to fill the sample containers, fill the first container with equal portions of the sample, and pour the remaining sample into the next sample containers. Obtain additional sample volume and pour the first portion into the last sample container, and pour the remaining portions into the first containers. Continue with these steps until all containers have been filled.

Duplicate samples will be assigned arbitrary sample ID and a false collection time so that they are not identified as duplicates by the laboratory (i.e., submit the samples blind to the lab). The blind duplicate sample "location designation" will be left up to the project manager; however, in no case will "Dup" be allowed to appear in the sample name. Have the duplicate samples analyzed for the same analytes as the original sample. Be sure to record the duplicate sample ID, the false time, and the actual time of collection in the field notebook. The duplicate should also be indicated on our carbon copy of the chain-of-custody.

4.6.5 MATRIX SPIKE AND MATRIX SPIKE DUPLICATES

Matrix spike and matrix spike duplicate samples, known as MS/MSD samples, are used to determine the bias (accuracy) and precision of a method for a specific sample matrix. Many of the company's projects require the collection of MS/MSD samples; however, laboratory generated MS/MSD samples are sufficient for some projects. As required by your QAPP or site-specific work plan, collect MS/MSD samples at the required ratio; if the sampling ratio is not specified by your QAPP or site-specific work plan, collect MS/MSD samples at a rate of 1 for every 20 samples. Clearly convey the MS/MSD identity to the laboratory by adding "MS" or "MSD" after the sample name (e.g., MW 01MS) or in the comments section of the chain-of-custody. Under no circumstances can equipment or trip blanks be used as MS/MSD samples.

4.6.6 SPLIT SAMPLES

Split samples may be collected as a means of determining compliance or as an added measure of quality control. Unlike duplicate samples that measure the variability of both the sample collection and laboratory procedures, split samples measure only the variability between laboratories. Therefore, the laboratory samples must be subsamples of the same parent sample and every attempt must be made to ensure sample homogeneity. Collect aqueous split samples in the same manner as a duplicate sample.

Collecting split samples of soil, sediment, waste, and sludge is not recommended because the homogenization necessary for a true split sample in these matrices is not possible and the resulting laboratory results would not be comparable.

Spilt samples should have the same sample location designation (e.g., MW-01, SB-03 (4-6), but are differentiated from each other by inserting the laboratory analyzing or the agency/consultant collecting the sample after the sample location (e.g., MW-01-WSP and MW-01-EPA).

4.7 CUSTODY DOCUMENTATION

Sample custody protocols are used to demonstrate that the samples and sample containers were handled and transferred in such a manner as to prevent tampering. Legal chain of custody (COC) begins when the pre-cleaned sample containers are dispatched to the field from the laboratory and continues through sample analysis and eventual disposal of the sample and sample containers. Maintaining custody requires that samples must be in the actual possession or view of a person who is authorized to handle the

wsp

samples (e.g., sample collector, laboratory technician), secured by the same person to prevent tampering, or stored in a designated secure area.

It is a good idea to limit, to the extent possible, the number of individuals who physically handle the samples. Samples must be placed in locked storage (e.g., locked vehicle, locked storeroom, etc.) at all times when not in the possession or view of authorized personnel. Do not leave samples in unoccupied motel or hotel rooms or other areas where access cannot be controlled by the person(s) responsible for custody without first securing samples and shipping or storage containers with tamper-indicating evidence tape or custody seals

The COC form is used to trace sample possession from the time of collection to receipt at the laboratory. Although laboratories commonly supply their own COC form, it is recommended that the company's COC be used to ensure that all necessary data are recorded. Unless more stringent project requirements are in place, submit one COC form per sample shipment. At a minimum, the COC needs to have a unique COC number, accompany all the samples, and include the following information:

- Project number, name, and location
- Sampler's printed name(s) and signature(s)
- Sample identification number
- Date and time (military time) of collection
- Sample matrix
- Total number of containers per sample
- Parameters requested for analysis including number of containers per analyte
- Remarks (e.g., irreducible headspace, field filtered sample, expected concentration range, specific turn-around time requested, etc.)
- Signatures of all persons involved in the chain of possession in chronological order
- Requested turn-around-time
- Name and location of analytical laboratory
- Custody seal numbers
- Shipping courier name and tracking information
- Internal temperature of shipping container upon shipment to laboratory, as needed
- Internal temperature of shipping container upon delivery to laboratory
- Employee contact information

Affix tamper-indicating evidence tape or seals to all storage and shipping container closures when transferring or shipping sample container kits or samples to an off-property party. Place the seal so that the closure cannot be opened without breaking the seal. Record the time, calendar date and signatures of responsible personnel affixing and breaking all seals for each sample container and shipping container. Affix new seals every time a seal is broken until continuation of evidentiary custody is no longer required.

FIELD STANDARD OPERATING PROCEDURE #6

DECONTAMINATION PROCEDURE

The decontamination procedures outlined in this standard operating procedure (SOP) are designed to ensure that all sampling equipment is free from the analytes that could potentially interfere with the sample results. The user is advised to read the entire SOP and review the site health and safety plan (HASP) before beginning any onsite activities. In accordance with the HASP, proper personal protective equipment (PPE) must be selected and used appropriately.

6.1 ACRONYMS AND ABBREVIATIONS

DI	Deionized water
DOT	U.S. Department of Transportation
EPA	U.S. Environmental Protection Agency
HASP	Health and safety plan
PPE	Personal protective equipment
QAPP	Quality assurance project plan
SOP	Standard operating procedure

6.2 MATERIALS

- Field book
- PPE
- Polyethylene sheeting and/or garbage bags
- Laboratory-grade non-phosphate detergent¹ (e.g., Luminox[®] or Liquinox[®])
- Cleaning reagents, as needed (e.g., isopropyl alcohol, methanol, hexane, etc.)
- Potable water
- Deionized (DI) water
- Containers (e.g., plastic buckets)
- Nylon brushes
- Aluminum foil
- Spray bottles
- Paper towels
- Pressurized steam cleaner (e.g., steam jenny), as needed
- Decontamination pad, as needed

6.3 PRECONDITIONS AND BACKGROUND

This SOP has been prepared as part of the company's Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field personnel and will ensure that the tasks are performed in a safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

¹ Not all laboratory-grade detergents are phosphate free. Be sure to verify the detergent's phosphate content before use.

This SOP is written for the sole use of company employees and will be revised periodically to reflect updates to company policies, work practices, and the applicable state and/or federal guidance. Employees must verify that this document is the most recent version of the company's SOPs. Employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

This SOP is designed to provide the user with a general outline for decontamination and assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1), sample shipment procedures (SOP 3), sample collection and quality assurance procedures (SOP 4), and investigation-derived waste management procedures (SOP 5). All decontamination references must be available for consultation in the field, including:

- Company's SOPs
- Applicable state and federal guidelines or procedures
- Manufacturer's manuals
- Project-specific work plan and HASP
- QAPP

6.4 GENERAL PROCEDURES

The cleaning and decontamination procedures described below are designed to ensure that the equipment used for sample collection is free of analytes that could potentially alter the analytical results. These procedures are primarily targeted at reducing the incidence of cross-contamination (i.e., compounds of interest being transferred on the sampling equipment from one sample location or depth to another) and, when properly implemented, provide a methodology for obtaining high quality, representative results. As with all analytical sampling, the effectiveness of the cleaning procedures must be demonstrated with the collection of equipment blanks. The sampling procedures and equipment blank collection frequency are discussed in SOP 4.

6.4.1 EQUIPMENT AND REAGENT SELECTION

It is important for employees to evaluate the expected types of contamination before mobilization to a site. State programs (or the U.S. Environmental Protection Agency [EPA], depending on the site) may require more stringent decontamination procedures than those listed in this SOP, specify the types and grades of various cleaning detergents and reagents (e.g., acids and solvents), or allow the use of phosphate-containing detergents, such as Alconox[®]. Many of these reagents, such as nitric acid or pesticide-grade hexane, are U.S. Department of Transportation (DOT) hazardous materials and must be shipped using a ground delivery service. These compounds may also require specialized PPE (e.g., eye protection for concentrated acids) or have other special handling or disposal procedures that must be considered before arriving onsite. Decontamination equipment (e.g., spray bottles, brushes, etc.) should be constructed of non-reactive, non-leachable materials (e.g., metal, glass, Teflon[®]-coated, polyethylene, etc.) which are compatible with the reagents and solvents being used for decontamination.

In specific cases, it may be necessary to steam clean the field equipment before proceeding with the decontamination steps presented in Section 6.5 (e.g., hollow stem augers). Generally, the company's subcontractors are responsible for bringing or building a decontamination pad, if necessary, to contain the spray from a steam jenny. Decontamination pads should be constructed on a level, paved surface (if possible) in an area known or believed to be free of surface contamination, and should be of sufficient size to contain the decontamination water. Equipment that is steam cleaned should be placed on racks or saw horses and not on the floor of the decontamination pad. Decontamination water should be removed from the decontamination pad frequently to minimize the potential for leaks or overflow.

Consult and involve the company's compliance professionals for storage procedures and disposal requirements of solvent rinsate, detergent wastes, and other decontamination materials.

6.4.2 OTHER CONSIDERATIONS

In preparing for decontamination, you should perform the following activities (with all observations and measurements noted in the field book):

- Perform a quick reconnaissance of the site to identify a decontamination (pad) area and evaluate the accessibility to and safety
 of the location.
- Record a description of the decontamination (pad) area.

Survey the breathing zone around the decontamination area with the appropriate air quality meter(s), as necessary (see HASP), to ensure that the level of PPE is appropriate. When decontaminating equipment, it is important to find a suitable location away from any sources of cross-contamination that could compromise the integrity of the decontamination. As possible, position the decontamination area away from fuel-powered equipment, such as drill rigs or excavators, and upwind of other site activities (e.g., purging, sampling).

6.5 DECONTAMINATION PROCEDURES

The decontamination procedures are based on a nine-step process, which is tailored in the field depending on the samples to be collected. Decontaminate all non-dedicated equipment that contacts the sample directly, including spoons, trowels, pumps, etc., before and between each sample location and sampling interval. Record decontamination procedures in the field book. Disposable, single use items, such as bailers or tubing, do not require decontamination.

The decontamination process includes the following four basic steps:

- 1 Physical removal of debris
- 2 Wash with non-phosphate detergent, such as Liquinox®, and nylon brush
- 3 Potable water rinse
- 4 Deionized (DI), analyte-free water rinse (distilled water can be used as a substitute)

The first step is to remove as much soil or other debris from the sampling device as possible near the sampling area to limit the spread of potentially-contaminated materials into clean areas of the site.

Cleaning and decontamination should occur at a designated area(s) (decontamination pad) on the site. If gross contamination or an oily film or residue is observed on the equipment, use steam jenny or wash by hand using a brush to remove the particulate matter or surface film. Heavy oils or grease may be removed with paper towels soaked with isopropyl alcohol.

The physical removal is followed by a hand wash using non-phosphate detergent (mixed to the appropriate dilution in potable water) followed by a potable water rinse. If not using a decontamination pad, the most common set-up uses 5-gallon plastic buckets for washing and rinsing, although plastic garbage pails or plastic tubs can also be used. Place containers on polyethylene sheeting to limit spillage of the decontamination fluids.

Be sure to scrub the equipment thoroughly with a nylon bristle brush (or similar) and allow enough submersion time for the nonphosphate detergent to effectively clean the surfaces (a simple dunk of the equipment in the detergent solution is insufficient). If decontaminating submersible pumps, flush both the non-phosphate detergent wash fluid and the potable water rinse through the pump body itself (usually done in separate buckets) to ensure that the internal components are thoroughly cleaned. The internal decontamination of motorized pumps can be accomplished by pumping the non-phosphate detergent wash fluid and the potable water rinse through the pump. Replace the detergent solution and rinse water when it becomes oily or silty.

Place the DI water for the rinse in a small spray bottle or pour over the equipment after the potable water rinse. Typically, this level of decontamination (i.e., steps 1 through 4) is sufficient.

Following Steps 1 through 4, additional decontamination (steps 5 through 9) may be required by the applicable federal or state guidelines, the project-specific work plan or the QAPP. Typically, these decontamination steps are performed when sampling for inorganics using non-motorized equipment. These steps include:

- 5 10% nitric acid rinse
- 6 DI water rinse
- 7 Pesticide-grade solvent rinse (e.g., hexane or isopropyl alcohol)
- 8 Air dry (solvent must evaporate)
- 9 DI water rinse

Isopropyl alcohol is the recommended solvent for organic contaminants because it is readily available (at most drug and department stores) and is not a DOT hazardous material. However, other solvents (e.g., hexane and methanol) may be more effective in removing certain contaminants, such as oils or polychlorinated biphenyls, but any waste generated using these solvents must be managed accordingly.

Handle the solvents and acid with care and store unused chemicals in their original, labeled, protective containers when not in use. It is a good idea to transfer small quantities of each solution into labeled, laboratory-grade spray bottles, which offer a convenient and controllable way to rinse the equipment. The equipment can then be rinsed over a 5-gallon plastic bucket or other suitable container placed on plastic sheeting as with the first part of the cleaning process. Nitric acid rinses must be used only on noncarbon steel sampling devices. Do not spray acid into pumps.

6.6 HANDLING DECONTAMINATED EQUIPMENT

Handle any decontaminated equipment using clean gloves to prevent re-contamination. Place the equipment away (preferably upwind) from the decontamination area once the process has been completed on clean plastic sheeting to allow it to air-dry. Once the equipment is dry, protect it from re-contamination by securely wrapping and sealing with aluminum foil (shiny side out) or clean, disposable plastic bags. Plastic bags may be wrapped directly around wet or dry equipment except when the expected contaminants include volatile and extractable organics; under those circumstances, allow the equipment to completely dry or wrap it in aluminum foil.

All sampling equipment must be decontaminated at the end of the investigation (i.e., prior to departure from the site). Label each piece of equipment with the date of decontamination, the initials of personnel performing the decontamination, and the type of decontamination solution(s) used. Containerize all solvent rinsate, detergent wastes, and other disposable decontamination materials in DOT-compliant containers in accordance with SOP 5 or the project-specific work plan. Dispose of all wastes in conformance with the project-specific work plan and applicable regulations.

FIELD STANDARD OPERATING PROCEDURE #9

SOIL SAMPLING PROCEDURE

The soil sampling procedures outlined in this standard operating procedure (SOP) are designed to ensure that collected soil samples are representative of current site conditions. Soil samples can be collected for onsite screening or for laboratory analysis. The user is advised to read the entire SOP and review the site health and safety plan (HASP) before beginning any onsite activities. In accordance with the HASP, proper personal protective equipment (PPE) must be selected and used appropriately.

9.1 ACRONYMS AND ABBREVIATIONS

°F	Degrees Fahrenheit
HASP	Health and Safety Plan
IDW	Investigation derived waste
PID	Photoionization detector
PPE	Personal protective equipment
QAPP	Quality Assurance Project Plan
QA/QC	Quality assurance/quality control
SOP	Standard operating procedure
USCS	Unified Soil Classification System

9.2 MATERIALS

- Field book
- PPE
- Air quality monitoring equipment, (e.g., photoionization detector [PID]), as needed
- Field test kits, as needed
- Sampling containers and labeling/shipping supplies
- Knife or scissors
- Ruler or tape measure
- Soil sampling method specific materials, as needed:
 - Stainless steel trowels, probes, or shovels
 - Stainless steel spatulas or spoons
 - Bucket augers, auger extension rods, auger handle, pipe wrenches
 - Split-spoon samplers, pipe wrenches
 - Direct-push acetate liners
 - Shelby tube samplers, plastic or wax caps
 - Mixing tray or bowl
- Munsell color chart
- Decontamination supplies

9.3 PRECONDITIONS AND BACKGROUND

This SOP has been prepared as part of the company's Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field

wsp

personnel and will ensure that the tasks are performed in a safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of company employees and will be revised periodically to reflect updates to company policies, work practices, and the applicable state and/or federal guidance. Employees must verify that this document is the most recent version of the company SOPs. Employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

This SOP is designed to provide the user with a general outline for conducting soil sampling and assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1), utility location (SOP 2), sample shipment procedures (SOP 3), sample collection and quality assurance procedures (SOP 4), investigation-derived waste (IDW) management procedures (SOP 5), equipment decontamination (SOP 6), and use and calibration of sampling and monitoring equipment (SOPs 7 and 8). This SOP does not cover investigation planning, nor does it cover the evaluation of the analytical results. These topics are more appropriately addressed in a project-specific work plan. Before soil sampling, be sure to review the project-specific work plan or Quality Assurance Project Plan (QAPP) and any applicable state and federal guidelines or sampling procedures. All sampling and monitoring references must be available for consultation in the field, including:

- Company's SOPs
- Applicable state and federal guidelines or sampling procedures
- Manufacturer's manuals
- Project-specific work plan and HASP
- QAPP

9.4 GENERAL PROCEDURES

Soil samples are collected using a variety of techniques and equipment, depending on the type (e.g., surface, subsurface) and purpose (e.g., lithological logging, headspace evaluation, laboratory analysis) of the sampling, and most sampling events employ more than one equipment type or methodology. Subsurface soil sampling, for example, often includes sample collection from split-spoon, macro-core, or other dedicated sampling devices advanced into the subsurface. Recovered cores are often logged (using a Munsell color chart and other logging aids), screened for volatile organic compounds (VOCs) using a PID, and sampled for laboratory analysis using disposable stainless steel spoons or other discrete sampling devices.

Each sampling configuration is associated with a unique set of sampling equipment requirements and techniques. The selected procedures and equipment are project-specific and should be discussed by the project team before arriving onsite. All types of soil sampling, regardless of the equipment used, share common handling and management procedures that are designed to ensure the integrity of the samples collected. These procedures include:

- The use of new, disposable or decontaminated sampling equipment
- The use and rotation of the appropriate PPE
- Selection of a suitable sampling location and staging area

Wear a clean pair of new, disposable gloves each time a different sample is collected and don the gloves immediately prior to collection. This limits the possibility of cross-contamination from accidental contact with gloves soiled during collection of the previous sample. The gloves must not come in contact with the medium being sampled and must be changed any time during sample collection when their cleanliness is compromised. In no case should gloved hands be used as a soil sampling device; if the soil cannot be transferred directly from the sampling device to the laboratory-supplied containers use a stainless steel spoon or spatula to transfer the soil from the sampling device to the laboratory-supplied containers.

9.4.1 EQUIPMENT SELECTION

Collect all samples using either new, disposable equipment, such as polyethylene liners or single-use stainless steel spoons; or properly decontaminated sampling equipment, such as hand augers, split-spoon samplers, or trowels. Soil sampling equipment

should be selected based on the analytical requirements of the project and the project-specific conditions likely to be encountered. The equipment should be constructed of non-reactive, non-leachable materials (e.g., stainless steel, Teflon[®], Teflon[®]-coated steel, polyethylene, polypropylene) which are compatible with the chemical constituents at the site. When choosing sampling equipment, give consideration to:

- the types of soil or fill present
- the required depth of the sample
- the volume of sample required
- the analytes of interest

Select the types of equipment and decontamination procedures based on the types of sampling to be performed. Decontamination may require multiple steps or differing cleaning methods, depending on the sampling goals (see SOP 6 for decontamination procedures). In no case should disposable, single use materials (e.g., acetate liners, soil baskets) be used to collect more than one sample.

9.4.2 SAMPLING CONSIDERATIONS

In preparing for sampling, you should perform the following activities (with all observations and measurements noted in the field book):

- Perform a quick reconnaissance of the site to identify sampling locations and evaluate the accessibility (physical obstructions, slope, overhead and underground utilities) to the sampling location.
- Record the approximate ambient air temperature, precipitation, wind (direction and speed), tide, and other field conditions in the field book. In addition, any site-specific conditions or situations that could potentially affect the samples at the sample locations should be recorded.
- Record a description of the sampling location and the approximate distance to and direction from at least one permanent feature.
- Should any sample location require a vertical or horizontal offset from the proposed location, indicate the reason and record the actual sample location in the field book.

Survey the breathing zone around the sampling location with the appropriate air quality meter(s), as necessary (see HASP), to ensure that the level of PPE is appropriate. When sampling soil, it is important to find a suitable sampling location away from any sources of cross-contamination that could compromise the integrity of the samples. Consider the following:

- Position the sample collection area away from fuel-powered equipment, such as drill rigs or excavators, and upwind of other site activities (e.g., purging, sampling, decontamination) that could influence the sample. This is particularly important when screening samples in the field for VOCs with a PID, but should not be limited to the active sample collection.
- Store samples already collected from the field for laboratory analysis in clean containers in an ice-filled cooler (as required) and securely stage, if possible, in an uncontaminated area of the site.

9.5 SOIL COLLECTION

Soil samples can be collected from surface or subsurface depths, depending on the project requirements. Surface soils are generally those collected at depths less than 2 feet below ground surface (bgs) and can be collected using trowels, soil probes, shovels, or hand augers. Be aware that some states have specific definitions of what constitutes a surface soil sample. Subsurface soils are generally deeper and require specialized equipment to recover the samples. In most cases, subsurface soils will be collected using a drill rig or excavator to prevent the soil from being mixed with soils from a shallower interval.

Push or drive the method-specific sampling equipment (e.g., trowel, hand auger, hollow corers, split-spoon, direct push sampler, rotosonic core barrel sampler, excavator bucket) into the soil to the desired sampling depth using cleaned equipment. Record in the field book the depth interval through which the sampler was advanced and, when using a split-spoon sampler, the number of blows needed to drive the sampler 6 inches. If additional soil is needed to provide sufficient sample volume, repeat this step taking

care to ensure that the same depth interval is collected during the resample. Use core catchers on the leading end of the sampler (if available) for soils that lack cohesiveness and are subject to falling out of the sampler (i.e., poor recovery).

Withdraw the sampling equipment from the interval, open the sampler (as appropriate), and collect the sample safely (e.g., avoid entering an excavation by collecting the sample from an excavator bucket at ground surface). Samples collected from an excavator bucket should be taken from the center of the material to ensure material is representative of the desired sampling interval.

Recovered soils should be placed on plastic sheeting in a consistent manner such that the orientation of the sample (i.e., which end is "up") and the depth interval is readily apparent to the sampling personnel. Measure the length of the material recovered relative to the interval the sampler was advanced in percent notation (e.g., 75%) or as a fraction of the total length of the sample interval (e.g., [3/4] indicating 3 out of 4 feet) and record this information in the field book. If field screening for organic vapors is required, break or cut the soil core every 3 to 4 inches and quickly scan the breaks in the core material with the appropriate air quality monitoring equipment (e.g., PID) and record the readings and approximate depth in the field book. These measurements can be used to select appropriate soil samples for VOC or headspace analysis, if required (see procedures below).

9.5.1 UNDISTURBED SOIL SAMPLES

Undisturbed soil samples collected for geotechnical parameters (e.g., porosity, permeability) generally require the use of specialized undisturbed sampling equipment (e.g., Shelby tube or sealed Geoprobe[®] liner) and collection procedures. The sampling device, once retrieved, is typically capped or sealed (to maintain the sample in its relatively undisturbed state), labeled with the sample name, orientation of the sample (i.e., top and bottom), depth interval, and shipped to the appropriate geotechnical laboratory. Follow sample labeling, preparation, and shipping procedures in SOPs 3 and 4.

9.5.2 VOLATILE ORGANIC COMPOUND SAMPLING

Analytical soil samples for VOC analysis should be collected immediately after screening with the PID to avoid loss of constituents to the atmosphere. Transfer the soil from the portion of the soil core to be sampled (usually the area where the highest PID readings were observed) directly into the sample containers; do not homogenize soils for VOC analysis. Place the soil in the sampling container such that no headspace is present above the soil when the cover is placed on the jar. If U.S. Environmental Protection Agency Method 5035 (e.g., Encore® samplers) is required, follow manufacturer's specifications and company recommended shipping procedures. Collect quality assurance/quality control (QA/QC) samples, if appropriate, in accordance with SOP 4, the project-specific work plan, and the QAPP.

9.5.3 SOIL HEADSPACE ANALYSIS

Collect soil samples for field-based headspace analysis, if required as part of the project-specific work plan, after collecting the VOC sample. First, examine the soil and remove coarse gravel, organic material (e.g., roots, grass, and woody material) and any other debris. Transfer the soil from the portion of the soil core to be sampled and place in a heavy-duty zipper-style plastic bag and seal the bag. Label the sample indicating the sampling location, depth, and date. Shake the sample vigorously for approximately 15 seconds to disaggregate the sample and expose as much surface area of the soil as possible (to release the VOCs to the atmosphere within the bag). If necessary, warm the sample to room temperature (70° Fahrenheit, [°F]) by placing the bag in a heated room or vehicle. This step is critical when the ambient temperature is below 32°F.

The VOCs, if present, will volatilize into the sealed bag. Allow the bag to stand (to achieve equilibrium) for approximately 15 minutes. Carefully open the bag slightly and place the tip of the PID into the opening. Do not insert the tip of the probe into the soil material and avoid the uptake of water droplets. Allow the PID to equilibrate and record the highest PID measurement noted. Erratic PID responses may result from high organic vapor concentrations or elevated headspace moisture. If these conditions exist, qualify the headspace data in the field book. It is also important to record the ambient temperature, humidity, and whether moisture was present in plastic bag. Duplicate 10% of the headspace samples by collecting two samples from the same location.

Generally, duplicate sample values should be consistent to ±20%. Samples collected for headspace screening cannot be retained for laboratory analysis.

9.5.4 SEMI- AND NON-VOLATILE ANALYTICAL SAMPLE COLLECTION

Collect remaining organic samples then inorganic samples in the following order of volatilization sensitivity:

- Extractable organics, petroleum hydrocarbons, aggregate organics, and oil and grease
- Metals
- Inorganic non-metallic and physical and aggregate properties
- Microbiological samples
- Radionuclides

If homogenization is required, mix the soils (using stainless steel bowls and spoons, or other appropriate equipment) to a homogeneous particle size and texture. Transfer the soils from the sampler or mixing bowl to the sample container using a decontaminated or dedicated stainless steel spoon or spatula. Collect QA/QC samples in accordance with SOP 4, the project-specific work plan, and the QAPP.

If approved by the appropriate regulatory agency and specified in the project-specific work plan, composite soil samples can be collected to minimize the total number of analytical samples. Composite samples consist of equal aliquots (same sample size) of soil from each location being sampled (e.g., from each borehole or from multiple areas of a soil pile), by mixing the waste to a homogeneous particle size and texture using new or decontaminated stainless steel bowls and a stainless steel spoon or trowel. Transfer the contents to the appropriate laboratory supplied sample container using a stainless steel spoon. Collect QA/QC samples in accordance with SOP 4, the project-specific work plan, and the QAPP, if required.

If necessary, conduct field tests or screening on soils in accordance with the project-specific work plan and manufacturer's specifications for field testing equipment.

9.5.5 SAMPLE LABELING AND PREPARATION FOR SHIPMENT

Once collected, prepare the soil samples for offsite laboratory analysis:

- 1 Clean the outside of the sample container with paper towels or appropriate materials, if necessary
- 2 Affix a sample tag or label to each sample container and complete all required information (sample number, date, time, depth interval, sampler's initials, analysis, preservatives, place of collection)
- 3 Place clear tape over the tag or label (if non-waterproof labels are used)
- 4 Preserve samples immediately after collection by placing them into an insulated cooler filled with bagged wet ice to maintain a temperature of approximately 4°Celcius (if required by analytical method)
- 5 Record the sample designation, date, time, depth interval, and the sampler's initials in the field book and on a sample tracking form, if appropriate
- 6 Complete the chain-of-custody forms with appropriate sampling information, including:
 - Location
 - Sample name
 - $\quad \text{Sample collection date and time} \\$
 - Number of sample containers
 - Analytical method
- 7 Complete sample packing and ship in accordance with proper procedures

Do not ship hazardous waste samples without first consulting a company compliance professional.

9.5.6 SOIL CLASSIFICATION

Soil classification should be performed whenever soil samples are being collected to provide context for the analysis. Follow the Unified Soil Classification System (USCS) logging procedures as described in ATSM D2488¹. The emphasis of soil classification in the field must be on describing the soils using ALL of the required descriptors; categorization of the USCS group name or symbol alone may not provide details about the soils that could later prove useful. Avoid geologic interpretation or the use of local formation names, which are often difficult to determine in the field without the regional framework. Record ALL of the following information for each sample interval/soil type:

- Depth interval
- USCS group name
- USCS group symbol
- Color, using Munsell chart (in moist condition)
- Percent of cobbles or boulders, or both (approximate; by volume)
- Percent of gravel, sand, or fines, or all three (approximate; by dry weight)
- Particle-size range:
 - Gravel—fine, coarse
 - Sand—fine, medium, coarse
 - Fines clay or silt
- For gravel and sand:
 - Particle angularity: angular, subangular, subrounded, rounded
 - Particle shape: (if appropriate) flat, elongated, flat and elongated
 - Maximum particle size or dimension
 - Hardness of coarse sand and larger particles
- For clay and silt:
 - Plasticity: non-plastic, low, medium, high
 - Dry strength: none, low, medium, high, very high
 - Dilatancy: none, slow, rapid
 - Toughness: low, medium, high
- Odor (mention only if organic or unusual; factual descriptions only, no interpretations)
- Moisture: dry, moist, wet
- Additional comments: presence of roots or root holes, presence of mica, gypsum, etc., surface coatings on coarse-grained
 particles, caving or sloughing of auger hole or trench sides, difficulty in augering or excavating, etc.

For intact samples also include:

- Consistency (fine-grained [clay] soils only): very soft, soft, firm, hard, very hard
- Structure: stratified, laminated, fissured, lensed, homogeneous
- Cementation: weak, moderate, strong

Use the following standard descriptors for the textural percentages:

- Trace: $<5\%^2$
- Few: 5-10%
- Little: 15-25%
- Some: 30-45%
- Mostly: 50-100%

Example descriptions, using the information listed above, would read as follows:

¹ Note that certain states/regulatory programs may require soil classification under a secondary system (e.g., US Department of Agriculture) or the use of hydrochloric acid to test the reaction with soil (none, weak, strong).

 $^{^{2}}$ The use of "Trace" for describing the fraction of clay soils is inappropriate for field-based logs as clay contents of less than 20% in fine-grained soils cannot be reliably determined in the field.

- 8-10' Well Graded Sand, SW (5YR 2/6) fine- to medium-grained sand, trace medium sub-angular rounded gravel (less than 0.5-inch diameter); medium dense to dense; wet; moderate petroleum-like odor between 9 feet bgs and 10 feet bgs.
- 10-12' Lean Clay with Gravel, CL (5YR 2/6) some fine- to coarse-grained angular to subangular gravels (less than 0.25-inch diameter), trace fine- to medium-grained rounded sands; very stiff; low plasticity; low dry strength; no dilatancy; moist; no odors.

9.6 CLOSING NOTES

Once sampling is completed, restore and mark all sample locations with spray paint, stakes, or other appropriate marker for future reference or survey in accordance with the project-specific work plan. Decontaminate all equipment prior to departure and properly manage all PPE and IDW in conformance with applicable regulations.

FIELD STANDARD OPERATING PROCEDURE #1

NOTE TAKING AND FIELD BOOK ENTRIES PROCEDURE

The field book is a record of the day's activities that serves as a reference for future reporting and analyses. The field book is also a legal record for projects that may be used during legal proceedings. It is of the utmost importance that all notes are complete and comprehensive. The user is advised to read the entire standard operating procedure (SOP) and review the site health and safety plan (HASP) before beginning any onsite activities.

1.1 ACRONYMS AND ABBREVIATIONS

HASP	Health and safety plan
IDW	Investigation-derived waste
SOP	Standard operating procedure

1.2 MATERIALS

- Permanently-bound waterproof field book (e.g., Rite-in-the-Rain[®] #550, or equivalent)
- Black or blue ballpoint pen (waterproof ink recommended; do not use felt-tip pens)

1.3 PRECONDITIONS AND BACKGROUND

This SOP has been prepared as part of the company's Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field personnel and will ensure that the tasks are performed in a safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of company employees and will be revised periodically to reflect updates to company policies, work practices, and the applicable state and/or federal guidance. Employees must verify that this document is the most recent version of the company's SOPs. Employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

The purpose of the field book is to provide a written log of all of field events and conditions. The notes must include sufficient detail (i.e., who, what, when, where, why, and how) to enable others to reconstruct the day's activities for analysis, reporting, or litigation. It is important to be objective, factual, and thorough. Language must be free of personal comments or terminology that might prove inappropriate. Additional data logs or worksheets, such as low flow groundwater sampling sheets, may be used as a supplement; however, under no circumstances should the data sheets be used as a substitute for the daily record of events to be recorded in the field book.

The field book forms the foundation upon which most of the project work (reports, subsequent work plans, etc.) is based. It is critical that the field book's chain of custody be maintained at all times.

1.4 SET-UP PROCEDURES

The first step in setting up a new field book is to add the information necessary for you to identify the field book in the future and for others to return the book to the company, should it be lost. On the first page of the field book (or, for some field books, the inside cover), place a "Return for Reward" notice. Include the following information:

- An "If Found Return for Reward" notice in bold letters
- Our company name
- Our company address (usually the office where the project is being managed)
- Our company phone number

Reserve the second page of the field book for project-specific information, such as:

- The project name and number
- The project manager's name
- The site telephone number, address, and onsite contact (if appropriate)
- The names and telephone numbers for all key (onsite) personnel
- The emergency telephone numbers including the police, fire, and ambulance (found in the HASP)

Business cards from individuals who visit the site, (including the person in charge of the field book) can be affixed to the inside back cover.

1.5 FIELD BOOK ENTRIES

Start each day on a new page. Include the following information in the header of the first page (and all subsequent pages):

- The date
- The project name
- The page number (if not pre-printed in the field book)

Precede field book entries by the time entered along the left margin of the page using a 24-hour or military clock (e.g., 1330 for 1:30 PM). The first entry of the day must include your and your subcontractor's arrival time at the site, a description of the planned activities, key onsite personnel (including subcontractors), and the weather forecast. The first entry must also detail the tailgate review of the site-specific HASP with the onsite personnel. Be sure that field book entries are LEGIBLE and contain factual, accurate, and inclusive documentation of project field activities. Do not leave blank lines between field book entries. If a mistake is made in an entry, cross out the mistake with a single line and place your initials at the end of the line. Any acronyms written in the field book (including your initials) must be spelled out prior to the first use.

Subsequent log entries must document the day's activities in sequence and must be completed throughout the day as events occur (i.e., do not wait until the end of the work day to complete the notes); should notes need to be entered out of sequence, please identify the non-sequential entries using a footnote or by clearly indicating "Late Entry." Notes must be descriptive and provide location information or diagrams (if appropriate) of the work area or sample locations. Note any changes in the weather and document all deviations from the work plan. Arrival and departure times of all personnel, operational periods of standby, decontamination, and specific activities must be recorded.

Include the following information in entries describing field activities:

- The equipment, materials and methods used by subcontractors, if appropriate (e.g., drill rig type, boring diameters, well casing materials, etc.)
- The equipment, materials and methods used to obtain samples (e.g., split-spoon sampler, polyethylene bailer, pump types, geochemical, water or air monitoring equipment, low-flow purging procedures, etc.)
- The sample identification, which should include the location and depth, as appropriate
- The sample location, including a description of the approximate location as measured from a known point (e.g., 50 feet north of the building entrance; for points not yet surveyed)
- Any air or water monitoring equipment used, associated calibration activities, and measurements

- The sample collection time
- The sample identification of associated quality assurance/quality control samples (e.g., blind duplicate)
- The sample media and analyses to be performed; sizes, numbers, and types of containers; preservation (if any), and any
 resulting reactions (e.g., effervescence)
- If supplemental data recording logs (digital or hard copy) are used, such as groundwater sampling logs, chains-of-custody, and shipping records, the above information must be entered in the field book and the supplemental records cross-referenced
- The decontamination and disposal procedures for all equipment, samples, and personal protective equipment
- An inventory of the investigation-derived waste (IDW) materials generated during the site activities
- A description of the IDW labeling procedures and the onsite staging information; other sampling-specific information to be included in the IDW log is provided in SOP 5

Maintain a sequential log if the sample locations and areas of interest are photographed (strongly recommended). The photographic log must include:

- The date and time of the photograph
- The sequential number of the photograph (e.g., photograph-1, photograph-2, etc.)
- The general direction faced when the photograph was made
- A description of the subject in the image

1.6 CLOSING NOTES

The last entry of the day must include a brief wrap up of the work accomplished, a description of how the site is being secured, and a description of any near hits, accidents, and incidents that occurred during the day's work. Draw a line through the remainder of the page from the row of text diagonally through any blank lines and initial at the end of the diagonal line.

FIELD STANDARD OPERATING PROCEDURE #2

UTILITY LOCATING PROCEDURE

The purpose of this procedure is to ensure that all required and appropriate procedures are followed to locate and mark subsurface utilities (e.g., electrical lines, natural gas lines, communication lines) before initiating any intrusive field activities (e.g., drilling, test pits, trenching, excavation). The company's preference, as indicated in our subcontractor agreement templates, is for our contractors to be responsible for both public and private utility mark-outs; this includes contacting the public authority and obtaining a subcontractor for private utility locating services, if needed. Guidance for contractors to follow to conduct a utility clearance is provided in our request for proposal (RFP) template and must be included in all RFP's for intrusive field activities. In certain extraordinary circumstances, the company may choose to be responsible for clearing utilities, which will require a change in the template language of our subcontractor agreement. The revised agreement requires the approval and signature of a member of the Environmental Leadership Team (ELT).

For projects where the company will be responsible for clearing utilities, compliance with this procedure is mandatory. <u>ALL</u> deviations from this standard operating procedure (SOP) <u>MUST</u> be approved by the project manager and a member of the ELT <u>BEFORE</u> beginning intrusive work.

Field personnel have the authority and responsibility to postpone intrusive activities if a contractor has not completed utility clearances to the company's satisfaction; if sufficient information, as stipulated in this SOP, is not available; or if onsite reconnaissance identifies inconsistencies in the findings of utility locators. In these instances, field personnel must notify the project manager or the health and safety officer, or their designee, before proceeding with the proposed work; approval from a member of the ELT is required before the work commences.

The user is advised to read the entire SOP and review the site health and safety plan (HASP) before beginning any onsite activities.

2.1 ACRONYMS AND ABBREVIATIONS

HASP	Health and safety plan
ELT	Environmental Leadership Team
RFP	Request for proposal
SOP	Standard operating procedure

2.2 MATERIALS

- Utility Locating Form (Attachment 1)
- Field book
- Wood stakes
- Spray paint
- Flagging tape
- As-built drawings for sub-grade utilities (if available)
- Hand auger or post-hole digger

2.3 PRECONDITIONS AND BACKGROUND

This SOP has been prepared as part of the company's Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field

personnel and will ensure that the tasks are performed in a safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of company employees and will be revised periodically to reflect updates to company policies, work practices, and the applicable state and/or federal guidance. Employees must verify that this document is the most recent version of the company SOPs. Employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

This procedure is intended to allow the work to proceed safely and minimize the potential for damaging underground and aboveground utilities. Intrusive work includes all activities that require the company's employees or its subcontractors to penetrate the ground surface. Examples of intrusive work include, but are not limited to, hand augering, probing, drilling, injections, test pit excavations, trenching, and remedial excavations.

This SOP assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1).

2.4 PRE-FIELD MOBILIZATION PROCEDURES

Regardless of who is responsible for completing these activities (company or a contractor), public rights-of-way and private property must be cleared of buried utilities and overhead utilities must be identified before any intrusive work can begin. The first step in this process is notifying the state public utility locating service of the planned work. These services provide a link between the entities performing the work and the various utility operators (e.g., the water company, the electric company, etc.). All of the public utility locating service call centers in the United States have been streamlined under a single "Call Before You Dig" phone number: 811.

<u>Please note</u>, some state laws require that the person who will actually be conducting the intrusive work must be the person who places the call to the public utility locating service. This means that the company cannot make this call on the contractor's behalf; the contractor must place the call in those states where required. The Common Ground Alliance has established a web site that includes state-specific information to assist in making this determination (<u>http://www.call811.com/state-specific.aspx</u>) for sites in the US and some parts of Canada. If there is any doubt about the requirements for the state where a project is located, the relevant state authority must be contacted.

When the call center is contacted, information regarding the site (e.g., location, nearest cross street, township, etc.) and work activity (e.g., drilling, excavation) will need to be provided to the operator to aid in locating the likely utilities at the work site. The information provided on the Utility Locating Form (Attachment 1) must be recorded (by the contractor or the company) and a completed copy of this form must be maintained as part of the project file. Be aware that several states, including California, require that the proposed drilling locations be marked with white spray paint before contacting the locating services.

The following information must accompany the field team at all times during the field project:

- The utility clearance ticket number
- The ticket's legal dig date
- The ticket's expiration date
- Utility providers that were contacted

The ticket number serves as a point of reference for both the utility service providers and for the company or contractor should follow up (e.g., renewing the ticket) with the locating service be required. The legal dig and expiration dates reflect the times when it will be legal to perform the proposed work. The legal dig date reflects the lead time necessary, typically between 48 and 72 hours after you call, for the utility service providers to mark the utilities in you work area. Be sure to include this delay when scheduling your work. Most utility clearance tickets expire about 2 weeks after the legal dig date. If your work is delayed beyond the expiration date, the 811 utility locating service will need to be called again and the ticket renewed. The renewed ticket will have a new legal dig date that incorporates the same lead-time (48 to 72 hours) as the original ticket.

The locating service will also provide the caller with a list of utility companies that will be notified. Compare this list with utilities generally expected at all sites (e.g., sewer, water, gas, communication, and electric). Some utilities (e.g., sewer, water, cable TV) may not be included. If any expected utilities are absent from the contact list, the utilities <u>MUST</u> be contacted directly for clearance before the start of intrusive activities. All contacts should be recorded on the Utility Locating Form.

2.4.1 PRIVATE UTILITY LOCATORS AND OTHER SOURCES

Public utility service providers will generally mark their underground lines within the public right-of-way up to the private property boundary. A public utility locating service must be contacted prior to any intrusive work, regardless of whether the intrusive work is located on public or private property. However, be aware that most service providers will not locate utilities on private property. If your work is to be conducted on private property, a private utility locating service <u>MUST</u> be used to clear the work area. These companies typically use a variety of methods (e.g., electromagnetic detectors, ground-penetrating radar, acoustic plastic pipe locator, trace wire) to locate utilities in the work area, including those that may be buried beneath onsite buildings. Be aware that witching is not an acceptable utility location method.

For all operating facilities and to the extent possible for closed facilities, identify a site contact familiar with the utilities on the property (e.g., plant manager, facility engineer, maintenance supervisor), and provide this individual with a site plan showing the proposed locations of all soil borings, monitoring wells, test pits, and other areas where intrusive activities will be conducted. These individuals often have knowledge of buried structures or process-specific utilities that may not be identified by the private utility locator. This is particularly important for work performed inside industrial buildings where reinforced concrete and other metallic components of the structure may interfere with the scanning devices used by the private utility locator. Ask the site contact for all drawings concerning underground utilities in the proposed work areas for future reference.

Keep in mind that no intrusive work may be done before the legal dig date provided by the state utility locating service and no digging, drilling, or other ground-breaking activities may be begin until all utilities on the list have been marked and visually verified in the work area (see below). It is <u>NOT ACCEPTABLE</u> to rely solely on as-built drawings or verbal utility clearances from the site contact (these should be used as guides only). A private locator may not be necessary in rare instances; however, nonconformity with the private locate requirement must be approved by the project manager <u>AND</u> a member of the ELT before work proceeds.

2.5 SITE MOBILIZATION PROCEDURES

Upon arrival, the first step in determining if you are clear of buried and overhead utilities is to locate all of the proposed drilling and trenching locations and mark them with (white) spray paint, stakes, or other appropriate markers. This will help you judge distances from marked utilities and minimizes any potential misunderstandings regarding the locations between you, the subcontractors (drillers, excavators, private utility locator), and the site contact.

Once you have the proposed work areas marked, verify that ALL utility companies listed by the state public utility locating service, and any contacted directly by the company or the contractor, have either marked the underground lines in the specified work areas or have responded (via telephone, facsimile, or e-mail) with "no conflict." Document on the Utility Locating Form (Attachment 1) and in the field book as each utility mark is visually confirmed. When receiving verbal clearances by telephone from utility companies, or their subcontractors, it is imperative that you verify the utilities that are being cleared, particularly when dealing with subcontractors that may be marking more than one utility.

Review all available as-built utility diagrams and plans and conduct a site walk to identify potential areas where underground lines may be present; include the site contact in these activities. It is a good idea to survey your surroundings during the walk to identify any features that may indicate the presence of underground utilities, such as linear depressions in the ground, old road cuts, catch basins, or manholes. Keep in mind that many sewer lines can be offset from catch basins. The presence of aboveground utilities, such as parking lot lights or pad-mounted transformers, is also a good indicator of buried electrical lines. Check these items against the Utility Locating Form checklist and discuss the locations with the private utility locating service.

2.5.1 SAFE WORKING DISTANCES AND HAND CLEARING

A minimum of 4 feet clearance must exist between utilities and proposed drilling locations, and a minimum of 6 feet between utilities and proposed trenching locations. Be aware that some states and localities (e.g., New York City, Long Island) may require greater minimum working distances, depending on the utility (e.g., for high pressure gas mains). A minimum distance of 15 feet must be maintained by heavy equipment (e.g., excavator buckets, drill rig towers and rods) from overhead power lines and a safe distance of 25 feet must be maintained from high-tension overhead power lines. In the event that work must be conducted within 25 feet of high tension wires, the lines must be wrapped and insulated by the local utilities. Increase these minimum distances whenever possible to offer additional assurance that buried or overhead utilities will not be encountered.

If a utility conflict is identified within the minimum safe clearance distance, adjust the proposed location(s) using the criteria given above. It is recommended to have the private utility locator sweep a relatively large area (e.g., a 20-foot circle around a proposed drilling location) to provide room for adjustment should the proposed drilling or excavation area need to be moved to avoid a buried utility.

Uncertainty may exist in some circumstances (e.g., inside a building) even after the area has been swept for utilities. In these cases, advance the first few feet of a soil boring (or probe the area for excavation) using a hand auger or post-hole digger. If hand digging is unable to penetrate the subsurface soils, soft dig or air knife equipment service providers may be retained to clear the location. This equipment applies high pressure air to penetrate, loosen, and extract subsurface soils in the borehole, thereby safely exposing any utilities. If using either hand digging or soft digging, the probe hole should be advanced a minimum of 5 feet below ground surface at each proposed drilling or excavation location. Complete a sufficient number of probe holes so that the area is cleared for the proposed intrusive activity (i.e., use several holes for a proposed excavation). The use of hand digging or soft digging methods <u>does not</u> replace the need for state and private utility locating services.

2.5.2 EXPANDED WORK AREAS AND TICKET RENEWAL

Many projects begin with well-defined work areas only to expand quickly as the investigation or remediation progresses. If the scope of intrusion expands or includes new onsite or offsite area(s), you will need to review the existing ticket and work performed by the private utility locator to determine whether work can progress into the new area safely. It may be necessary, depending on the scope, to contact (or for the Contractor to contact) the state locating service and request another clearance for the new area(s) of investigation and retain a private locating service. Remember, the new request will provide a new legal dig date before which NO INTRUSIVE WORK CAN BEGIN. Additionally, if a clearance ticket will expire while the work is ongoing (typically after 2 weeks), a new clearance must be requested before the first ticket expires so that work can continue uninterrupted. Refer to the Utility Locating Form (Attachment 1) for the legal dig date time frame required by the state locating service.

2.5.3 UTILITY DAMAGE

It is possible, even if you followed all of the procedures outlined in this SOP, to damage an underground or overhead utility. Assuming it can be done safely, quickly turn off the drilling or excavating equipment, or move the equipment from the damaged line. Avoid contact with escaping liquids, live wires, and open flames. Abandon the equipment, evacuate the personnel from the area, and maintain a safe perimeter if there are any concerns about safety. If a fiber optic cable is damaged, do not handle the cable or look into the end of the cable as serious eye damage may occur. Once personnel are in a secure location, immediately notify the facility operator or site contact, 811, and the company's project manager. If the damaged utility has the potential to cause, or is causing, dangerous conditions, immediately notify the local emergency response number listed in your HASP. ** This form is mandatory for all intrusive work, regardless of who is responsible for the public and/or private locate.

Project Name	Project No. and Task	Work bein	g done for (C	Company	or Individual Name)	Project Manager
Office Address	Office Phone		Field Conta		Field Contact Phone	
Project Location: Street Address		City/Town:	ship		County	State
Nearest Intersecting Street						
						-
Description of Work Area (street wor	king on, which side of st	reet, how fa	r in which di	rection fr	rom nearest intersecting street; etc.	
Type of Work	Explosives (Y/N)	Directiona	l Borings (Y/	N) L	Dig Locations Marked (Y/N)	Mark Type (e.g., stake)
		<u> </u>				
Scheduled Work Start (Date & Time)	Estimated Work Stop	Date	One-call Pl	none Nun	nber/Website Address	One-call Service Name
Call/Web Notification Made By (Name			Data ⁹ Tim		Web Notification	Omereter Neme
Call/Web Notification Made By (Name	e, Title and Company)		Date & Tim	e of Call/	web Notification	Operator Name
Ticket No.	Legal Dig Date		Ticket Exp	iration D		Ticket Renewal Date
TICKET NO.	Legal Dig Date		TICKEL EXP		ale	TICKEL REHEWAI Date
Utilities Notifie	d	Complete	e After Recei	ivina Noti	ification (e.g., e-mail, facsimile) fror	n Utilities or Subcontractor
otinites Notines	4		esent (Y/N)		e Meeting (Y/N; if "Y" Date & Time)	Contact Name and Phone
1						
2						
3						
4						
5						
6						
7		+				
8						
9						
10						
Form Completed By (Signature)						
		(e-mail cor	mpleted pag	e 1 to Pro	ject Manager)	\\ S D

** This form is mandatory for all intrusive work, regardless of who is responsible for the public and/or private locate.

Utility Locating Form Page 2 of 2

Private Utility Loca	tor Information			
Company	Со	ntact Name	Phone	E-mail
Who Contracted Lo	ocator?		Scheduled Start (Date & Time)	Contract Executed (Y/N/NA)
Onsite Visual Conf Marking Color	irmation of Utilities		Cleared or Marked (Y/N)	No Markings Comments
Marking Color	Utility Type and Visual Clues Potable water: fire hydrant, manholes; w	ater meter ASTs interior	Marked (1/N)	No Markings - Comments
Blue	connections, hose bib, valve box			
Yellow	Gas, oil steam, petroleum: gas meter, ma connections, valve box	anholes; yellow bollards, interior		
Red	Electric power lines, lighting cables, park (telephone poles), conduits: interior conr manholes, transformers/switchgear, con	nections, underground vaults,		
Green	Sewer and drain lines: underground vau field, sand mound, no evidence of sanita	-		
Orange	Communication, alarm or signal lines, ca bollards, telephone poles, interior conne buildings			
Purple	Reclaimed water, irrigation, and slurry lir	nes: sprinkler heads, hose bibs		
Pink	Survey markings			
White	Proposed locations for excavation and d	rilling		
Project Manager N	otified of any Conflicts? (Y/N)			
Notes:				
Marks Verified By (Signature)			
		(scan and save to	client file)	\\S J

FIELD STANDARD OPERATING PROCEDURE #3

SAMPLE PACKAGING AND SHIPMENT PROCEDURE

Shipping samples is a basic but important component of field work. The majority of field activities include the collection of environmental samples. Proper packing and preservation of those samples is critical to ensuring the integrity of our work product. The user is advised to read the entire standard operating procedure (SOP) and review the site health and safety plan (HASP) before beginning any onsite activities. In accordance with the HASP, proper personal protective equipment (PPE) must be selected and used appropriately.

3.1 ACRONYMS AND ABBREVIATIONS

CFR	Code of Federal Regulations							
DOT	S. Department of Transportation							
IATA	International Air Transport Association							
HASP	Health and safety plan							
PPE	Personal protective equipment							
SOP	Standard operating procedure							

3.2 MATERIALS

- Suitable shipping container (e.g., plastic cooler)
- Chain-of-custody forms
- Custody seals
- Sample container custody seals (as necessary)
- Mailing address labels (as necessary)
- Shipping form (with account number, as necessary)
- Tape (e.g., strapping, clear packing)
- Knife or scissors
- Permanent marker
- PPE
- Bubble wrap or other packing material
- Temperature-preserved samples:
- Large plastic garbage bag
- Wet ice
- Heavy-duty zipper-style plastic bags
- Universal sorbent materials

Note: Some materials will be supplied by the laboratory, while others are must be supplied by the sampler. Confirm supplier of materials prior to mobilizing to the field.

3.3 PRECONDITIONS AND BACKGROUND

This SOP has been prepared as part of the company's Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field

wsp

personnel and will ensure that the tasks are performed in a safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of company employees and will be revised periodically to reflect updates to company policies, work practices, and the applicable state and/or federal guidance. Employees must verify that this document is the most recent version of the company SOPs. Employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

This SOP is designed to provide the user with a general outline for shipping samples and assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1), sample collection and quality assurance procedures (SOP 4), and investigation derived waste management procedures (SOP 5).

Most environmental samples are classified non-hazardous materials due to unknown characteristics and hazardous classes, however environmental samples can meet the definition of DOT hazardous materials when shipped by air, ground, or rail from a project site to the laboratory (e.g., free product, samples preserved with a hazardous material [TerraCore® samplers]). As such, field staff must work with their assigned company compliance professional to determine whether the sample shipment is subject to any specific requirements (e.g., packaging, marking, labeling, and documentation) under the DOT hazardous materials regulations.

3.4 SAMPLE SHIPMENT PROCEDURES

The two major concerns in shipping samples are incidental breakage during shipment and complying with applicable DOT and courier requirements for hazardous materials shipments.

NOTE: Many couriers, including Federal Express and UPS, have requirements that the company register with them before shipping hazard materials. In most cases, it is the sampling location, not the company office address, which needs to be registered. Therefore, each project will likely have unique requirements. Please contact your company compliance professional to determine whether or not you will be required to register for your shipment.

Protecting the samples from incidental breakage can be achieved using "common sense." Pack all samples in a manner that will prevent them from moving freely about in the cooler or shipping container. Do not allow glass surfaces to contact each other. When possible, repack the sample containers in the same materials that they were originally received in from the laboratory. Cushion each sample container with plastic bubble wrap, styrofoam, or other nonreactive cushioning material. A more detailed procedure for packing environmental samples is presented below.

3.4.1 NON-HAZARDOUS MATERIAL ENVIRONMENTAL SAMPLES

The first step in preparing your samples for shipment is securing an appropriate shipping container. In most cases, the analytical laboratory will supply the appropriate container for bottle shipment, which can be used to return samples once they have been collected. Be sure that the container is large enough to contain the samples plus a sufficient amount of packing materials, and if applicable, enough wet ice to maintain the samples at the preservation temperature (usually 4 degrees Celsius). Use additional shipping containers as needed so that sample containers are protected from breakage due to overcrowding. Do not use lunch-box sized coolers or soft sided coolers, which do not offer sufficient insulation or protection from damage.

3.4.1.1 TEMPERATURE-PRESERVED SAMPLE CONTAINER PREPARATION

Temperature-preserved samples should be shipped to the laboratory in an insulated container (e.g., cooler). If using a plastic cooler with a drain, securely tape the inside of the drain plug with duct tape or other material to ensure that no water leaks from the cooler during shipment. Place universal sorbent materials (e.g., sorbent pads) in the bottom of the insulated container. The amount of sorbent material must be sufficient to absorb any condensation from the wet ice and a reasonable volume of water from melted wet ice (if a bag were to rupture) or a damaged (aqueous) sample container.

wsp

The next step is to line the insulated container with a large, heavy-duty plastic garbage bag. If shipping breakable sample containers (e.g., glass), place bubble wrap or other packing materials on the bottom of the container. Place the samples on the packing materials with sufficient space to allow for the addition of more bubble wrap or other packing material between the sample containers. Place large or heavy sample containers on the bottom of the cooler with lighter samples placed on top to minimize the potential for breakage. Place all sample containers in the shipping container right-side up. Do not overfill the cooler with samples; room must be left for a sufficient volume of wet ice. Wet ice must be double-bagged in heavy-duty zipper-style plastic bags (1 gallon-sized, or less); properly seal both bags before placing in the insulated container. Place the bags of ice on top of or between the samples. Place as much ice as possible into the cooler to ensure the samples arrive at the lab at the required preservation temperature, even if the shipment is delayed. Fill any remaining space in the container with bubble wrap or other packing material to limit the airspace and minimize the shifting of the sample containers and in-transit melting of ice. Securely close the top of the heavy-duty plastic bag and seal with tape.

3.4.1.2 NON-TEMPERATURE-PRESERVED SAMPLE CONTAINER PREPARATION

Non-temperature-preserved samples should be shipped to the laboratory in a durable package (e.g., hard plastic container or cardboard box). If shipping breakable sample containers (e.g., glass), place bubble wrap or other packing materials on the bottom of the container. Place the samples on the packing materials with sufficient space to allow for the addition of more bubble wrap or other packing material between and on top of the sample containers. Place large or heavy sample containers on the bottom of the container with lighter samples placed on top to minimize the potential for breakage. Place all sample containers within the shipping container right-side up. Fill any remaining space in the container with bubble wrap or other packing material to limit the airspace and minimize the shifting of the sample containers and in-transit melting of ice.

3.4.1.3 CONTAINER SHIPMENT

Place the original, white, top copy of the chain-of-custody form (i.e., laboratory copy) into a heavy-duty zipper-style plastic bag, affix/tape the bag to the shipping container's inside lid, and then close the shipping container. Only one chain-of-custody form is required to accompany one of the shipping containers per sample shipment; the other coolers in the shipment do not need to include chain-of-custody forms. At this point, sample shipment preparations are complete if using a laboratory courier.

Once the shipping container is sealed, shake test the shipping container to make sure that there are no loose sample containers. If loose sample containers are detected, open the shipping container, repack the contents, and reseal the shipping container. If sending the sample shipment through a commercial shipping vendor, place two signed and dated chain-of-custody seals on alternate sides of the shipping container lid so that it cannot be opened without breaking the seals. Securely fasten the top of the shipping container shut with clear packing tape; carefully tape over the custody seals to prevent damage during shipping.

Using clear tape, affix a mailing label with the company's return address to the top of the shipping container. Ship environmental samples to the contracted analytical laboratory using an appropriate delivery schedule. If applicable, check the appropriate box on the airbill for Saturday delivery (you need to verify with the laboratory that someone will be at the laboratory on a Saturday to receive the sample shipment). Declare the value of samples on the shipping form for insurance purposes, if applicable, and be sure to include the project billable number on the shipping form's internal billing reference section. When shipping samples to a lab, identify a declared value equal to the carrier's default value (\$100); additional fees will be charged based on a higher value declared. Our preferred carrier, Federal Express, will only reimburse for the actual value of the cooler and its contents if a sample shipment is lost; they will not reimburse for the cost of having to re-collect the samples. [Please note: if you are shipping something other than samples, such as field equipment, declare the replacement value of the contents.]

Record the tracking numbers from the shipping company forms (i.e., the airbill number) in the field book and retain a copy of the shipping airbill. On the expected delivery date, confirm sample receipt by contacting the laboratory or tracking the package using the tracking number; provide this confirmation information to the project manager.

NOTE: Most shipping carriers adhere to transit schedules with final pickup times each day; these schedules are subject to change and vary by service location. If shipping containers are dropped off at a service location after the final pickup time, transit to the laboratory will not be initiated until the following day, and samples may not be properly preserved. Therefore, confirm transit schedules in advance of each sampling event, and ensure samples are dropped off before the final pickup time of the day.

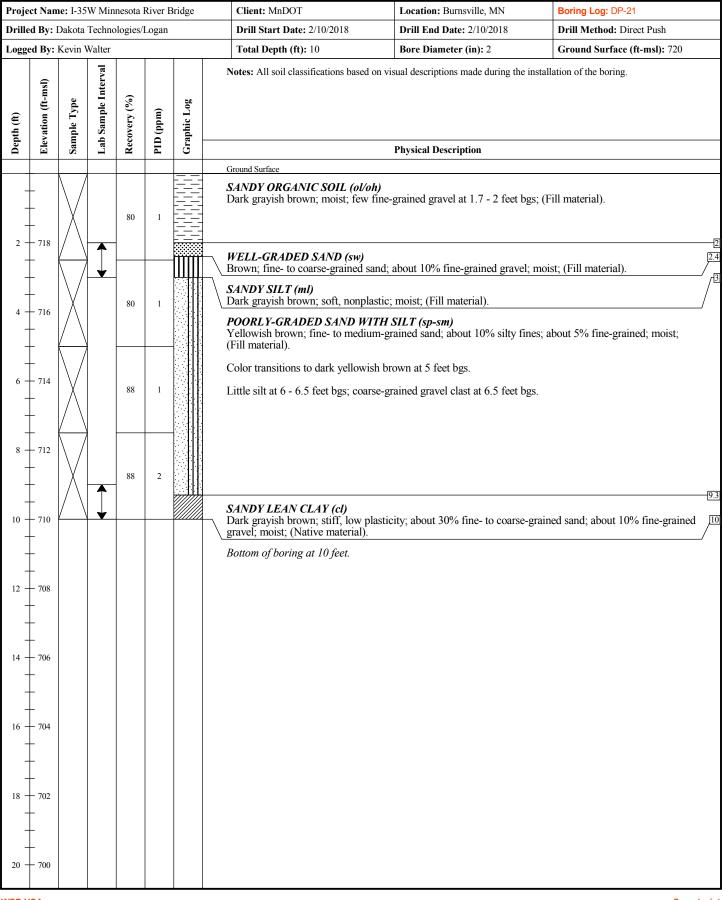
3.4.2 HAZARDOUS MATERIALS SAMPLES

Employees rarely ship hazardous materials due to DOT shipping requirements. If you find that your samples could be considered a DOT hazardous material, first coordinate with the assigned company compliance professional and project manager to make a hazardous material classification and, if necessary, establish the necessary protocols and to receive the appropriate training/certification.

NOTE: Employees shipping samples regulated as hazardous materials or exempt hazardous materials by air must have International Air Transport Association (IATA) training. IATA training is a separate training required in addition to DOT hazardous materials training for such shipments. Most of our employees do not have IATA training and therefore, anyone who needs to ship by air MUST consult with a company IATA-trained compliance professional.

C BORING LOGS

Project 1	Nam	e: I-35	W Min	nesota	River F	Bridge	Client: MnDOT	Location: Burnsville, MN	Boring Log: DP-18			
Drilled F						muge	Drill Start Date: 2/12/2018	Drill End Date: 2/12/2018	Drill Method: Direct Push			
Logged 1					5411		Total Depth (ft): 10	Bore Diameter (in): 2	Ground Surface (ft-msl): 731			
	Elevation (ft-msl)	Sample Type	Lab Sample Interval	Recovery (%)	PID (ppm)	Graphic Log		Notes: All soil classifications based on visual descriptions made during the installation of the boring.				
De	Ele	Saı	La	Re	III	G		Physical Description				
							Ground Surface					
		\setminus					ORGANIC SOIL (ol/oh) Dark brown; moist; (Fill material).		[
2 - 7 - 7	729	\triangle		96	2		WELL-GRADED SAND WITH (Brown; fine- to coarse-grained sand	<i>GRAVEL (sw)</i> d; about 20% fine-grained gravel;	dry; few organics; (Fill material).			
		$\backslash / $	_▼	1					10-1			
4 - 7 +	727	\wedge		96	1		<i>SANDY ORGANIC SOIL (ol/oh)</i> Black; moist; (Fill material).		<u></u>			
	723			50	3		<i>SILTY SAND (sm)</i> Dark yellowish brown; fine-grained material). Granite cobble at 5 feet bgs.	d sand; about 20% silty fines; abo	ut 5% fine-grained gravel; moist;(Fill			
	721 -						Bottom of boring at 10 feet.		[10			
14 — 7 —	717											
16 — 7 	715											
18 — 7 	713											
20 - 7									Page 1 of			



Proje	ct Nan	- 1e: I-35	W Min	inesota	River I	Bridge	Client: MnDOT	Location: Burnsville, MN	Boring Log: DP-19			
		Dakota				-	Drill Start Date: 2/12/2018	Drill End Date: 2/12/2018	Drill Method: Direct Push			
Logge	ed By:	Kevin V	Walter				Total Depth (ft): 10	Bore Diameter (in): 2	Ground Surface (ft-msl): 727			
Depth (ft)	Elevation (ft-msl)	Sample Type	Lab Sample Interval	Recovery (%)	PID (ppm)	Graphic Log	Notes: All soil classifications based on visual descriptions made during the installation of the boring.					
De	Ele	Sar	La	Re	IId	Ĵ		Physical Description				
2	- - - 725			80	2		Ground Surface ORGANIC SOIL (ol/oh) Dark brown; moist; (Fill material) SILTY SAND (sm) Dark yellowish brown; fine- to co coarse-grained gravel; moist; (Fill	parse-grained sand; about 20% silty	fines; about 10% fine- to			
4	- - 723 -		•	80	2		Dark grayish brown with some gr Silt content increasing from 5 - 5.	-				
6 - - -	- - 721 -			80	2		coarse-grained sand to fine-graine	tiff, nonplastic; about 35% fine-gra ed gravel; (Fill material).	ined sand; moist; trace			
8	- 719 			80	2		silty fines; moist; (Native materia Broken cobble clast at 9 feet bgs.	parse-grained sand; about 10% fine- l).	to coarse-grained gravel; about 10%			
10	- 717 - -		•				SILT (ml) Dark yellowish brown; stiff, low Bottom of boring at 10 feet.	plasticity; about 5% fine-grained sa	nd; moist; (Native material).			
12 -	- 715 - -											
14 - - -	- 713 - -											
16 - - -	- 711 - -											
-	- 709 - - - 707											
WSP U									Page 1 of 1			

Projec	ct Nan	ne: I-35	W Min	nesota	River I	Bridge	Client: MnDOT	Location: Burnsville, MN	Boring Log: DP-20			
-		Dakota					Drill Start Date: 2/12/2018	Drill End Date: 2/12/2018	Drill Method: Direct Push			
Logge	d By:	Kevin V	Walter				Total Depth (ft): 10	Bore Diameter (in): 2	Ground Surface (ft-msl): 725			
Depth (ft)	Elevation (ft-msl)	Sample Type	Sample Interval	Recovery (%)	PID (ppm)	Graphic Log	Notes: All soil classifications based on visual descriptions made during the installation of the boring.					
Dep	Elev	San	Lab	Rec	DIG	Gra		Physical Description				
							Ground Surface					
-	-			100	0		SANDY ORGANIC SOIL (ol/oh Very dark grayish brown; moist; (WELL-GRADED SAND WITH	(Fill material).				
2	- 723 - -			-			Dark yellowish brown; fine- to co silty fines; moist; (Fill material); (POORLY-GRADED SAND (sp)	parse-grained sand; about 20% fine- Fill material).	to coarse-grained gravel; about 10%			
4	- 721 -			100	0		Pale brown; fine-grained sand; me WELL-GRADED SAND WITH	oist; (Fill material).	grained gravel; about 10% silty $\frac{4.5}{1}$			
6	- 719 - - - 717 - 717			50	1		SILTY SAND (sm) Dark yellowish brown; fine- to co gravel; moist; (Fill material). Granite cobble at 6 feet bgs. SILT (ml)	barse-grained sand; about 20% silty 5% fine-grained gravel; about 5% f				
	- - 715 -	/ \					Dark yellowish brown; fine- to co	warse-grained sand; about 40% silty ow plasticity; about 10% fine- to co	9.3			
12	- 713 - -											
14	-											
	- - -											
20 -												
WSP U	SA								Page 1 of			

Project Name: I-3:	W Min	nesota	River B	ridge		Client: MnDOT	Location: Burnsville, MN	Boring Log: DP-22		
Drilled By: Dakota	Techno	logies/	Logan			Drill Start Date: 2/10/2018	Drill End Date: 2/10/2018	Drill Method: Direct Push		
Logged By: Kevin	Walter					Total Depth (ft): 10	Bore Diameter (in): 2	Ground Surface (ft-msl): 712		
Depth (ft) Elevation (ft-msl) Sample Type	Lab Sample Interval	Recovery (%)	PID (ppm)	Graphic Log	N	Notes: All soil classifications based on visual descriptions made during the installation of the boring. Physical Description				
					C	Bround Surface				
		86	1		1 1	SANDY ORGANIC SOIL (ol/oh) Dark grayish brown; moist; (Fill mate	AVEL (sw)	[
2 - 710					 1	Dark brown; fine- to coarse-grained s WELL-GRADED SAND (sw)				
4 - 708	•	86	2		L ti	Dark yellowish brown; fine- to coarse race fine-grained gravel and few fine	⊱grained sand; about 10% fine- to c s after 5 feet bgs; (Fill material).	oarse-grained gravel; moist;		
6 - 706 + 8 - 704 + 10 - 702 + 12 - 700 + 14 - 698 + 16 - 696 + 18 - 694 + 20 - 692		60	3		<u>}</u> 2 1 (VILTY SAND (sm) (ellowish brown; fine-grained sand; a SILTY SAND (sm) Dark brown; fine- to medium-grained Native material). Bottom of boring at 10 feet.				

Project Na	me: I-35	W Min	nesota	River I	Bridge	Client: MnDOT	Location: Burnsville, MN	Boring Log: DP-23		
Drilled By:						Drill Start Date: 2/10/2018	Drill End Date: 2/10/2018	Drill Method: Direct Push		
Logged By:			-	-		Total Depth (ft): 10	Bore Diameter (in): 2	Ground Surface (ft-msl): 713		
Depth (ft) Elevation (ft-msl)	Sample Type	Lab Sample Interval	Recovery (%)	PID (ppm)	Graphic Log	Notes: All soil classifications based on visual descriptions made during the installation of the boring.				
Def Ele	San	Lat	Rec	PII	Grs		Physical Description			
2 - 711			96	0		<i>WELL-GRADED SAND WITH</i> Dark yellowish brown; fine- to co moist; (Fill material).	-grained sand; about 20% fine-grai <i>SILT (sw-sm)</i> arse-grained sand; about 10% silty	ined gravel; moist; (Fill material). 0.75 fines; about 5% fine-grained gravel;		
4 709		-	96	0		Few fine-grained gravel to 2 feet b SILT WITH SAND (ml) Vellowich brown: medium stiff, n	opgs.	42		
6 — 707 			80	1		POORLY-GRADED SAND (sp)		5.5 grained gravel; moist; few fines to 7		
8 — 705 — —			80	0						
10 - 703 + + 12 - 701						Bottom of boring at 10 feet.				
14 - 699 										
16 - 697 										
18 - 693 										

Project 1	Nam	e: I-35	W Min	nesota	River F	Bridge	Client: MnDOT	Location: Burnsville, MN	Boring Log: DP-24				
Drilled I							Drill Start Date: 2/11/2018	Drill End Date: 2/11/2018	Drill Method: Direct Push				
Logged	•			0	0		Total Depth (ft): 27	Bore Diameter (in): 2	Ground Surface (ft-msl): 717				
	Elevation (ft-msl)	Sample Type	Lab Sample Interval	Recovery (%)	PID (ppm)	Graphic Log		Notes: All soil classifications based on visual descriptions made during the installation of the boring. Depth to					
Dep	Elev	San	Lab	Rec	DIG	Gra	Physical Description						
							Ground Surface						
	715		•	100	4		ASPHALT (Fill material). POORLY-GRADED SAND WI	nonplastic; about 20% fine-grained					
4 — 7 +	713		•	100	3		Dark brown; fine-grained sand; a material). Color transitions to grayish brow Coarsens to fine- to medium-grai	about 10% silty fines; about 5% fine m at 5 feet bgs. ined sand at 5.5 feet bgs.	-grained gravel; moist; (Fill				
6 — 7 +	711			50	4		<i>WELL-GRADED SAND WITH</i> Grayish brown; fine- to coarse-gu fines; moist; (Native material).	I SILT (sw-sm) rained sand; about 10% fine- to coar	জিলেন্দ্রে জিলেন্দ্রের জিলেন্দ্রের জিলেন্দ্রের জিলেন্দ্রের জিলেন্দ্রের জিলেন্দ্রের জিলেন্দ্রের জিলেন্দ্র জিলেনেন্দ্র জিলেনেন্দ্র জিলেনেনেনেনেনেনেনেনেনেনেনেনেনেনেনেনেনেনেন				
8 + 7 + + 10 + 7	709 707								Color transitions to yellowish bro	own at 9.8 feet bgs.	-10		
+ + 12 + 7	705						SILT WITH GRAVEL (ml) Light gray; nonplastic; about 20%	% fine- to coarse-grained gravel; mo	ist; (Native material).				
	703	\bigwedge				60	4		<i>SILT WITH SAND (ml)</i> Dark brown; nonplastic; about 24 few organics; sand lenses at 13 a	0% fine- to coarse-grained sand; abo nd 13.5 feet bgs; (Native material).	out 5% fine-grained gravel; moist;		
	701			40	4		SANDY SILT (ml) Dark brown; soft, nonplastic; ab moist; few organics; color transit	out 30% fine- to coarse-grained sand tions to black at 17 feet bgs (Native	ـــــــــــــــــــــــــــــــــــــ				
18 - 6 		\bigwedge		40			Color transitions to very dark gra	nyish brown at 20 feet bgs.	Ţ				
WSP USA									Page 1 of 2				

Proje	ct Nam	1e: I-35	W Min	nesota	River E	Bridge	Client: MnDOT Location: Burnsville, MN Boring Log: DP-24	
Depth (ft)	Elevation (ft-msl)	Sample Type	Lab Sample Interval	Recovery (%)	PID (ppm)	Graphic Log	Notes: All soil classifications based on visual descriptions made during the installation of the boring. Depth to water measured at 19.5 feet bgs. Physical Description	
22 -	-			40	8		WELL-GRADED SAND WITH SILT (sw-sm) Dark yellowish brown; fine- to coarse-grained sand; about 10% silty fines, ; about 5% fine-grained gravel; moist; about 10% silty fines; about 5% fine-grained gravel; moist; wet at 22 feet bgs; (Native material). Little silt to 23 feet bgs Coarse-grained gravel clast at 25.5 feet bgs; (Native material). Bottom of boring at 27 feet.	- <u>21.7</u>
	- 687 - 685 - 685 - 683 - 683 - 683							
-	- 679 							2 of 2

Project Na	Jame I-3	5W Mir	necota	River F	Bridge	Client: MnDOT	Location: Burnsville, MN	Boring Log: DP-25		
Drilled By					Siluge	Drill Start Date: 2/12/2018	Drill End Date: 2/12/2018	Drill Method: Direct Push		
Logged By	•		5105103/	Logan		Total Depth (ft): 23	Bore Diameter (in): 2	Ground Surface (ft-msl): 714		
Depth (ft) Elevation (ft-msl)	-	Lab Sample Interval	Recovery (%)	PID (ppm)	Graphic Log	Notes: All soil classifications based on visual descriptions made during the installation of the boring. Depth to water measured at 17.6 feet bgs.				
De	Sai	La	Re	H	G		Physical Description			
2 - 712	2		100	6		Ground Surface SANDY ORGANIC SOIL (ol/oh) Dark brown; moist; (Fill material). SILTY SAND (sm) Dark yellowish brown; fine- to coa coarse-grained gravel; moist; (Fill n	rse-grained sand; about 20% silty	fines; about 10% fine- to		
	0		100	8						
	06		56	3		SILTY SAND (sm) Yellowish brown; fine-grained sand SILTY SAND (sm) Dark yellowish brown; fine- to coa coarse-grained gravel; moist; (Fill r	rse-grained sand; about 20% silty	- <u>6.</u>		
10 - 704)2		80	3		POORLY-GRADED SAND (sp)				
14 — 700 			80	6		Gray; fine- to medium-grained sand POORLY-GRADED SAND (sp) Dark yellowish brown; fine-grained to coarse-grained sand; few silty fin	d sand; about 5% fine- to coarse-g			
16 — 698 	28		70	7		SANDY SILT (ml) Dark yellowish brown; stiff, low pl moist; trace coarse-grained sand; co material).	lasticity; about 30% fine-grained s olor transitions to dark grayish bro	and; about 5% fine-grained gravel; wn at 15.5 feet bgs; (Native		
			70	7		WELL-GRADED SAND (sw) Dark yellowish brown; fine- to coa wet; (Native material).	rse-grained sand; about 10% silty	fines; about 5% fine-grained gravel;		
20 - 694	04									

Proje	ect Nam	ne: I-35	W Min	nesota	River E	ridge	Client: MnDOT Location: Burnsville, MN Boring Log: DP-25	
Depth (ft)	Elevation (ft-msl)	Sample Type	Lab Sample Interval	Recovery (%)	PID (ppm)	Graphic Log	Notes: All soil classifications based on visual descriptions made during the installation of the boring. Depth to water measured at 17.6 feet bgs.	
Dep	Elev	Sam	Lab	Rec		Gra	Physical Description	
	- 692			67	9		WELL-GRADED SAND (sw) Dark yellowish brown; fine- to coarse-grained sand; about 10% silty fines; about 5% fine-grained gravel; wet; (Native material). <i>(continued)</i>	-23
- 24 - -	- 690						Bottom of boring at 23 feet.	
26 -	- 688 							
-	- 686 							
-	- 684 							
-	- 680							
	- 678							
	- - 676							
- 40 - -	- - 674 -							

Project Nam	ne: I-35	W Min	nesota	River E	Bridge	Client: MnDOT	Location: Burnsville, MN	Boring Log: DP-26			
Drilled By: 1						Drill Start Date: 2/11/2018	Drill End Date: 2/11/2018	Drill Method: Direct Push			
Logged By:	Kevin V	Valter		-		Total Depth (ft): 20 Bore Diameter (in): 2 Ground Surface (ft-msl): 712					
Depth (ft) Elevation (ft-msl)	Sample Type	Lab Sample Interval	Recovery (%)	PID (ppm)	Graphic Log	Notes: All soil classifications based on visual descriptions made during the installation of the boring. Depth water measured at 17.8 feet bgs.					
Del Ele	San	Lal	Rec	IId	Gra		Physical Description				
						Ground Surface					
2 - 710	\bigcirc		0			Direct drilled top three feet to avoid liner recovery issues (Fill material).					
4 - 708			• 100	0		POORLY-GRADED SAND (sp) Grayish brown; fine-grained sand; about 10% silty fines; moist; (Fill material).					
6 — 706 — 8 — 704 —			44	2		SILTY SAND (sm) Light gray; medium-grained sand; ab material).		fine-grained gravel; wet; (Fill			
10 - 702						SILTY SAND WITH GRAVEL (sm Very dark grayish brown; fine- to me coarse-grained gravel; moist; (Fill ma SILTY SAND (sm)	edium-grained sand; about 30% s	silty fines; about 20% fine- to			
12 - 700			46	1		Very dark grayish brown; fine- to congravel; moist; (Fill material).	arse-grained sand; about 20% sil	ty fines; about 10% fine-grained			
14 - 698						<i>SILT (ml)</i> Black; medium stiff, low plasticity; r	noist; organic-type odor; (Native	e material).			
						SILTY SAND (sm) Very dark grayish brown; fine- to coarse-grained sand; about 20% silty fines; about 10% fine-grained gravel; moist becoming wet at 16 feet bgs (Native material). Black silt lenses at 17 - 17.2 and 17.5 - 17.7 feet bgs					
18 - 694 						POORLY-GRADED SAND (sp) Yellowish brown; fine-grained sand; about 10% silty fines; trace coarse-grained sand to fine-grained gravel; wet; (Native material).					
						Bottom of boring at 20 feet.					

Transport			Graphic Log	Drill Start Date: 2/11/2018 Total Depth (ft): 25 Notes: All soil classifications based of water measured at 17.6 feet bgs.	Location: Burnsville, MN Drill End Date: 2/11/2018 Bore Diameter (in): 2 on visual descriptions made during the induction of the inductin of the induction of the induction of the	Boring Log: DP-27 Drill Method: Direct Push Ground Surface (ft-msl): 714 nstallation of the boring. Depth to					
Lab Sample Interval		PID (ppm)	Graphic Log	Notes: All soil classifications based of							
		PID (ppm)	Graphic Log	Notes: All soil classifications based of water measured at 17.6 feet bgs.	on visual descriptions made during the i	nstallation of the boring. Depth to					
		IId	E E		Debth (I) Notes: All soil classifications based on visual descriptions made during the installation of the boring. Dewater measured at 17.6 feet bgs. Debth (I) Notes: All soil classifications based on visual descriptions made during the installation of the boring. Dewater measured at 17.6 feet bgs. Debth (I) Debth (I) BID Dbm) BID Dbm) Physical Description						
	80				Physical Description						
		0		Ground Surface ASPHALT (Fill material). SILTY SAND WITH GRAVEL Light yellowish brown; fine- to co gravel; moist; (Fill material).	(sm) oarse-grained sand; about 30% silty	/ fines; about 20% fine-grained					
	100	0		material). Color transitions to very dark gra	l sand; about 10% silty fines; moist; yish brown at 4 feet bgs.	; wet from 3.5 - 5 feet bgs; (Fill					
	50	1		Color transitions to dark gray at 5 <i>SILTY SAND (sm)</i> Black; fine- to coarse-grained sar moist; (Fill material).	nd; about 30% silty fines; about 10%	6 fine- to coarse-grained gravel;					
	50	1	_	Grayish brown well-graded sand	with gravel lens from 14.3 - 15 feet						
	50	1		<i>WELL-GRADED SAND WITH</i> Dark grayish brown; fine- to coan 19 feet bgs; (Native material).	GRAVEL (sw) rse-grained sand; about 15% fine-gr	ained gravel; moist becoming wet at					
					50 1 50 1 Grayish brown well-graded sand Few fine-grained gravel after 15 WELL-GRADED SAND WITH Dark grayish brown; fine- to coar 10 for brown; fine- to coar	50 1 50 1 Grayish brown well-graded sand with gravel lens from 14.3 - 15 feet Few fine-grained gravel after 15 feet bgs. WELL-GRADED SAND WITH GRAVEL (sw) Dark grayish brown; fine- to coarse-grained sand; about 15% fine-gr Dark grayish brown; fine- to coarse-grained sand; about 15% fine-gr					

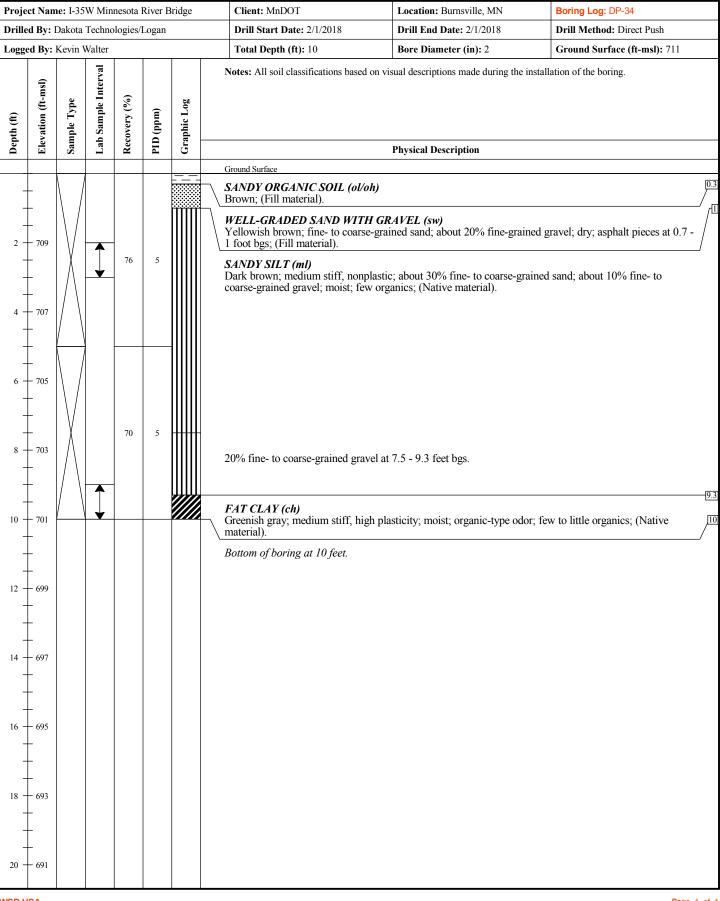
Proje	ct Nam	ie: I-35	W Min	nesota	River E	ridge	Client: MnDOT	Location: Burnsville, MN	Boring Log: DP-27
Depth (ft)	Elevation (ft-msl)	Sample Type	Lab Sample Interval	Recovery (%)	PID (ppm)	Graphic Log	Notes: All soil classifications based on vis water measured at 17.6 feet bgs.	sual descriptions made during the instal	lation of the boring. Depth to
	-	s		~	<u> </u>			Physical Description	[20]
22	 			60	0		SILTY SAND (sm) Dark yellowish brown; fine-grained sa SILT (ml) Yellowish brown; medium stiff, low p some sand by 22 feet bgs; (Native mai SILTY SAND WITH GRAVEL (sm) Dark yellowish brown; fine- to coarse silty fines; moist; wet from 22.5 - 24.5 Black silt lens at 24.5 - 24.7 feet bgs.	plasticity; about 15% fine-grained s terial).	Native material).
26 -	- - 688 -						Bottom of boring at 25 feet.		
28 -	- 686 -								
30 -									
32 -	- 682 								
34	- 680 								
36	- 678 - -								
-	- 676 - -								
40	- 674 								

Proje	ct Nam	ne: I-35	W Mini	nesota l	River B	ridge	Client: MnDOT	Location: Burnsville, MN	Boring Log: DP-28		
Drille	d By: I	Dakota '	Techno	logies/l	Logan		Drill Start Date: 2/11/2018	Drill End Date: 2/11/2018	Drill Method: Direct Push		
Logge	ed By: 1	Kevin V	Valter				Total Depth (ft): 19	Bore Diameter (in): 2	Ground Surface (ft-msl): 710		
Depth (ft)	Elevation (ft-msl)	Sample Type	Lab Sample Interval	Recovery (%)	PID (ppm)	Graphic Log	Notes: All soil classifications based on visual descriptions made during the installation of the boring. Depth to water measured at 18.2 feet bgs.				
D	E	Ň	L	R	Ρ	-		Physical Description			
2	- 708 - 708 - 706	\bigcirc		0			Ground Surface Sample liner stuck in casing, sand fou	und in drill shoe (Fill material).	5		
6 8 	- 704 			44	2		POORLY-GRADED SAND (sp) Bluish gray; fine-grained sand; about surface water infiltrating during drillin WELL-GRADED SAND (sw) Brownish gray; very fine- to medium-	ng; (Fill material).	itions may be the result of		
	- 700 - 698 			8	1		Minimal recovery from 10 - 15 feet by due to surface water).	gs due to gravel stuck in liner; wet f			
	- 694 			34	2		WELL-GRADED SAND WITH SIL Grayish brown; fine- to coarse-grained gravel; wet; (Fill material). Silt lens from 16 - 16.3 feet bgs; smal SILT WITH SAND (ml) Very dark grayish brown; stiff, low pl	d sand; about 25% silty fines; about l (<1-inch) intermittent silt lenses fr	om 17 - 18 feet bgs.		
 20	- - 690						Bottom of boring at 19 feet. Boring te	rrminated at refusal.			

Project Nan	ne• I-35	W Min	nesota	River F	Bridge	Client: MnDOT	Location: Burnsville, MN	Boring Log: DP-29
Drilled By:					sinage	Drill Start Date: 2/1/2018	Drill End Date: 2/1/2018	Drill Method: Direct Push
Logged By:			0	0		Total Depth (ft): 10	Bore Diameter (in): 2	Ground Surface (ft-msl): 706
Depth (ft) Elevation (ft-msl) Caraphic Log Graphic Log Graphic Log							on visual descriptions made during the	
DeJ	Sar	Lal	Re	IId	Ğ		Physical Description	
2 — 704 — 4 — 702			. 84	2		SANDY SILT (ml) Dark grayish brown; about 55% fine-grained gravel; dry; (Native LEAN CLAY (cl) Black; medium stiff, medium pla	grained sand; about 40% fine-graine silty fines, hard, nonplastic; about 3	35% fine-grained sand; about 10%
6 - 700 			76	3		material).		<u> </u>
$ \begin{array}{c} $						WEATHERED BEDROCK Yellowish brown; fine- to coarse Bottom of boring at 10 feet.	e-grained gravel; dry; (Native materi	

Project Na		W Min	necota	River F	Pridae	Client: MnDOT	Location: Burnsville, MN	Boring Log: DP-30			
Drilled By:					Jiluge	Drill Start Date: 2/1/2018	Drill End Date: 2/1/2018	Drill Method: Direct Push			
Logged By			Jogics/	Logan			Total Depth (ft): 10 Bore Diameter (in): 2 Ground Surface (ft-msl): 709				
Luggeu By				1							
Depth (ft) Elevation (ft-msl)	Sample Type	Lab Sample Interval	Recovery (%)	PID (ppm)	Graphic Log	Notes: All soil classifications based	installation of the boring.				
De	Sai	La	Re	IId	G		Physical Description				
						Ground Surface					
+	$\left \right $					ASPHALT (Fill material).		0.5			
2 - 707	, \/		_			WELL-GRADED SAND WITH Very dark grayish brown; fine- t material).	I GRAVEL (sw) o coarse-grained sand; about 20% fi	ine-grained gravel; dry; (Fill			
+		•	60	1		SANDY LEAN CLAY WITH GRAVEL (cl) Brown; about 60% clayey fines, stiff, nonplastic; about 30% fine- to coarse-grained s fine-grained gravel; dry; (Fill material).					
4 - 705		N				<i>SILT WITH SAND (ml)</i> Very dark grayish brown to blac (Native material).	k; soft, low plasticity; about 20% fi	4 ne-grained sand; moist; few organics;			
6 - 703				1							
8 - 701			80			WEATHERED BEDROCK Yellowish brown; dry; decompo	sed limestone-type bedrock; (Native	e material).			
10 - 699	,	\ ↓				Bottom of boring at 10 feet.		[10			
12 - 697	,										
+											
14 — 695 —	;										
16 - 693	;										
18 - 691											
20 - 689)										
WSP USA								Page 1 of 1			

Drilled By: Dakota Technologies/Logan Drill Start Date: 2/1/2018 Drill End Date: 2/1/2018 Drill Method: Direct Pash Logged By: Kevin Walter Total Depth (f): 10 Borc Diameter (in): 2 Ground Surface (fi-msi): 711 (i) bit of the province	Project Nar	ne: I-35	W Min	nesota	River F	Bridge	Client: MnDOT	Location: Burnsville, MN	Boring Log: DP-31			
Logged By: K-vm Water Total Depth (h): 10 Borc Diameter (in): 2 Ground Surface (h-ma): 711 u gg gg <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>												
Image: State of the state	-				8							
2 709 4 3 Unuel Sufface 2 709 51/17 SAND (sm) Brown, fine-to carase-grained sand; about 40% silty fines; about 5% fine-grained gravel; dry; (Fill material). 4 707 51/17 SAND (sm) 6 703 50/17 (sh) 700 701 SUT (sh) 8 703 701 6 703 701 701 701 701 702 703 701 703 701 701 703 701 701 703 701 701 703 701 701 703 701 701 703 701 701 703 701 701 703 701 701 704 701 701 705 701 701 701 701 701 701 701 701 702 701 701 703 701 701 704 701 701 <	(ft-msl)			overy (%)	(mqq)	phic Log						
2 709 4 3 SLITY 6.400 (sm) Bown; fine: to ccarse-gnined sand; about 40% silty fine; about 5% fine-grained gravel; dry; (Fill material). Bownish gray; soft nonplastic; about 10% fine-grained sand; moist; few organics; wet at 3.5 feet bgs; (Native material). 6 705 50 3 703 703 704 705 8 703 705 705 9 703 705 705 9 705 705 705 9 705 705 705 9 705 705 705 9 705 705 705 90 705 705 705 90 705 705 705 10 705 705 705 10 705 705 705 10 705 705 705 10 705 705 705 10 705 705 705 10 705 705 705 11 705 705 705 12 705 705 705<	Dep	Sam	Lab	Rec		Gra		Physical Description				
2 709 4 3 SLITY 6.400 (sm) Bown; fine: to ccarse-gnined sand; about 40% silty fine; about 5% fine-grained gravel; dry; (Fill material). Bownish gray; soft nonplastic; about 10% fine-grained sand; moist; few organics; wet at 3.5 feet bgs; (Native material). 6 705 50 3 703 703 704 705 8 703 705 705 9 703 705 705 9 705 705 705 9 705 705 705 9 705 705 705 9 705 705 705 90 705 705 705 90 705 705 705 10 705 705 705 10 705 705 705 10 705 705 705 10 705 705 705 10 705 705 705 10 705 705 705 11 705 705 705 12 705 705 705<							Ground Surface					
8 703 50 3 9 50 3 9 50 3 9 9 10 701 10 701 10 701 10 701 11 607 12 609 13 603 14 607 15 603 16 603 18 603 18 603 19 10 10 10 11 10 12 609 13 14 14 607 15 603 16 603 17 10 18 603 19 10 10 10 10 10 110 10 12 609 13 10 14 15 16	+			44	3		SILTY SAND (sm) Brown; fine- to coarse-grained sa material). SILT (ml) Brownish gray; soft, nonplastic; a		[1.5			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+			50	3		Dark reddish brown; soft; moist;		6 tency with rock clasts: (Native			
	10 - 701			-			material).		<u>[0</u>			
	12 — 699 —											
	+ 14 697 											
	16 — 695 —											
	+++++++++++++++++++++++++++++++++++++++											
	20 - 691											



Projec	t Nam	e. 1-35	W Min	nesota	River I	Bridge	Client: MnDOT	Location: Burnsville, MN	Boring Log: DP-32
Drilled						Jiluge	Drill Start Date: 2/1/2018	Drill End Date: 2/1/2018	Drill Method: Direct Push
Logged				Jiogics/	Logan		Total Depth (ft): 10	Bore Diameter (in): 2	Ground Surface (ft-msl): 713
Depth (ft)	Notes: All soil classifications based on visual descriptions made during the installation of the based on the formation (fr-ms) (fr-ms								
Del	Ele	San	Lat	Rec	II	6 ^{rs}		Physical Description	
							Ground Surface		
		Λ /					ASPHALT (Fill material).		الر
2				36	2		<i>SILTY SAND WITH GRAVEL</i> Dark grayish brown; fine- to coa dry; (Native material).	<i>(sm)</i> arse-grained sand; about 40% silty fi	ines; about 10% fine-grained gravel;
6	- - 707 -						<i>SILT (ml)</i> Dark gray; soft, low plasticity; a material).	bout 10% fine-grained sand; wet; fe	ew organics at 9 feet bgs; (Native
8	- 705			80	1				r
10 -	- 703	<u> </u>	♥				WEATHERED BEDROCK		ے لر
							Gray; (Native material). Bottom of boring at 10 feet.		/
							Bouom of boring at 10 jeet.		
12 —	701								
+	-								
+									
14	- 699								
+									
16 -	- 697								
+									
18	- 695								
	-								
20 —	- 693								
WSP US	20	1	1	1	1	<u> </u>			Page 1 o

Project Nam	ne: I-35	W Min	nesota	River F	Bridge	Client: MnDOT	Location: Burnsville, MN	Boring Log: DP-33
Drilled By:					Jildge	Drill Start Date: 2/1/2018	Drill End Date: 2/1/2018	Drill Method: Direct Push
Logged By:			108100	Logui		Total Depth (ft): 10	Bore Diameter (in): 2	Ground Surface (ft-msl): 713
Depth (ft)	Sample Type	addition Baseline Notes: All soil classifications based on visual descriptions made during the installation of the boring baseline Baseline Baseline Baseline baseline Baseline Baseline Baseline						
De	Sai	La	Re	Id	G		Physical Description	
2 — 711 — 4 — 709 —			60	2		Material). WEATHERED ROCK Yellowish brown; dry; weather SANDY SILT (ml) Dark grayish brown; stiff, nor gravel; dry; (Fill material). SILT (ml)	rained sand; about 40% silty fines; abo red rock; powdered consitency with ro plastic; about 30% fine- to coarse-grai	ck clasts; (Fill material).
6 — 707 — — 8 — 705 —			76	2		SILT (ml) Gray; soft, low plasticity; abou	plastic; moist; few organics; (Fill mate ut 20% fine-grained sand; wet; (Native plastic; moist; (Native material).	
$ \begin{array}{c} - \\ 10 - 703 \\ - \\ 12 - 701 \\ - \\ 12 - 701 \\ - \\ 14 - 699 \\ - \\ 16 - 697 \\ - \\ 18 - 695 \\ - \\ 20 - 693 \\ \end{array} $		V				(Native material). WEATHERED BEDROCK	about 30% fine-grained sand; about 1 ney with rock clasts; (Native material).	

Project Name: I-35W Minnesota River Bridge							Client: MnDOT	Location: Burnsville, MN	Boring Log: DP-35			
Drille	ed By: I	Dakota	Techno	logies/l	Logan		Drill Start Date: 2/1/2018	Drill End Date: 2/1/2018	Drill Method: Direct Push			
Logge	ed By:]	Kevin V	Valter				Total Depth (ft): 10	Bore Diameter (in): 2	Ground Surface (ft-msl): 712			
Depth (ft)	Elevation (ft-msl)	Sample Type	Lab Sample Interval	Recovery (%)	PID (ppm)	Graphic Log	Notes: All soil classifications based on visual descriptions made during the installation of the boring. Physical Description					
							Ground Surface					
- - 2 - - - - 4 - -	- 710 - 710 - 708		•	70	2		WELL-GRADED SAND WITH GR Yellowish brown; fine- to coarse-grain POORLY-GRADED SAND (sp) Dark yellowish brown; fine-grained st about 10% silty fines; about 5% fine-g Little clay at 3.5 - 4 feet bgs; coarsens Wet from 5 - 6 feet bgs; (Native mate	ned sand; about 40% fine-grained g and; about 10% silty fines, ; about 5 grained gravel; trace coarse-grained s to fine- to medium-grained sand at	% fine-grained gravel; moist; sand; moist; (Native material).			
6 - - - 8 - - -	- 706 			70	3		SANDY SILT (ml) Dark grayish brown; low plasticity; at coarse-grained gravel; moist; (Native Color transitions to very dark grayish	material).	6.5 id; about 10% fine- to			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 702 - 700 - 700 - 698 - 698 - 696 - 694 - 694 - 694						SILT (ml) Pale brown; soft, nonplastic; moist. Bottom of boring at 10 feet.		<u>10</u>			

Project Name: I-35W M	linnecota	River F	Pridae	Client: MnDOT	Location: Burnsville, MN	Boring Log: DP-36
Drilled By: Dakota Tech			Jildge	Drill Start Date: 2/1/2018	Drill End Date: 2/1/2018	Drill Method: Direct Push
Logged By: Kevin Walte	-	Logan		Total Depth (ft): 10	Bore Diameter (in): 2	Ground Surface (ft-msl): 711
Debth (ft) Debth (ft)						
Der Ele	Rec	II	<u> </u>		Physical Description	
	50	0		(Native material). Little fine-grained gravel at 0.5 -	ed sand; about 10% clayey fines; a	bout 5% fine-grained gravel; moist; grained sand at 4 feet bgs.
	70	0		SANDY SILT WITH GRAVEL Dark grayish brown; about 25% 1 color olive brown from 6 - 7 feet	<i>(ml)</i> fine- to coarse-grained sand; about bgs; rock clasts at bottom; (Native	20% fine- to coarse-grained gravel; material).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,			Bottom of boring at 10 feet.		

Project Name: I-35W Minnesota River Bridge							Client: MnDOT	Location: Burnsville, MN	Boring Log: DP-37
Drilled By: Dakota Technologies/Logan							Drill Start Date: 2/1/2018	Drill End Date: 2/1/2018	Drill Method: Direct Push
Logged By: Kevin Walter							Total Depth (ft): 10	Bore Diameter (in): 2	Ground Surface (ft-msl): 711
Depth (ft)	Elevation (ft-msl)	Sample Type	Lab Sample Interval	Recovery (%)	PID (ppm)	Graphic Log	Notes: All soil classifications based	on visual descriptions made during the i	installation of the boring.
Del	Ele	San	Lab	Rec	IId	Gra		Physical Description	
	- - - - 709						Ground Surface WELL-GRADED SAND (sw) Yellowish brown; fine- to coarse moist; (Fill material).	-grained sand; about 10% fine-grain	ned gravel; about 10% silty fines;
-	- - - 707 -			66	0		 \ gravel; moist; (Native material). ¬ SANDY SILT (ml) 	oarse-grained sand; about 25% silty	[4.7]
-	- 705 - 705 703		-	50	3		yrayish brown at 4 feet bgs; (Nat WELL-GRADED SAND (sw) Very dark grayish brown; fine- t material). SILTY SAND (sm)	tive material). o coarse-grained sand; about 10% fi	ine-grained gravel; dry; (Native
10 -	- - - 701 -			-			material). <i>WEATHERED BEDROCK</i> Gray; dry; silt-sized particles wit	m stiff, low plasticity; about 40% fi h gravel clasts; (Native material).	ne-grained sand; moist; (Native
12 -	- - 699 - -						Bottom of boring at 10 feet.		
14 — — — 16 —	-								
18	- - - 693 - -								
WSP US									Page 1 of 1

Project Nan	ne: I-35	W Min	nesota	River F	Bridge	Client: MnDOT	Location: Burnsville, MN	Boring Log: DP-38					
Drilled By:					8-	Drill Start Date: 2/1/2018	Drill End Date: 2/1/2018	Drill Method: Direct Push					
Logged By:			8	8		Total Depth (ft): 10	Bore Diameter (in): 2	Ground Surface (ft-msl): 713					
Loggeu Dy.													
Depth (ft) Elevation (ft-msl)	Sample Type	Lab Sample Interval	Recovery (%)	PID (ppm)	Graphic Log	Notes: All soil classifications based on visual descriptions made during the installation of the boring.							
De	Sai	La	Re	IId	Gr	Physical Description							
						Ground Surface							
2 - 711			80	3		<i>WELL-GRADED SAND WITH</i> Brownish yellow; fine- to coarse- (Fill material). Very dense at 1 - 2 feet bgs.	SILT AND GRAVEL (sw-sm) grained sand; about 20% fine-grain	ned gravel; about 20% silty fines; dry;					
4 - 709			-			<i>WELL-GRADED SAND WITH</i> Very dark grayish brown; fine- to silty fines; moist; (Native materia Very dense at 3.5 - 4 feet bgs.	coarse-grained sand; about 20% fi	ine-grained gravel; moist; about 20%					
6 - 707		*		1		Little organics from 4 - 6 feet bgs							
8 - 705			50			gravel; moist; (Native material). WEATHERED BEDROCK	SILT AND GRAVEL (sw-sm) o coarse-grained sand; about 20% si with rock clasts (Native material).	ilty fines; about 10% fine-grained					
10 - 703	\square	Ň				Greenish gray, clayey, and moist	from 8 - 8.5 feet bgs.	[
+ + 12 - 701						Bottom of boring at 10 feet.							
14 - 699													
20 - 693													

APPENDIX

SOIL AND GROUNDWATER LABORATORY ANALYTICAL REPORTS

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

February 08, 2018

Ms. Paula Berger WSP Environment and Energy 123 North Third Street Suite 808 Minneapolis, MN 55401

RE: Project: 31401059.001 I-35W MN Rvr Brid Pace Project No.: 10419237

Dear Ms. Berger:

Enclosed are the analytical results for sample(s) received by the laboratory on February 02, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Br Man

Bob Michels bob.michels@pacelabs.com (612)607-6452 Project Manager

Enclosures

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

 Project:
 31401059.001 I-35W MN Rvr Brid

 Pace Project No.:
 10419237

Minnesota Certification IDs

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414-2485 A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #:MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Maryland Certification #: 322 Massachusetts Certification #: M-MN064

Michigan Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: MN00064 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon NwTPH Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DW Certification #: 9952 C West Virginia DEP Certification #: 382 Wisconsin Certification #: 999407970

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

SAMPLE SUMMARY

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No .:

10419237

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10419237001	DP-30 (2-3)	Solid	02/01/18 09:10	02/02/18 13:45
10419237002	DP-30 (9-10)	Solid	02/01/18 09:20	02/02/18 13:45
10419237003	DP-29 (2-3)	Solid	02/01/18 09:45	02/02/18 13:45
10419237004	DP-29 (8.5-10)	Solid	02/01/18 10:00	02/02/18 13:45
10419237005	DP-31 (4-5)	Solid	02/01/18 10:20	02/02/18 13:45
10419237006	DP-31 (9-10)	Solid	02/01/18 10:25	02/02/18 13:45
10419237007	DP-32 (4-5)	Solid	02/01/18 10:35	02/02/18 13:45
10419237008	DP-32 (9-10)	Solid	02/01/18 10:40	02/02/18 13:45
10419237009	DP-33 (4-5)	Solid	02/01/18 10:50	02/02/18 13:45
10419237010	DP-33 (8.5-10)	Solid	02/01/18 11:00	02/02/18 13:45
10419237011	DP-34 (2-3)	Solid	02/01/18 13:05	02/02/18 13:45
10419237012	DP-34 (9-10)	Solid	02/01/18 13:10	02/02/18 13:45
10419237013	DP-35 (2-3)	Solid	02/01/18 13:30	02/02/18 13:45
10419237014	DP-35 (8.5-9.5)	Solid	02/01/18 13:40	02/02/18 13:45
10419237015	DP-36 (4-5)	Solid	02/01/18 13:55	02/02/18 13:45
10419237016	DP-36 (9-10)	Solid	02/01/18 14:05	02/02/18 13:45
10419237017	DP-37 (4-5)	Solid	02/01/18 14:20	02/02/18 13:45
10419237018	DP-37 (8.5-10)	Solid	02/01/18 14:40	02/02/18 13:45
10419237019	DP-38 (4-5)	Solid	02/01/18 15:00	02/02/18 13:45
10419237020	DP-38 (7-8.5)	Solid	02/01/18 15:10	02/02/18 13:45

SAMPLE ANALYTE COUNT

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No.: 10419237

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10419237001	DP-30 (2-3)	EPA 6010C	IP	10	PASI-M
		EPA 6020A	WBS	2	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10419237002	DP-30 (9-10)	EPA 6010C	IP	10	PASI-M
		EPA 6020A	WBS	2	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10419237003	DP-29 (2-3)	EPA 6010C	IP	10	PASI-M
		EPA 6020A	WBS	2	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
0419237004	DP-29 (8.5-10)	EPA 6010C	IP	10	PASI-M
		EPA 6020A	WBS	2	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
0419237005	DP-31 (4-5)	EPA 6010C	IP	10	PASI-M
		EPA 6020A	WBS	2	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
0419237006	DP-31 (9-10)	EPA 6010C	IP	10	PASI-M
		EPA 6020A	WBS	2	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10419237007	DP-32 (4-5)	WI MOD DRO	EC2	2	PASI-M
		EPA 6010C	IP	10	PASI-M
		EPA 6020A	WBS	2	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10419237008	DP-32 (9-10)	EPA 6010C	IP	10	PASI-M
		EPA 6020A	WBS	2	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10419237009	DP-33 (4-5)	WI MOD DRO	EC2	2	PASI-M
		EPA 6010C	IP	10	PASI-M
		EPA 6020A	WBS	2	PASI-M
		EPA 7471B	LMW	1	PASI-M

SAMPLE ANALYTE COUNT

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No.:	10419237

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		ASTM D2974	JDL	1	PASI-M
10419237010	DP-33 (8.5-10)	EPA 6010C	IP	10	PASI-M
		EPA 6020A	WBS	2	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
0419237011	DP-34 (2-3)	EPA 6010C	IP	10	PASI-M
		EPA 6020A	WBS	2	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
0419237012	DP-34 (9-10)	EPA 6010C	IP	10	PASI-M
		EPA 6020A	WBS	2	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
0419237013	DP-35 (2-3)	EPA 6010C	IP	10	PASI-M
		EPA 6020A	WBS	2	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
0419237014	DP-35 (8.5-9.5)	EPA 6010C	IP	10	PASI-M
		EPA 6020A	WBS	2	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
0419237015	DP-36 (4-5)	WI MOD DRO	EC2	2	PASI-M
	. ,	EPA 6010C	DM, IP	10	PASI-M
		EPA 6020A	WBS	2	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
0419237016	DP-36 (9-10)	EPA 6010C	DM, IP	10	PASI-M
	· · ·	EPA 6020A	WBS	2	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
0419237017	DP-37 (4-5)	WI MOD DRO	EC2	2	PASI-M
-		EPA 6010C	DM, IP	10	PASI-M
		EPA 6020A	WBS	2	PASI-M
		EPA 7471B	LMW	- 1	PASI-M
		ASTM D2974	JDL	1	PASI-M
0419237018	DP-37 (8.5-10)	EPA 6010C	DM, IP	10	PASI-M
		EPA 6020A	WBS		

SAMPLE ANALYTE COUNT

Project:	31401059.001 I-35W MN Rvr Brid
Pace Project No .:	10419237

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	CS2	1	PASI-M
10419237019	DP-38 (4-5)	EPA 6010C	DM, IP	10	PASI-M
		EPA 6020A	WBS	2	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	CS2	1	PASI-M
10419237020	DP-38 (7-8.5)	EPA 6010C	DM, IP	10	PASI-M
		EPA 6020A	WBS	2	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	CS2	1	PASI-M

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No.: 10419237

Sample: DP-30 (2-3)	Lab ID:	10419237001	Collected	d: 02/01/18	8 09:10	Received: 02/	02/18 13:45 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and ar	e adjusted for	percent mo	oisture, san	nple si	ze and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: EF	PA 3050			
Antimony	ND	mg/kg	1.0	0.12	1	02/05/18 09:10	02/06/18 14:08	7440-36-0	M1
Beryllium	0.20J	mg/kg	0.26	0.031	1	02/05/18 09:10	02/06/18 14:08	7440-41-7	
Cadmium	0.056J	mg/kg	0.16	0.016	1	02/05/18 09:10	02/06/18 14:08	7440-43-9	
Chromium	6.7	mg/kg	0.52	0.066	1	02/05/18 09:10	02/06/18 14:08	7440-47-3	
Copper	7.2	mg/kg	0.52	0.087	1	02/05/18 09:10	02/06/18 14:08	7440-50-8	
Lead	5.8	mg/kg	0.52	0.12	1	02/05/18 09:10	02/06/18 14:08	7439-92-1	
Nickel	8.3	mg/kg	1.0	0.12	1	02/05/18 09:10	02/06/18 14:08	7440-02-0	
Silver	ND	mg/kg	0.52	0.041	1	02/05/18 09:10	02/06/18 14:08	7440-22-4	
Thallium	ND	mg/kg	1.0	0.23	1	02/05/18 09:10	02/06/18 14:08	7440-28-0	
Zinc	19.1	mg/kg	1.0	0.30	1	02/05/18 09:10	02/06/18 14:08	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prepa	aration Metl	nod: EF	PA 3050			
Arsenic	2.3	mg/kg	0.53	0.24	20	02/05/18 09:26	02/05/18 20:38	7440-38-2	
Selenium	0.28J	mg/kg	0.53	0.27	20	02/05/18 09:26	02/05/18 20:38	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: EF	PA 7471B			
Mercury	ND	mg/kg	0.022	0.010	1	02/05/18 09:33	02/07/18 16:49	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	9.6	%	0.10	0.10	1		02/07/18 12:49		

Project: 31401059.001 I-35W MN Rvr Brid

.....

Pace Project No.: 10419237

-

Sample: DP-30 (9-10)	Lab ID:	10419237002	Collecte	d: 02/01/18	8 09:20	Received: 02/	02/18 13:45 Ma	atrix: Solid	
Results reported on a "dry weight"	' basis and are	e adjusted for	percent mo	oisture, san	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: El	PA 3050			
Antimony	0.33J	mg/kg	1.1	0.12	1	02/05/18 09:10	02/06/18 14:28	7440-36-0	В
Beryllium	ND	mg/kg	0.26	0.032	1	02/05/18 09:10	02/06/18 14:28	7440-41-7	
Cadmium	0.057J	mg/kg	0.16	0.016	1	02/05/18 09:10	02/06/18 14:28	7440-43-9	
Chromium	4.4	mg/kg	0.53	0.067	1	02/05/18 09:10	02/06/18 14:28	7440-47-3	
Copper	8.5	mg/kg	0.53	0.089	1	02/05/18 09:10	02/06/18 14:28	7440-50-8	
Lead	3.4	mg/kg	0.53	0.12	1	02/05/18 09:10	02/06/18 14:28	7439-92-1	
Nickel	3.7	mg/kg	1.1	0.12	1	02/05/18 09:10	02/06/18 14:28	7440-02-0	
Silver	ND	mg/kg	0.53	0.041	1	02/05/18 09:10	02/06/18 14:28	7440-22-4	
Thallium	ND	mg/kg	1.1	0.23	1	02/05/18 09:10	02/06/18 14:28	7440-28-0	
Zinc	4.6	mg/kg	1.1	0.31	1	02/05/18 09:10	02/06/18 14:28	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	nod: EF	PA 3050			
Arsenic	2.5	mg/kg	0.52	0.23	20	02/05/18 09:26	02/05/18 20:51	7440-38-2	
Selenium	ND	mg/kg	0.52	0.26	20	02/05/18 09:26	02/05/18 20:51	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: El	PA 7471B			
Mercury	ND	mg/kg	0.020	0.0092	1	02/05/18 09:33	02/07/18 16:56	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	5.5	%	0.10	0.10	1		02/07/18 13:48		

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No.: 10419237

Sample: DP-29 (2-3)	Lab ID:	10419237003	Collecte	d: 02/01/18	8 09:45	Received: 02/	02/18 13:45 Ma	atrix: Solid	
Results reported on a "dry weight"	' basis and ar	e adjusted for	percent mo	oisture, san	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: Ef	PA 3050			
Antimony	ND	mg/kg	1.0	0.12	1	02/05/18 09:10	02/06/18 14:32	7440-36-0	
Beryllium	0.24J	mg/kg	0.26	0.031	1	02/05/18 09:10	02/06/18 14:32	7440-41-7	
Cadmium	0.074J	mg/kg	0.15	0.016	1	02/05/18 09:10	02/06/18 14:32	7440-43-9	
Chromium	7.4	mg/kg	0.51	0.066	1	02/05/18 09:10	02/06/18 14:32	7440-47-3	
Copper	7.9	mg/kg	0.51	0.086	1	02/05/18 09:10	02/06/18 14:32	7440-50-8	
Lead	7.2	mg/kg	0.51	0.12	1	02/05/18 09:10	02/06/18 14:32	7439-92-1	
Nickel	9.6	mg/kg	1.0	0.12	1	02/05/18 09:10	02/06/18 14:32	7440-02-0	
Silver	ND	mg/kg	0.51	0.040	1	02/05/18 09:10	02/06/18 14:32	7440-22-4	
Thallium	ND	mg/kg	1.0	0.22	1	02/05/18 09:10	02/06/18 14:32	7440-28-0	
Zinc	23.5	mg/kg	1.0	0.30	1	02/05/18 09:10	02/06/18 14:32	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	hod: EF	PA 3050			
Arsenic	2.7	mg/kg	0.54	0.24	20	02/05/18 09:26	02/05/18 20:54	7440-38-2	
Selenium	0.29J	mg/kg	0.54	0.27	20	02/05/18 09:26	02/05/18 20:54	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: EF	PA 7471B			
Mercury	0.015J	mg/kg	0.021	0.0097	1	02/05/18 09:33	02/07/18 16:58	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	10.1	%	0.10	0.10	1		02/07/18 13:48		

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No.: 10419237

Sample: DP-29 (8.5-10)	Lab ID:	10419237004	Collected	l: 02/01/18	3 10:00	Received: 02/	02/18 13:45 Ma	atrix: Solid	
Results reported on a "dry weight"	' basis and are	adjusted for	percent mo	isture, sar	nple si	ze and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: El	PA 3050			
Antimony	0.37J	mg/kg	1.5	0.17	1	02/05/18 09:10	02/06/18 14:36	7440-36-0	В
Beryllium	ND	mg/kg	0.37	0.044	1	02/05/18 09:10	02/06/18 14:36	7440-41-7	
Cadmium	0.57	mg/kg	0.22	0.022	1	02/05/18 09:10	02/06/18 14:36	7440-43-9	
Chromium	3.8	mg/kg	0.73	0.093	1	02/05/18 09:10	02/06/18 14:36	7440-47-3	
Copper	9.3	mg/kg	0.73	0.12	1	02/05/18 09:10	02/06/18 14:36	7440-50-8	
Lead	2.2	mg/kg	0.73	0.17	1	02/05/18 09:10	02/06/18 14:36	7439-92-1	
Nickel	19.4	mg/kg	1.5	0.17	1	02/05/18 09:10	02/06/18 14:36	7440-02-0	
Silver	ND	mg/kg	0.73	0.057	1	02/05/18 09:10	02/06/18 14:36	7440-22-4	
Thallium	ND	mg/kg	1.5	0.32	1	02/05/18 09:10	02/06/18 14:36	7440-28-0	
Zinc	9.6	mg/kg	1.5	0.43	1	02/05/18 09:10	02/06/18 14:36	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prepa	aration Met	hod: EF	PA 3050			
Arsenic	1.8	mg/kg	0.74	0.33	20	02/05/18 09:26	02/05/18 20:56	7440-38-2	
Selenium	1.3	mg/kg	0.74	0.37	20	02/05/18 09:26	02/05/18 20:56	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prepa	aration Met	hod: El	PA 7471B			
Mercury	ND	mg/kg	0.028	0.013	1	02/05/18 09:33	02/07/18 17:00	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	35.6	%	0.10	0.10	1		02/07/18 13:48		

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No.: 10419237

Sample: DP-31 (4-5)	Lab ID:	10419237005	Collected	d: 02/01/18	3 10:20	Received: 02/	02/18 13:45 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and ar	e adjusted for	percent mo	oisture, san	nple siz	ze and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: EF	PA 3050			
Antimony	0.98J	mg/kg	1.4	0.16	1	02/05/18 09:10	02/06/18 14:48	7440-36-0	В
Beryllium	2.6	mg/kg	0.35	0.042	1	02/05/18 09:10	02/06/18 14:48	7440-41-7	
Cadmium	1.7	mg/kg	0.21	0.022	1	02/05/18 09:10	02/06/18 14:48	7440-43-9	
Chromium	40.8	mg/kg	0.71	0.090	1	02/05/18 09:10	02/06/18 14:48	7440-47-3	
Copper	19.4	mg/kg	0.71	0.12	1	02/05/18 09:10	02/06/18 14:48	7440-50-8	
Lead	24.5	mg/kg	0.71	0.16	1	02/05/18 09:10	02/06/18 14:48	7439-92-1	
Nickel	18.4	mg/kg	1.4	0.17	1	02/05/18 09:10	02/06/18 14:48	7440-02-0	
Silver	ND	mg/kg	0.71	0.055	1	02/05/18 09:10	02/06/18 14:48	7440-22-4	
Thallium	2.6	mg/kg	1.4	0.30	1	02/05/18 09:10	02/06/18 14:48	7440-28-0	
Zinc	150	mg/kg	1.4	0.41	1	02/05/18 09:10	02/06/18 14:48	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prepa	aration Met	nod: EF	PA 3050			
Arsenic	23.8	mg/kg	0.72	0.33	20	02/05/18 09:26	02/05/18 21:36	7440-38-2	
Selenium	1.9	mg/kg	0.72	0.36	20	02/05/18 09:26	02/05/18 21:36	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: EF	PA 7471B			
Mercury	0.047	mg/kg	0.026	0.012	1	02/05/18 09:33	02/07/18 17:06	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	31.8	%	0.10	0.10	1		02/07/18 13:49		

Project: 31401059.001 I-35W MN Rvr Brid

.....

Pace Project No.: 10419237

-

Sample: DP-31 (9-10)	Lab ID:	10419237006	Collecte	d: 02/01/18	8 10:25	Received: 02/	02/18 13:45 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	adjusted for	percent mo	oisture, san	nple si	ze and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: El	PA 3050			
Antimony	0.28J	mg/kg	1.0	0.12	1	02/05/18 09:10	02/06/18 14:52	7440-36-0	В
Beryllium	ND	mg/kg	0.26	0.031	1	02/05/18 09:10	02/06/18 14:52	7440-41-7	
Cadmium	0.051J	mg/kg	0.15	0.016	1	02/05/18 09:10	02/06/18 14:52	7440-43-9	
Chromium	3.8	mg/kg	0.51	0.065	1	02/05/18 09:10	02/06/18 14:52	7440-47-3	
Copper	5.4	mg/kg	0.51	0.086	1	02/05/18 09:10	02/06/18 14:52	7440-50-8	
Lead	3.7	mg/kg	0.51	0.12	1	02/05/18 09:10	02/06/18 14:52	7439-92-1	
Nickel	1.4	mg/kg	1.0	0.12	1	02/05/18 09:10	02/06/18 14:52	7440-02-0	
Silver	ND	mg/kg	0.51	0.040	1	02/05/18 09:10	02/06/18 14:52	7440-22-4	
Thallium	ND	mg/kg	1.0	0.22	1	02/05/18 09:10	02/06/18 14:52	7440-28-0	
Zinc	3.8	mg/kg	1.0	0.30	1	02/05/18 09:10	02/06/18 14:52	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	nod: EF	PA 3050			
Arsenic	1.4	mg/kg	0.51	0.23	20	02/05/18 09:26	02/05/18 21:39	7440-38-2	
Selenium	0.27J	mg/kg	0.51	0.26	20	02/05/18 09:26	02/05/18 21:39	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: El	PA 7471B			
Mercury	ND	mg/kg	0.021	0.0098	1	02/05/18 09:33	02/07/18 17:08	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	8.2	%	0.10	0.10	1		02/07/18 13:49		

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No.: 10419237

Sample: DP-32 (4-5)	Lab ID:	10419237007	Collected	d: 02/01/18	3 10:35	Received: 02/	/02/18 13:45 Ma	atrix: Solid	
Results reported on a "dry weight"	' basis and ar	e adjusted for	percent mo	oisture, sai	nple si	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS Silica Gel	Analytical	Method: WI MC	DD DRO PI	eparation N	Nethod	: WI MOD DRO			
WDRO C10-C28 Surrogates	801	mg/kg	88.1	17.3	1	02/05/18 14:06	02/06/18 08:50		T6
n-Triacontane (S)	119	%.	59-133		1	02/05/18 14:06	02/06/18 08:50	638-68-6	
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	thod: E	PA 3050			
Antimony	ND	mg/kg	1.1	0.13	1	02/05/18 09:10	02/06/18 14:56	7440-36-0	
Beryllium	0.89	mg/kg	0.28	0.034	1	02/05/18 09:10	02/06/18 14:56	7440-41-7	
Cadmium	0.57	mg/kg	0.17	0.017	1	02/05/18 09:10	02/06/18 14:56	7440-43-9	
Chromium	16.9	mg/kg	0.56	0.072	1	02/05/18 09:10	02/06/18 14:56	7440-47-3	
Copper	16.2	mg/kg	0.56	0.094	1	02/05/18 09:10	02/06/18 14:56	7440-50-8	
Lead	43.0	mg/kg	0.56	0.13	1	02/05/18 09:10	02/06/18 14:56	7439-92-1	
Nickel	15.6	mg/kg	1.1	0.13	1	02/05/18 09:10	02/06/18 14:56	7440-02-0	
Silver	ND	mg/kg	0.56	0.044	1	02/05/18 09:10	02/06/18 14:56	7440-22-4	
Thallium	ND	mg/kg	1.1	0.24	1	02/05/18 09:10	02/06/18 14:56	7440-28-0	
Zinc	77.7	mg/kg	1.1	0.33	1	02/05/18 09:10	02/06/18 14:56	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	hod: El	PA 3050			
Arsenic	6.6	mg/kg	0.55	0.25	20	02/05/18 09:26	02/05/18 21:42	7440-38-2	
Selenium	0.89	mg/kg	0.55	0.27	20	02/05/18 09:26	02/05/18 21:42	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: El	PA 7471B			
Mercury	0.010J	mg/kg	0.020	0.0093	1	02/05/18 09:33	02/07/18 17:10	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	16.3	%	0.10	0.10	1		02/07/18 13:49		

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No.: 10419237

Sample: DP-32 (9-10)	Lab ID:	10419237008	Collected	d: 02/01/18	3 10:40	Received: 02/	02/18 13:45 Ma	atrix: Solid	
Results reported on a "dry weight"	' basis and are	e adjusted for	percent mo	oisture, san	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: El	PA 3050			
Antimony	0.96J	mg/kg	1.4	0.16	1	02/05/18 09:10	02/06/18 15:00	7440-36-0	В
Beryllium	1.9	mg/kg	0.35	0.042	1	02/05/18 09:10	02/06/18 15:00	7440-41-7	
Cadmium	1.2	mg/kg	0.21	0.022	1	02/05/18 09:10	02/06/18 15:00	7440-43-9	
Chromium	33.4	mg/kg	0.70	0.090	1	02/05/18 09:10	02/06/18 15:00	7440-47-3	
Copper	16.4	mg/kg	0.70	0.12	1	02/05/18 09:10	02/06/18 15:00	7440-50-8	
Lead	16.7	mg/kg	0.70	0.16	1	02/05/18 09:10	02/06/18 15:00	7439-92-1	
Nickel	26.5	mg/kg	1.4	0.16	1	02/05/18 09:10	02/06/18 15:00	7440-02-0	
Silver	ND	mg/kg	0.70	0.055	1	02/05/18 09:10	02/06/18 15:00	7440-22-4	
Thallium	1.2J	mg/kg	1.4	0.30	1	02/05/18 09:10	02/06/18 15:00	7440-28-0	
Zinc	115	mg/kg	1.4	0.41	1	02/05/18 09:10	02/06/18 15:00	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	hod: EF	PA 3050			
Arsenic	12.4	mg/kg	0.72	0.33	20	02/05/18 09:26	02/05/18 21:44	7440-38-2	
Selenium	27.8	mg/kg	0.72	0.36	20	02/05/18 09:26	02/05/18 21:44	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: El	PA 7471B			
Mercury	0.047	mg/kg	0.027	0.013	1	02/05/18 09:33	02/07/18 17:12	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	35.5	%	0.10	0.10	1		02/07/18 13:49		

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No.: 10419237

Sample: DP-33 (4-5)	Lab ID:	10419237009	Collected	d: 02/01/1	8 10:50	Received: 02/	/02/18 13:45 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and ar	e adjusted for	percent mo	oisture, sa	mple si	ize and any dilut	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS Silica Gel	Analytica	Method: WI MC	DD DRO Pi	eparation I	Method	: WI MOD DRO			
WDRO C10-C28 Surrogates	21.0	mg/kg	13.9	2.7	1	02/05/18 14:06	02/06/18 08:43		T7
n-Triacontane (S)	94	%.	59-133		1	02/05/18 14:06	02/06/18 08:43	638-68-6	
6010C MET ICP	Analytica	Method: EPA 6	010C Prep	aration Me	thod: E	PA 3050			
Antimony	ND	mg/kg	1.4	0.16	1	02/05/18 09:10	02/06/18 15:04	7440-36-0	
Beryllium	2.1	mg/kg	0.35	0.042	1	02/05/18 09:10	02/06/18 15:04	7440-41-7	
Cadmium	1.1	mg/kg	0.21	0.021	1	02/05/18 09:10	02/06/18 15:04	7440-43-9	
Chromium	30.4	mg/kg	0.70	0.089	1	02/05/18 09:10	02/06/18 15:04	7440-47-3	
Copper	16.7	mg/kg	0.70	0.12	1	02/05/18 09:10	02/06/18 15:04	7440-50-8	
Lead	24.7	mg/kg	0.70	0.16	1	02/05/18 09:10	02/06/18 15:04	7439-92-1	
Nickel	17.0	mg/kg	1.4	0.16	1	02/05/18 09:10	02/06/18 15:04	7440-02-0	
Silver	ND	mg/kg	0.70	0.055	1	02/05/18 09:10	02/06/18 15:04	7440-22-4	
Thallium	0.99J	mg/kg	1.4	0.30	1	02/05/18 09:10	02/06/18 15:04	7440-28-0	
Zinc	114	mg/kg	1.4	0.41	1	02/05/18 09:10	02/06/18 15:04	7440-66-6	
6020A MET ICPMS	Analytica	Method: EPA 6	020A Prepa	aration Me	hod: El	PA 3050			
Arsenic	17.6	mg/kg	0.71	0.32	20	02/05/18 09:26	02/05/18 21:47	7440-38-2	
Selenium	2.3	mg/kg	0.71	0.36	20	02/05/18 09:26	02/05/18 21:47	7782-49-2	
7471B Mercury	Analytica	I Method: EPA 7	471B Prep	aration Me	thod: El	PA 7471B			
Mercury	0.049	mg/kg	0.030	0.014	1	02/05/18 09:33	02/07/18 17:14	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytica	Method: ASTM	D2974						
Percent Moisture	34.4	%	0.10	0.10	1		02/07/18 13:49		

Project: 31401059.001 I-35W MN Rvr Brid

40.5

%

Sample: DP-33 (8.5-10)	Lab ID:	10419237010	Collected	d: 02/01/18	3 11:00	Received: 02/	02/18 13:45 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and are	e adjusted for j	percent mo	oisture, san	nple si	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: E	PA 3050			
Antimony	0.51J	mg/kg	1.7	0.19	1	02/05/18 09:10	02/06/18 15:07	7440-36-0	В
Beryllium	0.55	mg/kg	0.42	0.050	1	02/05/18 09:10	02/06/18 15:07	7440-41-7	
Cadmium	0.41	mg/kg	0.25	0.025	1	02/05/18 09:10	02/06/18 15:07	7440-43-9	
Chromium	7.8	mg/kg	0.83	0.11	1	02/05/18 09:10	02/06/18 15:07	7440-47-3	
Copper	24.5	mg/kg	0.83	0.14	1	02/05/18 09:10	02/06/18 15:07	7440-50-8	
Lead	7.1	mg/kg	0.83	0.19	1	02/05/18 09:10	02/06/18 15:07	7439-92-1	
Nickel	15.6	mg/kg	1.7	0.19	1	02/05/18 09:10	02/06/18 15:07	7440-02-0	
Silver	ND	mg/kg	0.83	0.065	1	02/05/18 09:10	02/06/18 15:07	7440-22-4	
Thallium	ND	mg/kg	1.7	0.36	1	02/05/18 09:10	02/06/18 15:07	7440-28-0	
Zinc	15.6	mg/kg	1.7	0.48	1	02/05/18 09:10	02/06/18 15:07	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prepa	aration Met	hod: El	PA 3050			
Arsenic	1.4	mg/kg	0.77	0.35	20	02/05/18 09:26	02/05/18 21:50	7440-38-2	
Selenium	1.6	mg/kg	0.77	0.39	20	02/05/18 09:26	02/05/18 21:50	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prepa	aration Met	hod: El	PA 7471B			
Mercury	0.022J	mg/kg	0.029	0.013	1	02/05/18 09:33	02/07/18 17:16	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						

0.10

0.10 1

02/07/18 13:50

REPORT OF LABORATORY ANALYSIS

Percent Moisture

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No.: 10419237

Sample: DP-34 (2-3)	Lab ID:	10419237011	Collecte	d: 02/01/18	3 13:05	Received: 02/	02/18 13:45 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	e adjusted for	percent mo	oisture, sar	nple siz	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: EF	PA 3050			
Antimony	ND	mg/kg	1.0	0.12	1	02/05/18 09:10	02/06/18 15:11	7440-36-0	
Beryllium	0.15J	mg/kg	0.26	0.031	1	02/05/18 09:10	02/06/18 15:11	7440-41-7	
Cadmium	0.076J	mg/kg	0.15	0.016	1	02/05/18 09:10	02/06/18 15:11	7440-43-9	
Chromium	6.1	mg/kg	0.51	0.066	1	02/05/18 09:10	02/06/18 15:11	7440-47-3	
Copper	6.4	mg/kg	0.51	0.086	1	02/05/18 09:10	02/06/18 15:11	7440-50-8	
Lead	11.2	mg/kg	0.51	0.12	1	02/05/18 09:10	02/06/18 15:11	7439-92-1	
Nickel	8.7	mg/kg	1.0	0.12	1	02/05/18 09:10	02/06/18 15:11	7440-02-0	
Silver	ND	mg/kg	0.51	0.040	1	02/05/18 09:10	02/06/18 15:11	7440-22-4	
Thallium	ND	mg/kg	1.0	0.22	1	02/05/18 09:10	02/06/18 15:11	7440-28-0	
Zinc	18.1	mg/kg	1.0	0.30	1	02/05/18 09:10	02/06/18 15:11	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	nod: EF	PA 3050			
Arsenic	2.2	mg/kg	0.51	0.23	20	02/05/18 09:26	02/05/18 21:52	7440-38-2	
Selenium	ND	mg/kg	0.51	0.25	20	02/05/18 09:26	02/05/18 21:52	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: EF	PA 7471B			
Mercury	ND	mg/kg	0.018	0.0085	1	02/05/18 09:33	02/07/18 17:18	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	5.6	%	0.10	0.10	1		02/07/18 13:50		

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No.: 10419237

Sample: DP-34 (9-10)	Lab ID:	10419237012	Collecte	d: 02/01/18	3 13:10	Received: 02/	/02/18 13:45 Ma	atrix: Solid	
Results reported on a "dry weight"	' basis and ar	e adjusted for	percent m	oisture, sar	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	paration Met	hod: Ef	PA 3050			
Antimony	ND	mg/kg	1.3	0.15	1	02/05/18 09:10	02/06/18 15:15	7440-36-0	
Beryllium	0.39	mg/kg	0.32	0.038	1	02/05/18 09:10	02/06/18 15:15	7440-41-7	
Cadmium	0.15J	mg/kg	0.19	0.020	1	02/05/18 09:10	02/06/18 15:15	7440-43-9	
Chromium	9.8	mg/kg	0.64	0.081	1	02/05/18 09:10	02/06/18 15:15	7440-47-3	
Copper	14.6	mg/kg	0.64	0.11	1	02/05/18 09:10	02/06/18 15:15	7440-50-8	
Lead	6.7	mg/kg	0.64	0.14	1	02/05/18 09:10	02/06/18 15:15	7439-92-1	
Nickel	29.8	mg/kg	1.3	0.15	1	02/05/18 09:10	02/06/18 15:15	7440-02-0	
Silver	ND	mg/kg	0.64	0.050	1	02/05/18 09:10	02/06/18 15:15	7440-22-4	
Thallium	ND	mg/kg	1.3	0.28	1	02/05/18 09:10	02/06/18 15:15	7440-28-0	
Zinc	28.6	mg/kg	1.3	0.37	1	02/05/18 09:10	02/06/18 15:15	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	hod: EF	PA 3050			
Arsenic	2.2	mg/kg	0.64	0.29	20	02/05/18 09:26	02/05/18 21:55	7440-38-2	
Selenium	ND	mg/kg	0.64	0.32	20	02/05/18 09:26	02/05/18 21:55	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: EF	PA 7471B			
Mercury	0.025	mg/kg	0.025	0.012	1	02/05/18 09:33	02/07/18 17:20	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	24.1	%	0.10	0.10	1		02/07/18 13:50		

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No.: 10419237

Sample: DP-35 (2-3)	Lab ID:	10419237013	Collecte	d: 02/01/18	3 13:30	Received: 02/	/02/18 13:45 M	atrix: Solid	
Results reported on a "dry weight"	' basis and ar	e adjusted for	percent m	oisture, sar	nple si	ze and any dilut	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	paration Met	hod: El	PA 3050			
Antimony	ND	mg/kg	1.0	0.12	1	02/05/18 09:10	02/06/18 15:19	7440-36-0	
Beryllium	0.14J	mg/kg	0.25	0.031	1	02/05/18 09:10	02/06/18 15:19	7440-41-7	
Cadmium	0.10J	mg/kg	0.15	0.016	1	02/05/18 09:10	02/06/18 15:19	7440-43-9	
Chromium	5.9	mg/kg	0.51	0.065	1	02/05/18 09:10	02/06/18 15:19	7440-47-3	
Copper	6.1	mg/kg	0.51	0.085	1	02/05/18 09:10	02/06/18 15:19	7440-50-8	
Lead	4.1	mg/kg	0.51	0.12	1	02/05/18 09:10	02/06/18 15:19	7439-92-1	
Nickel	9.7	mg/kg	1.0	0.12	1	02/05/18 09:10	02/06/18 15:19	7440-02-0	
Silver	ND	mg/kg	0.51	0.040	1	02/05/18 09:10	02/06/18 15:19	7440-22-4	
Thallium	ND	mg/kg	1.0	0.22	1	02/05/18 09:10	02/06/18 15:19	7440-28-0	
Zinc	15.8	mg/kg	1.0	0.30	1	02/05/18 09:10	02/06/18 15:19	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	hod: EF	PA 3050			
Arsenic	3.4	mg/kg	0.53	0.24	20	02/05/18 09:26	02/05/18 21:58	7440-38-2	
Selenium	ND	mg/kg	0.53	0.27	20	02/05/18 09:26	02/05/18 21:58	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: EF	PA 7471B			
Mercury	ND	mg/kg	0.021	0.0096	1	02/05/18 09:33	02/07/18 17:27	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	6.5	%	0.10	0.10	1		02/07/18 13:50		

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No.: 10419237

Sample: DP-35 (8.5-9.5)	Lab ID:	10419237014	Collected	: 02/01/	18 13:40	Received:	02/02/18 13:45	Matrix: Solid	
Results reported on a "dry wei	ght" basis and ar	e adjusted for	r percent mo	isture, s	ample siz	e and any d	lilutions.		
			Report						
Parameters	Results	l Inits	l imit	MDI	DF	Prenared	d Analyze	d CAS No	Qual

Parameters	Results	Units		MDL	DF	Prepared	Analyzed	CAS NO.	_ Quai
6010C MET ICP	Analytical	Method: EP/	A 6010C Prep	aration Met	hod: E	PA 3050			
Antimony	0.13J	mg/kg	1.1	0.13	1	02/05/18 09:10	02/06/18 15:23	7440-36-0	В
Beryllium	0.24J	mg/kg	0.27	0.033	1	02/05/18 09:10	02/06/18 15:23	7440-41-7	
Cadmium	0.15J	mg/kg	0.16	0.017	1	02/05/18 09:10	02/06/18 15:23	7440-43-9	
Chromium	8.3	mg/kg	0.55	0.069	1	02/05/18 09:10	02/06/18 15:23	7440-47-3	
Copper	9.8	mg/kg	0.55	0.091	1	02/05/18 09:10	02/06/18 15:23	7440-50-8	
Lead	8.8	mg/kg	0.55	0.12	1	02/05/18 09:10	02/06/18 15:23	7439-92-1	
Nickel	11.7	mg/kg	1.1	0.13	1	02/05/18 09:10	02/06/18 15:23	7440-02-0	
Silver	ND	mg/kg	0.55	0.043	1	02/05/18 09:10	02/06/18 15:23	7440-22-4	
Thallium	ND	mg/kg	1.1	0.24	1	02/05/18 09:10	02/06/18 15:23	7440-28-0	
Zinc	28.5	mg/kg	1.1	0.32	1	02/05/18 09:10	02/06/18 15:23	7440-66-6	
6020A MET ICPMS	Analytical	Method: EP/	A 6020A Prepa	aration Met	hod: E	PA 3050			
Arsenic	2.4	mg/kg	0.55	0.25	20	02/05/18 09:26	02/05/18 22:00	7440-38-2	
Selenium	ND	mg/kg	0.55	0.28	20	02/05/18 09:26	02/05/18 22:00	7782-49-2	
7471B Mercury	Analytical	Method: EP	A7471B Prep	aration Met	hod: E	PA 7471B			
Mercury	0.013J	mg/kg	0.020	0.0093	1	02/05/18 09:33	02/07/18 17:29	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: AS	FM D2974						
Percent Moisture	11.8	%	0.10	0.10	1		02/07/18 13:50		

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No.: 10419237

Sample: DP-36 (4-5)	Lab ID:	10419237015	Collected	d: 02/01/1	8 13:55	Received: 02/	/02/18 13:45 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and ar	e adjusted for	percent mo	oisture, sa	mple si	ize and any dilut	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS Silica Gel	Analytica	Method: WI Me	OD DRO PI	eparation I	Method	: WI MOD DRO			
WDRO C10-C28 Surrogates	21.1	mg/kg	8.0	1.6	1	02/05/18 14:06	02/06/18 08:36		
n-Triacontane (S)	98	%.	59-133		1	02/05/18 14:06	02/06/18 08:36	638-68-6	
6010C MET ICP	Analytica	Method: EPA 6	010C Prep	aration Me	thod: E	PA 3050			
Antimony	ND	mg/kg	1.1	0.12	1	02/05/18 09:10	02/06/18 15:35	7440-36-0	
Beryllium	0.13J	mg/kg	0.26	0.032	1	02/05/18 09:10	02/06/18 15:35	7440-41-7	
Cadmium	0.042J	mg/kg	0.16	0.016	1	02/05/18 09:10	02/06/18 15:35	7440-43-9	
Chromium	4.6	mg/kg	0.53	0.067	1	02/05/18 09:10	02/06/18 15:35	7440-47-3	
Copper	4.5	mg/kg	0.53	0.088	1	02/05/18 09:10	02/06/18 15:35	7440-50-8	
Lead	3.6	mg/kg	0.53	0.12	1	02/05/18 09:10	02/07/18 14:13	7439-92-1	
Nickel	7.8	mg/kg	1.1	0.12	1	02/05/18 09:10	02/06/18 15:35	7440-02-0	
Silver	ND	mg/kg	0.53	0.041	1	02/05/18 09:10	02/06/18 15:35	7440-22-4	
Thallium	ND	mg/kg	1.1	0.23	1	02/05/18 09:10	02/06/18 15:35	7440-28-0	
Zinc	13.6	mg/kg	1.1	0.31	1	02/05/18 09:10	02/06/18 15:35	7440-66-6	
6020A MET ICPMS	Analytica	Method: EPA 6	020A Prep	aration Met	hod: El	PA 3050			
Arsenic	1.9	mg/kg	0.52	0.24	20	02/05/18 09:26	02/05/18 22:14	7440-38-2	
Selenium	ND	mg/kg	0.52	0.26	20	02/05/18 09:26	02/05/18 22:14	7782-49-2	
7471B Mercury	Analytica	Method: EPA 7	471B Prep	aration Me	thod: El	PA 7471B			
Mercury	ND	mg/kg	0.022	0.010	1	02/05/18 09:33	02/07/18 17:31	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytica	Method: ASTN	D2974						
Percent Moisture	9.8	%	0.10	0.10	1		02/07/18 13:50		

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No.: 10419237

Sample: DP-36 (9-10)	Lab ID:	10419237016	Collected	d: 02/01/18	3 14:05	Received: 02/	/02/18 13:45 Ma	atrix: Solid	
Results reported on a "dry weight"	' basis and ar	e adjusted for	percent mo	oisture, sar	nple si	ze and any dilut	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: El	PA 3050			
Antimony	ND	mg/kg	1.0	0.12	1	02/05/18 09:10	02/06/18 15:39	7440-36-0	
Beryllium	0.18J	mg/kg	0.26	0.031	1	02/05/18 09:10	02/06/18 15:39	7440-41-7	
Cadmium	0.070J	mg/kg	0.16	0.016	1	02/05/18 09:10	02/06/18 15:39	7440-43-9	
Chromium	7.2	mg/kg	0.52	0.066	1	02/05/18 09:10	02/06/18 15:39	7440-47-3	
Copper	7.4	mg/kg	0.52	0.087	1	02/05/18 09:10	02/06/18 15:39	7440-50-8	
Lead	5.0	mg/kg	0.52	0.12	1	02/05/18 09:10	02/07/18 14:15	7439-92-1	
Nickel	8.1	mg/kg	1.0	0.12	1	02/05/18 09:10	02/06/18 15:39	7440-02-0	
Silver	ND	mg/kg	0.52	0.041	1	02/05/18 09:10	02/06/18 15:39	7440-22-4	
Thallium	ND	mg/kg	1.0	0.22	1	02/05/18 09:10	02/06/18 15:39	7440-28-0	
Zinc	18.5	mg/kg	1.0	0.30	1	02/05/18 09:10	02/06/18 15:39	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	hod: EF	PA 3050			
Arsenic	2.2	mg/kg	0.53	0.24	20	02/05/18 09:26	02/05/18 22:17	7440-38-2	
Selenium	ND	mg/kg	0.53	0.27	20	02/05/18 09:26	02/05/18 22:17	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: El	PA 7471B			
Mercury	ND	mg/kg	0.019	0.0086	1	02/05/18 09:33	02/07/18 17:33	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	7.7	%	0.10	0.10	1		02/07/18 13:51		

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No.: 10419237

Sample: DP-37 (4-5)	Lab ID:	10419237017	Collected	d: 02/01/1	8 14:20	Received: 02/	/02/18 13:45 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and ar	e adjusted for	percent mo	oisture, sa	mple si	ze and any dilut	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS Silica Gel	Analytica	Method: WI M	DD DRO PI	reparation	Method	WI MOD DRO			
WDRO C10-C28 Surrogates	49.8	mg/kg	39.5	7.7	5	02/05/18 14:06	02/06/18 08:29		Т6
n-Triacontane (S)	89	%.	59-133		5	02/05/18 14:06	02/06/18 08:29	638-68-6	
6010C MET ICP	Analytica	Method: EPA 6	010C Prep	aration Me	thod: El	PA 3050			
Antimony	0.14J	mg/kg	1.0	0.12	1	02/05/18 09:10	02/06/18 15:43	7440-36-0	В
Beryllium	0.074J	mg/kg	0.26	0.031	1	02/05/18 09:10	02/06/18 15:43	7440-41-7	
Cadmium	0.089J	mg/kg	0.15	0.016	1	02/05/18 09:10	02/06/18 15:43	7440-43-9	
Chromium	5.7	mg/kg	0.51	0.065	1	02/05/18 09:10	02/06/18 15:43	7440-47-3	
Copper	5.4	mg/kg	0.51	0.086	1	02/05/18 09:10	02/06/18 15:43	7440-50-8	
Lead	3.1	mg/kg	0.51	0.12	1	02/05/18 09:10	02/07/18 14:18	7439-92-1	
Nickel	7.8	mg/kg	1.0	0.12	1	02/05/18 09:10	02/06/18 15:43	7440-02-0	
Silver	ND	mg/kg	0.51	0.040	1	02/05/18 09:10	02/06/18 15:43	7440-22-4	
Thallium	ND	mg/kg	1.0	0.22	1	02/05/18 09:10	02/06/18 15:43	7440-28-0	
Zinc	13.9	mg/kg	1.0	0.30	1	02/05/18 09:10	02/06/18 15:43	7440-66-6	
6020A MET ICPMS	Analytica	Method: EPA 6	020A Prep	aration Me	thod: EF	PA 3050			
Arsenic	2.9	mg/kg	0.54	0.25	20	02/05/18 09:26	02/05/18 22:19	7440-38-2	
Selenium	0.29J	mg/kg	0.54	0.27	20	02/05/18 09:26	02/05/18 22:19	7782-49-2	
7471B Mercury	Analytica	Method: EPA 7	471B Prep	aration Me	thod: El	PA 7471B			
Mercury	ND	mg/kg	0.022	0.010	1	02/05/18 09:33	02/07/18 17:35	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytica	Method: ASTM	D2974						
Percent Moisture	8.0	%	0.10	0.10	1		02/07/18 13:51		

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No.: 10419237

Pace Project No.: 10419237									
Sample: DP-37 (8.5-10)	Lab ID:	10419237018	Collected	d: 02/01/18	3 14:40	Received: 02/	02/18 13:45 Ma	atrix: Solid	
Results reported on a "dry weig	ght" basis and are	adjusted for	percent mo	oisture, san	nple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: E	PA 3050			
Antimony	ND	mg/kg	1.1	0.13	1	02/05/18 09:10	02/06/18 15:47	7440-36-0	В
Beryllium	0.30	mg/kg	0.27	0.033	1	02/05/18 09:10	02/06/18 15:47	7440-41-7	
Cadmium	0.14J	mg/kg	0.16	0.017	1	02/05/18 09:10	02/06/18 15:47	7440-43-9	
Chromium	7.3	mg/kg	0.54	0.069	1	02/05/18 09:10	02/06/18 15:47	7440-47-3	
Copper	8.0	mg/kg	0.54	0.091	1	02/05/18 09:10	02/06/18 15:47	7440-50-8	
Lead	65.9	mg/kg	0.54	0.12	1	02/05/18 09:10	02/07/18 14:21	7439-92-1	
Nickel	8.6	mg/kg	1.1	0.13	1	02/05/18 09:10	02/06/18 15:47	7440-02-0	
Silver	ND	mg/kg	0.54	0.042	1	02/05/18 09:10	02/06/18 15:47	7440-22-4	
Thallium	ND	mg/kg	1.1	0.23	1	02/05/18 09:10	02/06/18 15:47	7440-28-0	
Zinc	30.9	mg/kg	1.1	0.32	1	02/05/18 09:10	02/06/18 15:47	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prepa	aration Met	hod: E	PA 3050			
Arsenic	2.3	mg/kg	0.53	0.24	20	02/05/18 09:26	02/05/18 22:22	7440-38-2	
Selenium	ND	mg/kg	0.53	0.26	20	02/05/18 09:26	02/05/18 22:22	7782-49-2	

7471B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B

Mercury	ND	mg/kg	0.019	0.0089	1	02/05/18 09:33	02/07/18 17:37 7439-97-6	3
Dry Weight / %M by ASTM D2974	Analytical I	Method: ASTN	/I D2974					
Percent Moisture	10.5	%	0.10	0.10	1		02/07/18 14:41	

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No.: 10419237

Sample: DP-38 (4-5)	Lab ID:	10419237019	Collecte	d: 02/01/18	3 15:00	Received: 02/	02/18 13:45 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	adjusted for	percent mo	oisture, sar	nple si	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	paration Met	hod: E	PA 3050			
Antimony	ND	mg/kg	1.3	0.15	1	02/05/18 09:10	02/06/18 15:51	7440-36-0	
Beryllium	0.20J	mg/kg	0.32	0.038	1	02/05/18 09:10	02/06/18 15:51	7440-41-7	
Cadmium	0.098J	mg/kg	0.19	0.020	1	02/05/18 09:10	02/06/18 15:51	7440-43-9	
Chromium	6.8	mg/kg	0.64	0.081	1	02/05/18 09:10	02/06/18 15:51	7440-47-3	
Copper	7.2	mg/kg	0.64	0.11	1	02/05/18 09:10	02/06/18 15:51	7440-50-8	
Lead	5.6	mg/kg	0.64	0.14	1	02/05/18 09:10	02/07/18 14:24	7439-92-1	
Nickel	11.0	mg/kg	1.3	0.15	1	02/05/18 09:10	02/06/18 15:51	7440-02-0	
Silver	ND	mg/kg	0.64	0.050	1	02/05/18 09:10	02/06/18 15:51	7440-22-4	
Thallium	ND	mg/kg	1.3	0.28	1	02/05/18 09:10	02/06/18 15:51	7440-28-0	
Zinc	16.8	mg/kg	1.3	0.37	1	02/05/18 09:10	02/06/18 15:51	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	hod: El	PA 3050			
Arsenic	3.9	mg/kg	0.65	0.29	20	02/05/18 09:26	02/05/18 22:25	7440-38-2	
Selenium	0.38J	mg/kg	0.65	0.33	20	02/05/18 09:26	02/05/18 22:25	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: El	PA 7471B			
Mercury	ND	mg/kg	0.024	0.011	1	02/05/18 09:33	02/07/18 17:39	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	24.8	%	0.10	0.10	1		02/07/18 14:43		

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No.: 10419237

Sample: DP-38 (7-8.5)	Lab ID:	10419237020	Collected:	02/01/18	3 15:10	Received: 02/	02/18 13:45 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	adjusted for	percent moi	sture, sar	nple si	ze and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prepa	ration Met	hod: El	PA 3050			
Antimony	ND	mg/kg	1.1	0.13	1	02/05/18 09:10	02/06/18 15:55	7440-36-0	
Beryllium	0.20J	mg/kg	0.28	0.034	1	02/05/18 09:10	02/06/18 15:55	7440-41-7	
Cadmium	0.096J	mg/kg	0.17	0.017	1	02/05/18 09:10	02/06/18 15:55	7440-43-9	
Chromium	8.8	mg/kg	0.57	0.073	1	02/05/18 09:10	02/06/18 15:55	7440-47-3	
Copper	11.8	mg/kg	0.57	0.095	1	02/05/18 09:10	02/06/18 15:55	7440-50-8	
Lead	3.1	mg/kg	0.57	0.13	1	02/05/18 09:10	02/07/18 14:27	7439-92-1	
Nickel	9.2	mg/kg	1.1	0.13	1	02/05/18 09:10	02/06/18 15:55	7440-02-0	
Silver	ND	mg/kg	0.57	0.044	1	02/05/18 09:10	02/06/18 15:55	7440-22-4	
Thallium	ND	mg/kg	1.1	0.25	1	02/05/18 09:10	02/06/18 15:55	7440-28-0	
Zinc	21.5	mg/kg	1.1	0.33	1	02/05/18 09:10	02/06/18 15:55	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prepa	ration Met	hod: EF	PA 3050			
Arsenic	2.2	mg/kg	0.56	0.25	20	02/05/18 09:26	02/05/18 22:27	7440-38-2	
Selenium	ND	mg/kg	0.56	0.28	20	02/05/18 09:26	02/05/18 22:27	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prepa	ration Met	hod: El	PA 7471B			
Mercury	ND	mg/kg	0.022	0.010	1	02/05/18 09:33	02/07/18 17:41	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	12.2	%	0.10	0.10	1		02/07/18 14:44		

Project: Pace Project No.:	314010 104192	59.001 I-35W 37	MN Rvr Brid										
QC Batch:	52120)6		Analys	is Method:	:	EPA 7471B						
QC Batch Method:	EPA 7	471B		Analys	is Descript	tion:	7471B Mercu	ry Solids					
Associated Lab Sam	nples:	10419237008	, 10419237002 , 10419237009 , 10419237016	, 10419237	010, 1041	9237011,	10419237012	2, 1041923	37013, 1041				
METHOD BLANK:	283027	6		Ν	latrix: Sol	id							
Associated Lab Sam	nples:	10419237008	, 10419237002 , 10419237009 , 10419237016	, 10419237	010, 10419 017, 10419	9237011,	10419237012	2, 1041923	37013, 1041				
Param	neter		Units	Result	t	Limit	MDL		Analyzed	Qu	alifiers		
Mercury			mg/kg		ND	0.01	9 0.0	0087 02	/07/18 16:4	5			
LABORATORY CON	NTROL S	SAMPLE: 28	30277										
Param	neter		Units	Spike Conc.	LCS Resu		LCS % Rec	% Re Limit		ualifiers			
Mercury			mg/kg	.47		0.42	89	8	0-120		-		
MATRIX SPIKE & M	IATRIX S		ATE: 283027	78 MS	MSD	2830279)						
			10419237001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury		mg/kg	ND	.48	.46	0.43	3 0.43	89	91	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	31401059.001 I-35W MN Rvr Brid

QC Batch:	521201		Analysis Me	ethod:	EPA 6010C			
QC Batch Method:	EPA 3050		Analysis De	escription:	6010C Solids			
Associated Lab Sam	104192	37001, 10419237002, 37008, 10419237009, 37015, 10419237016,	10419237010,	10419237011	10419237012,	10419237013,	,	

 METHOD BLANK:
 2830256
 Matrix:
 Solid

 Associated Lab Samples:
 10419237001, 10419237002, 10419237003, 10419237004, 10419237005, 10419237006, 10419237007, 10419237018, 10419237012, 10419237013, 10419237014, 10419237015, 10419237016, 10419237017, 10419237018, 10419237019, 10419237019, 10419237014, 10419237015, 10419237016, 10419237017, 10419237018, 10419237019, 10419237020

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	mg/kg	0.12J	0.96	0.11	02/06/18 14:00	
Beryllium	mg/kg	ND	0.24	0.029	02/06/18 14:00	
Cadmium	mg/kg	ND	0.14	0.015	02/06/18 14:00	
Chromium	mg/kg	ND	0.48	0.061	02/06/18 14:00	
Copper	mg/kg	ND	0.48	0.080	02/06/18 14:00	
Lead	mg/kg	ND	0.48	0.11	02/06/18 14:00	
Nickel	mg/kg	ND	0.96	0.11	02/06/18 14:00	
Silver	mg/kg	ND	0.48	0.038	02/06/18 14:00	
Thallium	mg/kg	ND	0.96	0.21	02/06/18 14:00	
Zinc	mg/kg	ND	0.96	0.28	02/06/18 14:00	

LABORATORY CONTROL SAMPLE: 2830257

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/kg	47.6	49.1	103	80-120	
Beryllium	mg/kg	47.6	44.6	94	80-120	
admium	mg/kg	47.6	47.5	100	80-120	
hromium	mg/kg	47.6	47.6	100	80-120	
Copper	mg/kg	47.6	47.2	99	80-120	
ead	mg/kg	47.6	50.4	106	80-120	
ckel	mg/kg	47.6	48.0	101	80-120	
ver	mg/kg	23.8	23.2	97	80-120	
nallium	mg/kg	47.6	49.0	103	80-120	
inc	mg/kg	47.6	51.0	107	80-120	

MATRIX SPIKE & MATRIX S	SPIKE DUPLICA	TE: 28302	58		2830259							
Parameter	1) Units	0419237001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Antimony	mg/kg	ND	50.7	50.3	32.7	30.9	65	61	75-125	6	20	M1
Beryllium	mg/kg	0.20J	50.7	50.3	46.0	45.4	90	90	75-125	1	20	
Cadmium	mg/kg	0.056J	50.7	50.3	47.3	47.1	93	94	75-125	1	20	
Chromium	mg/kg	6.7	50.7	50.3	53.5	53.5	92	93	75-125	0	20	
Copper	mg/kg	7.2	50.7	50.3	54.0	55.4	92	96	75-125	3	20	
Lead	mg/kg	5.8	50.7	50.3	52.6	53.0	92	94	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No.: 10419237

MATRIX SPIKE & MATRIX S	PIKE DUPLICA	TE: 28302	58		2830259							
	1(0419237001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Nickel	mg/kg	8.3	50.7	50.3	53.9	55.5	90	94	75-125	3	20	
Silver	mg/kg	ND	25.3	25.1	23.6	23.4	93	93	75-125	1	20	
Thallium	mg/kg	ND	50.7	50.3	42.8	42.9	84	85	75-125	0	20	
Zinc	mg/kg	19.1	50.7	50.3	70.6	70.1	102	102	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	31401059.	001 I-35W MI	N R∨r Brid										
Pace Project No.:	10419237												
QC Batch:	521204			Analysi	s Method:	E	PA 6020A						
QC Batch Method: EPA 3050					s Descript	ion: 6	020A Solids	UPD4					
Associated Lab San	10	419237001, 1 419237008, 1 419237015, 1	0419237009	104192370	010, 10419	9237011, 1	0419237012	, 1041923	7013, 104	,			
METHOD BLANK:	2830268			М	latrix: Soli	d							
Associated Lab San	10	419237001, 1 419237008, 1 419237015, 1	0419237009	, 104192370	010, 10419	9237011, 1	0419237012	, 1041923	7013, 104				
				Blank		eporting							
Paran	neter		Units	Result		Limit	MDL		Analyzed	Qua	alifiers		
Arsenic			mg/kg		ND	0.50			05/18 20:3	-			
Selenium			mg/kg		ND	0.50		0.25 02/	05/18 20:3	3			
LABORATORY CON	NTROL SAM	1PLE: 2830	269										
				Spike	LCS		LCS	% Re					
Paran	neter		Units	Conc.	Resu	lt	% Rec	Limits	s C	alifiers			
Arsenic			mg/kg	49		44.1	90	80)-120				
Arsenic Selenium			mg/kg mg/kg	49 49		44.1 44.1	90 90	-)-120)-120				
	IATRIX SPII		mg/kg	49				-					
Selenium	IATRIX SPII		mg/kg	49	MSD	44.1		-					
Selenium	IATRIX SPII		mg/kg	49	MSD Spike	44.1		-		% Rec		Max	
Selenium			mg/kg TE: 283027	49 70 MS	-	44.1 2830271	90	80)-120		RPD		Qual
MATRIX SPIKE & M		10	mg/kg TE: 283027 419237001	49 70 MS Spike	Spike	44.1 2830271 MS	90 MSD	80 MS)-120 MSD	Limits	RPD 6	RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	31401059.001 I-35 10419237	W MN Rvr Brid							
QC Batch:	521693		Analysis Meth	iod:	ASTM D2974				
QC Batch Method: ASTM D2974			Analysis Desc	cription:	Dry Weight / %	M by AST			
Associated Lab Sar	mples: 104192370	001							
SAMPLE DUPLICA	TE: 2832310								
			10419410004	Dup			Max		
Paran	neter	Units	Result	Result	RPD		RPD	Qualifiers	
Percent Moisture		%	14.0	12.	7	9	30		
SAMPLE DUPLICA	TE: 2832417								
			10419128012	Dup			Max		
Paran	neter	Units	Result	Result	RPD		RPD	Qualifiers	
Percent Moisture		%		16			30		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	3140105 1041923		MN Rvr Brid								
Pace Project No.:	1041923	07									
QC Batch:	52170)		Analysis Meth	od:	ASTM D2974					
QC Batch Method:	C Batch Method: ASTM D2974			Analysis Desc	ription:	Dry Weight / %	6M by	ASTM D29	974		
Associated Lab Sar		10419237009	,	3, 10419237004, 10), 10419237011, 10 ,	,		,	,		,	
SAMPLE DUPLICA	TE: 283	2341									
				10419410008	Dup			Max			
Parar	neter		Units	Result	Result	RPD		RPD		Qualifiers	
Percent Moisture			%	18.4	17.	.9	3		30		
SAMPLE DUPLICA	TE: 283	2421									
				10419237004	Dup			Max			
Parar	neter		Units	Result	Result	RPD		RPD		Qualifiers	
Percent Moisture			%	35.6	37.	.9	6		30		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

-]	31401059.001 I-35 10419237	iW MN R∨r Brid							
QC Batch:	521751		Analysis Meth	od:	ASTM D2974				
QC Batch Method: ASTM D2974			Analysis Desc	ription:	Dry Weight / %	74			
Associated Lab Sam	oles: 10419237	018, 10419237019	9, 10419237020						
SAMPLE DUPLICATI	E: 2832446								
CANILE DOI LICATI	L. 2002440		10419237018	Dup			Max		
Parame	eter	Units	Result	Result	RPD		RPD	Qualifiers	
Percent Moisture		%	10.5	10.	7	3	:	30	
SAMPLE DUPLICATI	E: 2832447								
			10419316006	Dup			Max		
Parame	eter	Units	Result	Result	RPD		RPD	Qualifiers	
		%	25.7	27.				30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Pace Project No.:	31401059.001 I-35 10419237	W MN Rvr Brid									
QC Batch:	521364		Analys	is Method:	W		RO				
QC Batch Method:	WI MOD DRO		Analys	is Descriptio	on: W	IDRO So	lid GCV				
Associated Lab Sar	nples: 10419237	007, 10419237009,	10419237	015, 10419	237017						
METHOD BLANK:	2830821		Ν	Atrix: Solic	1						
Associated Lab Sar	nples: 10419237	007, 10419237009,	10419237	015, 10419	237017						
			Blank	Re	porting						
Paran	neter	Units	Result	lt Limit		MDL		Analyzed		Qualifiers	
WDRO C10-C28		mg/kg		ND	10.0		2.0	02/06/18	08:08		_
n-Triacontane (S)		%.		85	59-133			02/06/18	80:80		
LABORATORY COI	NTROL SAMPLE &	LCSD: 2830822		28	330823						
			Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parar	neter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
WDRO C10-C28		mg/kg	80	70.2	73.2	88	92	54-125		4 20	
WDI(0 010 020		00									

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No.: 10419237

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

- B Analyte was detected in the associated method blank.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

T6 High boiling point hydrocarbons are present in the sample.

T7 Low boiling point hydrocarbons are present in the sample.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No .:

10419237

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
10419237007	DP-32 (4-5)	WI MOD DRO	521364	WI MOD DRO	521453
10419237009	DP-33 (4-5)	WI MOD DRO	521364	WI MOD DRO	521453
0419237015	DP-36 (4-5)	WI MOD DRO	521364	WI MOD DRO	521453
0419237017	DP-37 (4-5)	WI MOD DRO	521364	WI MOD DRO	521453
0419237001	DP-30 (2-3)	EPA 3050	521201	EPA 6010C	521439
0419237002	DP-30 (9-10)	EPA 3050	521201	EPA 6010C	521439
0419237003	DP-29 (2-3)	EPA 3050	521201	EPA 6010C	521439
0419237004	DP-29 (8.5-10)	EPA 3050	521201	EPA 6010C	521439
0419237005	DP-31 (4-5)	EPA 3050	521201	EPA 6010C	521439
0419237006	DP-31 (9-10)	EPA 3050	521201	EPA 6010C	521439
0419237007	DP-32 (4-5)	EPA 3050	521201	EPA 6010C	521439
0419237008	DP-32 (9-10)	EPA 3050	521201	EPA 6010C	521439
0419237009	DP-33 (4-5)	EPA 3050	521201	EPA 6010C	521439
0419237010	DP-33 (8.5-10)	EPA 3050	521201	EPA 6010C	521439
0419237011	DP-34 (2-3)	EPA 3050	521201	EPA 6010C	521439
0419237012	DP-34 (9-10)	EPA 3050	521201	EPA 6010C	521439
0419237013	DP-35 (2-3)	EPA 3050	521201	EPA 6010C	521439
0419237014	DP-35 (8.5-9.5)	EPA 3050	521201	EPA 6010C	521439
0419237015	DP-36 (4-5)	EPA 3050	521201	EPA 6010C	521439
0419237016	DP-36 (9-10)	EPA 3050	521201	EPA 6010C	521439
419237017	DP-37 (4-5)	EPA 3050	521201	EPA 6010C	521439
419237018	DP-37 (8.5-10)	EPA 3050	521201	EPA 6010C	521439
419237019	DP-38 (4-5)	EPA 3050	521201	EPA 6010C	521439
0419237020	DP-38 (7-8.5)	EPA 3050	521201	EPA 6010C	521439
0419237001	DP-30 (2-3)	EPA 3050	521204	EPA 6020A	521378
0419237002	DP-30 (9-10)	EPA 3050	521204	EPA 6020A	521378
0419237003	DP-29 (2-3)	EPA 3050	521204	EPA 6020A	521378
0419237004	DP-29 (8.5-10)	EPA 3050	521204	EPA 6020A	521378
0419237005	DP-31 (4-5)	EPA 3050	521204	EPA 6020A	521378
0419237006	DP-31 (9-10)	EPA 3050	521204	EPA 6020A	521378
0419237007	DP-32 (4-5)	EPA 3050	521204	EPA 6020A	521378
0419237008	DP-32 (9-10)	EPA 3050	521204	EPA 6020A	521378
0419237009	DP-33 (4-5)	EPA 3050	521204	EPA 6020A	521378
0419237010	DP-33 (8.5-10)	EPA 3050	521204	EPA 6020A	521378
0419237011	DP-34 (2-3)	EPA 3050	521204	EPA 6020A	521378
0419237012	DP-34 (9-10)	EPA 3050	521204	EPA 6020A	521378
0419237013	DP-35 (2-3)	EPA 3050	521204	EPA 6020A	521378
0419237014	DP-35 (8.5-9.5)	EPA 3050	521204	EPA 6020A	521378
0419237015	DP-36 (4-5)	EPA 3050	521204	EPA 6020A	521378
0419237016	DP-36 (9-10)	EPA 3050	521204	EPA 6020A	521378
0419237017	DP-37 (4-5)	EPA 3050	521204	EPA 6020A	521378
0419237018	DP-37 (8.5-10)	EPA 3050	521204	EPA 6020A	521378
0419237018	DP-38 (4-5)	EPA 3050	521204	EPA 6020A EPA 6020A	521378
0419237020	DP-38 (7-8.5)	EPA 3050 EPA 3050	521204 521204	EPA 6020A EPA 6020A	521378
0419237001	DP-30 (2-3)	EPA 7471B	521206	EPA 7471B	521351
0419237002	DP-30 (9-10)	EPA 7471B	521206	EPA 7471B	521351
			021200		021001

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 31401059.001 I-35W MN Rvr Brid

Pace Project No .:

31401059.001 I-35W MN .: 10419237

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10419237004	DP-29 (8.5-10)	EPA 7471B	521206	 EPA 7471B	521351
10419237005	DP-31 (4-5)	EPA 7471B	521206	EPA 7471B	521351
10419237006	DP-31 (9-10)	EPA 7471B	521206	EPA 7471B	521351
10419237007	DP-32 (4-5)	EPA 7471B	521206	EPA 7471B	521351
10419237008	DP-32 (9-10)	EPA 7471B	521206	EPA 7471B	521351
10419237009	DP-33 (4-5)	EPA 7471B	521206	EPA 7471B	521351
10419237010	DP-33 (8.5-10)	EPA 7471B	521206	EPA 7471B	521351
10419237011	DP-34 (2-3)	EPA 7471B	521206	EPA 7471B	521351
10419237012	DP-34 (9-10)	EPA 7471B	521206	EPA 7471B	521351
0419237013	DP-35 (2-3)	EPA 7471B	521206	EPA 7471B	521351
10419237014	DP-35 (8.5-9.5)	EPA 7471B	521206	EPA 7471B	521351
10419237015	DP-36 (4-5)	EPA 7471B	521206	EPA 7471B	521351
10419237016	DP-36 (9-10)	EPA 7471B	521206	EPA 7471B	521351
0419237017	DP-37 (4-5)	EPA 7471B	521206	EPA 7471B	521351
0419237018	DP-37 (8.5-10)	EPA 7471B	521206	EPA 7471B	521351
0419237019	DP-38 (4-5)	EPA 7471B	521206	EPA 7471B	521351
0419237020	DP-38 (7-8.5)	EPA 7471B	521206	EPA 7471B	521351
10419237001	DP-30 (2-3)	ASTM D2974	521693		
0419237002	DP-30 (9-10)	ASTM D2974	521700		
0419237003	DP-29 (2-3)	ASTM D2974	521700		
0419237004	DP-29 (8.5-10)	ASTM D2974	521700		
0419237005	DP-31 (4-5)	ASTM D2974	521700		
10419237006	DP-31 (9-10)	ASTM D2974	521700		
10419237007	DP-32 (4-5)	ASTM D2974	521700		
0419237008	DP-32 (9-10)	ASTM D2974	521700		
0419237009	DP-33 (4-5)	ASTM D2974	521700		
0419237010	DP-33 (8.5-10)	ASTM D2974	521700		
0419237011	DP-34 (2-3)	ASTM D2974	521700		
0419237012	DP-34 (9-10)	ASTM D2974	521700		
0419237013	DP-35 (2-3)	ASTM D2974	521700		
10419237014	DP-35 (8.5-9.5)	ASTM D2974	521700		
0419237015	DP-36 (4-5)	ASTM D2974	521700		
0419237016	DP-36 (9-10)	ASTM D2974	521700		
10419237017	DP-37 (4-5)	ASTM D2974	521700		
10419237018	DP-37 (8.5-10)	ASTM D2974	521751		
10419237019	DP-38 (4-5)	ASTM D2974	521751		
10419237020	DP-38 (7-8.5)	ASTM D2974	521751		

Anch dired®

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields must be completed scorested.

Pace Analytical www.pacelatis.com				רבפאר הכיני	JIMEN . All relevant	AL DOCUMEN 1. All relevant fields must be completed accurately	ted accurately.		ĥ	[041923	37
Section A Required Client Information:	Section B Required Project Information:			Section C				Page:	\mathcal{F}	ی ۳	,
2P :	Report To: Paulo	Bener		Attention: Acc.	ccounts	Panable	_		22	2258735	О О
15 2 m	Ste, sof copy To: Ken in	Wilter	_	Company Name:	3	D	REGULATORY AGENCY	KY AGENCY			
· w				Address;			F NPDES	L GROUN	GROUND WATER	L DRINK	DRINKING WATER
Print Paula Berger	Purchase Order No.:		-	Pace Quote Reference:		4	L UST	L RCRA		L OTHER	
,	Project Name: I-35W	MN River	Bridge	Pace Project Manager;	Bob Miche	hels	Site Location				
Requested Due Date/TAT: MADOT 5-day	Project Number: 3 14 0/ 059	059,001)	Pace Profile #:	27017		STATE:	NN NN	<u></u>		
)							Requested Analysis Filtered (Y/N)	red (Y/N)			
Section D Matrix Codes Required Client Information MATRIX / CODE	OD 69	COLLECTED	,		Preservatives	5 † N /A					
Drinking Water Water		<u> </u>				PP					
Waste Water Product Saitscain	g ⊂ 9 s valid c 8 ARi	COMPOSITE COMPOSITE START END/GRAB				'			(N/.		
	es)			รษส					ү) өц		
(A-Z, 0-9 / ,-) Air Sample IDs MUST BE UNIQUE	SODE		A 9M3			°} ƙ			iholdC		
CEER #		Short	п элям,	20 ⁴ Ibleseu DE CON	Her sthanol 12S ₂ O ₃ 10H 10H 10 10 10 10 10 10 10 10 10 10 10 10 10	isylsni 1,201) leubis		
		ш	√S	H ^z , Nr	DH B <mark>N</mark> BM	`⊲ ∀1				ace Project	Pace Project No./ Lab I.D.
4.2022-14		7.7		<u>ک</u> ۲		X	_			100	
101-20(2				<u></u>		X				200	
2-24 (3-5)				X		X				g	
4 Dr- 44 (5.5 - 10)				<. -\						004	
5 12 - 21 (4-2)			000	× ×		×:				g	
22-210				X :		×				3 8 8	
<u>107-546</u>				X	-	X		_	_	00	
75-20				X						88	
14-25-4-				N X		XXX				600	
(0) - (2, 2, -(0))				x x x		×Þ				000	
102-20				< X 4		ر کلا				010	
NOILIGUN			DATE			ACCEPTED BY / AFFII I ATION	DATE				
ĺ-		9	6	24			, , ,	J.	5		
2-			+	5	111	NH K	81-2-7	-		<i>₹</i>	У
gel cleannp							_		< 		
					:				_		
Pa									-		
O age (ORIGINAL	SAMPLER NAME AND							по р	oolet qy) Intact
38 c		PRINT Name	PRINT Name of SAMPLER:	Kev.n	Walter	-	•		ni qm ——— Devisa IVV) ea	poten:	(N/X) I səld
		SIGNATURE	SIGNATURE OF SAMPLER			(MM/DD/YY):	1/20/20	8		C Ceal	Sam.
"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any involces not paid within 30 days.	ting Pace's NET 30 day payment terms	and agreeing to late charges o	if 1.5% per month fo	ir any invoices no	t paid within 30 days.		T .			F-ALL-Q-020rev.07, 15-May-2007	

ł

10419237	Page: 2 of D	2258734	AGENCY	GROUND WATER F DRINKING WATER	RCRA CTHER					(N/A)) eninel) leubise)	→ Trace Project No./ Lab I.D.	CUP CUP	015	016	017	20		400			TIME SAMPLE CONDITIONS	1345 0.8 y N Y	\ \ \	ojet N OJ	ni qməT bevievas A(Y) əol boteuO Custod Obalsa Obalsa Obalsa O(V/V)	F-ALL-Q-020rev.07, 15-May-2007	
d accurately.			REGULATORY AGENCY	I NPDES	F UST	Site Location	STATE	Requested Analysis Filtered (Y/N)				· · · · · · · · · · · · · · · · · · ·											DATE	2-2-18				st/la/s	
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.		counts Pannhle				Bob M: chels	27017			Spisn	109	HCI Alachi Machanol M											ACCEPTED BY / AFILIATION	and the			Walter DATE Signed	t paid within 30 days.	
/ is a LEGAL DOCL	Section C		Company Name:	Address:	Pace Quote Reference:	Pace Project Manager:	Pace Profile #:				293NIAT	H ^S CO ⁴ Nubreserv # OF CON	X	と	X M			× > -1 <					TIME	SHEL		JRE		orth for any invoices no	
he Chain-of-Custody						er Bridde			TED	COMPOSITE END/GRAB		20(5 DATE TIME	2-1 1330	042	1355	S071	140	0FH 0FH		2			DATE	81-2-2-18		 AME AND SIGNATURE	PRINT Name of SAMPLER: SIGNATURE of SAMPLER;	e charges of 1.5% per month for	
F	nation:	Berer	a Walter			W River	159.6		COLLECTED	COMPOSITE START		DATE			ſ				\int				RELINQUISHED BY / AFFILIATION			SAMPLER NAME	PRI	ent terms and agreeing to late	
	Section B Required Project Information;	Report To: Qan a	COPY To: Keulin		Purchase Order No.:	Project Name J 35W	Project Number: 3/4 O		tes DDF (II=) of	응답서면 C=C	^{s)} BOO:	р О ХІЯТАМ ГТ ЭЛЯМА2	200	276								-	RELINQUISI			ORIGINAL		Pace's NET 30 day payme	
Pace Analytical " www.pacelates.com	Section A Required Client Information:	50	S North 3th St. Ste 37	MN SS401	erger		M. DOT 5-der)	Section D Matrix Codes Required Client Information MATRIX / CODE	!	SAMPLE ID OI (A-Z, 0-9 /) Ar Sample IDs MUST BE UNIQUE Tissue	TTEM #	1 DP-35 (2-3)	2 DP-25 (8.5-9.5)	3 1) Y - 5, 0 (4 - 5)	A UV-56 (3-10)		NJ-24/2-40	8 D0- 28 73-8,5)		10			Run DRO with silica.	del cleanup		39 of 4	Timportant Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late chan	

CHAIN-OF-CUSTODY / Analytical Request Document

Ç

Pace Analytical	Sample Cond	cument Name: lition Upon Rec ocument No.: 1N-L-213-rev.22	ceipt Form Page 1 of 2 Issuing Authority:
Sample Condition Upon Receipt		Projec	
Courier: Fed Ex UPS Commercial Pace SpeeD Tracking Number:	USPS	Client	10419237
Custody Seal on Cooler/Box Present?	.∠N₀ s	ieals Intact?	Yes Optional: Proj. Due Date: Proj. Name:
Packing Material: 🗌 Bubble Wrap 💭 Bubbl	e Bags 🗌 None	e Other:_	Temp Blank?
Thermometer 151401163 Used: 087A9155100842	Туре	of Ice:	Vet 🔲 Blue 🔲 None 💭 Dry 💭 Melted
Cooler Temp Read (°C): $1, D$ Cooler TeTemp should be above freezing to 6°CCorrectiUSDA Regulated Soil (\square N/A, water sample)Did samples originate in a quarantine zone within theNC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?	United States: AL, Al	0, 2 Di R, CA, FL, GA, ID, □Yes	Biological Tissue Frozen? Yes No N/A ate and Initials of Person Examining Contents: <u>ME 2/2/18</u> , LA. MS, Did samples originate from a foreign source (internationally, No including Hawaii and Puerto Rico)? Yes No N-Q-338) and include with SCUR/COC paperwork.
			COMMENTS:
Chain of Custody Present?	V Yes	No	1.
Chain of Custody Filled Out?	Tes	□No	2.
Chain of Custody Relinguished?	Ves	No	3.
Sampler Name and/or Signature on COC?	Ves		A 4.
Samples Arrived within Hold Time?	∠ Yes	No	5.
Short Hold Time Analysis (<72 hr)?	Yes		6.
Rush Turn Around Time Requested?	Yes		7.
Sufficient Volume?	es	No	8.
Correct Containers Used?	∠ Yes	No	9.
-Pace Containers Used?	₽Yes	No	· · ·
Containers Intact?	• Yes	No	10.
Filtered Volume Received for Dissolved Tests?	Yes		A 11. Note if sediment is visible in the dissolved container
Sample Labels Match COC?	Tes		12.
-Includes Date/Time/ID/Analysis Matrix:	SL -		
All containers needing acid/base preservation have be checked? All containers needing preservation are found to be in compliance with EPA recommendation?	Yes		Sample #
(HNO ₃ , H ₂ SO ₄ , <2pH, NaOH >9 Sulfide, NaOH>12 Cyan Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, DRO/8015 (water) and Dioxin.	ide) ☐Yes		Initial when Lot # of added
Headspace in VOA Vials (>6mm)?	Yes		
Trip Blank Present?	☐ Yes		
Trip Blank Custody Seals Present?	□Yes		
Pace Trip Blank Lot # (if purchased):			
CLIENT NOTIFICATION/RESOLUTION Person Contacted: Comments/Resolution;			Field Data Required? Yes No Date/Time:
Project Manager Pavious	1/		2/2/10

 Project Manager Review:
 M
 Date:
 2/2/18

 Note:
 Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

February 20, 2018

Ms. Paula Berger WSP Environment and Energy 123 North Third Street Suite 808 Minneapolis, MN 55401

RE: Project: 31401059.001 I-35W MN Rvr Brdg Pace Project No.: 10420484

Dear Ms. Berger:

Enclosed are the analytical results for sample(s) received by the laboratory on February 13, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Br MAN

Bob Michels bob.michels@pacelabs.com (612)607-6452 Project Manager

Enclosures

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

 Project:
 31401059.001 I-35W MN Rvr Brdg

 Pace Project No.:
 10420484

Minnesota Certification IDs

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414-2485 A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #:MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Maryland Certification #: 322 Massachusetts Certification #: M-MN064

Michigan Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: MN00064 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon NwTPH Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DW Certification #: 9952 C West Virginia DEP Certification #: 382 Wisconsin Certification #: 999407970

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

SAMPLE SUMMARY

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.:

10420484

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10420484001	DP-22 (2-3)	Solid	02/10/18 14:00	02/13/18 10:40
10420484002	DP-22 (9-10)	Solid	02/10/18 14:05	02/13/18 10:40
10420484003	DP-21 (2-3)	Solid	02/10/18 14:25	02/13/18 10:40
10420484004	DP-21 (9-10)	Solid	02/10/18 14:30	02/13/18 10:40
10420484005	DP-23 (2-3)	Solid	02/10/18 15:30	02/13/18 10:40
10420484006	DP-23 (9-10)	Solid	02/10/18 15:35	02/13/18 10:40
10420484007	DP-24 (2-3)	Solid	02/11/18 09:10	02/13/18 10:40
10420484008	DP-24 (20-22)	Solid	02/11/18 09:30	02/13/18 10:40
10420484009	DP-24	Water	02/11/18 10:00	02/13/18 10:40
10420484010	DP-27 (2-3)	Solid	02/11/18 15:15	02/13/18 10:40
10420484011	DP-27 (20-21)	Solid	02/11/18 15:50	02/13/18 10:40
10420484012	DP-26 (3-4)	Solid	02/11/18 16:40	02/13/18 10:40
0420484013	DP-26 (14-16)	Solid	02/11/18 16:55	02/13/18 10:40
10420484014	DP-26	Water	02/11/18 17:05	02/13/18 10:40
10420484015	DP-25 (2-3)	Solid	02/12/18 08:30	02/13/18 10:40
10420484016	DP-25 (16-17)	Solid	02/12/18 08:55	02/13/18 10:40
10420484017	DP-25	Water	02/12/18 09:10	02/13/18 10:40
10420484018	DP-18 (2-3)	Solid	02/12/18 10:50	02/13/18 10:40
10420484019	DP-18 (9-10)	Solid	02/12/18 10:55	02/13/18 10:40
10420484020	DP-19 (2-3)	Solid	02/12/18 12:30	02/13/18 10:40
10420484021	DP-19 (9-10)	Solid	02/12/18 12:50	02/13/18 10:40
10420484022	DP-20 (2-3)	Solid	02/12/18 13:30	02/13/18 10:40
10420484023	DP-20 (9-10)	Solid	02/12/18 13:45	02/13/18 10:40

SAMPLE ANALYTE COUNT

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

EPA 6020A RJS 2 PASIM EPA 7471B LMW 1 PASIM ASTM D2974 JDL 1 PASIM 10420484002 DP-22 (9-10) EPA 6010C BD1 10 PASIM 10420484003 DP-21 (2-3) EPA 6010C BD1 10 PASIM 10420484003 DP-21 (2-3) EPA 6010C BD1 10 PASIM 10420484004 DP-21 (9-10) EPA 6010C BD1 10 PASIM 10420484004 DP-21 (9-10) EPA 6010C BD1 10 PASIM 10420484004 DP-21 (9-10) EPA 6010C BD1 10 PASIM 10420484005 DP-21 (9-10) EPA 6010C BD1 10 PASIM 10420484004 DP-21 (9-10) EPA 6010C BD1 10 PASIM 10420484005 DP-23 (2-3) EPA 6010C BD1 10 PASIM 10420484005 DP-23 (2-3) EPA 6010C BD1 10 PASIM 104204840	Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
Ind20484002DP-22 (9-10)EPA 7471BLIMW1PASI-MI10420484002DP-22 (9-10)EPA 6010CBD110PASI-MI10420484003DP-21 (2-3)EPA 6010CBD110PASI-MI10420484004DP-21 (2-3)EPA 6010CBD110PASI-MI10420484004DP-21 (9-10)EPA 6010CBD110PASI-MI10420484004DP-21 (9-10)EPA 6010CBD110PASI-MI10420484004DP-21 (9-10)EPA 6010CBD110PASI-MI10420484004DP-21 (9-10)EPA 6010CBD110PASI-MI10420484005DP-21 (9-10)EPA 6010CBD110PASI-MI10420484006DP-21 (9-10)EPA 6010CBD110PASI-MI10420484007DP-23 (2-3)EPA 6010CBD110PASI-MI10420484007DP-23 (2-3)EPA 6010CBD110PASI-MI10420484007DP-24 (2-3)EPA 6010CBD110PASI-MI10420484007DP-24 (2-3)EPA 6010CBD110PASI-MI10420484007DP-24 (2-3)EPA 6010CBD110PASI-MI10420484008DP-24 (2-3)EPA 6010CBD110PASI-MI10420484009PP-24 (2-22)EPA 6010CBD110PASI-MI10420484009PP-24 (2-22)EPA 6010CBD110PASI-MI10420484009PP-24 (2-22)EPA 6010CBD110PASI-MI10420	10420484001	DP-22 (2-3)	EPA 6010C	BD1	10	PASI-M
10420484002 10420484002 10420484002P-22 (8-10)ASTM D2974JDL10PASI-M10420484002 10420484003P-22 (8-10)FPA 6010CBD1LOWPASI-M10420484003 			EPA 6020A	RJS	2	PASI-M
10420484002PP-22 (9-10)EPA 6010CBD110PASIMEPA 6010CRJS2PASIMEPA 7471BLIMW1PASIMEPA 7471BLIMW1PASIMEPA 6010CBD110PASIMEPA 6010CBD110PASIMEPA 6010CBD110PASIMEPA 6010CBD110PASIMEPA 6010CBD110PASIMEPA 6010CBD110PASIMEPA 6010CBD110PASIMEPA 6010CBD110PASIMEPA 6020ARJS2PASIMEPA 6020ARJS2PASIMEPA 6020ARJS2PASIMEPA 6010CBD110PASIMEPA 6020ARJS2PASIMEPA 6020ARJS2PASIMEPA 6010CBD110PASIMEPA 6010CBD110PASIMEPA 7471BLIMW1PASIMEPA 6010CBD110PASIMEPA 6010CBD110PASIMEPA 7471BLIMW1PASIMEPA 7471BLIMW1PASIMEPA 7471BLIMW1PASIMEPA 7471BLIMW1PASIMEPA 6010CBD110PASIMEPA 7471BLIMW1PASIMEPA 7471BLIMW1PASIMEPA 7471BLIMW1PASIMEPA 6010C </td <td></td> <td></td> <td>EPA 7471B</td> <td>LMW</td> <td>1</td> <td>PASI-M</td>			EPA 7471B	LMW	1	PASI-M
EPA 6020A RJS 2 PASHM EPA 7471B LMW 1 PASHM ASTM D2974 JDL 1 PASHM ASTM D2974 JDL 1 PASHM EPA 6010C BD1 10 PASHM EPA 6020A RJS 2 PASHM EPA 6020A RJS 2 PASHM EPA 6020A RJS 2 PASHM EPA 7471B LMW 1 PASHM ASTM D2974 JDL 1 PASHM ASTM D2974 JDL 1 PASHM EPA 6020A RJS 2 PASHM I0420484005 DP-21 (9-10) EPA 6010C BD1 10 PASHM EPA 6010C BD1 10 PASHM EPA 6020A RJS 2 PASHM 10420484005 DP-23 (9-10) EPA 6010C BD1 10 PASHM EPA 7471B LMW 1 PASHM EPA 6020A RJS 2 PASHM			ASTM D2974	JDL	1	PASI-M
I0420484003 10420484004PP-21 (2-3)EPA 7471B PASIMI EPA 6010CLMW1PASIMI PASIMI PASIMI EPA 6010C10420484004PP-21 (9-10)EPA 6010CBD110PASIMI PASIMI10420484004PP-21 (9-10)EPA 6010CBD110PASIMI PASIMI10420484005PP-21 (9-10)EPA 6010CBD110PASIMI PASIMI10420484005PP-21 (9-10)EPA 6010CBD110PASIMI PASIMI10420484005PP-21 (9-10)EPA 6010CBD110PASIMI PASIMI10420484005PP-23 (2-3)EPA 6010CBD110PASIMI PASIMI10420484006PP-23 (9-10)EPA 6010CBD110PASIMI PASIMI10420484007PP-23 (9-10)EPA 6010CBD110PASIMI PASIMI10420484007PP-24 (2-3)EPA 6010CBD110PASIMI PASIMI10420484007PP-24 (2-3)EPA 6010CBD110PASIMI PASIMI10420484007PP-24 (2-3)EPA 6010CBD110PASIMI PASIMI10420484007PP-24 (2-2)EPA 6010CBD110PASIMI PASIMI10420484009PP-24 (20-22)EPA 6010CBD110PASIMI PASIMI10420484009PP-24 (20-22)EPA 6010CBD110PASIMI PASIMI10420484009PP-24 (20-22)EPA 6010CBD110PASIMI PASIMI10420484009PP-24 (20-22)EPA 6010CBD110PASIMI PA	10420484002	DP-22 (9-10)	EPA 6010C	BD1	10	PASI-M
ASTM D2974JDL1PASIM10420484003PP-21 (2-3)EPA 6010CBD110PASIMEPA 6020ARJS2PASIMEPA 6020ARJS2PASIMBASTM D2974JDL1PASIMASTM D2974JDL1PASIMEPA 6020ARJS2PASIMEPA 6020ARJS2PASIMEPA 6020ARJS2PASIMEPA 6020ARJS2PASIMEPA 6010CBD110PASIMEPA 6010CBD110PASIMEPA 6010CBD110PASIMEPA 6010CBD110PASIMEPA 6010CBD110PASIMEPA 7471BLMW1PASIMEPA 7471BLMW1PASIMEPA 7471BLMW1PASIMEPA 6020ARJS2PASIMEPA 7471BLMW1PASIMEPA 6020ARJS2PASIMEPA 7471BLMW1PASIMEPA 6020ARJS2PASIMEPA 6020ARJS2PASIMEPA 6010CBD110PASIMEPA 6010CBD110PASIMEPA 7471BLMW1PASIMEPA 6020ARJS2PASIMEPA 6010CBD110PASIMEPA 6010CBD110PASIMEPA 6010CBD110PASIMEPA 6010CBD1<			EPA 6020A	RJS	2	PASI-M
10420484003DP-21 (2-3)EPA 6010CBD110PASI-MIEPA 6020ARJS2PASI-MIEPA 7471BLMW1PASI-MIASTM D29741JD110PASI-MIEPA 6010CBD110PASI-MIEPA 7471BLMW1PASI-MIEPA 7471BLMW1PASI-MIEPA 6010CBD110PASI-MIEPA 7471BLMW1PASI-MIEPA 7471BLMW <td></td> <td></td> <td>EPA 7471B</td> <td>LMW</td> <td>1</td> <td>PASI-M</td>			EPA 7471B	LMW	1	PASI-M
Index definition EPA 6020A RJS 2 PASI-MI EPA 7471B LMW 1 PASI-MI ASTM D2974 JDL 1 PASI-MI ASTM D2974 JDL 1 PASI-MI EPA 6010C BD1 10 PASI-MI EPA 6020A RJS 2 PASI-MI EPA 7471B LMW 1 PASI-MI 10420484005 DP-21 (9-10) 1 PASI-MI EPA 6020A RJS 2 PASI-MI 10420484005 DP-23 (2-3) EPA 6010C BD1 10 PASI-MI 10420484006 DP-23 (9-10) EPA 6010C BD1 10 PASI-MI 10420484006 DP-23 (9-10) EPA 6010C BD1 10 PASI-MI 10420484006 DP-23 (9-10) EPA 6010C BD1 10 PASI-MI 10420484007 DP-24 (2-3) EPA 6010C BD1 10 PASI-MI 10420484007 DP-24 (2-3) EPA 6010C BD1 10 <			ASTM D2974	JDL	1	PASI-M
Indecode 10420484004PP-21 (9-10)EPA 7471BLMW1PASI-MI PASI-MI10420484004PP-21 (9-10)EPA 6010CBD110PASI-MI PASI-MI10420484005PP-23 (2-3)EPA 6010CBD110PASI-MI PASI-MI10420484006PP-23 (2-3)EPA 6010CBD110PASI-MI PASI-MI10420484006PP-23 (9-10)EPA 6010CBD110PASI-MI PASI-MI10420484006PP-23 (9-10)EPA 6010CBD110PASI-MI PASI-MI10420484007PP-23 (9-10)EPA 6010CBD110PASI-MI PASI-MI10420484007PP-24 (2-3)EPA 6010CBD110PASI-MI PASI-MI10420484007PP-24 (2-3)EPA 6010CBD110PASI-MI PASI-MI10420484008PP-24 (2-22)EPA 6010CBD110PASI-MI PASI-MI10420484009PP-24 (2-22)EPA 6010CBD110PASI-MI PASI-MI <td< td=""><td>10420484003</td><td>DP-21 (2-3)</td><td>EPA 6010C</td><td>BD1</td><td>10</td><td>PASI-M</td></td<>	10420484003	DP-21 (2-3)	EPA 6010C	BD1	10	PASI-M
10420484004DP-21 (9-10)ASTM D2974JDL1PASI-MEPA 6010CBD110PASI-MEPA 6020ARJS2PASI-MEPA 7471BLMW1PASI-MASTM D2974JDL1PASI-MASTM D2974JDL1PASI-MEPA 6010CBD110PASI-MEPA 6020ARJS2PASI-MEPA 7471BLMW1PASI-MEPA 6020ARJS2PASI-MEPA 7471BLMW1PASI-MEPA 7471BLMW1PASI-MEPA 6010CBD110PASI-MEPA 6020ARJS2PASI-MEPA 7471BLMW1PASI-MEPA 7471BLMW1PASI-MEPA 6010CBD110PASI-MEPA 6020ARJS2PASI-MEPA 7471BLMW1PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6010CBD110PASI-MEPA 7471BLMW1PASI-MEPA 7471BLMW1PASI-MEPA 7471BLMW1PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6010CBD110PASI-M			EPA 6020A	RJS	2	PASI-M
10420484004DP-21 (9-10)EPA 6010CBD110PASI-MEPA 6020ARJS2PASI-MEPA 7471BLMW1PASI-MEPA 7471BLMW1PASI-MEPA 6010CBD110PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6010CBD110PASI-MEPA 6010CBD110PASI-MEPA 6020ARJS2PASI-MEPA 6010CBD110PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6010CBD110PASI-MEPA 6010CBD110PASI-MEPA 6010CBD110PASI-MEPA 6010CBD110PASI-MEPA 6010CBD110PASI-MEPA 6010CBD110PASI-MEPA 6010CBD110PASI-MEPA 6010CBD110PASI-MEPA 6020ARJS2PASI-MEPA 6010CBD110PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS1PASI-M <td></td> <td></td> <td>EPA 7471B</td> <td>LMW</td> <td>1</td> <td>PASI-M</td>			EPA 7471B	LMW	1	PASI-M
EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M ASTM D2974 JDL 1 PASI-M ASTM D2974 JDL 1 PASI-M EPA 6010C BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M I0420484006 DP-23 (9-10) EPA 6010C BD1 10 PASI-M I0420484007 DP-23 (9-10) EPA 6010C BD1 10 PASI-M I0420484007 DP-24 (2-3) EPA 6010C BD1 10 PASI-M I0420484007 DP-24 (2-3) EPA 6010C BD1 10 PASI-M I0420484007 DP-24 (2-3) EPA 6010C BD1 10 PASI-M EPA 6010C BD1 10 PASI-M EPA 6010C BD1 10 PASI-M			ASTM D2974	JDL	1	PASI-M
Internal stateEPA 7471BLMW1PASI-MASTM D2974JDL1PASI-MASTM D2974JDL10PASI-MEPA 6010CBD110PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS1PASI-MEPA 6020ABD11PASI-MEPA 6020ABD11PASI-MEPA 6010CBD11PASI-MEPA 6010CBD110PASI-MEPA 6010CBD11PASI-MEPA 7471BLMW1PASI-MEPA 6010CBD11PASI-MEPA 6010CBD11PASI-MEPA 6010CBD11PASI-MEPA 6010CBD11PASI-MEPA 6010CBD11PASI-MEPA 6010CBD11PASI-MEPA 6010CBD11PASI-MEPA 6010CBD11PASI-MEPA 6010CBD11PASI-MEPA 7471BLMW1PASI-MEPA 7471BLMW1PASI-MEPA 7471BLMW1PASI-MEPA 6010CBD110PASI-MEPA 7471BLMW1PASI-MEPA 7471BLMW1PASI-MEPA 7471BLMW1PASI-MEPA 6010CBD110PASI-MEPA 6010CBD110PASI-MEPA 6010C<	10420484004	DP-21 (9-10)	EPA 6010C	BD1	10	PASI-M
ASTM D2974JDL1PASI-M10420484005DP-23 (2-3)EPA 6010CBD110PASI-MEPA 6020ARJS2PASI-MEPA 7471BLMW1PASI-M10420484006DP-23 (9-10)EPA 6010CBD110PASI-MEPA 7471BLMW1PASI-MEPA 7471BLMW1PASI-MEPA 7471BLMW1PASI-M10420484007DP-24 (2-3)EPA 6010CBD110PASI-MEPA 6010CBD110PASI-MEPA 6020ARJS2PASI-MEPA 7471BLMW1PASI-MI0420484007DP-24 (2-3)EPA 6010CBD110PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MI0420484008DP-24 (20-22)EPA 6010CBD110PASI-MEPA 7471BLMW1PASI-MEPA 7471BLMW1PASI-MEPA 7471BLMW1PASI-MEPA 6020ARJS2PASI-MEPA 7471BLMW1PASI-MEPA 7471BLMW1PASI-MEPA 7471BLMW1PASI-MEPA 7471BLMW1PASI-MEPA 6020ARJS2PASI-MEPA 7471BLMW1PASI-MEPA 6020ARJS2PASI-MEPA 6010CBD110PASI-MEPA 6020ARJS<			EPA 6020A	RJS	2	PASI-M
10420484005DP-23 (2-3)EPA 6010CBD110PASI-MEPA 6020ARJS2PASI-MEPA 7471BLMW1PASI-MASTM D2974JDL1PASI-M10420484006DP-23 (9-10)EPA 6010CBD110PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 7471BLMW1PASI-M10420484007DP-24 (2-3)EPA 6010CBD110EPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 7471BLMW1PASI-MI0420484008DP-24 (20-22)EPA 6010CBD110EPA 7471BLMW1PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 7471BLMW1PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2			EPA 7471B	LMW	1	PASI-M
International and the second			ASTM D2974	JDL	1	PASI-M
Indecode HordsonEPA 7471BLMW1PASI-MASTM D2974JDL1PASI-MASTM D2974BD110PASI-MEPA 6010CBD110PASI-MEPA 6020ARJS2PASI-MEPA 7471BLMW1PASI-MASTM D2974JDL1PASI-MASTM D2974JDL1PASI-MIndecodeBD110PASI-MEPA 6010CBD110PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MIndecodeBD110PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MIndecodeBD110PASI-MIndecodeBD110PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MIndecodeBD110PASI-MEPA 7471BLMW1PASI-MIndecodeBD110PASI-MEPA 7471BJDL1PASI-MIndecodeRJS2PASI-MEPA 7471BLMW1PASI-MIndecodeBD110PASI-MEPA 7471BEPA 7470AIMW1EPA 7470AIMW1PASI-MEPA 7470AIMW1PASI-MEPA 7470	10420484005	DP-23 (2-3)	EPA 6010C	BD1	10	PASI-M
ASTM D2974JDL1PASI-M10420484006DP-23 (9-10)EPA 6010CBD110PASI-MEPA 6010CBD1LMW1PASI-MEPA 6020ARJS2PASI-MEPA 7471BLMW1PASI-MASTM D2974JDL1PASI-MASTM D2974JDL1PASI-MEPA 6010CBD110PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 7471BLMW1PASI-MASTM D2974JDL1PASI-MI10420484008DP-24 (20-22)EPA 6010CBD110EPA 7471BLMW1PASI-MEPA 7471BLMW1PASI-MI10420484009DP-24DP-2410PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MI10420484009DP-24DP-2410PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-MEPA 6020ARJS2PASI-M			EPA 6020A	RJS	2	PASI-M
10420484006 DP-23 (9-10) EPA 6010C BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M ASTM D2974 JDL 1 PASI-M 10420484007 DP-24 (2-3) EPA 6010C BD1 10 PASI-M EPA 6020A RJS 2 PASI-M I0420484008 DP-24 (20-22) EPA 6010C BD1 10 PASI-M EPA 6020A RJS 2 PASI-M I0420484008 DP-24 (20-22) EPA 6010C BD1 10 PASI-M EPA 6020A RJS 2 PASI-M I0420484008 DP-24 DP-24 1 PASI-M EPA 6020A RJS 2 PASI-M EPA 6020A RJS </td <td></td> <td></td> <td>EPA 7471B</td> <td>LMW</td> <td>1</td> <td>PASI-M</td>			EPA 7471B	LMW	1	PASI-M
EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M ASTM D2974 JDL 1 PASI-M ASTM D2974 JDL 1 PASI-M I0420484007 DP-24 (2-3) EPA 6010C BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M ASTM D2974 JDL 1 PASI-M ASTM D2974 JDL 1 PASI-M I0420484008 DP-24 (20-22) EPA 6010C BD1 10 PASI-M I0420484009 DP-24 (20-22) EPA 6010C BD1 1 PASI-M I0420484009 DP-24 (20-22) EPA 6010C BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 6020A RJS 2 PASI-M I0420484009 DP-24 PASI D </td <td></td> <td></td> <td>ASTM D2974</td> <td>JDL</td> <td>1</td> <td>PASI-M</td>			ASTM D2974	JDL	1	PASI-M
EPA 7471B LMW 1 PASI-M ASTM D2974 JDL 1 PASI-M ASTM D2974 JDL 1 PASI-M I0420484007 DP-24 (2-3) EPA 6010C BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M EPA 7471B LMW 1 PASI-M ASTM D2974 JDL 1 PASI-M I0420484008 DP-24 (20-22) EPA 6010C BD1 10 PASI-M I0420484008 DP-24 (20-22) EPA 6010C BD1 10 PASI-M I0420484008 DP-24 (20-22) EPA 6010C BD1 10 PASI-M I0420484009 DP-24 (20-22) EPA 7471B LMW 1 PASI-M I0420484009 DP-24 (20-22) EPA 6010C BD1 10 PASI-M I0420484009 DP-24 I PASI-M EPA 6010C BD1 10 PASI-M I0420484009	10420484006	DP-23 (9-10)	EPA 6010C	BD1	10	PASI-M
10420484007 DP-24 (2-3) ASTM D2974 JDL 1 PASI-M 10420484007 DP-24 (2-3) EPA 6010C BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M ASTM D2974 JDL 1 PASI-M ASTM D2974 JDL 1 PASI-M 10420484008 DP-24 (20-22) EPA 6010C BD1 10 PASI-M EPA 6010C BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 6020A RJS 2 PASI-M EPA 6020A RJS 2 PASI-M 10420484009 DP-24 20-22) ASTM D2974 JDL 1 PASI-M 10420484009 DP-24 ASTM D2974 JDL 1 PASI-M 10420484009 DP-24 6010C Met BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 6020A RJS 2 PASI-M EPA 7470A LMW 1 PASI-M EPA 6010C			EPA 6020A	RJS	2	PASI-M
10420484007 DP-24 (2-3) EPA 6010C BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M ASTM D2974 JDL 1 PASI-M 10420484008 DP-24 (20-22) EPA 6010C BD1 10 PASI-M EPA 6010C BD1 10 PASI-M EPA 6010C BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 6010C BD1 10 PASI-M EPA 7471B LMW 1 PASI-M EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M I0420484009 DP-24 6010C Met BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 6020A RJS 2 PASI-M I0420484009 DP-24 DP-24 EPA 6020A RJS 2 PASI-M EPA 6020A RJS 2 PASI-M EPA 6020A RJS 2 PASI-M			EPA 7471B	LMW	1	PASI-M
EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M ASTM D2974 JDL 1 PASI-M ASTM D2974 JDL 1 PASI-M I0420484008 DP-24 (20-22) EPA 6010C BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 6010C BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M I0420484009 DP-24 6010C Met BD1 1 PASI-M EPA 6020A RJS 2 PASI-M I0420484009 DP-24 6010C Met BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 7470A LMW 1 PASI-M I0420484010			ASTM D2974	JDL	1	PASI-M
EPA 7471B LMW 1 PASI-M ASTM D2974 JDL 1 PASI-M 10420484008 DP-24 (20-22) EPA 6010C BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M I0420484009 DP-24 6010C Met BD1 10 PASI-M EPA 6020A RJS 2 PASI-M I0420484009 DP-24 6010C Met BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 6020A RJS 2 PASI-M EPA 6020A RJS 2 PASI-M EPA 7470A LMW 1 PASI-M I0420484010 DP-27 (2-3) EPA 6010C BD1 10 PASI-M	10420484007	DP-24 (2-3)	EPA 6010C	BD1	10	PASI-M
10420484008 DP-24 (20-22) ASTM D2974 JDL 1 PASI-M EPA 6010C BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M ASTM D2974 JDL 1 PASI-M 10420484009 DP-24 6010C Met BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 6010C Met BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 6020A BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 6020A RJS 2 PASI-M EPA 6020A RJS 2 PASI-M EPA 7470A LMW 1 PASI-M I0420484010 DP-27 (2-3) EPA 6010C BD1 10 PASI-M			EPA 6020A	RJS	2	PASI-M
10420484008 DP-24 (20-22) EPA 6010C BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M ASTM D2974 JDL 1 PASI-M 10420484009 DP-24 6010C Met BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 6020A BD1 10 PASI-M EPA 6020A BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 6020A RJS 2 PASI-M EPA 6020A RJS 2 PASI-M EPA 7470A LMW 1 PASI-M EPA 6010C BD1 10 PASI-M			EPA 7471B	LMW	1	PASI-M
EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M ASTM D2974 JDL 1 PASI-M 10420484009 DP-24 6010C Met BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 6020A BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 6020A RJS 2 PASI-M EPA 6020A BD1 10 PASI-M EPA 6020A BD1 1 PASI-M EPA 6020A BD1 1 PASI-M EPA 6020A BD1 1 PASI-M EPA 6010C BD1 10 PASI-M			ASTM D2974	JDL	1	PASI-M
EPA 7471B LMW 1 PASI-M ASTM D2974 JDL 1 PASI-M 10420484009 DP-24 6010C Met BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 7470A LMW 1 PASI-M 10420484010 DP-27 (2-3) EPA 6010C BD1 10 PASI-M	10420484008	DP-24 (20-22)	EPA 6010C	BD1	10	PASI-M
ASTM D2974 JDL 1 PASI-M 10420484009 DP-24 6010C Met BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 7470A LMW 1 PASI-M 10420484010 DP-27 (2-3) EPA 6010C BD1 10 PASI-M			EPA 6020A	RJS	2	PASI-M
10420484009 DP-24 6010C Met BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 7470A LMW 1 PASI-M 10420484010 DP-27 (2-3) EPA 6010C BD1 10 PASI-M			EPA 7471B	LMW	1	PASI-M
EPA 6020A RJS 2 PASI-M EPA 7470A LMW 1 PASI-M 10420484010 DP-27 (2-3) EPA 6010C BD1 10 PASI-M			ASTM D2974	JDL	1	PASI-M
EPA 7470ALMW1PASI-M10420484010DP-27 (2-3)EPA 6010CBD110PASI-M	10420484009	DP-24	6010C Met	BD1	10	PASI-M
10420484010 DP-27 (2-3) EPA 6010C BD1 10 PASI-M			EPA 6020A	RJS	2	PASI-M
			EPA 7470A	LMW	1	PASI-M
EPA 6020A RJS 2 PASI-M	10420484010	DP-27 (2-3)	EPA 6010C	BD1	10	PASI-M
			EPA 6020A	RJS	2	PASI-M

SAMPLE ANALYTE COUNT

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

Analytes Lab ID Method Sample ID Analysts Reported Laboratory EPA 7471B LMW 1 PASI-M 1 ASTM D2974 JDL PASI-M 10420484011 DP-27 (20-21) EPA 6010C BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M ASTM D2974 JDL 1 PASI-M BD1 10420484012 DP-26 (3-4) EPA 6010C 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M ASTM D2974 JDL 1 PASI-M EPA 6010C BD1 10 PASI-M 10420484013 DP-26 (14-16) EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M ASTM D2974 JDL 1 PASI-M BD1 10420484014 **DP-26** 6010C Met 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 7470A LMW 1 PASI-M BD1 10 10420484015 DP-25 (2-3) EPA 6010C PASI-M EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M ASTM D2974 JDL 1 PASI-M DP-25 (16-17) 10420484016 EPA 6010C BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M ASTM D2974 JDL PASI-M 1 10420484017 DP-25 6010C Met BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 7470A LMW 1 PASI-M EPA 6010C BD1 10 10420484018 DP-18 (2-3) PASI-M EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M ASTM D2974 JDL 1 PASI-M 10420484019 DP-18 (9-10) EPA 6010C BD1 10 PASI-M EPA 6020A RJS 2 PASI-M EPA 7471B LMW 1 PASI-M **ASTM D2974** JDL PASI-M 1 BD1 10 10420484020 EPA 6010C PASI-M DP-19 (2-3)

SAMPLE ANALYTE COUNT

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 6020A	RJS	2	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10420484021	DP-19 (9-10)	EPA 6010C	BD1	10	PASI-M
		EPA 6020A	RJS	2	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10420484022	DP-20 (2-3)	EPA 6010C	BD1	10	PASI-M
		EPA 6020A	RJS	2	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10420484023	DP-20 (9-10)	EPA 6010C	BD1	10	PASI-M
		EPA 6020A	RJS	2	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

Sample: DP-22 (2-3)	Lab ID:	10420484001	Collecte	d: 02/10/18	3 14:00	Received: 02/	/13/18 10:40 Ma	atrix: Solid	
Results reported on a "dry weight"	' basis and are	adjusted for	percent mo	oisture, sar	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: El	PA 3050			
Antimony	ND	mg/kg	4.9	0.57	5	02/14/18 09:16	02/16/18 15:10	7440-36-0	D3,M1
Beryllium	ND	mg/kg	1.2	0.15	5	02/14/18 09:16	02/16/18 15:10	7440-41-7	D3
Cadmium	0.096J	mg/kg	0.74	0.076	5	02/14/18 09:16	02/16/18 15:10	7440-43-9	D3
Chromium	7.1	mg/kg	2.5	0.32	5	02/14/18 09:16	02/16/18 15:10	7440-47-3	
Copper	8.7	mg/kg	2.5	0.41	5	02/14/18 09:16	02/16/18 15:10	7440-50-8	
Lead	2.9	mg/kg	2.5	0.56	5	02/14/18 09:16	02/16/18 15:10	7439-92-1	
Nickel	8.1	mg/kg	4.9	0.58	5	02/14/18 09:16	02/16/18 15:10	7440-02-0	
Silver	ND	mg/kg	2.5	0.19	5	02/14/18 09:16	02/16/18 15:10	7440-22-4	D3
Thallium	ND	mg/kg	4.9	1.1	5	02/14/18 09:16	02/16/18 15:10	7440-28-0	D3
Zinc	15.6	mg/kg	4.9	1.4	5	02/14/18 09:16	02/16/18 15:10	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	hod: EF	PA 3050			
Arsenic	1.7	mg/kg	0.52	0.24	20	02/15/18 07:32	02/17/18 03:26	7440-38-2	
Selenium	0.38J	mg/kg	0.52	0.26	20	02/15/18 07:32	02/17/18 03:26	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: EF	PA 7471B			
Mercury	ND	mg/kg	0.019	0.0086	1	02/14/18 05:58	02/19/18 15:00	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	4.7	%	0.10	0.10	1		02/15/18 10:49		

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

Sample: DP-22 (9-10)	Lab ID:	10420484002	Collecte	d: 02/10/18	3 14:05	Received: 02/	/13/18 10:40 Ma	atrix: Solid	
Results reported on a "dry weight"	' basis and ar	e adjusted for	percent me	oisture, sar	nple si	ze and any dilut	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	paration Met	hod: El	PA 3050			
Antimony	0.46J	mg/kg	1.1	0.12	1	02/14/18 09:16	02/16/18 15:36	7440-36-0	В
Beryllium	ND	mg/kg	0.27	0.032	1	02/14/18 09:16	02/16/18 15:36	7440-41-7	
Cadmium	0.058J	mg/kg	0.16	0.016	1	02/14/18 09:16	02/16/18 15:36	7440-43-9	
Chromium	4.3	mg/kg	0.53	0.068	1	02/14/18 09:16	02/16/18 15:36	7440-47-3	
Copper	5.0	mg/kg	0.53	0.089	1	02/14/18 09:16	02/16/18 15:36	7440-50-8	
Lead	2.5	mg/kg	0.53	0.12	1	02/14/18 09:16	02/16/18 15:36	7439-92-1	
Nickel	7.3	mg/kg	1.1	0.12	1	02/14/18 09:16	02/16/18 15:36	7440-02-0	
Silver	ND	mg/kg	0.53	0.042	1	02/14/18 09:16	02/16/18 15:36	7440-22-4	
Thallium	ND	mg/kg	1.1	0.23	1	02/14/18 09:16	02/16/18 15:36	7440-28-0	
Zinc	11.1	mg/kg	1.1	0.31	1	02/14/18 09:16	02/16/18 15:36	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	hod: EF	PA 3050			
Arsenic	2.3	mg/kg	0.49	0.22	20	02/15/18 07:32	02/17/18 03:22	7440-38-2	
Selenium	0.28J	mg/kg	0.49	0.25	20	02/15/18 07:32	02/17/18 03:22	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: El	PA 7471B			
Mercury	ND	mg/kg	0.021	0.0099	1	02/14/18 05:58	02/19/18 15:06	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	6.4	%	0.10	0.10	1		02/15/18 10:50		

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

Sample: DP-21 (2-3)	Lab ID:	10420484003	Collected	d: 02/10/18	3 14:25	Received: 02/	13/18 10:40 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and ar	e adjusted for	percent mo	oisture, san	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: Ef	PA 3050			
Antimony	0.41J	mg/kg	1.0	0.12	1	02/14/18 09:16	02/16/18 15:39	7440-36-0	В
Beryllium	0.044J	mg/kg	0.26	0.032	1	02/14/18 09:16	02/16/18 15:39	7440-41-7	
Cadmium	0.053J	mg/kg	0.16	0.016	1	02/14/18 09:16	02/16/18 15:39	7440-43-9	
Chromium	7.5	mg/kg	0.52	0.067	1	02/14/18 09:16	02/16/18 15:39	7440-47-3	
Copper	6.8	mg/kg	0.52	0.088	1	02/14/18 09:16	02/16/18 15:39	7440-50-8	
Lead	6.1	mg/kg	0.52	0.12	1	02/14/18 09:16	02/16/18 15:39	7439-92-1	
Nickel	8.2	mg/kg	1.0	0.12	1	02/14/18 09:16	02/16/18 15:39	7440-02-0	
Silver	ND	mg/kg	0.52	0.041	1	02/14/18 09:16	02/16/18 15:39	7440-22-4	
Thallium	0.27J	mg/kg	1.0	0.23	1	02/14/18 09:16	02/16/18 15:39	7440-28-0	
Zinc	17.3	mg/kg	1.0	0.30	1	02/14/18 09:16	02/16/18 15:39	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	nod: EF	PA 3050			
Arsenic	2.7	mg/kg	0.52	0.23	20	02/15/18 07:32	02/17/18 03:56	7440-38-2	
Selenium	0.49J	mg/kg	0.52	0.26	20	02/15/18 07:32	02/17/18 03:56	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: EF	PA 7471B			
Mercury	0.013J	mg/kg	0.021	0.0096	1	02/14/18 05:58	02/19/18 15:09	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	9.0	%	0.10	0.10	1		02/15/18 10:50		

Project: 31401059.001 I-35W MN Rvr Brdg

. . .

Pace Project No.: 10420484

-

Sample: DP-21 (9-10)	Lab ID:	10420484004	Collecte	d: 02/10/18	3 14:30	Received: 02/	/13/18 10:40 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	e adjusted for	percent mo	oisture, sar	nple si	ze and any dilut	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: El	PA 3050			
Antimony	0.24J	mg/kg	1.1	0.13	1	02/14/18 09:16	02/16/18 15:42	7440-36-0	
Beryllium	0.049J	mg/kg	0.27	0.033	1	02/14/18 09:16	02/16/18 15:42	7440-41-7	
Cadmium	0.077J	mg/kg	0.16	0.017	1	02/14/18 09:16	02/16/18 15:42	7440-43-9	
Chromium	5.8	mg/kg	0.54	0.069	1	02/14/18 09:16	02/16/18 15:42	7440-47-3	
Copper	6.5	mg/kg	0.54	0.091	1	02/14/18 09:16	02/16/18 15:42	7440-50-8	
Lead	4.1	mg/kg	0.54	0.12	1	02/14/18 09:16	02/16/18 15:42	7439-92-1	
Nickel	8.5	mg/kg	1.1	0.13	1	02/14/18 09:16	02/16/18 15:42	7440-02-0	
Silver	ND	mg/kg	0.54	0.042	1	02/14/18 09:16	02/16/18 15:42	7440-22-4	
Thallium	ND	mg/kg	1.1	0.23	1	02/14/18 09:16	02/16/18 15:42	7440-28-0	
Zinc	15.8	mg/kg	1.1	0.32	1	02/14/18 09:16	02/16/18 15:42	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	nod: EF	PA 3050			
Arsenic	3.7	mg/kg	0.54	0.25	20	02/15/18 07:32	02/17/18 04:00	7440-38-2	
Selenium	0.71	mg/kg	0.54	0.27	20	02/15/18 07:32	02/17/18 04:00	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: EF	PA 7471B			
Mercury	0.013J	mg/kg	0.020	0.0093	1	02/14/18 05:58	02/19/18 15:11	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	11.4	%	0.10	0.10	1		02/15/18 10:50		

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

Sample: DP-23 (2-3)	Lab ID:	10420484005	Collecte	d: 02/10/18	15:30	Received: 02/	13/18 10:40 Ma	atrix: Solid	
Results reported on a "dry weight"	' basis and ar	e adjusted for	percent mo	oisture, san	nple siz	ze and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: EF	PA 3050			
Antimony	0.18J	mg/kg	1.0	0.12	1	02/14/18 09:16	02/16/18 15:44	7440-36-0	В
Beryllium	ND	mg/kg	0.26	0.031	1	02/14/18 09:16	02/16/18 15:44	7440-41-7	
Cadmium	0.089J	mg/kg	0.15	0.016	1	02/14/18 09:16	02/16/18 15:44	7440-43-9	
Chromium	4.5	mg/kg	0.52	0.066	1	02/14/18 09:16	02/16/18 15:44	7440-47-3	
Copper	9.8	mg/kg	0.52	0.086	1	02/14/18 09:16	02/16/18 15:44	7440-50-8	
Lead	2.3	mg/kg	0.52	0.12	1	02/14/18 09:16	02/16/18 15:44	7439-92-1	
Nickel	7.5	mg/kg	1.0	0.12	1	02/14/18 09:16	02/16/18 15:44	7440-02-0	
Silver	0.046J	mg/kg	0.52	0.040	1	02/14/18 09:16	02/16/18 15:44	7440-22-4	
Thallium	ND	mg/kg	1.0	0.22	1	02/14/18 09:16	02/16/18 15:44	7440-28-0	
Zinc	12.0	mg/kg	1.0	0.30	1	02/14/18 09:16	02/16/18 15:44	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	nod: EF	PA 3050			
Arsenic	1.9	mg/kg	0.53	0.24	20	02/15/18 07:32	02/17/18 04:04	7440-38-2	
Selenium	0.44J	mg/kg	0.53	0.26	20	02/15/18 07:32	02/17/18 04:04	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: EF	PA 7471B			
Mercury	ND	mg/kg	0.019	0.0086	1	02/14/18 05:58	02/19/18 15:17	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	5.0	%	0.10	0.10	1		02/15/18 10:50		

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

Sample: DP-23 (9-10)	Lab ID:	10420484006	Collected	d: 02/10/18	15:35	Received: 02/	13/18 10:40 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and ar	e adjusted for	percent mo	oisture, san	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: Ef	PA 3050			
Antimony	0.12J	mg/kg	1.0	0.12	1	02/14/18 09:16	02/16/18 15:47	7440-36-0	В
Beryllium	ND	mg/kg	0.26	0.031	1	02/14/18 09:16	02/16/18 15:47	7440-41-7	
Cadmium	0.060J	mg/kg	0.16	0.016	1	02/14/18 09:16	02/16/18 15:47	7440-43-9	
Chromium	4.1	mg/kg	0.52	0.066	1	02/14/18 09:16	02/16/18 15:47	7440-47-3	
Copper	3.5	mg/kg	0.52	0.087	1	02/14/18 09:16	02/16/18 15:47	7440-50-8	
Lead	2.1	mg/kg	0.52	0.12	1	02/14/18 09:16	02/16/18 15:47	7439-92-1	
Nickel	7.8	mg/kg	1.0	0.12	1	02/14/18 09:16	02/16/18 15:47	7440-02-0	
Silver	0.041J	mg/kg	0.52	0.040	1	02/14/18 09:16	02/16/18 15:47	7440-22-4	
Thallium	ND	mg/kg	1.0	0.22	1	02/14/18 09:16	02/16/18 15:47	7440-28-0	
Zinc	10.1	mg/kg	1.0	0.30	1	02/14/18 09:16	02/16/18 15:47	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prepa	aration Met	nod: EF	PA 3050			
Arsenic	1.7	mg/kg	0.50	0.23	20	02/15/18 07:32	02/17/18 04:08	7440-38-2	
Selenium	0.33J	mg/kg	0.50	0.25	20	02/15/18 07:32	02/17/18 04:08	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	nod: EF	PA 7471B			
Mercury	ND	mg/kg	0.020	0.0094	1	02/14/18 05:58	02/19/18 15:19	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	4.5	%	0.10	0.10	1		02/15/18 10:50		

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

Sample: DP-24 (2-3)	Lab ID:	10420484007	Collecte	d: 02/11/18	09:10	Received: 02/	13/18 10:40 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and ar	e adjusted for	percent mo	oisture, san	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: Ef	PA 3050			
Antimony	0.38J	mg/kg	1.1	0.13	1	02/14/18 09:16	02/16/18 15:50	7440-36-0	
Beryllium	0.11J	mg/kg	0.28	0.033	1	02/14/18 09:16	02/16/18 15:50	7440-41-7	
Cadmium	0.15J	mg/kg	0.17	0.017	1	02/14/18 09:16	02/16/18 15:50	7440-43-9	
Chromium	9.1	mg/kg	0.55	0.070	1	02/14/18 09:16	02/16/18 15:50	7440-47-3	
Copper	10.7	mg/kg	0.55	0.092	1	02/14/18 09:16	02/16/18 15:50	7440-50-8	
Lead	5.3	mg/kg	0.55	0.12	1	02/14/18 09:16	02/16/18 15:50	7439-92-1	
Nickel	14.0	mg/kg	1.1	0.13	1	02/14/18 09:16	02/16/18 15:50	7440-02-0	
Silver	0.052J	mg/kg	0.55	0.043	1	02/14/18 09:16	02/16/18 15:50	7440-22-4	
Thallium	ND	mg/kg	1.1	0.24	1	02/14/18 09:16	02/16/18 15:50	7440-28-0	
Zinc	23.3	mg/kg	1.1	0.32	1	02/14/18 09:16	02/16/18 15:50	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	hod: EF	PA 3050			
Arsenic	5.9	mg/kg	0.57	0.26	20	02/15/18 07:32	02/17/18 04:12	7440-38-2	
Selenium	0.83	mg/kg	0.57	0.28	20	02/15/18 07:32	02/17/18 04:12	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: EF	PA 7471B			
Mercury	0.024	mg/kg	0.021	0.0099	1	02/14/18 05:58	02/19/18 15:21	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	14.3	%	0.10	0.10	1		02/15/18 10:51		

Project: 31401059.001 I-35W MN Rvr Brdg

Sample: DP-24 (20-22)	Lab ID:	10420484008	Collected:	02/11/18	09:30	Received: 02/	13/18 10:40 Ma	atrix: Solid	
Results reported on a "dry weigh	t" basis and are	e adjusted for	percent moi	sture, san	nple si	ze and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prepa	ration Met	hod: Ef	PA 3050			
Antimony	ND	mg/kg	1.1	0.13	1	02/14/18 09:16	02/16/18 15:53	7440-36-0	
Beryllium	ND	mg/kg	0.28	0.034	1	02/14/18 09:16	02/16/18 15:53	7440-41-7	
Cadmium	0.036J	mg/kg	0.17	0.017	1	02/14/18 09:16	02/16/18 15:53	7440-43-9	
Chromium	4.3	mg/kg	0.56	0.071	1	02/14/18 09:16	02/16/18 15:53	7440-47-3	
Copper	3.6	mg/kg	0.56	0.094	1	02/14/18 09:16	02/16/18 15:53	7440-50-8	
Lead	3.0	mg/kg	0.56	0.13	1	02/14/18 09:16	02/16/18 15:53	7439-92-1	
Nickel	4.2	mg/kg	1.1	0.13	1	02/14/18 09:16	02/16/18 15:53	7440-02-0	
Silver	ND	mg/kg	0.56	0.044	1	02/14/18 09:16	02/16/18 15:53	7440-22-4	
Thallium	ND	mg/kg	1.1	0.24	1	02/14/18 09:16	02/16/18 15:53	7440-28-0	
Zinc	12.0	mg/kg	1.1	0.33	1	02/14/18 09:16	02/16/18 15:53	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prepa	ration Metl	nod: EF	PA 3050			
Arsenic	1.7	mg/kg	0.56	0.25	20	02/15/18 07:32	02/17/18 04:16	7440-38-2	
Selenium	0.41J	mg/kg	0.56	0.28	20	02/15/18 07:32	02/17/18 04:16	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prepa	ration Met	nod: EF	PA 7471B			
Mercury	ND	mg/kg	0.023	0.011	1	02/14/18 05:58	02/19/18 15:23	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	14.3	%	0.10	0.10	1		02/15/18 10:51		

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420

10420484

Sample: DP-24	Lab ID:	10420484009	Collected	d: 02/11/18	8 10:00	Received: 02/	'13/18 10:40 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP, Dissolved	Analytical	Method: 60100	Met Prepa	aration Met	nod: EP	A 3010			
Antimony, Dissolved	3.3J	ug/L	20.0	3.1	1	02/15/18 12:04	02/16/18 17:01	7440-36-0	
Beryllium, Dissolved	0.15J	ug/L	5.0	0.11	1	02/15/18 12:04	02/16/18 17:01	7440-41-7	
Cadmium, Dissolved	0.72J	ug/L	3.0	0.46	1	02/15/18 12:04	02/16/18 17:01	7440-43-9	
Chromium, Dissolved	ND	ug/L	10.0	0.50	1	02/15/18 12:04	02/16/18 17:01	7440-47-3	
Copper, Dissolved	3.5J	ug/L	10.0	0.83	1	02/15/18 12:04	02/16/18 17:01	7440-50-8	
Lead, Dissolved	ND	ug/L	10.0	3.0	1	02/15/18 12:04	02/16/18 17:01	7439-92-1	
Nickel, Dissolved	39.0	ug/L	20.0	1.1	1	02/15/18 12:04	02/16/18 17:01	7440-02-0	
Silver, Dissolved	0.55J	ug/L	10.0	0.27	1	02/15/18 12:04	02/16/18 17:01	7440-22-4	
Thallium, Dissolved	8.6J	ug/L	20.0	4.8	1	02/15/18 12:04	02/16/18 17:01	7440-28-0	
Zinc, Dissolved	3.8J	ug/L	20.0	1.8	1	02/15/18 12:04	02/16/18 17:01	7440-66-6	
6020A MET ICPMS, Dissolved	Analytical	Method: EPA 6	020A Prepa	aration Met	hod: EF	PA 3020			
Arsenic, Dissolved	ND	ug/L	0.50	0.21	1	02/15/18 12:04	02/19/18 22:30	7440-38-2	
Selenium, Dissolved	ND	ug/L	0.50	0.17	1	02/15/18 12:04	02/19/18 22:30	7782-49-2	
7470A Mercury, Dissolved	Analytical	Method: EPA 7	470A Prepa	aration Met	hod: EF	PA 7470A			
Mercury, Dissolved	ND	ug/L	0.20	0.062	1	02/15/18 12:32	02/15/18 15:50	7439-97-6	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

Sample: DP-27 (2-3)	Lab ID:	10420484010	Collecte	d: 02/11/18	15:15	Received: 02/	/13/18 10:40 Ma	atrix: Solid	
Results reported on a "dry weight"	' basis and ar	e adjusted for	percent mo	oisture, san	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: El	PA 3050			
Antimony	0.37J	mg/kg	1.0	0.12	1	02/14/18 09:16	02/16/18 15:56	7440-36-0	В
Beryllium	ND	mg/kg	0.26	0.031	1	02/14/18 09:16	02/16/18 15:56	7440-41-7	
Cadmium	0.069J	mg/kg	0.15	0.016	1	02/14/18 09:16	02/16/18 15:56	7440-43-9	
Chromium	4.1	mg/kg	0.51	0.066	1	02/14/18 09:16	02/16/18 15:56	7440-47-3	
Copper	2.2	mg/kg	0.51	0.086	1	02/14/18 09:16	02/16/18 15:56	7440-50-8	
Lead	2.4	mg/kg	0.51	0.12	1	02/14/18 09:16	02/16/18 15:56	7439-92-1	
Nickel	5.4	mg/kg	1.0	0.12	1	02/14/18 09:16	02/16/18 15:56	7440-02-0	
Silver	ND	mg/kg	0.51	0.040	1	02/14/18 09:16	02/16/18 15:56	7440-22-4	
Thallium	ND	mg/kg	1.0	0.22	1	02/14/18 09:16	02/16/18 15:56	7440-28-0	
Zinc	11.1	mg/kg	1.0	0.30	1	02/14/18 09:16	02/16/18 15:56	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	nod: EF	PA 3050			
Arsenic	1.7	mg/kg	0.50	0.23	20	02/15/18 07:32	02/17/18 04:19	7440-38-2	
Selenium	0.47J	mg/kg	0.50	0.25	20	02/15/18 07:32	02/17/18 04:19	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: El	PA 7471B			
Mercury	ND	mg/kg	0.019	0.0091	1	02/14/18 05:58	02/19/18 15:25	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	6.5	%	0.10	0.10	1		02/15/18 10:51		

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484									
Sample: DP-27 (20-21)	Lab ID:	10420484011	Collected	I: 02/11/18	15:50	Received: 02/	/13/18 10:40 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	adjusted for	percent mo	isture, san	nple s	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prepa	aration Met	hod: E	PA 3050			
Antimony	0.26J	mg/kg	1.1	0.13	1	02/14/18 09:16	02/16/18 16:06	7440-36-0	
Beryllium	0.048J	mg/kg	0.27	0.033	1	02/14/18 09:16	02/16/18 16:06	7440-41-7	
Cadmium	0.072J	mg/kg	0.16	0.017	1	02/14/18 09:16	02/16/18 16:06	7440-43-9	
Chromium	7.3	mg/kg	0.54	0.069	1	02/14/18 09:16	02/16/18 16:06	7440-47-3	
Copper	7.0	mg/kg	0.54	0.091	1	02/14/18 09:16	02/16/18 16:06	7440-50-8	
Lead	3.8	mg/kg	0.54	0.12	1	02/14/18 09:16	02/16/18 16:06	7439-92-1	
Nickel	9.4	mg/kg	1.1	0.13	1	02/14/18 09:16	02/16/18 16:06	7440-02-0	
Silver	ND	mg/kg	0.54	0.042	1	02/14/18 09:16	02/16/18 16:06	7440-22-4	
Thallium	ND	mg/kg	1.1	0.23	1	02/14/18 09:16	02/16/18 16:06	7440-28-0	
Zinc	17.7	mg/kg	1.1	0.32	1	02/14/18 09:16	02/16/18 16:06	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prepa	aration Met	nod: El	PA 3050			
Arsenic	3.4	mg/kg	0.57	0.26	20	02/15/18 07:32	02/17/18 04:23	7440-38-2	
Selenium	0.57	mg/kg	0.57	0.29	20	02/15/18 07:32	02/17/18 04:23	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prepa	aration Met	nod: E	PA 7471B			
Mercury	0.019J	mg/kg	0.022	0.010	1	02/14/18 05:58	02/19/18 15:27	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	13.2	%	0.10	0.10	1		02/15/18 10:51		

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

-

Sample: DP-26 (3-4)	Lab ID: 10420484012 Collected: 02/11/18 16:40 Received: 02/13/18 10:40 Matrix: Solid								
Results reported on a "dry weight"	' basis and are	e adjusted for	percent me	oisture, san	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: El	PA 3050			
Antimony	0.33J	mg/kg	1.0	0.12	1	02/14/18 09:16	02/16/18 16:08	7440-36-0	В
Beryllium	ND	mg/kg	0.26	0.032	1	02/14/18 09:16	02/16/18 16:08	7440-41-7	
Cadmium	0.044J	mg/kg	0.16	0.016	1	02/14/18 09:16	02/16/18 16:08	7440-43-9	
Chromium	3.7	mg/kg	0.52	0.067	1	02/14/18 09:16	02/16/18 16:08	7440-47-3	
Copper	1.6	mg/kg	0.52	0.088	1	02/14/18 09:16	02/16/18 16:08	7440-50-8	
Lead	2.2	mg/kg	0.52	0.12	1	02/14/18 09:16	02/16/18 16:08	7439-92-1	
Nickel	4.0	mg/kg	1.0	0.12	1	02/14/18 09:16	02/16/18 16:08	7440-02-0	
Silver	ND	mg/kg	0.52	0.041	1	02/14/18 09:16	02/16/18 16:08	7440-22-4	
Thallium	ND	mg/kg	1.0	0.23	1	02/14/18 09:16	02/16/18 16:08	7440-28-0	
Zinc	9.9	mg/kg	1.0	0.31	1	02/14/18 09:16	02/16/18 16:08	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	nod: EF	PA 3050			
Arsenic	1.5	mg/kg	0.55	0.25	20	02/15/18 07:32	02/17/18 04:27	7440-38-2	
Selenium	0.35J	mg/kg	0.55	0.27	20	02/15/18 07:32	02/17/18 04:27	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: El	PA 7471B			
Mercury	ND	mg/kg	0.021	0.0098	1	02/14/18 05:58	02/19/18 15:29	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	8.4	%	0.10	0.10	1		02/15/18 10:51		

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

Pace Project No.: 10420464	Lah ID:	40420494042	Colloctod	00/11/10	10.55	Received: 02/	12/10 10:40 M	atrix: Solid	
Sample: DP-26 (14-16)		10420484013		: 02/11/18				allix. Solid	
Results reported on a "dry we	eight" basis and are	adjusted for		sture, san	nple s	ize and any diluti	ons.		
_			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical I	Method: EPA 6	010C Prepa	ration Met	hod: E	PA 3050			
Antimony	ND	mg/kg	1.1	0.12	1	02/14/18 09:16	02/16/18 16:11	7440-36-0	
Beryllium	ND	mg/kg	0.26	0.032	1	02/14/18 09:16	02/16/18 16:11	7440-41-7	
Cadmium	0.053J	mg/kg	0.16	0.016	1	02/14/18 09:16	02/16/18 16:11	7440-43-9	
Chromium	5.9	mg/kg	0.53	0.067	1	02/14/18 09:16	02/16/18 16:11	7440-47-3	
Copper	7.0	mg/kg	0.53	0.088	1	02/14/18 09:16	02/16/18 16:11	7440-50-8	
Lead	2.9	mg/kg	0.53	0.12	1	02/14/18 09:16	02/16/18 16:11	7439-92-1	
Nickel	7.2	mg/kg	1.1	0.12	1	02/14/18 09:16	02/16/18 16:11	7440-02-0	
Silver	ND	mg/kg	0.53	0.041	1	02/14/18 09:16	02/16/18 16:11	7440-22-4	
Thallium	ND	mg/kg	1.1	0.23	1	02/14/18 09:16	02/16/18 16:11	7440-28-0	
Zinc	13.3	mg/kg	1.1	0.31	1	02/14/18 09:16	02/16/18 16:11	7440-66-6	
6020A MET ICPMS	Analytical I	Method: EPA 6	020A Prepa	ration Met	hod: E	PA 3050			
Arsenic	2.7	mg/kg	0.53	0.24	20	02/15/18 07:32	02/17/18 04:31	7440-38-2	

Selenium	0.41J	mg/kg	0.53	0.26	20	02/15/18 07:32	02/17/18 04:31	7782-49-2
7471B Mercury	Analytical	Method: EPA	7471B Prepara	ation Meth	nod: E	PA 7471B		
Mercury	ND	mg/kg	0.023	0.011	1	02/14/18 05:58	02/19/18 15:31	7439-97-6
Dry Weight / %M by ASTM D2974	Analytical	Method: AST	M D2974					
Percent Moisture	12.3	%	0.10	0.10	1		02/15/18 10:52	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

Sample: DP-26	Lab ID:	10420484014	Collected	d: 02/11/18	3 17:05	Received: 02/	/13/18 10:40 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP, Dissolved	Analytical	Method: 60100	CMet Prepa	aration Met	hod: EF	PA 3010			
Antimony, Dissolved	3.2J	ug/L	20.0	3.1	1	02/15/18 12:04	02/16/18 17:15	7440-36-0	
Beryllium, Dissolved	ND	ug/L	5.0	0.11	1	02/15/18 12:04	02/16/18 17:15	7440-41-7	
Cadmium, Dissolved	ND	ug/L	3.0	0.46	1	02/15/18 12:04	02/16/18 17:15	7440-43-9	
Chromium, Dissolved	ND	ug/L	10.0	0.50	1	02/15/18 12:04	02/16/18 17:15	7440-47-3	
Copper, Dissolved	2.6J	ug/L	10.0	0.83	1	02/15/18 12:04	02/16/18 17:15	7440-50-8	
Lead, Dissolved	ND	ug/L	10.0	3.0	1	02/15/18 12:04	02/16/18 17:15	7439-92-1	
Nickel, Dissolved	15.8J	ug/L	20.0	1.1	1	02/15/18 12:04	02/16/18 17:15	7440-02-0	
Silver, Dissolved	0.29J	ug/L	10.0	0.27	1	02/15/18 12:04	02/16/18 17:15	7440-22-4	
Thallium, Dissolved	8.6J	ug/L	20.0	4.8	1	02/15/18 12:04	02/16/18 17:15	7440-28-0	
Zinc, Dissolved	2.9J	ug/L	20.0	1.8	1	02/15/18 12:04	02/16/18 17:15	7440-66-6	
6020A MET ICPMS, Dissolved	Analytical	Method: EPA 6	020A Prep	aration Met	hod: EF	PA 3020			
Arsenic, Dissolved	3.2	ug/L	0.50	0.21	1	02/15/18 12:04	02/19/18 22:35	7440-38-2	
Selenium, Dissolved	0.48J	ug/L	0.50	0.17	1	02/15/18 12:04	02/19/18 22:35	7782-49-2	
7470A Mercury, Dissolved	Analytical	Method: EPA 7	470A Prep	aration Met	hod: EF	PA 7470A			
Mercury, Dissolved	ND	ug/L	0.20	0.062	1	02/15/18 12:32	02/15/18 15:52	7439-97-6	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

Sample: DP-25 (2-3)	Lab ID:	10420484015	Collecte	d: 02/12/18	3 08:30	Received: 02/	/13/18 10:40 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	e adjusted for	percent mo	oisture, sar	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: El	PA 3050			
Antimony	ND	mg/kg	1.1	0.13	1	02/14/18 09:16	02/16/18 16:14	7440-36-0	
Beryllium	0.091J	mg/kg	0.28	0.033	1	02/14/18 09:16	02/16/18 16:14	7440-41-7	
Cadmium	0.14J	mg/kg	0.17	0.017	1	02/14/18 09:16	02/16/18 16:14	7440-43-9	
Chromium	13.9	mg/kg	0.55	0.070	1	02/14/18 09:16	02/16/18 16:14	7440-47-3	
Copper	13.8	mg/kg	0.55	0.092	1	02/14/18 09:16	02/16/18 16:14	7440-50-8	
Lead	13.7	mg/kg	0.55	0.12	1	02/14/18 09:16	02/16/18 16:14	7439-92-1	
Nickel	10.7	mg/kg	1.1	0.13	1	02/14/18 09:16	02/16/18 16:14	7440-02-0	
Silver	0.059J	mg/kg	0.55	0.043	1	02/14/18 09:16	02/16/18 16:14	7440-22-4	
Thallium	0.27J	mg/kg	1.1	0.24	1	02/14/18 09:16	02/16/18 16:14	7440-28-0	
Zinc	27.8	mg/kg	1.1	0.32	1	02/14/18 09:16	02/16/18 16:14	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	hod: EF	PA 3050			
Arsenic	2.5	mg/kg	0.57	0.26	20	02/15/18 07:32	02/17/18 04:42	7440-38-2	
Selenium	0.47J	mg/kg	0.57	0.29	20	02/15/18 07:32	02/17/18 04:42	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: El	PA 7471B			
Mercury	0.029	mg/kg	0.020	0.0095	1	02/14/18 05:58	02/19/18 15:37	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	13.5	%	0.10	0.10	1		02/15/18 10:52		

Project: 31401059.001 I-35W MN Rvr Brdg

0.058J

6.2

mg/kg

mg/kg

Pace Project No.: 10420484

Cadmium

Chromium

Sample: DP-25 (16-17)	Lab ID:	10420484016	Collected	d: 02/12/18	8 08:55	Received: 02/	'13/18 10:40 M	atrix: Solid	
Results reported on a "dry weig	ght" basis and are	e adjusted for p	percent mo	oisture, sar	nple siz	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP		Method: EPA 6	010C Pren	aration Met	hod: EE	24 3050			
SOTOC METICF	Analytical					A 3030			
Antimony	0.12J	mg/kg	1.0	0.12	1	02/14/18 09:16	02/16/18 16:17	7440-36-0	В
Beryllium	ND	mg/kg	0.26	0.031	1	02/14/18 09:16	02/16/18 16:17	7440-41-7	

0.016

0.066

1

1

02/14/18 09:16 02/16/18 16:17 7440-43-9

02/14/18 09:16 02/16/18 16:17 7440-47-3

0.15

0.51

		3.3							
Copper	7.0	mg/kg	0.51	0.086	1	02/14/18 09:16	02/16/18 16:17	7440-50-8	
Lead	3.4	mg/kg	0.51	0.12	1	02/14/18 09:16	02/16/18 16:17	7439-92-1	
Nickel	8.3	mg/kg	1.0	0.12	1	02/14/18 09:16	02/16/18 16:17	7440-02-0	
Silver	ND	mg/kg	0.51	0.040	1	02/14/18 09:16	02/16/18 16:17	7440-22-4	
Thallium	ND	mg/kg	1.0	0.22	1	02/14/18 09:16	02/16/18 16:17	7440-28-0	
Zinc	17.3	mg/kg	1.0	0.30	1	02/14/18 09:16	02/16/18 16:17	7440-66-6	
6020A MET ICPMS	Analytical I	Vethod: EPA 6	020A Prepar	ation Meth	nod: El	PA 3050			
Arsenic	2.8	mg/kg	0.53	0.24	20	02/15/18 07:32	02/17/18 04:46	7440-38-2	
Selenium	0.48J	mg/kg	0.53	0.26	20	02/15/18 07:32	02/17/18 04:46	7782-49-2	
7471B Mercury	Analytical I	Method: EPA 7	471B Prepar	ation Meth	nod: El	PA 7471B			
Mercury	0.013J	mg/kg	0.020	0.0092	1	02/14/18 05:58	02/19/18 15:40	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical I	Method: ASTM	D2974						
Percent Moisture	8.3	%	0.10	0.10	1		02/15/18 10:52		

Project:	31401059.001 I-35W MN Rvr Brdg
----------	--------------------------------

Pace Project No.: 10420484

		~	40.4				
11	121.7	1112	18/				

Sample: DP-25	Lab ID:	10420484017	Collected	d: 02/12/18	8 09:10	Received: 02/	'13/18 10:40 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP, Dissolved	Analytical	Method: 6010C	Met Prepa	aration Met	nod: EP	A 3010			
Antimony, Dissolved	ND	ug/L	20.0	3.1	1	02/15/18 12:04	02/16/18 17:18	7440-36-0	
Beryllium, Dissolved	ND	ug/L	5.0	0.11	1	02/15/18 12:04	02/16/18 17:18	7440-41-7	
Cadmium, Dissolved	ND	ug/L	3.0	0.46	1	02/15/18 12:04	02/16/18 17:18	7440-43-9	
Chromium, Dissolved	ND	ug/L	10.0	0.50	1	02/15/18 12:04	02/16/18 17:18	7440-47-3	
Copper, Dissolved	2.6J	ug/L	10.0	0.83	1	02/15/18 12:04	02/16/18 17:18	7440-50-8	
Lead, Dissolved	ND	ug/L	10.0	3.0	1	02/15/18 12:04	02/16/18 17:18	7439-92-1	
Nickel, Dissolved	12.7J	ug/L	20.0	1.1	1	02/15/18 12:04	02/16/18 17:18	7440-02-0	
Silver, Dissolved	0.28J	ug/L	10.0	0.27	1	02/15/18 12:04	02/16/18 17:18	7440-22-4	
Thallium, Dissolved	6.2J	ug/L	20.0	4.8	1	02/15/18 12:04	02/16/18 17:18	7440-28-0	
Zinc, Dissolved	2.4J	ug/L	20.0	1.8	1	02/15/18 12:04	02/16/18 17:18	7440-66-6	
6020A MET ICPMS, Dissolved	Analytical	Method: EPA 6	020A Prepa	aration Met	hod: EP	PA 3020			
Arsenic, Dissolved	0.22J	ug/L	0.50	0.21	1	02/15/18 12:04	02/19/18 22:25	7440-38-2	
Selenium, Dissolved	ND	ug/L	0.50	0.17	1	02/15/18 12:04	02/19/18 22:25	7782-49-2	
7470A Mercury, Dissolved	Analytical	Method: EPA 7	470A Prepa	aration Met	hod: EP	PA 7470A			
Mercury, Dissolved	ND	ug/L	0.20	0.062	1	02/15/18 12:32	02/15/18 15:55	7439-97-6	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

Sample: DP-18 (2-3)	Lab ID:	10420484018	Collected	d: 02/12/18	10:50	Received: 02/	13/18 10:40 Ma	atrix: Solid	
Results reported on a "dry weight"	' basis and ar	e adjusted for	percent mo	oisture, san	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: El	PA 3050			
Antimony	ND	mg/kg	1.1	0.12	1	02/14/18 09:16	02/16/18 16:20	7440-36-0	
Beryllium	0.040J	mg/kg	0.26	0.032	1	02/14/18 09:16	02/16/18 16:20	7440-41-7	
Cadmium	0.21	mg/kg	0.16	0.016	1	02/14/18 09:16	02/16/18 16:20	7440-43-9	
Chromium	12.5	mg/kg	0.53	0.067	1	02/14/18 09:16	02/16/18 16:20	7440-47-3	
Copper	14.4	mg/kg	0.53	0.089	1	02/14/18 09:16	02/16/18 16:20	7440-50-8	
Lead	55.0	mg/kg	0.53	0.12	1	02/14/18 09:16	02/16/18 16:20	7439-92-1	
Nickel	10.1	mg/kg	1.1	0.12	1	02/14/18 09:16	02/16/18 16:20	7440-02-0	
Silver	ND	mg/kg	0.53	0.041	1	02/14/18 09:16	02/16/18 16:20	7440-22-4	
Thallium	ND	mg/kg	1.1	0.23	1	02/14/18 09:16	02/16/18 16:20	7440-28-0	
Zinc	53.2	mg/kg	1.1	0.31	1	02/14/18 09:16	02/16/18 16:20	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prepa	aration Met	nod: EF	PA 3050			
Arsenic	4.4	mg/kg	0.55	0.25	20	02/15/18 07:32	02/17/18 04:50	7440-38-2	
Selenium	0.59	mg/kg	0.55	0.27	20	02/15/18 07:32	02/17/18 04:50	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	nod: EF	PA 7471B			
Mercury	0.038	mg/kg	0.021	0.0098	1	02/14/18 05:58	02/19/18 15:42	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	10.8	%	0.10	0.10	1		02/15/18 10:52		

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

Sample: DP-18 (9-10)	Lab ID:	10420484019	Collected	d: 02/12/18	8 10:55	Received: 02/	/13/18 10:40 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and ar	e adjusted for	percent mo	oisture, san	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: El	PA 3050			
Antimony	ND	mg/kg	1.1	0.12	1	02/14/18 09:16	02/16/18 16:23	7440-36-0	
Beryllium	0.035J	mg/kg	0.27	0.032	1	02/14/18 09:16	02/16/18 16:23	7440-41-7	
Cadmium	0.12J	mg/kg	0.16	0.016	1	02/14/18 09:16	02/16/18 16:23	7440-43-9	
Chromium	7.8	mg/kg	0.54	0.069	1	02/14/18 09:16	02/16/18 16:23	7440-47-3	
Copper	7.5	mg/kg	0.54	0.090	1	02/14/18 09:16	02/16/18 16:23	7440-50-8	
Lead	3.4	mg/kg	0.54	0.12	1	02/14/18 09:16	02/16/18 16:23	7439-92-1	
Nickel	7.8	mg/kg	1.1	0.13	1	02/14/18 09:16	02/16/18 16:23	7440-02-0	
Silver	ND	mg/kg	0.54	0.042	1	02/14/18 09:16	02/16/18 16:23	7440-22-4	
Thallium	ND	mg/kg	1.1	0.23	1	02/14/18 09:16	02/16/18 16:23	7440-28-0	
Zinc	21.2	mg/kg	1.1	0.31	1	02/14/18 09:16	02/16/18 16:23	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	nod: EF	PA 3050			
Arsenic	3.0	mg/kg	0.55	0.25	20	02/15/18 07:32	02/17/18 04:54	7440-38-2	
Selenium	1.0	mg/kg	0.55	0.27	20	02/15/18 07:32	02/17/18 04:54	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: EF	PA 7471B			
Mercury	0.017J	mg/kg	0.020	0.0092	1	02/14/18 05:58	02/19/18 15:44	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	10.7	%	0.10	0.10	1		02/15/18 12:43		

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

-

Sample: DP-19 (2-3)	Lab ID:	10420484020	Collecte	d: 02/12/18	3 12:30	Received: 02/	/13/18 10:40 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	e adjusted for j	percent mo	oisture, san	nple si	ze and any diluti	ions.		
Sample: DP-19 (2-3) Lab ID: 10420484020 Collected: 02/12/18 12:30 Received: 02/13/18 10:40 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 6010C MET ICP Analytical Method: EPA 6010C Preparation Method: EPA 3050 Analytical 0.02/16/18 16:25 7440-36-0 B Beryllium ND mg/kg 0.15 0.015 0.011 1 02/16/18 16:25 7440-41-7 S Cadmium 0.058J mg/kg 0.15 0.015 1 02/14/18 09:16 02/16/18 16:25 7440-41-7 Copper 5.5 mg/kg 0.49 0.063 1 02/14/18 09:16 02/16/18 16:25 7440-41-7 Nickel 6.5 mg/kg 0.49 0.082 1 02/16/18 16:25 7440-41-7 Nickel 6.5 mg/kg 0.49 0.082 <									
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: El	PA 3050			
Antimony	0.17J	mg/kg	0.98	0.11	1	02/14/18 09:16	02/16/18 16:25	7440-36-0	В
Beryllium	ND	mg/kg	0.25	0.030	1	02/14/18 09:16	02/16/18 16:25	7440-41-7	
Cadmium	0.058J	mg/kg	0.15	0.015	1	02/14/18 09:16	02/16/18 16:25	7440-43-9	
Chromium	5.2	mg/kg	0.49	0.063	1	02/14/18 09:16	02/16/18 16:25	7440-47-3	
Copper	5.5	mg/kg	0.49	0.082	1	02/14/18 09:16	02/16/18 16:25	7440-50-8	
Lead	2.0	mg/kg	0.49	0.11	1	02/14/18 09:16	02/16/18 16:25	7439-92-1	
Nickel	6.5	mg/kg	0.98	0.11	1	02/14/18 09:16	02/16/18 16:25	7440-02-0	
Silver	ND	mg/kg	0.49	0.038	1	02/14/18 09:16	02/16/18 16:25	7440-22-4	
Thallium	ND	mg/kg	0.98	0.21	1	02/14/18 09:16	02/16/18 16:25	7440-28-0	
Zinc	11.1	mg/kg	0.98	0.29	1	02/14/18 09:16	02/16/18 16:25	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	nod: EF	PA 3050			
Arsenic	1.5	mg/kg	0.52	0.24	20	02/15/18 07:32	02/17/18 04:58	7440-38-2	
Selenium	ND	mg/kg	0.52	0.26	20	02/15/18 07:32	02/17/18 04:58	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: El	PA 7471B			
Mercury	ND	mg/kg	0.019	0.0090	1	02/14/18 05:58	02/19/18 15:46	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	5.7	%	0.10	0.10	1		02/15/18 12:44		

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

Sample: DP-19 (9-10)	Lab ID:	10420484021	Collected	d: 02/12/18	3 12:50	Received: 02/	13/18 10:40 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and ar	e adjusted for	percent mo	oisture, sar	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: El	PA 3050			
Antimony	ND	mg/kg	1.0	0.12	1	02/14/18 09:16	02/16/18 16:28	7440-36-0	
Beryllium	0.060J	mg/kg	0.26	0.031	1	02/14/18 09:16	02/16/18 16:28	7440-41-7	
Cadmium	0.074J	mg/kg	0.16	0.016	1	02/14/18 09:16	02/16/18 16:28	7440-43-9	
Chromium	14.9	mg/kg	0.52	0.067	1	02/14/18 09:16	02/16/18 16:28	7440-47-3	
Copper	17.3	mg/kg	0.52	0.087	1	02/14/18 09:16	02/16/18 16:28	7440-50-8	
Lead	3.9	mg/kg	0.52	0.12	1	02/14/18 09:16	02/16/18 16:28	7439-92-1	
Nickel	14.2	mg/kg	1.0	0.12	1	02/14/18 09:16	02/16/18 16:28	7440-02-0	
Silver	0.054J	mg/kg	0.52	0.041	1	02/14/18 09:16	02/16/18 16:28	7440-22-4	
Thallium	0.28J	mg/kg	1.0	0.23	1	02/14/18 09:16	02/16/18 16:28	7440-28-0	
Zinc	21.9	mg/kg	1.0	0.30	1	02/14/18 09:16	02/16/18 16:28	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	hod: EF	PA 3050			
Arsenic	2.6	mg/kg	0.54	0.25	20	02/15/18 07:32	02/17/18 05:02	7440-38-2	
Selenium	0.55	mg/kg	0.54	0.27	20	02/15/18 07:32	02/17/18 05:02	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: EF	PA 7471B			
Mercury	0.012J	mg/kg	0.020	0.0093	1	02/14/18 05:58	02/19/18 15:48	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	11.4	%	0.10	0.10	1		02/15/18 12:44		

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

Sample: DP-20 (2-3)	Lab ID:	10420484022	Collected	d: 02/12/18	3 13:30	Received: 02/	'13/18 10:40 Ma	atrix: Solid	
Results reported on a "dry weight"	' basis and ar	e adjusted for	percent mo	oisture, sar	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: El	PA 3050			
Antimony	ND	mg/kg	1.1	0.12	1	02/14/18 09:16	02/16/18 16:31	7440-36-0	В
Beryllium	ND	mg/kg	0.27	0.032	1	02/14/18 09:16	02/16/18 16:31	7440-41-7	
Cadmium	0.085J	mg/kg	0.16	0.016	1	02/14/18 09:16	02/16/18 16:31	7440-43-9	
Chromium	5.9	mg/kg	0.53	0.068	1	02/14/18 09:16	02/16/18 16:31	7440-47-3	
Copper	6.0	mg/kg	0.53	0.089	1	02/14/18 09:16	02/16/18 16:31	7440-50-8	
Lead	5.1	mg/kg	0.53	0.12	1	02/14/18 09:16	02/16/18 16:31	7439-92-1	
Nickel	6.2	mg/kg	1.1	0.12	1	02/14/18 09:16	02/16/18 16:31	7440-02-0	
Silver	ND	mg/kg	0.53	0.042	1	02/14/18 09:16	02/16/18 16:31	7440-22-4	
Thallium	ND	mg/kg	1.1	0.23	1	02/14/18 09:16	02/16/18 16:31	7440-28-0	
Zinc	24.3	mg/kg	1.1	0.31	1	02/14/18 09:16	02/16/18 16:31	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	nod: EF	PA 3050			
Arsenic	2.2	mg/kg	0.53	0.24	20	02/15/18 07:32	02/17/18 05:05	7440-38-2	
Selenium	0.33J	mg/kg	0.53	0.26	20	02/15/18 07:32	02/17/18 05:05	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: EF	PA 7471B			
Mercury	0.011J	mg/kg	0.020	0.0093	1	02/14/18 05:58	02/19/18 15:50	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	8.8	%	0.10	0.10	1		02/15/18 12:44		

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

Sample: DP-20 (9-10)	Lab ID:	10420484023	Collected	d: 02/12/18	13:45	Received: 02/	/13/18 10:40 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and ar	e adjusted for	percent mo	oisture, san	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: Ef	PA 3050			
Antimony	ND	mg/kg	1.1	0.13	1	02/14/18 09:16	02/16/18 16:53	7440-36-0	
Beryllium	0.084J	mg/kg	0.28	0.033	1	02/14/18 09:16	02/16/18 16:53	7440-41-7	
Cadmium	0.13J	mg/kg	0.17	0.017	1	02/14/18 09:16	02/16/18 16:53	7440-43-9	
Chromium	9.7	mg/kg	0.55	0.070	1	02/14/18 09:16	02/16/18 16:53	7440-47-3	
Copper	9.9	mg/kg	0.55	0.092	1	02/14/18 09:16	02/16/18 16:53	7440-50-8	
Lead	5.0	mg/kg	0.55	0.12	1	02/14/18 09:16	02/16/18 16:53	7439-92-1	
Nickel	13.4	mg/kg	1.1	0.13	1	02/14/18 09:16	02/16/18 16:53	7440-02-0	
Silver	ND	mg/kg	0.55	0.043	1	02/14/18 09:16	02/16/18 16:53	7440-22-4	
Thallium	ND	mg/kg	1.1	0.24	1	02/14/18 09:16	02/16/18 16:53	7440-28-0	
Zinc	22.8	mg/kg	1.1	0.32	1	02/14/18 09:16	02/16/18 16:53	7440-66-6	
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Metl	nod: EF	PA 3050			
Arsenic	3.5	mg/kg	0.54	0.24	20	02/15/18 07:32	02/17/18 05:09	7440-38-2	
Selenium	0.58	mg/kg	0.54	0.27	20	02/15/18 07:32	02/17/18 05:09	7782-49-2	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	nod: EF	PA 7471B			
Mercury	ND	mg/kg	0.021	0.0097	1	02/14/18 05:58	02/19/18 15:52	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	12.9	%	0.10	0.10	1		02/15/18 12:44		

QUALITY CONTROL DATA

Project: Pace Project No.:	31401059.001 I-3 10420484	5W MN Rvr Brdg										
QC Batch:	522980		Analys	is Method:	E	PA 7470A						
QC Batch Method:	EPA 7470A		Analysi	is Descript	tion: 7	470A Mercu	iry Water	Dissolved				
Associated Lab San	nples: 10420484	4009, 10420484014	1, 104204840	017								
METHOD BLANK:	2839022		N	latrix: Wa	ter							
Associated Lab San	nples: 10420484	4009, 10420484014	4, 104204840	017								
			Blank	R	eporting							
Paran	neter	Units	Result	t	Limit	MDL		Analyzed	Qua	alifiers		
Mercury, Dissolved		ug/L		ND	0.20	0 0	0.062 02	2/15/18 15:4	6			
LABORATORY COM	NTROL SAMPLE:	2839023										
			Spike	LCS	3	LCS	% R	ec				
Paran	neter	Units	Conc.	Resu	ılt	% Rec	Limi	ts Q	ualifiers			
Mercury, Dissolved		ug/L	5		4.8	97	8	30-120		_		
MATRIX SPIKE & M	IATRIX SPIKE DUI	PLICATE: 28390			2839025							
			MS	MSD								
Devenueto		10420484017	Spike	Spike	MS	MSD	MS % Date	MSD	% Rec		Max	0
Paramete	er Un		Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD		Qual
Mercury, Dissolved	ug	I/L ND	5	5	5.0	5.1	9	9 102	80-120	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Pace Project No.:	31401059.001 I-35W MN Rvr Brdg 10420484												
QC Batch:					nalysis Method:		EPA 7471B						
QC Batch Method:	EPA 7471B			Analysis Description:			7471B Mercury Solids						
1042048400		420484008	, 10420484010), 10420484011, 104204840			4, 10420484005, 10420484006, 104204 2, 10420484013, 10420484015, 104204 1, 10420484022, 10420484023				,		
METHOD BLANK:	2838615			N	latrix: Soli	id							
104204840		420484008	, 10420484002, , 10420484010, , 10420484019,	104204840	011, 10420 020, 10420	0484012,	10420484013	3, 1042048	34015, 1042	,	,		
Parameter			Units	Result	t	Limit	MDL		Analyzed		Qualifiers		
Mercury			mg/kg		ND	0.01	19 0.0	0090 02	/19/18 14:50	6			
LABORATORY CON	ITROL SAM	MPLE: 28	38616										
Parameter		Units	Spike LCS Conc. Result			LCS % Rec	% Re Limit		ualifiers				
Mercury			mg/kg	.47		0.46	99	8	0-120		_		
MATRIX SPIKE & M	ATRIX SPI	KE DUPLIC	ATE: 28386 ²	I7 MS	MSD	283861	8						
			10420484001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury		mg/kg	ND	.47	.49	0.4	0.49	97	97	75-125	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	31401059.001 I-35W MN Rvr Brdg

Pace Project No.:	10420484
-------------------	----------

QC Batch:	522862	Analysis Method:	EPA 6010C	
QC Batch Method:	EPA 3050	Analysis Description:	6010C Solids	
Associated Lab Samp	10420484008		I, 10420484005, 10420484006, 10420484007, I, 10420484013, 10420484015, 10420484016, I, 10420484022, 10420484023	
METHOD BLANK: 2	2838564	Matrix: Solid		
A	10400404004	40400404000 40400404000 404004040	40400404005 40400404000 40400404007	

Associated Lab Samples: 10420484001, 10420484002, 10420484003, 10420484004, 10420484005, 10420484006, 10420484007, 10420484008, 10420484010, 10420484011, 10420484012, 10420484013, 10420484015, 10420484016, 10420484018, 10420484019, 10420484020, 10420484021, 10420484022, 10420484023

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	mg/kg	0.12J	0.99	0.11	02/16/18 15:02	
Beryllium	mg/kg	ND	0.25	0.030	02/16/18 15:02	
Cadmium	mg/kg	ND	0.15	0.015	02/16/18 15:02	
Chromium	mg/kg	ND	0.50	0.063	02/16/18 15:02	
Copper	mg/kg	ND	0.50	0.083	02/16/18 15:02	
Lead	mg/kg	ND	0.50	0.11	02/16/18 15:02	
Nickel	mg/kg	ND	0.99	0.12	02/16/18 15:02	
Silver	mg/kg	ND	0.50	0.039	02/16/18 15:02	
Thallium	mg/kg	ND	0.99	0.21	02/16/18 15:02	
Zinc	mg/kg	ND	0.99	0.29	02/16/18 15:02	

LABORATORY CONTROL SAMPLE: 2838565

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/kg	48.1	47.9	100	80-120	
Beryllium	mg/kg	48.1	46.2	96	80-120	
Cadmium	mg/kg	48.1	46.3	96	80-120	
Chromium	mg/kg	48.1	49.8	104	80-120	
Copper	mg/kg	48.1	48.7	101	80-120	
Lead	mg/kg	48.1	47.7	99	80-120	
Nickel	mg/kg	48.1	49.1	102	80-120	
Silver	mg/kg	24	22.8	95	80-120	
Thallium	mg/kg	48.1	48.4	101	80-120	
Zinc	mg/kg	48.1	47.1	98	80-120	

MATRIX SPIKE & MATRIX	SPIKE DUPLICA	TE: 28385	66		2838567							
Parameter	1 Units	0420484001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Antimony	mg/kg	ND	49.9	50.5	35.8	37.6	71	74	75-125	5	20	M1
Beryllium	mg/kg	ND	49.9	50.5	48.6	49.4	97	98	75-125	2	20	
Cadmium	mg/kg	0.096J	49.9	50.5	48.5	49.6	97	98	75-125	2	20	
Chromium	mg/kg	7.1	49.9	50.5	56.9	58.4	100	102	75-125	3	20	
Copper	mg/kg	8.7	49.9	50.5	57.0	57.9	97	98	75-125	2	20	
Lead	mg/kg	2.9	49.9	50.5	51.3	52.6	97	99	75-125	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

MATRIX SPIKE & MATRIX S	PIKE DUPLICA	TE: 28385	66		2838567							
	10	0420484001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Nickel	mg/kg	8.1	49.9	50.5	57.3	58.7	98	100	75-125	2	20	
Silver	mg/kg	ND	25	25.2	23.8	24.2	95	96	75-125	2	20	
Thallium	mg/kg	ND	49.9	50.5	50.0	51.1	98	99	75-125	2	20	
Zinc	mg/kg	15.6	49.9	50.5	61.7	64.0	92	96	75-125	4	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

QC Batch:	523126	Analysis Method:	6010C Met
QC Batch Method:	EPA 3010	Analysis Description:	6010C Water Dissolved
Associated Lab Sam	ples: 10420484009, 10420484014, 1	0420484017	
METHOD BLANK:	2839994	Matrix: Water	

Associated Lab Samples: 10420484009 10420484014 10420484017

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony, Dissolved	ug/L	ND	20.0	3.1	02/16/18 16:56	
Beryllium, Dissolved	ug/L	ND	5.0	0.11	02/16/18 16:56	
Cadmium, Dissolved	ug/L	ND	3.0	0.46	02/16/18 16:56	
Chromium, Dissolved	ug/L	ND	10.0	0.50	02/16/18 16:56	
Copper, Dissolved	ug/L	ND	10.0	0.83	02/16/18 16:56	
Lead, Dissolved	ug/L	ND	10.0	3.0	02/16/18 16:56	
Nickel, Dissolved	ug/L	ND	20.0	1.1	02/16/18 16:56	
Silver, Dissolved	ug/L	ND	10.0	0.27	02/16/18 16:56	
Thallium, Dissolved	ug/L	ND	20.0	4.8	02/16/18 16:56	
Zinc, Dissolved	ug/L	ND	20.0	1.8	02/16/18 16:56	

LABORATORY CONTROL SAMPLE: 2839995

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony, Dissolved	ug/L	1000	1020	102	80-120	
Beryllium, Dissolved	ug/L	1000	1040	104	80-120	
Cadmium, Dissolved	ug/L	1000	1010	101	80-120	
Chromium, Dissolved	ug/L	1000	1010	101	80-120	
Copper, Dissolved	ug/L	1000	987	99	80-120	
Lead, Dissolved	ug/L	1000	1010	101	80-120	
Nickel, Dissolved	ug/L	1000	1020	102	80-120	
Silver, Dissolved	ug/L	500	496	99	80-120	
Thallium, Dissolved	ug/L	1000	1030	103	80-120	
Zinc, Dissolved	ug/L	1000	1010	101	80-120	

MATRIX SPIKE & MATRIX S	PIKE DUPLICA	TE: 28399	96		2839997							
			MS	MSD								
	1	0420484009	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony, Dissolved	ug/L	3.3J	1000	1000	1080	1070	107	107	75-125	0	20	
Beryllium, Dissolved	ug/L	0.15J	1000	1000	1110	1090	111	109	75-125	2	20	
Cadmium, Dissolved	ug/L	0.72J	1000	1000	1060	1040	106	104	75-125	2	20	
Chromium, Dissolved	ug/L	ND	1000	1000	996	976	100	98	75-125	2	20	
Copper, Dissolved	ug/L	3.5J	1000	1000	1070	1050	106	105	75-125	2	20	
Lead, Dissolved	ug/L	ND	1000	1000	964	945	96	94	75-125	2	20	
Nickel, Dissolved	ug/L	39.0	1000	1000	1010	987	97	95	75-125	2	20	
Silver, Dissolved	ug/L	0.55J	500	500	538	529	107	106	75-125	2	20	
Thallium, Dissolved	ug/L	8.6J	1000	1000	949	931	94	92	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

 Project:
 31401059.001 I-35W MN Rvr Brdg

 Pace Project No.:
 10420484

MATRIX SPIKE & MATRIX SP	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2839996 2839997										
			MS	MSD							
	1	0420484009	Spike	Spike	MS	MSD	MS	MSD	% Rec	Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD RPD	Qual
Zinc, Dissolved	ug/L	3.8J	1000	1000	940	920	94	92	75-125	2 20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	31401059.0	01 I-35W N	MN Rvr Brdg										
Pace Project No.:	10420484												
QC Batch:	522976			Analysi	s Method:	E	PA 6020A						
QC Batch Method:	EPA 3050			Analysi	s Descript	ion: 6	020A Solids	UPD4					
Associated Lab San	104	20484008,	, 10420484002 , 10420484010 , 10420484019	, 104204840	011, 10420)484012, 1	0420484013	3, 104204	84015, 104				
METHOD BLANK:	2838987			М	latrix: Soli	d							
Associated Lab San	104	20484008,	, 10420484002 , 10420484010 , 10420484019	, 104204840 , 104204840	011, 10420 020, 10420)484012, 1)484021, 1	0420484013	3, 104204	84015, 104	,			
Paran	neter		Units	Blank Result		eporting Limit	MDL		Analyzed	Qua	alifiers		
Arsenic Selenium			mg/kg mg/kg		ND ND	0.48 0.48			2/17/18 03:1 2/17/18 03:1				
LABORATORY CON	NTROL SAME	PLE: 283	38988										
Demo			11-20-	Spike	LCS		LCS	% R					
Paran	neter		Units	Conc.	Resu		% Rec	Limi		Qualifiers			
Arsenic Selenium			mg/kg mg/kg	45.9 45.9		45.9 45.8	100 100		80-120 80-120				
MATRIX SPIKE & M	IATRIX SPIKI	E DUPLIC	ATE: 283898	89 MS	MSD	2838990							
		1	10420484001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
i alamoto													
Arsenic		mg/kg	1.7	49.5	52.4	50.5	54.4	99) 10 1	l 75-125	7	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	31401059.001 I-3 10420484	5W MN Rvr Brdg									
QC Batch:	523127		Analysi	s Method:	E	PA 6020A					
QC Batch Method:	EPA 3020		Analysi	s Descripti	on: 6	020A Water	Dissolved	UPD4			
Associated Lab San	nples: 10420484	4009, 10420484014	, 104204840)17							
METHOD BLANK:	2839998		Μ	latrix: Wat	er						
Associated Lab San	nples: 10420484	4009, 10420484014	, 104204840	017							
			Blank	Re	eporting						
Paran	neter	Units	Result		Limit	MDL	A	Analyzed	Qua	alifiers	
Arsenic, Dissolved		ug/L		ND	0.50		0.21 02/	19/18 22:21			_
Selenium, Dissolved	ł	ug/L		ND	0.50		0.17 02/	19/18 22:21			
LABORATORY COM	NTROL SAMPLE:	2839999									
Davaa		Linita	Spike	LCS		LCS	% Rec		- 1:6:		
Paran	heter	Units	Conc.	Resul	·	% Rec	Limits	Qu	alifiers	-	
Arsenic, Dissolved											
		ug/L	100		107	107		-120			
Selenium, Dissolved	ł	ug/L ug/L	100 100		107 108	107 108		-120 -120			
		ug/L	100		108						
Selenium, Dissolved		ug/L	100	MSD							
		ug/L	100 00 MS	MSD Spike	108				% Rec		Max
	IATRIX SPIKE DUI	ug/L PLICATE: 28400 10420484014	100	MSD Spike Conc.	108 2840001	108	80	-120	% Rec Limits	RPD	Max RPD
MATRIX SPIKE & M	IATRIX SPIKE DUI	ug/L PLICATE: 28400 10420484014 its Result	100 00 MS Spike	Spike	108 2840001 MS	108 MSD	80 MS	-120 MSD			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Qual

Project:	31401059.	001 I-35W MN Rvr Bro	dg					
Pace Project No.:	10420484							
QC Batch:	523145		Analysis Meth	od: As	STM D2974			
QC Batch Method:	ASTM D2	2974	Analysis Desc	ription: Di	ry Weight / %	6M by A	ASTM D2974	1
Associated Lab Sai	10	,	4002, 10420484003, 10 4010, 10420484011, 10	,		·	,	,
SAMPLE DUPLICA	TE: 28400	52						
			60263379007	Dup			Max	
Para	meter	Units	Result	Result	RPD		RPD	Qualifiers
Percent Moisture		%	2.3	2.2		4	30)
SAMPLE DUPLICA	TE: 28400	53						
			10420484018	Dup			Max	
Parar	meter	Units	Result	Result	RPD		RPD	Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	31401059.001 I-35	W MN Rvr Brdg							
Pace Project No.:	10420484								
QC Batch:	523159		Analysis Meth	od:	ASTM D2974				
QC Batch Method:	ASTM D2974		Analysis Desc	ription:	Dry Weight / %	M by A	STM D29	74	
Associated Lab Sar	nples: 10420484	019, 10420484020), 10420484021, 10	420484022,	10420484023				
SAMPLE DUPLICA	TE: 2840091								
_			10420484019	Dup			Max		
Paran	neter	Units	Result	Result	RPD		RPD		Qualifiers
Percent Moisture		%	10.7	10	7	0		30	
SAMPLE DUPLICA	TE: 2840092								
			10419819001	Dup			Max		
Paran	neter	Units	Result	Result	RPD		RPD		Qualifiers
Percent Moisture		%	60.7	60	5	0		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

- B Analyte was detected in the associated method blank.
- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 31401059.001 I-35W MN Rvr Brdg 10420484

Pace Project No .:

Analytical QC Batch Method QC Batch Lab ID Sample ID **Analytical Method** Batch 10420484001 523036 DP-22 (2-3) EPA 3050 522862 EPA 6010C 10420484002 DP-22 (9-10) EPA 3050 522862 EPA 6010C 523036 10420484003 DP-21 (2-3) EPA 3050 522862 EPA 6010C 523036 10420484004 DP-21 (9-10) EPA 3050 522862 EPA 6010C 523036 10420484005 DP-23 (2-3) EPA 3050 522862 EPA 6010C 523036 10420484006 DP-23 (9-10) EPA 3050 522862 EPA 6010C 523036 10420484007 DP-24 (2-3) EPA 3050 522862 EPA 6010C 523036 10420484008 DP-24 (20-22) EPA 3050 522862 EPA 6010C 523036 DP-27 (2-3) 522862 EPA 6010C 523036 10420484010 EPA 3050 DP-27 (20-21) EPA 6010C 10420484011 EPA 3050 522862 523036 10420484012 DP-26 (3-4) EPA 3050 522862 EPA 6010C 523036 10420484013 DP-26 (14-16) EPA 3050 522862 EPA 6010C 523036 10420484015 DP-25 (2-3) **FPA 3050** 522862 EPA 6010C 523036 10420484016 DP-25 (16-17) EPA 3050 522862 EPA 6010C 523036 10420484018 522862 EPA 6010C DP-18 (2-3) EPA 3050 523036 10420484019 DP-18 (9-10) EPA 3050 522862 FPA 6010C 523036 10420484020 DP-19 (2-3) EPA 3050 522862 EPA 6010C 523036 10420484021 DP-19 (9-10) EPA 3050 522862 EPA 6010C 523036 10420484022 DP-20 (2-3) EPA 3050 522862 EPA 6010C 523036 10420484023 DP-20 (9-10) EPA 3050 522862 EPA 6010C 523036 10420484009 **DP-24** EPA 3010 523126 6010C Met 523272 10420484014 **DP-26** EPA 3010 523126 6010C Met 523272 10420484017 **DP-25** EPA 3010 523126 6010C Met 523272 10420484001 DP-22 (2-3) EPA 3050 522976 EPA 6020A 523275 10420484002 DP-22 (9-10) EPA 3050 522976 FPA 6020A 523275 10420484003 DP-21 (2-3) EPA 3050 522976 EPA 6020A 523275 10420484004 DP-21 (9-10) EPA 3050 522976 EPA 6020A 523275 10420484005 DP-23 (2-3) EPA 3050 522976 EPA 6020A 523275 10420484006 DP-23 (9-10) EPA 3050 522976 EPA 6020A 523275 10420484007 DP-24 (2-3) EPA 3050 522976 EPA 6020A 523275 10420484008 DP-24 (20-22) EPA 3050 522976 EPA 6020A 523275 10420484010 DP-27 (2-3) EPA 3050 522976 EPA 6020A 523275 10420484011 DP-27 (20-21) 522976 523275 EPA 3050 EPA 6020A DP-26 (3-4) 10420484012 EPA 3050 522976 EPA 6020A 523275 10420484013 DP-26 (14-16) **FPA 3050** 522976 FPA 6020A 523275 10420484015 DP-25 (2-3) EPA 3050 522976 EPA 6020A 523275 522976 10420484016 DP-25 (16-17) EPA 3050 EPA 6020A 523275 10420484018 DP-18 (2-3) EPA 3050 522976 EPA 6020A 523275 10420484019 DP-18 (9-10) EPA 3050 522976 EPA 6020A 523275 10420484020 DP-19 (2-3) EPA 3050 522976 EPA 6020A 523275 10420484021 DP-19 (9-10) EPA 3050 522976 EPA 6020A 523275 10420484022 DP-20 (2-3) EPA 3050 522976 EPA 6020A 523275 10420484023 DP-20 (9-10) EPA 3050 522976 EPA 6020A 523275 10420484009 **DP-24** EPA 3020 523127 EPA 6020A 523471 **DP-26** 10420484014 EPA 3020 523127 EPA 6020A 523471 **DP-25** 10420484017 EPA 3020 EPA 6020A 523127 523471 10420484009 **DP-24** EPA 7470A 522980 EPA 7470A 523253

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420484

Analytical QC Batch Lab ID Sample ID **QC Batch Method Analytical Method** Batch 10420484014 **DP-26** 522980 523253 EPA 7470A EPA 7470A 10420484017 **DP-25** EPA 7470A 522980 EPA 7470A 523253 DP-22 (2-3) EPA 7471B 522877 EPA 7471B 523017 10420484001 DP-22 (9-10) 522877 10420484002 EPA 7471B EPA 7471B 523017 522877 EPA 7471B 10420484003 DP-21 (2-3) EPA 7471B 523017 10420484004 DP-21 (9-10) EPA 7471B 522877 EPA 7471B 523017 10420484005 DP-23 (2-3) EPA 7471B 522877 EPA 7471B 523017 10420484006 DP-23 (9-10) EPA 7471B 522877 EPA 7471B 523017 10420484007 DP-24 (2-3) EPA 7471B 522877 EPA 7471B 523017 10420484008 DP-24 (20-22) EPA 7471B 522877 EPA 7471B 523017 10420484010 DP-27 (2-3) EPA 7471B 522877 EPA 7471B 523017 10420484011 DP-27 (20-21) EPA 7471B 522877 EPA 7471B 523017 10420484012 DP-26 (3-4) FPA 7471B 522877 EPA 7471B 523017 DP-26 (14-16) 10420484013 EPA 7471B 522877 EPA 7471B 523017 522877 10420484015 DP-25 (2-3) EPA 7471B EPA 7471B 523017 10420484016 DP-25 (16-17) EPA 7471B 522877 EPA 7471B 523017 10420484018 DP-18 (2-3) EPA 7471B 522877 EPA 7471B 523017 10420484019 DP-18 (9-10) EPA 7471B 522877 EPA 7471B 523017 10420484020 DP-19 (2-3) EPA 7471B 522877 EPA 7471B 523017 10420484021 DP-19 (9-10) EPA 7471B 522877 EPA 7471B 523017 10420484022 DP-20 (2-3) EPA 7471B 522877 EPA 7471B 523017 10420484023 DP-20 (9-10) EPA 7471B 522877 EPA 7471B 523017 10420484001 DP-22 (2-3) ASTM D2974 523145 10420484002 DP-22 (9-10) ASTM D2974 523145 10420484003 DP-21 (2-3) ASTM D2974 523145 DP-21 (9-10) **ASTM D2974** 523145 10420484004 10420484005 DP-23 (2-3) ASTM D2974 523145 10420484006 DP-23 (9-10) **ASTM D2974** 523145 10420484007 DP-24 (2-3) **ASTM D2974** 523145 10420484008 DP-24 (20-22) ASTM D2974 523145 523145 10420484010 DP-27 (2-3) **ASTM D2974** 10420484011 DP-27 (20-21) ASTM D2974 523145 10420484012 DP-26 (3-4) **ASTM D2974** 523145 10420484013 DP-26 (14-16) **ASTM D2974** 523145 523145 10420484015 DP-25 (2-3) **ASTM D2974** 523145 10420484016 DP-25 (16-17) **ASTM D2974** 10420484018 523145 DP-18 (2-3) **ASTM D2974**

REPORT OF LABORATORY ANALYSIS

ASTM D2974

ASTM D2974

ASTM D2974

ASTM D2974

ASTM D2974

523159

523159

523159

523159

523159

10420484019

10420484020

10420484021

10420484022

10420484023

DP-18 (9-10)

DP-19 (2-3)

DP-19 (9-10)

DP-20 (2-3)

DP-20 (9-10)

Туду 5/15 судат Такий Пар. Должно Пар.	Pace Analytical www.pacelats.com tection A		CHAIN-OF-CUSTODY / WO#:10420484 The Chain-of-Custody is a LEGAL DOCUM	0484
Ш.М. 2.3 % 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5	ation:	sectors a Required Project Information:	ormatio	
ПОЗ. Мы. 3, "X4. 516-555 "Print" Reach, UN Her Terms Nume Recurs Nume Recurs Nume Recurs Nume Person Nume	20	Report To: Paula Ben	Attention: Accounts Panable	1 2258736
Полнански По	North 3 much Steep	COPY TO: KEUIN Walt	~	
Радада Бест Толования Гора Гора Полования Гора	apolis, MM 55401		Address:	
Полования <		Purchase Order No.:		L RCRA
ан бал саманта и и и и и и и и и и и и и и и и и и и		Siver Bri	Page Project Bob Michel	
Manual Status Manua Status Manual Status Manual S	S-day	00Ì	Pace Profile #	
Пиновани податование Пинование Пинование <td></td> <td></td> <td></td> <td>Analysis Filtered (Y/N)</td>				Analysis Filtered (Y/N)
антона подати п	i	8 원 (미에) (비아) (비아)	reservatives ⇒	
Замист во во стато в стато ста с ста с с с с с с с с с с с с с с с			5	(N/X)
ОР		=) 3- DE (C=	293NIA bi bi bi bi bi bi bi bi bi bi bi bi bi) Əuµol
OP OP <thop< th=""> OP OP OP<!--</td--><td></td><td></td><td>yusiysis ther ethanoi ass2203 20 20 20 20 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 20 20 20 20 20 20 20 20 20 20 20 20</td><td>sidual Ch</td></thop<>			yusiysis ther ethanoi ass2203 20 20 20 20 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 20 20 20 20 20 20 20 20 20 20 20 20	sidual Ch
DP-23 Gr. Di Level St. Di St. Di St. Di St. Di Di St. Di Di Di Di St. Di Di St. Di Di Di Di Di Di Di Di Di Di Di Di Di D	2/2-	C DATE TIME DATE		
UPC-A1(4-5) X/ID 175-31 3 10 20	22 9-1	hi aire 9		
Check 2 (1) Chec				
Control 2/10 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2/0/1	_	
DP-341(2020) 2/1 010 1 1 1 1 1 DP-34 2/1 010 1 1 1 0 0 0 DP-34 2/1 010 1 1 0 1 0 0 DP-37 2/1 050 1 1 0 1 0 0 DP-37 2/1 15/2 1 1 0 0 1 0 DP-37 2/1 15/2 1 1 1 0 0 0 DP-37 2/1 15/2 1 1 1 0 0 0 DP-37 2/1 1 1 1 1 0 0 0 DP-37 2 1 1 1 1 0 0 0 DP-37 1 1 1 1 1 0 0 0 ADDITIONIL 1 1 1 1 1 1 0 0 ADDITIONIL 1 1 1 1 1 0 0 0 ADDITIONIL 1 1 1 1 1 0 0 0	227	6 2/10 h		
PE-34 Min Mode Z Min Mode Z Min PP-37 241 15/5 2/11 16/0 1 2/11 16/0 1 PP-37 2/11 15/5 1 2/11 15/5 1 2/11 16/0 PP-37 2/11 15/5 1 2/11 15/5 1 2/11 16/0 PP-37 2/11 15/5 1 2/11 15/5 1 2/11 1 ADDITIONAL COMMENTS RELINQUISHED SYLAFFILATION DATE TIME ACCEPTED SYLAFFILATION DATE TIME ADDITIONAL COMMENTS RELINQUISHED SYLAFFILATION DATE TIME ACCEPTED SYLAFFILATION DATE TIME ADDITIONAL COMMENTS RELINQUISHED SYLAFFILATION DATE TIME ACCEPTED SYLAFFILATION DATE ADDITIONAL COMMENTS RELINQUISHED SYLAFFILATION DATE TIME SAMPLE ADDITIONAL COMMENTS RELINQUISHED SYLAFFILATION DATE TIME SAMPLE ADDITIONAL COMMENT RELINATIONE DATE DATE DATE ADDITIONAL COMMENT RELINATIONE DATE DATE DATE ADDITIONAL COMMENT SAMPLER DATE DATE	17	6 2/11		
DP-27 (G-2) XL XL </td <td>17</td> <td>2/11</td> <td></td> <td>2000 3000</td>	17	2/11		2000 3000
OP-270-21 SL 6 2/1 ISIS L Z Main OP-270-21 SL 6 Z/1 ISIS L Z C OP-270-21 SL 6 Z/1 ISIS Z Z C ADDITIONAL COMMENTS RELIAUGUISHED BY / AFFILIATION DATE TIME AAPPLE CONDITIONS ADDITIONAL COMMENTS RELIAUGUISHED BY / AFFILIATION DATE TIME SAMPLE CONDITIONS ADDITIONAL COMMENTS RELIAUGUISHED BY / AFFILIATION DATE TIME SAMPLE CONDITIONS Add State ADDITIONAL COMMENTS RELIAUGUISHED BY / AFFILIATION DATE TIME SAMPLE CONDITIONS Add State ADDITIONAL COMMENTS RELIAUGUISHED BY / AFFILIATION DATE TIME SAMPLE CONDITIONS Add State ADDITIONAL COMMENT DATE ADDITIONAL COMMENT SAMPLE CONDITIONS SAMPLE CONDITIONS C SAMPLER ADDITIONAL COMMENT DATE ADDITIONAL COMMENT C C V V C SAMPLER ADDITIONAL COMMENT SAMPLER ADDITIONAL COMMENT C V V C SAMPLER ADDITIONAL COMPACTOR COMPACTOR COMPACTOR ADDITIONAL COMPACTOR				
Light Diller Mile Mile Mile Mile Mile Samples Intact ADDITIONAL COMMENTS Relavation DATE Time ACCEPTED BY (AFFILATION DATE Time SAMPLE CONDITIONS ADDITIONAL COMMENTS Relavation DATE Time ACCEPTED BY (AFFILATION DATE Time SAMPLE CONDITIONS ADDITIONAL COMMENTS Relavation DATE Time ACCEPTED BY (AFFILATION DATE Time SAMPLE CONDITIONS ADDITIONAL COMMENTS RELAVALISTICIA DATE Time ACCEPTED BY (AFFILATION DATE Time SAMPLE CONDITIONS ADDITIONAL COMMENTS RELAVALISTICIA DATE Time ACCEPTED BY (AFFILATION DATE SAMPLE CONDITIONS ADDITIONAL COMMENTS RELAVALISTICIA DATE Time ACCEPTED BY (AFFILATION DATE SAMPLE CONDITIONS ADDITIONAL CONIGINAL DATE ZI/SI/S DATE ZI/SI/S DATE DATE ADDITIONAL CONIGINAL SAMPLER MATURE DATE DATE DATE DATE CORIGINAL PRINT NAME AND SIGNATURE DATE DATE DATE DATE DATE	5	c 2/11	7 7	
Bamples Intercol LATE CONTIONS Custody Caseled Cooler Caseled Cooler Caseled Cooler Late Lat	ADDITIONAL COMMENTS			
Custody Samples Intact Custody Custo		ר ל		
Current of Samples Intact Sealed Cooler PRINT Name of SampleR: Keu' N Received on Ice (Y/N) Signature of SampleR: Keu' N Internorm: Current Internorm: Current Intern	24 Field Filler	₹ 2	-1-X - 7 ALOI	12 10 40 01
Childinal Signature of samples intact (Y/N) Childinature of samples intact (Y/N) Custody Societ (Y/N) Custody Cooler (Y/N) Custody Cooler (Y/N) Custody Cooler (Y/N) (Z/S) Custody Cooler (Y/N) (Z/S)				
PRINT Name of SAMPLER: Leuin Uality Signature of SAMPLER: Leuin DATE Signed Signature of SAMPLER: Custof		SAMPLER NAME ANI	NATURE SALAR SA	ou)
		PRINT Name	Walter	N/Y) (N/Y) (N/Y) (N/Υ)
		SIGNATURE of SA	DATE Signed	

:

1

÷

¢

Face Analytical" www.pacolatis.com

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. 25 ***

	- I N	LZ 38 133	GROUND WATER 1 DRINKING WATER	. L.					(I	<u>N/</u> ,) (ənholdü) Isubise) I	Pace Project No./ Lab I.D.	210	017	014	(3)[6	Ć, Č	BIO	010	01.0	270	2.20)	SAMPLE CONDITIONS	6.2 2 V T		et iu	(N//	ece lce LCu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu C	F-ALL-Q-020rev.07, 15-May-2007
_		REGULATORY AGENCY	I NPDES I GR	L	Site Location		Requested Analysis Filtered (Y/N)																	DATE TIME	ZIRIK IU40				2/13/18	
	Section C Invoice Information: Attention: A	Company Name:	Address;	Pace Quote Reference:	CEProject BOD Michels	ce Profile # 27017	\mathcal{J}_{n-1}	Preservatives			\$91 si	Antiperior of the second secon					_							TIME ACCEPTED BY AFFILIATION	1040 FOX Yave			Levin Walter	MMIDDYY): 02	
	19-19	Uter Iter	Ad		18'ver Bridge	Leol		COLLECTED	COMPOSITE COMPOSITE COMPOSITE ENDIGARAB III			DATE ATME DATE TIME AND F COT	11	1	11 1305	(A 0820	112 08SS	4	7/17 1020 7						2/13/18/15		SAMPLER NAME AND SIGNATURE	PRINT Name of SAMPLER:	SIGNATURE of SAMPLER	sims and agreeing to late charges of 1.5% per month for an
		M Styste SOF CONTO Levi	10/155	erec		MANUT > - Jay Troject Number: 3140105	}	Matrix Codes. MATRIX / CODE	Atter DW PB C=Cd WMT PW Codes	v əəs)	coDE ₹¥₽5	XIATAM MPLE	76(3-4) 526	-	int.	La	<u>.</u>	_	10		19 (9-10) 2 6	15 8-29	ULT-(U)		les l	eld tripted	OBIGINAL		Bu simina this firm total on according Danda MET on J.	insponses by signing unstanting us control are accepting races NE1 30 day payment ferms and agreeing to late charges of 1.5% per month for any involces not paid within 30 days.
Section A	Required Client Information: Company: USS	N	Mneapo	Phone:	617-543-040	LOAVE INTERPORT AND DATESTAN	:	Section D Required Client Information		SAMI	(A-Z, Sample IDs MI	# MƏTI	Č T							e D	0				Jaterson	4	Page	- 44 c		

· · · · · · · · · · · · ·

and the state of t

15 mg	Dor Sample Cond	cument N		at Form	Do	cument Revise Page 1 e		17	
Pace Analytical -	-	ocument	······································			Issuing Aut			
	F-M	N-L-213-	rev.22		Рас	e Minnesota (ce	
Sample Condition Upon Receipt WSP		P	Project i	# WC PM:		L042		4 02/20/18	
Courier: Fed Ex UPS Commercial Pace SpeeDee Tracking Number:	USPS		ent	CLIE	NT: WS	PE&E			
Custody Seal on Cooler/Box Present?	No S	eals intac	:t? 🗌	Yes 🛃	Optio	onal: Proj. E	ue Date:	Proj. Name:	
Packing Material: Bubble Wrap	ags 🗍 None	0	the r :			Temp E	Blank? 🖵	Yes 🛛	10
Thermometer 151401163 Used: 087A9155100842	Туре	of Ice:	Wet	□Blue	None	Dry	Melteo	b	
		7. R, CA, FL, €	Date GA, ID, L/ s	and Initials of A. MS, Di	of Person I d samples o cluding Haw	aii and Puerto F	foreign sour		/ <u>*</u> 31
			.,	2 0007 and in		COMME	-		
Chain of Custody Present?	es	□No		1.					
Chain of Custody Filled Out?	Ves	No		2.					
Chain of Custody Relinguished?	⊿ Yes	No		3.					
Sampler Name and/or Signature on COC?	Yes			4.					
Samples Arrived within Hold Time?				5.					
Short Hold Time Analysis (<72 hr)?				6.					
Rush Turn Around Time Requested?	Yes			7,					
5ufficient Volume?		·		<u>,</u> 8.					
Correct Containers Used?	Yes								
		⊡ No		9.					
-Pace Containers Used?	ZYes Z								
Containers Intact?	Yes	No	-m	6¹2/13/18	•				
Filtered Volume Received for Dissolved Tests?	B	No	KIN/A		sediment	is visible in the	dissolved c	ontainer	
Sample Labels Match COC?	1 A Pres	No		12.					
-includes Date/Time/ID/Analysis Matrix:	$r_1 r_2$								
All containers needing acid/base preservation have been checked? All containers needing preservation are found to be in compliance with EPA recommendation?	Ύes	No	□ N/A	13. Sample # 9	ZHNO3 12,12,1	⊟H₂SO₄ 8 ′∕₁	[]NaO⊦	Positive for Chlorine?	
HNO ₃ , H ₂ SO ₄ , <2pH, NaOH >9 Sulfide, NaOH>12 Cyanide exceptions: VOA, Coliform, TOC/DOC Oil and Grease,	, ,	Nο		Initial when		Lot #	of adde d		
DRO/8015 (water) and Dioxin.	Ves	[]No		completed:		prese	rvative:	······	
leadspace in VOA Vials (>6mm)?	Yes			14.					
rip Blank Present?	☐Yes	⊡ No	ØN/A	15.					
rip Blank Custody Seals Present?	Yes	No	□M /A						
Pace Trip Blank Lot # (if purchased):									
CLIENT NOTIFICATION/RESOLUTION Person Contacted: Comments/Resolution:			·	Date/Time:		Field Data Re			
Project Manager Review: 13.1/	1/-	. <u>.</u>			ate:	2/14/1	0		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Denver 4955 Yarrow Street Arvada, CO 80002 Tel: (303)736-0100

TestAmerica Job ID: 280-106396-1

TestAmerica Sample Delivery Group: 31401059.001 Client Project/Site: MnDOT I-35W Minnesota River Bridge

For:

WSP USA Inc. 123 N 3rd Street Suite 507 Minneapolis, Minnesota 55401

Attn: Ms. Paula Berger

Authorized for release by: 2/28/2018 11:10:36 AM Zach Bindert, Project Manager I

(319)277-2401 zach.bindert@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS Review your project results through Total Access Have a Question? Ask The Expert

Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
Case Narrative	4
Detection Summary	5
Method Summary	6
Sample Summary	7
Client Sample Results	8
Surrogate Summary	11
QC Sample Results	12
QC Association	14
Chronicle	15
Certification Summary	17
Chain of Custody	18
Receipt Checklists	19

Definitions/Glossary

Client: WSP USA Inc. Project/Site: MnDOT I-35W Minnesota River Bridge

Glossarv

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	5
CFL	Contains Free Liquid	3
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	8
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	13
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 280-106396-1

Laboratory: TestAmerica Denver

Narrative

Job Narrative 280-106396-1

Comments

No additional comments.

Receipt

The samples were received on 2/14/2018 9:40 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.4° C.

LCMS

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) 3535: The following samples: DP-24 (280-106396-1), DP-28 (280-106396-2), DP-27 (280-106396-3), DP-26 (280-106396-4) and DP-25 (280-106396-5) were decanted prior to preparation as there was about an inch sediment layer in the client sample containers

Batch 405741 3535_PFC

Batch 406017 3535_FOSA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: WSP USA Inc. Project/Site: MnDOT I-35W Minnesota River Bridge

TestAmerica Job ID: 280-106396-1 SDG: 31401059.001

Client Sample ID: DP-24						Lab Sample ID: 28	0-106396-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Perfluorobutyric acid	0.0380		0.0200		ug/L	1 DV-LC-0012	Total/NA
Client Sample ID: DP-28						Lab Sample ID: 28	0-106396-2
No Detections.							
Client Sample ID: DP-27						Lab Sample ID: 28	0-106396-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Perfluorobutyric acid	0.0509		0.0206		ug/L	1 DV-LC-0012	Total/NA
Client Sample ID: DP-26						Lab Sample ID: 28	0-106396-4
No Detections.							
Client Sample ID: DP-25						Lab Sample ID: 28	0-106396-5
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Perfluorobutyric acid	0.0361		0.0223		ug/L	1	Total/NA

Method Summary

Client: WSP USA Inc. Project/Site: MnDOT I-35W Minnesota River Bridge

TestAmerica Job ID: 280-106396-1 SDG: 31401059.001

Method	Method Description	Protocol	Laboratory
DV-LC-0012	Fluorinated Alkyl Substances	TAL-DEN	TAL DEN
PFC -FOSA	FOSA in Water (LC/MS/MS)	TAL-DEN	TAL DEN

Protocol References:

TAL-DEN = TestAmerica Laboratories, Denver, Facility Standard Operating Procedure.

Laboratory References:

TAL DEN = TestAmerica Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

TestAmerica Denver

Sample Summary

Client: WSP USA Inc. Project/Site: MnDOT I-35W Minnesota River Bridge TestAmerica Job ID: 280-106396-1 SDG: 31401059.001

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
280-106396-1	DP-24	Ground Water	02/11/18 10:00	02/14/18 09:40
280-106396-2	DP-28	Ground Water	02/11/18 14:05	02/14/18 09:40
280-106396-3	DP-27	Ground Water	02/11/18 16:00	02/14/18 09:40
280-106396-4	DP-26	Ground Water	02/11/18 17:05	02/14/18 09:40
280-106396-5	DP-25	Ground Water	02/11/18 09:10	02/14/18 09:40

TestAmerica Denver

Method: DV-LC-0012 - Fluorinated Alkyl Substances

Client Sample ID: DP-24
Date Collected: 02/11/18 10:00
Date Received: 02/14/18 09:40

Lab Sample ID: 280-1063	396-1
Matrix: Ground V	Vater

Lab Sample ID: 280-106396-2

Matrix: Ground Water

5

8

Date Received: 02/14/18 09	:40								
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutane Sulfonate	<0.0200		0.0200		ug/L		02/21/18 21:02	02/22/18 19:08	1
Perfluorobutyric acid	0.0380		0.0200		ug/L		02/21/18 21:02	02/22/18 19:08	1
Perfluorodecane Sulfonate	<0.0200		0.0200		ug/L		02/21/18 21:02	02/22/18 19:08	1
Perfluorodecanoic acid	<0.0200		0.0200		ug/L		02/21/18 21:02	02/22/18 19:08	1
Perfluorododecanoic acid	< 0.0300		0.0300		ug/L		02/21/18 21:02	02/22/18 19:08	1
Perfluoroheptanoic acid	< 0.0300		0.0300		ug/L		02/21/18 21:02	02/22/18 19:08	1
Perfluorohexane Sulfonate	< 0.0300		0.0300		ug/L		02/21/18 21:02	02/22/18 19:08	1
Perfluorohexanoic acid	< 0.0200		0.0200		ug/L		02/21/18 21:02	02/22/18 19:08	1
Perfluorononanoic acid	< 0.0400		0.0400		ug/L		02/21/18 21:02	02/22/18 19:08	1
Perfluorooctane sulfonic acid	< 0.0300		0.0300		ug/L		02/21/18 21:02	02/22/18 19:08	1
Perfluorooctanoic acid	< 0.0200		0.0200		ug/L		02/21/18 21:02	02/22/18 19:08	1
Perfluoropentanoic acid	< 0.0300		0.0300		ug/L		02/21/18 21:02	02/22/18 19:08	1
Perfluorotetradecanoic acid	< 0.0300		0.0300		ug/L		02/21/18 21:02	02/22/18 19:08	1
Perfluorotridecanoic acid	<0.0400		0.0400		ug/L		02/21/18 21:02	02/22/18 19:08	1
Perfluoroundecanoic acid	<0.0200		0.0200		ug/L		02/21/18 21:02	02/22/18 19:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C8 PFOA	94		60 - 155				02/21/18 21:02	02/22/18 19:08	1
13C8 PFOS	95		45 - 130				02/21/18 21:02	02/22/18 19:08	1

Client Sample ID: DP-28 Date Collected: 02/11/18 14:05 Date Received: 02/14/18 09:40

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutane Sulfonate	<0.0192	0.0192		ug/L		02/21/18 21:02	02/22/18 18:43	1
Perfluorobutyric acid	<0.0192	0.0192		ug/L		02/21/18 21:02	02/22/18 18:43	1
Perfluorodecane Sulfonate	<0.0192	0.0192		ug/L		02/21/18 21:02	02/22/18 18:43	1
Perfluorodecanoic acid	<0.0192	0.0192		ug/L		02/21/18 21:02	02/22/18 18:43	1
Perfluorododecanoic acid	<0.0289	0.0289		ug/L		02/21/18 21:02	02/22/18 18:43	1
Perfluoroheptanoic acid	<0.0289	0.0289		ug/L		02/21/18 21:02	02/22/18 18:43	1
Perfluorohexane Sulfonate	<0.0289	0.0289		ug/L		02/21/18 21:02	02/22/18 18:43	1
Perfluorohexanoic acid	<0.0192	0.0192		ug/L		02/21/18 21:02	02/22/18 18:43	1
Perfluorononanoic acid	<0.0385	0.0385		ug/L		02/21/18 21:02	02/22/18 18:43	1
Perfluorooctane sulfonic acid	<0.0289	0.0289		ug/L		02/21/18 21:02	02/22/18 18:43	1
Perfluorooctanoic acid	<0.0192	0.0192		ug/L		02/21/18 21:02	02/22/18 18:43	1
Perfluoropentanoic acid	<0.0289	0.0289		ug/L		02/21/18 21:02	02/22/18 18:43	1
Perfluorotetradecanoic acid	<0.0289	0.0289		ug/L		02/21/18 21:02	02/22/18 18:43	1
Perfluorotridecanoic acid	<0.0385	0.0385		ug/L		02/21/18 21:02	02/22/18 18:43	1
Perfluoroundecanoic acid	<0.0192	0.0192		ug/L		02/21/18 21:02	02/22/18 18:43	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C8 PFOA	92	60 - 155				02/21/18 21:02	02/22/18 18:43	1

Client Sample ID: DP-27 Date Collected: 02/11/18 16:00 Data Bacaiyad: 02/14/18 00:40

13C8 PFOS

Date Received: 02/14/18 09:40									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutane Sulfonate	<0.0206		0.0206		ug/L		02/21/18 21:02	02/22/18 18:31	1
Perfluorobutyric acid	0.0509		0.0206		ug/L		02/21/18 21:02	02/22/18 18:31	1

45 - 130

92

TestAmerica Denver

02/21/18 21:02 02/22/18 18:43

Lab Sample ID: 280-106396-3 Matrix: Ground Water

1

Client Sample Results

Client: WSP USA Inc. Project/Site: MnDOT I-35W Minnesota River Bridge

02/21/18 21:02 02/22/18 18:31

02/21/18 21:02 02/22/18 18:31

02/21/18 21:02 02/22/18 18:19

Lab Sample ID: 280-106396-5

Matrix: Ground Water

Lab Sample ID: 280-106396-4

Matrix: Ground Water

1

1

1

Method: DV-LC-0012 - Fluorinated Alkyl Substances (Continued)

Client Sample ID: DP-27 Date Collected: 02/11/18 16:00 Date Analyte

Lab Sample ID: 280-106396-3 Matrix: Ground Water

									mator	
Date Received: 02/14/18 09: Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Perfluorodecane Sulfonate	<0.0206		0.0206		ug/L		02/21/18 21:02	02/22/18 18:31	1	
Perfluorodecanoic acid	<0.0206		0.0206		ug/L		02/21/18 21:02	02/22/18 18:31	1	
Perfluorododecanoic acid	<0.0309		0.0309		ug/L		02/21/18 21:02	02/22/18 18:31	1	
Perfluoroheptanoic acid	<0.0309		0.0309		ug/L		02/21/18 21:02	02/22/18 18:31	1	
Perfluorohexane Sulfonate	< 0.0309		0.0309		ug/L		02/21/18 21:02	02/22/18 18:31	1	
Perfluorohexanoic acid	<0.0206		0.0206		ug/L		02/21/18 21:02	02/22/18 18:31	1	8
Perfluorononanoic acid	<0.0412		0.0412		ug/L		02/21/18 21:02	02/22/18 18:31	1	U
Perfluorooctane sulfonic acid	<0.0309		0.0309		ug/L		02/21/18 21:02	02/22/18 18:31	1	0
Perfluorooctanoic acid	<0.0206		0.0206		ug/L		02/21/18 21:02	02/22/18 18:31	1	3
Perfluoropentanoic acid	< 0.0309		0.0309		ug/L		02/21/18 21:02	02/22/18 18:31	1	
Perfluorotetradecanoic acid	<0.0309		0.0309		ug/L		02/21/18 21:02	02/22/18 18:31	1	
Perfluorotridecanoic acid	<0.0412		0.0412		ug/L		02/21/18 21:02	02/22/18 18:31	1	
Perfluoroundecanoic acid	<0.0206		0.0206		ug/L		02/21/18 21:02	02/22/18 18:31	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	

 91	60 - 155
100	45 - 130

Client Sample ID: DP-26 Date Collected: 02/11/18 17:05 Date Received: 02/14/18 09:40

13C8 PFOA

13C8 PFOS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutane Sulfonate	<0.0229		0.0229		ug/L		02/21/18 21:02	02/22/18 18:19	1
Perfluorobutyric acid	<0.0229		0.0229		ug/L		02/21/18 21:02	02/22/18 18:19	1
Perfluorodecane Sulfonate	<0.0229		0.0229		ug/L		02/21/18 21:02	02/22/18 18:19	1
Perfluorodecanoic acid	<0.0229		0.0229		ug/L		02/21/18 21:02	02/22/18 18:19	1
Perfluorododecanoic acid	<0.0343		0.0343		ug/L		02/21/18 21:02	02/22/18 18:19	1
Perfluoroheptanoic acid	< 0.0343		0.0343		ug/L		02/21/18 21:02	02/22/18 18:19	1
Perfluorohexane Sulfonate	<0.0343		0.0343		ug/L		02/21/18 21:02	02/22/18 18:19	1
Perfluorohexanoic acid	<0.0229		0.0229		ug/L		02/21/18 21:02	02/22/18 18:19	1
Perfluorononanoic acid	<0.0458		0.0458		ug/L		02/21/18 21:02	02/22/18 18:19	1
Perfluorooctane sulfonic acid	<0.0343		0.0343		ug/L		02/21/18 21:02	02/22/18 18:19	1
Perfluorooctanoic acid	<0.0229		0.0229		ug/L		02/21/18 21:02	02/22/18 18:19	1
Perfluoropentanoic acid	< 0.0343		0.0343		ug/L		02/21/18 21:02	02/22/18 18:19	1
Perfluorotetradecanoic acid	<0.0343		0.0343		ug/L		02/21/18 21:02	02/22/18 18:19	1
Perfluorotridecanoic acid	<0.0458		0.0458		ug/L		02/21/18 21:02	02/22/18 18:19	1
Perfluoroundecanoic acid	<0.0229		0.0229		ug/L		02/21/18 21:02	02/22/18 18:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C8 PFOA	95		60 - 155				02/21/18 21:02	02/22/18 18:19	1

13C8 PFOA	95	
13C8 PFOS	94	
=		

Client Sample ID: DP-25 Date Collected: 02/11/18 09:10 Date Received: 02/14/18 09:40

Analyte	Result	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutane Sulfonate	<0.0223	0.0223	ug/L	0	2/21/18 21:02	02/22/18 18:06	1
Perfluorobutyric acid	0.0361	0.0223	ug/L	02	2/21/18 21:02	02/22/18 18:06	1
Perfluorodecane Sulfonate	<0.0223	0.0223	ug/L	02	2/21/18 21:02	02/22/18 18:06	1
Perfluorodecanoic acid	<0.0223	0.0223	ug/L	02	2/21/18 21:02	02/22/18 18:06	1

45 - 130

TestAmerica Denver

Client Sample Results

RL

0.0335

0.0335

0.0335

0.0223

0.0446

0.0335

0.0223

0.0335

0.0335

0.0446

0.0223

Limits

60 - 155

45 - 130

MDL Unit

ug/L

Client: WSP USA Inc. Project/Site: MnDOT I-35W Minnesota River Bridge

TestAmerica Job ID: 280-106396-1 SDG: 31401059.001

SDG:

D

Prepared

Prepared

Method: DV-LC-0012 - Fluorinated Alkyl Substances (Continued)

<0.0335

< 0.0335

< 0.0335

< 0.0223

< 0.0446

< 0.0335

< 0.0223

< 0.0335

< 0.0335

< 0.0446

< 0.0223

%Recovery Qualifier

98

92

Result Qualifier

Client Sample ID: DP-25
Date Collected: 02/11/18 09:10
Date Received: 02/14/18 09:40
Analyte

Perfluorododecanoic acid

Perfluorohexane Sulfonate

Perfluorooctane sulfonic acid

Perfluoroheptanoic acid

Perfluorohexanoic acid

Perfluorononanoic acid

Perfluorooctanoic acid

Perfluoropentanoic acid

Perfluorotridecanoic acid

Perfluoroundecanoic acid

Surrogate

13C8 PFOA

13C8 PFOS

Perfluorotetradecanoic acid

Lab Sample ID: 280-106396-5 Matrix: Ground Water

Analyzed

Analyzed

02/21/18 21:02 02/22/18 18:06

02/21/18 21:02 02/22/18 18:06

02/21/18 21:02 02/22/18 18:06

02/21/18 21:02 02/22/18 18:06

02/21/18 21:02 02/22/18 18:06

02/21/18 21:02 02/22/18 18:06

02/21/18 21:02 02/22/18 18:06

02/21/18 21:02 02/22/18 18:06

02/21/18 21:02 02/22/18 18:06

02/21/18 21:02 02/22/18 18:06

02/21/18 21:02 02/22/18 18:06

02/21/18 21:02 02/22/18 18:06

02/21/18 21:02 02/22/18 18:06

Water	
Dil Fac	5
1	
1	
1	
1	
1	
1	8
1	U
1	0
1	3
1	
1	
Dil Fac	

1

1

Method: PFC -FOSA - FOSA in Water (LC/MS/MS)

Client Sample ID: DP-24 Date Collected: 02/11/18 10:00 Date Received: 02/14/18 09:40								ole ID: 280-10 atrix: Ground	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctane Sulfonamide	<0.0524		0.0524		ug/L		02/24/18 20:02	02/26/18 23:03	1
Client Sample ID: DP-28							Lab Sam	ole ID: 280-10	6396-2
Date Collected: 02/11/18 14:05							M	atrix: Ground	Water
Date Received: 02/14/18 09:40									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctane Sulfonamide	<0.0513		0.0513		ug/L		02/24/18 20:02	02/26/18 23:16	1
Client Sample ID: DP-27 Date Collected: 02/11/18 16:00 Date Received: 02/14/18 09:40								ole ID: 280-10 atrix: Ground	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctane Sulfonamide	<0.0486		0.0486		ug/L		02/24/18 20:02	02/26/18 23:28	1
Client Sample ID: DP-26 Date Collected: 02/11/18 17:05								ole ID: 280-10 atrix: Ground	
Date Received: 02/14/18 09:40							141	atrix. Ground	valei
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctane Sulfonamide	<0.0597		0.0597		ug/L		02/24/18 20:02	02/26/18 23:53	1
Client Sample ID: DP-25 Date Collected: 02/11/18 09:10 Date Received: 02/14/18 09:40								ole ID: 280-10 atrix: Ground	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctane Sulfonamide	<0.0611		0.0611		ug/L		02/24/18 20:02	02/27/18 00:05	1

TestAmerica Denver

Surrogate Summary

Method: DV-LC-0012 - Fluorinated Alkyl Substances Matrix: Cround Mator

Matrix: Ground Wa	ater			Prep Type: Total/NA
_			Perce	ent Surrogate Recovery (Acceptance Limits)
		PFOA	PFOS	
Lab Sample ID	Client Sample ID	(60-155)	(45-130)	
280-106396-1	DP-24	94	95	
280-106396-2	DP-28	92	92	
280-106396-3	DP-27	91	100	
280-106396-4	DP-26	95	94	
280-106396-5	DP-25	98	92	
Surrogate Legend	I			

PFOA = 13C8 PFOA

PFOS = 13C8 PFOS

Method: DV-LC-0012 - Fluorinated Alkyl Substances

Matrix: Water Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) PFOS PFOA Lab Sample ID **Client Sample ID** (60-155) (45-130) DLCK 280-401950/14 Lab Control Sample 104 109 LCS 280-405741/2-A Lab Control Sample 98 92 MB 280-405741/1-A Method Blank 96 97 Surrogate Legend PFOA = 13C8 PFOA

PFOS = 13C8 PFOS

2/28/2018

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: DV-LC-0012 - Fluorinated Alkyl Substances

Lab Sample ID: DLCK 280-401950/14 Matrix: Water Analysis Batch: 401950

•	Spike	DLCK [DLCK			%Rec.
Analyte	Added	Result C	Qualifier Uni	t D	%Rec	Limits
Perfluorobutane Sulfonate	0.442	0.4763	ug/		108	70 - 130
Perfluorobutyric acid	0.490	0.4896	ug/	_	100	70 - 130
Perfluorodecane Sulfonate	0.482	0.5189	ug/	_	108	70 - 130
Perfluorodecanoic acid	0.490	0.5265	ug/	_	107	70 - 130
Perfluorododecanoic acid	0.490	0.3950	ug/	_	81	70 - 130
Perfluoroheptanoic acid	0.490	0.5458	ug/	_	111	70 - 130
Perfluorohexane Sulfonate	0.455	0.4498	ug/	_ _	99	70 - 130
Perfluorohexanoic acid	0.490	0.5412	ug/	_	110	70 - 130
Perfluorononanoic acid	0.490	0.5982	ug/	_	122	70 - 130
Perfluorooctane sulfonic acid	0.464	0.4629	ug/	_	100	70 - 130
Perfluorooctanoic acid	0.490	0.5148	ug/	_	105	70 - 130
Perfluoropentanoic acid	0.490	0.4509	ug/	_	92	70 - 130
Perfluorotetradecanoic acid	0.490	0.4679	ug/	_	95	70 - 130
Perfluorotridecanoic acid	0.490	0.4727	ug/	_	96	70 - 130
Perfluoroundecanoic acid	0.490	0.5025	ug/		103	70 - 130

	DECK	DLON	
Surrogate	%Recovery	Qualifier	Limits
13C8 PFOA	109		60 - 155
13C8 PFOS	104		45 - 130

Lab Sample ID: MB 280-405741/1-A **Matrix: Water** Analysis Batch: 405923

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutane Sulfonate	< 0.0200		0.0200		ug/L		02/21/18 21:02	02/22/18 16:52	1
Perfluorobutyric acid	<0.0200		0.0200		ug/L		02/21/18 21:02	02/22/18 16:52	1
Perfluorodecane Sulfonate	<0.0200		0.0200		ug/L		02/21/18 21:02	02/22/18 16:52	1
Perfluorodecanoic acid	<0.0200		0.0200		ug/L		02/21/18 21:02	02/22/18 16:52	1
Perfluorododecanoic acid	<0.0300		0.0300		ug/L		02/21/18 21:02	02/22/18 16:52	1
Perfluoroheptanoic acid	<0.0300		0.0300		ug/L		02/21/18 21:02	02/22/18 16:52	1
Perfluorohexane Sulfonate	<0.0300		0.0300		ug/L		02/21/18 21:02	02/22/18 16:52	1
Perfluorohexanoic acid	<0.0200		0.0200		ug/L		02/21/18 21:02	02/22/18 16:52	1
Perfluorononanoic acid	<0.0400		0.0400		ug/L		02/21/18 21:02	02/22/18 16:52	1
Perfluorooctane sulfonic acid	<0.0300		0.0300		ug/L		02/21/18 21:02	02/22/18 16:52	1
Perfluorooctanoic acid	<0.0200		0.0200		ug/L		02/21/18 21:02	02/22/18 16:52	1
Perfluoropentanoic acid	<0.0300		0.0300		ug/L		02/21/18 21:02	02/22/18 16:52	1
Perfluorotetradecanoic acid	<0.0300		0.0300		ug/L		02/21/18 21:02	02/22/18 16:52	1
Perfluorotridecanoic acid	<0.0400		0.0400		ug/L		02/21/18 21:02	02/22/18 16:52	1
Perfluoroundecanoic acid	<0.0200		0.0200		ug/L		02/21/18 21:02	02/22/18 16:52	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C8 PFOA	96		60 - 155				02/21/18 21:02	02/22/18 16:52	1
13C8 PFOS	97		45 - 130				02/21/18 21:02	02/22/18 16:52	1

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 405741

			•
:02	02/22/18	16:52	1
:02	02/22/18	16:52	1
·02	02/22/18	16.52	1

TestAmerica Denver

5 6 7

10

Method: DV-LC-0012 - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 280-405741/2-A Matrix: Water					Clie	ent Sa	mple ID	Lab Control Sample Prep Type: Total/NA	
Analysis Batch: 405923		0						Prep Batch: 405741	
Australia		Spike	LCS		11	-	0/ D	%Rec.	
Analyte		Added		Qualifier	Unit	D		Limits	
Perfluorobutane Sulfonate		0.177	0.2098		ug/L		119	70 - 134	
Perfluorobutyric acid		0.196	0.2034		ug/L		104	70 - 130	
Perfluorodecane Sulfonate		0.193	0.1470		ug/L		76	34 - 130	
Perfluorodecanoic acid		0.196	0.2068		ug/L		106	70 - 130	
Perfluorododecanoic acid		0.196	0.2087		ug/L		106	66 - 133	
Perfluoroheptanoic acid		0.196	0.2322		ug/L		118	70 - 135	
Perfluorohexane Sulfonate		0.182	0.2112		ug/L		116	70 - 132	
Perfluorohexanoic acid		0.196	0.2174		ug/L		111	70 - 130	
Perfluorononanoic acid		0.196	0.1901		ug/L		97	69 - 143	
Perfluorooctane sulfonic acid		0.186	0.2103		ug/L		113	70 - 130	
Perfluorooctanoic acid		0.196	0.2321		ug/L		118	70 - 130	
Perfluoropentanoic acid		0.196	0.2111		ug/L		108	66 - 134	
Perfluorotetradecanoic acid		0.196	0.2555		ug/L		130	23 - 149	
Perfluorotridecanoic acid		0.196	0.2344		ug/L		120	26 - 136	
Perfluoroundecanoic acid		0.196	0.2110		ug/L		108	70 - 130	
LCS	LCS								
Surrogate %Recovery	v Qualifier	Limits							
13C8 PFOA 92	2	60 - 155							
13C8 PFOS 98	3	45 - 130							

Method: PFC -FOSA - FOSA in Water (LC/MS/MS)

Lab Sample ID: DLCK 280-40 Matrix: Water Analysis Batch: 401100	1100/14			Client Sample ID	: Lab Control Sample Prep Type: Total/NA
Analysis Baton. 401100		Spike	DLCK DLCK		%Rec.
Analyte		Added	Result Qualifier	Unit D %Rec	Limits
Perfluorooctane Sulfonamide		0.500	<2.50	ug/L 100	70 - 130
Lab Sample ID: MB 280-4060 Matrix: Water Analysis Batch: 406235	17/1-А мв мв			Client San	nple ID: Method Blank Prep Type: Total/NA Prep Batch: 406017
Analyte	Result Qualifier	· RI	_ MDL Unit	D Prepared	Analyzed Dil Fac
Perfluorooctane Sulfonamide	<0.0500	0.050	0 ug/L	02/24/18 20:0	02 02/26/18 21:36 1
Lab Sample ID: LCS 280-4060 Matrix: Water Analysis Batch: 406235)17/2-A			Client Sample ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 406017
		Spike	LCS LCS		%Rec.
Analyte		Added	Result Qualifier	Unit D %Rec	Limits
Perfluorooctane Sulfonamide		0.200	0.1897	ug/L 95	57 - 133

TestAmerica Denver

QC Association Summary

Client: WSP USA Inc. Project/Site: MnDOT I-35W Minnesota River Bridge

LCMS

Analysis Batch: 401100

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
DLCK 280-401100/14	Lab Control Sample	Total/NA	Water	PFC -FOSA	
Analysis Batch: 4019	950				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
DLCK 280-401950/14	Lab Control Sample	Total/NA	Water	DV-LC-0012	
Prep Batch: 405741					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-106396-1	DP-24	Total/NA	Ground Water	3535	
280-106396-2	DP-28	Total/NA	Ground Water	3535	
280-106396-3	DP-27	Total/NA	Ground Water	3535	
280-106396-4	DP-26	Total/NA	Ground Water	3535	
280-106396-5	DP-25	Total/NA	Ground Water	3535	
	Mathad Diank	Total/NA	Water	3535	
MB 280-405741/1-A	Method Blank	TO COUNT OF			

Analysis Batch: 405923

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
280-106396-1	DP-24	Total/NA	Ground Water	DV-LC-0012	405741	
280-106396-2	DP-28	Total/NA	Ground Water	DV-LC-0012	405741	
280-106396-3	DP-27	Total/NA	Ground Water	DV-LC-0012	405741	
280-106396-4	DP-26	Total/NA	Ground Water	DV-LC-0012	405741	
280-106396-5	DP-25	Total/NA	Ground Water	DV-LC-0012	405741	
MB 280-405741/1-A	Method Blank	Total/NA	Water	DV-LC-0012	405741	
LCS 280-405741/2-A	Lab Control Sample	Total/NA	Water	DV-LC-0012	405741	

Prep Batch: 406017

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-106396-1	DP-24	Total/NA	Ground Water	3535	
280-106396-2	DP-28	Total/NA	Ground Water	3535	
280-106396-3	DP-27	Total/NA	Ground Water	3535	
280-106396-4	DP-26	Total/NA	Ground Water	3535	
280-106396-5	DP-25	Total/NA	Ground Water	3535	
MB 280-406017/1-A	Method Blank	Total/NA	Water	3535	
LCS 280-406017/2-A	Lab Control Sample	Total/NA	Water	3535	

Analysis Batch: 406235

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-106396-1	DP-24	Total/NA	Ground Water	PFC -FOSA	406017
280-106396-2	DP-28	Total/NA	Ground Water	PFC -FOSA	406017
280-106396-3	DP-27	Total/NA	Ground Water	PFC -FOSA	406017
280-106396-4	DP-26	Total/NA	Ground Water	PFC -FOSA	406017
280-106396-5	DP-25	Total/NA	Ground Water	PFC -FOSA	406017
MB 280-406017/1-A	Method Blank	Total/NA	Water	PFC -FOSA	406017
LCS 280-406017/2-A	Lab Control Sample	Total/NA	Water	PFC -FOSA	406017

Client: WSP USA Inc. Project/Site: MnDOT I-35W Minnesota River Bridge

Lab Sample ID: 280-106396-1

Lab Sample ID: 280-106396-2

Matrix: Ground Water

Matrix: Ground Water

Client Sample ID: DP-24 Date Collected: 02/11/18 10:00 Date Received: 02/14/18 09:40

Prep Type Total/NA Total/NA	Batch Type Prep Analysis	Batch Method 3535 DV-LC-0012	Run	Dil Factor	Initial Amount 250.07 mL	Final Amount 5 mL	Batch Number 405741 405923	Prepared or Analyzed 02/21/18 21:02 02/22/18 19:08	 Lab TAL DEN TAL DEN
Total/NA Total/NA	Prep Analysis	3535 PFC -FOSA		1	238.4 mL	5 mL	406017 406235	02/24/18 20:02 02/26/18 23:03	 TAL DEN TAL DEN

Client Sample ID: DP-28 Date Collected: 02/11/18 14:05 Date Received: 02/14/18 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			259.95 mL	5 mL	405741	02/21/18 21:02	CDC	TAL DEN
Total/NA	Analysis	DV-LC-0012		1			405923	02/22/18 18:43	HKF	TAL DEN
Total/NA	Prep	3535			243.6 mL	5 mL	406017	02/24/18 20:02	CDC	TAL DEN
Total/NA	Analysis	PFC -FOSA		1			406235	02/26/18 23:16	HKF	TAL DEN

Client Sample ID: DP-27 Date Collected: 02/11/18 16:00 Date Received: 02/14/18 09:40

Prep Type Total/NA Total/NA	Batch Type Prep Analysis	Batch Method 3535 DV-LC-0012	Run	Dil Factor	Initial Amount 242.50 mL	Final Amount 5 mL	Batch Number 405741 405923	Prepared or Analyzed 02/21/18 21:02 02/22/18 18:31	Analyst CDC HKF	Lab TAL DEN TAL DEN
Total/NA Total/NA	Prep Analysis	3535 PFC -FOSA		1	257.2 mL	5 mL	406017 406235	02/24/18 20:02 02/26/18 23:28	CDC	TAL DEN TAL DEN

Client Sample ID: DP-26 Date Collected: 02/11/18 17:05 Date Received: 02/14/18 09:40

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			218.47 mL	5 mL	405741	02/21/18 21:02	CDC	TAL DEN
Total/NA	Analysis	DV-LC-0012		1			405923	02/22/18 18:19	HKF	TAL DEN
Total/NA	Prep	3535			209.5 mL	5 mL	406017	02/24/18 20:02	CDC	TAL DEN
Total/NA	Analysis	PFC -FOSA		1			406235	02/26/18 23:53	HKF	TAL DEN

Client Sample ID: DP-25 Date Collected: 02/11/18 09:10 Date Received: 02/14/18 09:40

ſ	_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	3535			224.08 mL	5 mL	405741	02/21/18 21:02	CDC	TAL DEN
	Total/NA	Analysis	DV-LC-0012		1			405923	02/22/18 18:06	HKF	TAL DEN
	Total/NA	Prep	3535			204.6 mL	5 mL	406017	02/24/18 20:02	CDC	TAL DEN

TestAmerica Denver

Matrix: Ground Water

Lab Sample ID: 280-106396-3 Matrix: Ground Water

Lab Sample ID: 280-106396-4

Lab Sample ID: 280-106396-5

Matrix: Ground Water

Lab Chronicle

1

Client: WSP USA Inc. Project/Site: MnDOT I-35W Minnesota River Bridge

Analysis

Lab Sample ID: 280-106396-5

02/27/18 00:05 HKF

Client Sample ID: DP-25 Date Collected: 02/11/18 09:10

Date Receiv

cted: 02/11/18 ived: 02/14/18							Ма	itrix: Gro	und Wa	ater
Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab	

406235

Laboratory References:

Prep Type

Total/NA

TAL DEN = TestAmerica Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

PFC -FOSA

TAL DEN

TestAmerica Denver

Accreditation/Certification Summary

Client: WSP USA Inc. Project/Site: MnDOT I-35W Minnesota River Bridge

Laboratory: TestAmerica Denver

Authority	Program		EPA Region	Identification Number	Expiration Date	
linnesota	NELAP		5	8-999-405	12-31-18	
The following analytes	are included in this repo	rt, but accreditation/cert	ification is not off	ered by the governing autho	prity:	
Analysis Method	Prep Method	Matrix	Analyt	e		
DV-LC-0012	3535	Ground Water	Perflue	prodecane Sulfonate		
DV-LC-0012	3535	Ground Water	Perflue	protridecanoic acid		
PFC -FOSA	3535	Ground Water	Perflue	prooctane Sulfonamide		
aboratory: Test	America Cedar I	Falls				
	tions listed below are app Program	licable to this report.	EPA Region	Identification Number	Expiration Date	
e accreditations/certifica	tions listed below are app	licable to this report.	EPA Region	Identification Number 019-999-319	Expiration Date	
e accreditations/certifica	tions listed below are app Program	licable to this report.				

Laboratory: TestAmerica Cedar Falls

Authority	Program	EPA Region	Identification Number	Expiration Date
Minnesota	NELAP	5	019-999-319	12-31-18

TestAmerica Denver

13 14

analytical methods, or regulatory purposes?	Project Name: Mulot I - 35W MN River Bridge Project #: 31401059.001	G	Payable.	Γ	Other: CC Deliverables None Level 2 (Batch OC) Level 3 Other: Devel 4 Other: Level 4 Other:	LABORATORY COMMENTS:	TAL-0033 (0708)	Page 2 of 2
to assist us in using the proper analytical methods, is this work being conducted for regulatory purposes? Compliance Monitoring	Project Name: Mul OT I - Project #: 31401059.	Paula Berg	Invoice To: Accounts Quote #:	Analyze For:	280-106396 Chain of Custody	LABORATOR	Date: Time: Date: Time:	L
Fax 319-277-2425	507 401	COM	Fax:	Preservation & # of Containers	XXXX BEC EO2H VXXXX BEC EO2H VXXXX BEC EO2H Meturuol HCI HCI HCI		Received By: Rutter	
704 Cec	No	a Berger Qusp		Matrix	Date Sampled Date Sampled		Date:2/13/18 Tild: '20 Date:2/13/18 Tild: '20 Date: Time:	
THE LEADER IN ENVIRONMENTAL TESTING		Email Address: Paul c	Telephone Number: 612-34 Sampler Name: (Print Name) Keu'i N	Sampler Signature.	TAT Standard Mn bot 5- day Rush (surcharges may apply) Sect possible Bate Needed: Date Needed: Email Results: N Email Results: N DP-24 2/11/8 DP-25 2/11/8 DP-25 2/11/8	Special Instructions:	Relinguished By	

Client: WSP USA Inc.

Login Number: 106396 List Number: 1 Creator: True, Joshua A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 280-106396-1 SDG Number: 31401059.001

List Source: TestAmerica Denver

SOIL GAS SAMPLE LABORATORY ANALYTICAL REPORTS

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

March 02, 2018

Ms. Paula Berger WSP Environment and Energy 123 North Third Street Suite 808 Minneapolis, MN 55401

RE: Project: 31401059.001 I-35W MN Rvr Brdg Pace Project No.: 10420487

Dear Ms. Berger:

Enclosed are the analytical results for sample(s) received by the laboratory on February 13, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Bo Man

Bob Michels bob.michels@pacelabs.com (612)607-6452 Project Manager

Enclosures

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

 Project:
 31401059.001 I-35W MN Rvr Brdg

 Pace Project No.:
 10420487

Minnesota Certification IDs

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414-2485 A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #:MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Maryland Certification #: 322 Massachusetts Certification #: M-MN064

Michigan Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: MN00064 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon NwTPH Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DW Certification #: 9952 C West Virginia DEP Certification #: 382 Wisconsin Certification #: 999407970

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

SAMPLE SUMMARY

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10420487001	SG-16	Air	02/10/18 08:47	02/13/18 11:05
10420487002	SG-15	Air	02/10/18 09:23	02/13/18 11:05
10420487003	SG-1	Air	02/10/18 10:00	02/13/18 11:05
10420487004	SG-3	Air	02/10/18 10:48	02/13/18 11:05
10420487005	SG-6	Air	02/10/18 11:22	02/13/18 11:05
10420487006	SG-8	Air	02/10/18 11:48	02/13/18 11:05
0420487007	SG-7	Air	02/10/18 12:22	02/13/18 11:05
0420487008	SG-9	Air	02/10/18 15:12	02/13/18 11:05
0420487009	SG-13	Air	02/10/18 16:15	02/13/18 11:05
0420487010	SG-11	Air	02/10/18 16:48	02/13/18 11:05
0420487011	SG-10	Air	02/11/18 08:40	02/13/18 11:05
10420487012	SG-12	Air	02/11/18 11:18	02/13/18 11:05
10420487013	SG-14	Air	02/11/18 11:48	02/13/18 11:05
10420487014	SG-2	Air	02/12/18 10:34	02/13/18 11:05
10420487015	SG-4	Air	02/12/18 11:33	02/13/18 11:05
10420487016	SG-5	Air	02/12/18 13:14	02/13/18 11:05
0420487017	Unused Can # PACE2736	Air		02/13/18 11:05
0420487018	Unused Can # PACE2404	Air		02/13/18 11:05

SAMPLE ANALYTE COUNT

 Project:
 31401059.001 I-35W MN Rvr Brdg

 Pace Project No.:
 10420487

ab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
0420487001			CH1	61	PASI-M
		TO-3 Air	CH1	1	PASI-M
0420487002	SG-15	TO-15	CH1	61	PASI-M
		TO-3 Air	CH1	1	PASI-M
0420487003	SG-1	TO-15	CH1	61	PASI-M
		TO-3 Air	CH1	1	PASI-M
0420487004	SG-3	TO-15	CH1	61	PASI-M
		TO-3 Air	CH1	1	PASI-M
0420487005	SG-6	TO-15	CH1	61	PASI-M
		TO-3 Air	CH1	1	PASI-M
0420487006	SG-8	TO-15	CH1	61	PASI-M
		TO-3 Air	CH1	1	PASI-M
0420487007	SG-7	TO-15	CH1	61	PASI-M
		TO-3 Air	CH1	1	PASI-M
0420487008	SG-9	TO-15	CH1	61	PASI-M
		TO-3 Air	CH1	1	PASI-M
0420487009	SG-13	TO-15	CH1	61	PASI-M
		TO-3 Air	CH1	1	PASI-M
0420487010	SG-11	TO-15	CH1	61	PASI-M
		TO-3 Air	CH1	1	PASI-M
0420487011	SG-10	TO-15	CH1	61	PASI-M
		TO-3 Air	CH1	1	PASI-M
0420487012	SG-12	TO-15	CH1	61	PASI-M
		TO-3 Air	CH1	1	PASI-M
0420487013	SG-14	TO-15	CH1	61	PASI-M
		TO-3 Air	CH1	1	PASI-M
0420487014	SG-2	TO-15	CH1	61	PASI-M
		TO-3 Air	CH1	1	PASI-M
0420487015	SG-4	TO-15	CH1, MLS	61	PASI-M
		TO-3 Air	CH1	1	PASI-M
0420487016	SG-5	TO-15	CH1	61	PASI-M
		TO-3 Air	CH1	1	PASI-M

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-16	Lab ID:	10420487001	Collected	d: 02/10/1	8 08:47	Received: 02	2/13/18 11:05 M	atrix: Air	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15	5						
Acetone	523	ug/m3	3.9	2.4	1.63		02/20/18 14:07	67-64-1	
Benzene	55.7	ug/m3	0.53	0.25	1.63		02/20/18 14:07	71-43-2	
Benzyl chloride	ND	ug/m3	1.7	0.38	1.63		02/20/18 14:07	100-44-7	
Bromodichloromethane	ND	ug/m3	2.2	0.58	1.63		02/20/18 14:07	75-27-4	
Bromoform	ND	ug/m3	8.6	1.1	1.63		02/20/18 14:07	75-25-2	
Bromomethane	ND	ug/m3	1.3	0.34	1.63		02/20/18 14:07	74-83-9	
1,3-Butadiene	ND	ug/m3	1.8	0.34	1.63		02/20/18 14:07	106-99-0	
2-Butanone (MEK)	145	ug/m3	4.9	0.33	1.63		02/20/18 14:07	78-93-3	
Carbon disulfide	56.3	ug/m3	1.0	0.29	1.63		02/20/18 14:07	75-15-0	
Carbon tetrachloride	ND	ug/m3	1.0	0.52	1.63		02/20/18 14:07	56-23-5	
Chlorobenzene	ND	ug/m3	1.5	0.29	1.63		02/20/18 14:07	108-90-7	
Chloroethane	79.0	ug/m3	2.2	0.33	1.63		02/20/18 14:07	75-00-3	
Chloroform	ND	ug/m3	0.81	0.38	1.63		02/20/18 14:07	67-66-3	
Chloromethane	ND	ug/m3	0.68	0.22	1.63		02/20/18 14:07	74-87-3	
Cyclohexane	388	ug/m3	30.1	9.8	43.03		02/21/18 02:24	110-82-7	
Dibromochloromethane	ND	ug/m3	2.8	0.72	1.63		02/20/18 14:07	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/m3	2.5	0.54	1.63		02/20/18 14:07		
1,2-Dichlorobenzene	ND	ug/m3	2.0	0.53	1.63		02/20/18 14:07		
1,3-Dichlorobenzene	ND	ug/m3	2.0	0.76	1.63		02/20/18 14:07		
1,4-Dichlorobenzene	ND	ug/m3	2.0	0.36	1.63		02/20/18 14:07		
Dichlorodifluoromethane	ND	ug/m3	1.6	0.68	1.63		02/20/18 14:07		
1,1-Dichloroethane	ND	ug/m3	1.3	0.35	1.63		02/20/18 14:07		
1,2-Dichloroethane	ND	ug/m3	0.67	0.32	1.63		02/20/18 14:07		
1,1-Dichloroethene	ND	ug/m3	1.3	0.39	1.63		02/20/18 14:07		
cis-1,2-Dichloroethene	ND	ug/m3	1.3	0.56	1.63		02/20/18 14:07		
trans-1,2-Dichloroethene	ND	ug/m3	1.3	0.48	1.63		02/20/18 14:07		
1,2-Dichloropropane	ND	ug/m3	1.5	0.50	1.63		02/20/18 14:07		
cis-1,3-Dichloropropene	ND	ug/m3	1.5	0.40	1.63		02/20/18 14:07		
trans-1,3-Dichloropropene	ND	ug/m3	1.5	0.68	1.63		02/20/18 14:07		
Dichlorotetrafluoroethane	ND	ug/m3	2.3	0.00	1.63		02/20/18 14:07		
Ethanol	60.5	ug/m3	3.1	0.72	1.63		02/20/18 14:07		
Ethyl acetate	ND	ug/m3	1.2	0.70	1.63		02/20/18 14:07		
Ethylbenzene	8.7	ug/m3	1.2	0.32	1.63		02/20/18 14:07		
-	ND	-	1.4	0.28	1.63		02/20/18 14:07		
4-Ethyltoluene		ug/m3		0.35					
n-Heptane	157	ug/m3	1.4		1.63		02/20/18 14:07		
Hexachloro-1,3-butadiene	ND	ug/m3	3.5	1.4	1.63		02/20/18 14:07		
n-Hexane	506	ug/m3	30.8	14.3	43.03		02/21/18 02:24		
2-Hexanone	ND	ug/m3	6.8	1.0	1.63		02/20/18 14:07		
Methylene Chloride	ND	ug/m3	5.8	2.5	1.63		02/20/18 14:07		
4-Methyl-2-pentanone (MIBK)	16.4	ug/m3	6.8	0.58	1.63		02/20/18 14:07		
Methyl-tert-butyl ether	ND	ug/m3	6.0	1.1	1.63		02/20/18 14:07		
Naphthalene	ND	ug/m3	4.3	0.97	1.63		02/20/18 14:07		
2-Propanol	ND	ug/m3	4.1	2.0	1.63		02/20/18 14:07		_
Propylene	1460	ug/m3	0.57	0.26	1.63		02/20/18 14:07		E
Styrene	ND	ug/m3	1.4	0.27	1.63		02/20/18 14:07		
1,1,2,2-Tetrachloroethane	ND	ug/m3	1.1	0.47	1.63		02/20/18 14:07	79-34-5	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-16	Lab ID:	10420487001	Collected	d: 02/10/1	3 08:47	Received: 02	/13/18 11:05 Ma	atrix: Air	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
									Quai
TO15 MSV AIR	Analytical	Method: TO-15	i						
Tetrachloroethene	ND	ug/m3	1.1	0.47	1.63		02/20/18 14:07	127-18-4	
Tetrahydrofuran	ND	ug/m3	0.98	0.45	1.63		02/20/18 14:07	109-99-9	
Toluene	139	ug/m3	1.2	0.26	1.63		02/20/18 14:07	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	6.1	1.6	1.63		02/20/18 14:07	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	1.8	0.56	1.63		02/20/18 14:07	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	0.90	0.37	1.63		02/20/18 14:07	79-00-5	
Trichloroethene	ND	ug/m3	0.89	0.44	1.63		02/20/18 14:07	79-01-6	
Trichlorofluoromethane	ND	ug/m3	1.9	0.68	1.63		02/20/18 14:07	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	2.5	0.60	1.63		02/20/18 14:07	76-13-1	
1,2,4-Trimethylbenzene	3.8	ug/m3	1.6	0.28	1.63		02/20/18 14:07	95-63-6	
1,3,5-Trimethylbenzene	1.2J	ug/m3	1.6	0.67	1.63		02/20/18 14:07	108-67-8	
Vinyl acetate	ND	ug/m3	1.2	0.27	1.63		02/20/18 14:07	108-05-4	
Vinyl chloride	ND	ug/m3	2.1	0.21	1.63		02/20/18 14:07	75-01-4	
m&p-Xylene	15.5	ug/m3	2.9	0.57	1.63		02/20/18 14:07	179601-23-1	
o-Xylene	4.5	ug/m3	1.4	0.60	1.63		02/20/18 14:07	95-47-6	
TO3 GCV AIR Meth, Ethane, Ethene	Analytical	Method: TO-3	Air						
Methane	23900	ppmv	21.5	0.91	2.15		03/02/18 08:56	74-82-8	E

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

TO15 MSV AIR Analytical Method: TO-15 Acetone 105 ug/m3 4.7 2.9 1.94 02/20/18 14:40 67-64- 67-64- 67-64- Benzene Benzyl chloride ND ug/m3 2.0 0.46 1.94 02/20/18 14:40 71-43- 71-43- Benzyl chloride Bromodichloromethane ND ug/m3 2.6 0.69 1.94 02/20/18 14:40 75-25- 72-72 Bromodichloromethane ND ug/m3 1.5 0.40 1.94 02/20/18 14:40 75-25- 72-72 Bromomethane ND ug/m3 1.5 0.40 1.94 02/20/18 14:40 75-25- 72-73 Bromomethane ND ug/m3 1.5 0.40 1.94 02/20/18 14:40 76-94- 72-73 Statadiene ND ug/m3 1.2 0.35 1.94 02/20/18 14:40 78-93- 72-16 Carbon disulfide 15.7 ug/m3 1.2 0.35 1.94 02/20/18 14:40 75-15- 75-16 Carbon tetrachloride ND ug/m3 1.8 0.35 1.94<	
TO15 MSV AIR Analytical Method: TO-15 Acetone 105 ug/m3 4.7 2.9 1.94 02/20/18 14:40 67-64- Benzene Benzyl chloride ND ug/m3 0.63 0.29 1.94 02/20/18 14:40 71-43- Benzyl chloride Bromodichloromethane ND ug/m3 2.6 0.66 1.94 02/20/18 14:40 75-25- Bromomethane Bromodichloromethane ND ug/m3 1.5 0.40 1.94 02/20/18 14:40 75-25- Bromomethane J.3-Butadiene ND ug/m3 1.5 0.40 1.94 02/20/18 14:40 76-94- Chloro4 2-Butanone (MEK) 23.7 ug/m3 1.2 0.35 1.94 02/20/18 14:40 78-93- Chlorobenzene Chloroetnane ND ug/m3 1.2 0.35 1.94 02/20/18 14:40 78-93- Chlorobenzene Chloroethane ND ug/m3 1.2 0.35 1.94 02/20/18 14:40 78-90- Chloroform Du ug/m3 0.66 0.40 1.94	
Acetone 105 ug/m3 4.7 2.9 1.94 02/20/18 14:40 67-64 Benzene 25.8 ug/m3 0.63 0.29 1.94 02/20/18 14:40 71-43 Benzyl chloride ND ug/m3 2.0 0.46 1.94 02/20/18 14:40 75-27 Bromodichloromethane ND ug/m3 1.02 1.3 1.94 02/20/18 14:40 75-23 Bromothane ND ug/m3 1.5 0.40 1.94 02/20/18 14:40 75-23 Bromothane ND ug/m3 1.5 0.40 1.94 02/20/18 14:40 75-83 Bromothane ND ug/m3 2.2 0.40 1.94 02/20/18 14:40 78-93 Carbon disulfide 15.7 ug/m3 1.2 0.35 1.94 02/20/18 14:40 76-03 Chlorobenzene ND ug/m3 1.8 0.35 1.94 02/20/18 14:40 <td< th=""><th>No. Qual</th></td<>	No. Qual
Benzene 25.8 ug/m3 0.63 0.29 1.94 02/20/18 14:40 71-43- 71-43- 8enzyl chloride Benzyl chloride ND ug/m3 2.0 0.46 1.94 02/20/18 14:40 100-44 Bromodichloromethane ND ug/m3 2.6 0.69 1.94 02/20/18 14:40 75-27- Bromoform ND ug/m3 1.5 0.40 1.94 02/20/18 14:40 75-27- Bromomethane ND ug/m3 1.5 0.40 1.94 02/20/18 14:40 74-33- 1,3-Butadiene ND ug/m3 2.2 0.40 1.94 02/20/18 14:40 78-93- Carbon disulfide 15.7 ug/m3 1.2 0.62 1.94 02/20/18 14:40 78-93- Chlorobenzene ND ug/m3 1.8 0.35 1.94 02/20/18 14:40 78-00- Chloroform ND ug/m3 0.86 0.44 1.94 02/20/1	
Benzyl chloride ND ug/m3 2.0 0.46 1.94 02/20/18 14:40 100-44 Bromodichloromethane ND ug/m3 2.6 0.69 1.94 02/20/18 14:40 75-27- Bromoform ND ug/m3 1.0.2 1.3 1.94 02/20/18 14:40 75-25- Bromomethane ND ug/m3 2.2 0.40 1.94 02/20/18 14:40 76-37- J-Butanone (MEK) 23.7 ug/m3 2.2 0.40 1.94 02/20/18 14:40 78-93- Carbon disulfide 15.7 ug/m3 1.2 0.52 1.94 02/20/18 14:40 75-15- Carbon tetrachloride ND ug/m3 1.2 0.62 1.94 02/20/18 14:40 75-00- Chlorobenzene ND ug/m3 0.86 0.40 1.94 02/20/18 14:40 76-66- Chloroform ND ug/m3 0.46 1.94 02/20/18 14:40	1
Bronodichloromethane ND ug/m3 2.6 0.69 1.94 02/20/18 1.44.0 75-27- Bromoform ND ug/m3 10.2 1.3 1.94 02/20/18 14.40 75-25- Bromomethane ND ug/m3 1.5 0.40 1.94 02/20/18 14.40 74-83- 1,3-Butadiene ND ug/m3 2.2 0.40 1.94 02/20/18 14.40 76-93- 2-Butanone (MEK) 23.7 ug/m3 5.8 0.39 1.94 02/20/18 14.40 76-93- Carbon disulfide 15.7 ug/m3 1.2 0.62 1.94 02/20/18 14.40 76-03- Carbon disulfide ND ug/m3 1.8 0.35 1.94 02/20/18 14.40 76-66- Chlorobenzene ND ug/m3 0.96 0.45 1.94 02/20/18 14.40 74-87- Cyclohexane ND ug/m3 3.4 0.86 1.94 02/20/18	2
BromoformNDug/m310.21.31.9402/20/1814:4075-25-BromomethaneNDug/m31.50.401.9402/20/1814:4074-83-1,3-ButadieneNDug/m32.20.401.9402/20/1814:4076-93-2-Butanone (MEK)23.7ug/m35.80.391.9402/20/1814:4075-15-Carbon disulfide15.7ug/m31.20.351.9402/20/1814:4075-15-Carbon tetrachlorideNDug/m31.80.351.9402/20/1814:4075-00-ChlorobenzeneNDug/m32.60.401.9402/20/1814:4075-00-ChloroformNDug/m30.810.261.9402/20/1814:4076-66-ChloromethaneNDug/m30.810.261.9402/20/1814:4010-82CyclohexaneNDug/m33.40.861.9402/20/1814:4010-82DibromochloromethaneNDug/m33.40.651.9402/20/1814:4010-821,2-DichlorobenzeneNDug/m32.40.631.9402/20/1814:4010-821,2-DichlorobenzeneNDug/m32.40.631.9402/20/1814:40106-921,2-DichlorobenzeneNDug/m32.40.631.9402/20/1814:40106-921,2-DichlorobenzeneNDu	-7
BromomethaneNDug/m31.50.401.9402/20/1814:4074-83-1,3-ButadieneNDug/m32.20.401.9402/20/1814:40106-922-Butanone (MEK) 23.7 ug/m35.80.391.9402/20/1814:4078-93Carbon disulfide 15.7 ug/m31.20.351.9402/20/1814:4075-15Carbon tetrachlorideNDug/m31.20.621.9402/20/1814:4076-93ChlorobenzeneNDug/m31.80.351.9402/20/1814:4076-93ChlorobetnaneNDug/m32.60.401.9402/20/1814:4076-96ChloroothaneNDug/m30.810.261.9402/20/1814:4076-97ChloroothaneNDug/m30.810.261.9402/20/1814:4076-97ChloroothaneNDug/m30.810.261.9402/20/1814:4076-97CyclohexaneNDug/m30.810.261.9402/20/1814:4076-97DibromochloromethaneNDug/m33.40.861.9402/20/1814:4076-971,2-Dibronoethane (EDB)NDug/m33.00.651.9402/20/1814:40106-971,2-DichlorobenzeneNDug/m32.40.631.9402/20/1814:40106-971,2-DichlorobenzeneND <td< td=""><td>4</td></td<>	4
1,3-ButadieneNDug/m32.20.401.9402/20/1814:40106-992-Butanone (MEK)23.7ug/m35.80.391.9402/20/1814:4078-93-Carbon disulfide15.7ug/m31.20.351.9402/20/1814:4075-15-Carbon tetrachlorideNDug/m31.20.621.9402/20/1814:4056-23-ChlorobenzeneNDug/m31.80.351.9402/20/1814:4075-00-ChloroethaneNDug/m30.960.451.9402/20/1814:4075-00-ChloroformNDug/m30.960.451.9402/20/1814:4076-66-ChloromethaneNDug/m30.810.261.9402/20/1814:40106-92CyclohexaneNDug/m33.40.861.9402/20/1814:40110-82Dibromochloromethane (EDB)NDug/m33.40.861.9402/20/1814:40106-921,2-DichlorobenzeneNDug/m32.40.631.9402/20/1814:40106-921,3-DichlorobenzeneNDug/m32.40.631.9402/20/1814:40106-921,3-DichlorobenzeneNDug/m32.40.631.9402/20/1814:40106-921,3-DichlorobenzeneNDug/m32.40.631.9402/20/1814:40106-921,3-Dichlorobenzene	2
2-Butanone (MEK)23.7ug/m35.80.391.9402/20/1814:4078-93-Carbon disulfide15.7ug/m31.20.351.9402/20/1814:4075-15-Carbon tetrachlorideNDug/m31.20.621.9402/20/1814:4056-23-ChlorobenzeneNDug/m31.80.351.9402/20/1814:4075-00-ChloroethaneNDug/m32.60.401.9402/20/1814:4075-00-ChloroformNDug/m30.960.451.9402/20/1814:4067-66-ChloromethaneNDug/m30.810.261.9402/20/1814:4074-87-CyclohexaneNDug/m33.40.861.9402/20/1814:40106-92DibromochloromethaneNDug/m33.00.651.9402/20/1814:40106-921,2-DichlorobenzeneNDug/m32.40.631.9402/20/1814:40106-921,3-DichlorobenzeneNDug/m32.40.631.9402/20/1814:40106-461,4-DichlorobenzeneNDug/m32.40.421.9402/20/1814:40106-461,4-DichlorobenzeneNDug/m32.40.421.9402/20/1814:40106-461,4-DichlorobenzeneNDug/m32.40.421.9402/20/1814:40106-461,1-Dichloroethane </td <td>9</td>	9
Carbon disulfide15.7ug/m31.20.351.9402/20/1814:4075-15-Carbon tetrachlorideNDug/m31.20.621.9402/20/1814:4056-23-ChlorobenzeneNDug/m31.80.351.9402/20/1814:40108-90ChloroethaneNDug/m32.60.401.9402/20/1814:4075-00-ChloroethaneNDug/m30.960.451.9402/20/1814:4076-66-ChloromethaneNDug/m30.810.261.9402/20/1814:4074-87-CyclohexaneNDug/m33.40.861.9402/20/1814:40106-82DibromochloromethaneNDug/m33.40.861.9402/20/1814:40106-921,2-Dibronoethane (EDB)NDug/m33.00.651.9402/20/1814:40106-921,2-DichlorobenzeneNDug/m32.40.631.9402/20/1814:4095-50-1,3-DichlorobenzeneNDug/m32.40.421.9402/20/1814:4075-74-1,4-DichlorobenzeneNDug/m32.40.421.9402/20/1814:4075-74-1,1-DichloroethaneNDug/m33.60.381.9402/20/1814:4075-74-1,1-DichloroethaneNDug/m30.800.381.9402/20/1814:4075-74-1,1-Dichloroet) -0
Carbon tetrachlorideNDug/m31.20.621.9402/20/1814:4056-23-ChlorobenzeneNDug/m31.80.351.9402/20/1814:40108-90ChloroethaneNDug/m32.60.401.9402/20/1814:4075-00-ChloroformNDug/m30.960.451.9402/20/1814:4067-66-ChloromethaneNDug/m30.810.261.9402/20/1814:4074-87-CyclohexaneNDug/m31.40.441.9402/20/1814:40110-82DibromochloromethaneNDug/m33.00.651.9402/20/1814:40124-481,2-Dibromoethane (EDB)NDug/m33.00.651.9402/20/1814:40106-931,2-DichlorobenzeneNDug/m32.40.631.9402/20/1814:4095-50-1,3-DichlorobenzeneNDug/m32.40.631.9402/20/1814:40541-731,4-DichlorobenzeneNDug/m32.00.811.9402/20/1814:4075-71-1,1-DichloroethaneNDug/m31.60.411.9402/20/1814:4075-34-1,2-DichloroethaneNDug/m30.800.381.9402/20/1814:4075-34-1,1-DichloroethaneNDug/m30.800.381.9402/20/1814:4075-35-1,1-Dichloroeth	3
ChlorobenzeneNDug/m31.80.351.9402/20/1814:40108-90ChloroethaneNDug/m32.60.401.9402/20/1814:4075-00ChloroformNDug/m30.960.451.9402/20/1814:4067-66ChloromethaneNDug/m30.810.261.9402/20/1814:4074-87CyclohexaneNDug/m31.40.441.9402/20/1814:40110-82DibromochloromethaneNDug/m33.40.861.9402/20/1814:40124-481,2-Dibromoethane (EDB)NDug/m33.00.651.9402/20/1814:40106-931,3-DichlorobenzeneNDug/m32.40.631.9402/20/1814:40541-731,4-DichlorobenzeneNDug/m32.40.421.9402/20/1814:40541-731,4-DichlorobenzeneNDug/m32.40.421.9402/20/1814:40541-731,4-DichlorobenzeneNDug/m32.00.811.9402/20/1814:4075-741,1-DichloroethaneNDug/m31.60.411.9402/20/1814:4075-341,2-DichloroethaneNDug/m30.800.381.9402/20/1814:4075-341,1-DichloroethaneNDug/m30.800.381.9402/20/1814:4075-341,1-Dichloroethane	0
ChloroethaneNDug/m32.60.401.9402/20/1814:4075-00-ChloroformNDug/m30.960.451.9402/20/1814:4067-66-ChloromethaneNDug/m30.810.261.9402/20/1814:4074-87-CyclohexaneNDug/m31.40.441.9402/20/1814:40110-82DibromochloromethaneNDug/m33.40.861.9402/20/1814:40124-481,2-Dibromoethane (EDB)NDug/m33.00.651.9402/20/1814:40106-931,2-DichlorobenzeneNDug/m32.40.631.9402/20/1814:40541-731,4-DichlorobenzeneNDug/m32.40.421.9402/20/1814:40541-731,4-DichlorobenzeneNDug/m32.00.811.9402/20/1814:4075-74-1,1-DichloroethaneNDug/m31.60.411.9402/20/1814:4075-34-1,2-DichloroethaneNDug/m31.60.461.9402/20/1814:4075-34-1,1-DichloroethaneNDug/m30.800.381.9402/20/1814:4075-34-1,2-DichloroethaneNDug/m31.60.461.9402/20/1814:4075-34-1,2-DichloroethaneNDug/m31.60.461.9402/20/1814:4075-34-1,2-Dichloroe	5
ChloroformNDug/m30.960.451.9402/20/1814:4067-66-ChloromethaneNDug/m30.810.261.9402/20/1814:4074-87-CyclohexaneNDug/m31.40.441.9402/20/1814:40110-82DibromochloromethaneNDug/m33.40.861.9402/20/1814:40124-481,2-Dibromoethane (EDB)NDug/m33.00.651.9402/20/1814:40106-931,2-DichlorobenzeneNDug/m32.40.631.9402/20/1814:4095-50-1,3-DichlorobenzeneNDug/m32.40.901.9402/20/1814:40541-731,4-DichlorobenzeneNDug/m32.00.811.9402/20/1814:40106-46DichlorodifluoromethaneNDug/m32.00.811.9402/20/1814:4075-71-1,1-DichloroethaneNDug/m30.800.381.9402/20/1814:4075-34-1,2-DichloroethaneNDug/m30.800.381.9402/20/1814:40107-061,1-DichloroethaneNDug/m31.60.461.9402/20/1814:4075-34-1,2-DichloroethaneNDug/m31.60.461.9402/20/1814:4075-34-1,1-DichloroethaneNDug/m31.60.461.9402/20/1814:4075-35-1)-7
ChloromethaneNDug/m30.810.261.9402/20/1814:4074-87-CyclohexaneNDug/m31.40.441.9402/20/1814:40110-82DibromochloromethaneNDug/m33.40.861.9402/20/1814:40124-441,2-Dibromoethane (EDB)NDug/m33.00.651.9402/20/1814:40106-931,2-DichlorobenzeneNDug/m32.40.631.9402/20/1814:4095-50-1,3-DichlorobenzeneNDug/m32.40.901.9402/20/1814:40541-731,4-DichlorobenzeneNDug/m32.40.421.9402/20/1814:40106-46DichlorodifluoromethaneNDug/m32.00.811.9402/20/1814:4075-71-1,1-DichloroethaneNDug/m31.60.411.9402/20/1814:4075-34-1,2-DichloroethaneNDug/m30.800.381.9402/20/1814:4075-34-1,2-DichloroethaneNDug/m30.800.381.9402/20/1814:4075-34-1,1-DichloroethaneNDug/m31.60.461.9402/20/1814:4075-35-1,1-DichloroethaneNDug/m31.60.461.9402/20/1814:4075-35-1,1-DichloroethaneNDug/m31.60.461.9402/20/1814:4075-35- <t< td=""><td>3</td></t<>	3
CyclohexaneNDug/m31.40.441.9402/20/1814:40110-82DibromochloromethaneNDug/m33.40.861.9402/20/1814:40124-441,2-Dibromoethane (EDB)NDug/m33.00.651.9402/20/1814:40106-931,2-DichlorobenzeneNDug/m32.40.631.9402/20/1814:4095-50-1,3-DichlorobenzeneNDug/m32.40.901.9402/20/1814:40541-731,4-DichlorobenzeneNDug/m32.40.421.9402/20/1814:4075-71-1,4-DichlorobenzeneNDug/m32.00.811.9402/20/1814:4075-71-1,1-DichloroethaneNDug/m31.60.411.9402/20/1814:4075-34-1,2-DichloroethaneNDug/m30.800.381.9402/20/1814:4075-34-1,1-DichloroethaneNDug/m30.800.381.9402/20/1814:4075-34-1,2-DichloroethaneNDug/m30.800.381.9402/20/1814:4075-34-1,1-DichloroethaneNDug/m31.60.461.9402/20/1814:4075-35-1,1-DichloroethaneNDug/m31.60.461.9402/20/1814:4075-35-1,1-DichloroethaneNDug/m31.60.461.9402/20/1814:4075-35-<	3
DibromochloromethaneNDug/m33.40.861.9402/20/1814:40124-481,2-Dibromoethane (EDB)NDug/m33.00.651.9402/20/1814:40106-931,2-DichlorobenzeneNDug/m32.40.631.9402/20/1814:4095-50-1,3-DichlorobenzeneNDug/m32.40.901.9402/20/1814:40541-731,4-DichlorobenzeneNDug/m32.40.421.9402/20/1814:4075-71-1,4-DichlorobenzeneNDug/m32.00.811.9402/20/1814:4075-71-1,1-DichloroethaneNDug/m31.60.411.9402/20/1814:4075-34-1,2-DichloroethaneNDug/m30.800.381.9402/20/1814:4075-34-1,1-DichloroethaneNDug/m30.800.381.9402/20/1814:4075-35-1,1-DichloroethaneNDug/m31.60.461.9402/20/1814:4075-35-1,1-DichloroethaneNDug/m31.60.461.9402/20/1814:4075-35-1,1-DichloroethaneNDug/m31.60.461.9402/20/1814:4075-35-1,1-DichloroethaneNDug/m31.60.461.9402/20/1814:4075-35-	3
DibromochloromethaneNDug/m33.40.861.9402/20/1814:40124-481,2-Dibromoethane (EDB)NDug/m33.00.651.9402/20/1814:40106-931,2-DichlorobenzeneNDug/m32.40.631.9402/20/1814:4095-501,3-DichlorobenzeneNDug/m32.40.901.9402/20/1814:40541-731,4-DichlorobenzeneNDug/m32.40.421.9402/20/1814:40541-731,4-DichlorobenzeneNDug/m32.00.811.9402/20/1814:4075-71-1,1-DichloroethaneNDug/m31.60.411.9402/20/1814:4075-34-1,2-DichloroethaneNDug/m30.800.381.9402/20/1814:4075-34-1,1-DichloroethaneNDug/m30.800.381.9402/20/1814:4075-35-1,1-DichloroethaneNDug/m31.60.461.9402/20/1814:4075-35-	-7
1,2-Dibromoethane (EDB)NDug/m33.00.651.9402/20/1814:40106-931,2-DichlorobenzeneNDug/m32.40.631.9402/20/1814:4095-501,3-DichlorobenzeneNDug/m32.40.901.9402/20/1814:40541-731,4-DichlorobenzeneNDug/m32.40.421.9402/20/1814:40106-40DichlorodifluoromethaneNDug/m32.00.811.9402/20/1814:4075-71-1,1-DichloroethaneNDug/m31.60.411.9402/20/1814:4075-34-1,2-DichloroethaneNDug/m30.800.381.9402/20/1814:4075-34-1,1-DichloroethaneNDug/m30.800.381.9402/20/1814:4075-35-1,1-DichloroethaneNDug/m31.60.461.9402/20/1814:4075-35-	3-1
1,2-DichlorobenzeneNDug/m32.40.631.9402/20/1814:4095-50-1,3-DichlorobenzeneNDug/m32.40.901.9402/20/1814:40541-731,4-DichlorobenzeneNDug/m32.40.421.9402/20/1814:40106-46DichlorodifluoromethaneNDug/m32.00.811.9402/20/1814:4075-71-1,1-DichloroethaneNDug/m31.60.411.9402/20/1814:4075-34-1,2-DichloroethaneNDug/m30.800.381.9402/20/1814:4075-34-1,1-DichloroethaneNDug/m30.800.381.9402/20/1814:4075-35-1,1-DichloroetheneNDug/m31.60.461.9402/20/1814:4075-35-	3-4
1,3-DichlorobenzeneNDug/m32.40.901.9402/20/1814:40541-731,4-DichlorobenzeneNDug/m32.40.421.9402/20/1814:40106-44DichlorodifluoromethaneNDug/m32.00.811.9402/20/1814:4075-71-1,1-DichloroethaneNDug/m31.60.411.9402/20/1814:4075-34-1,2-DichloroethaneNDug/m30.800.381.9402/20/1814:40107-061,1-DichloroetheneNDug/m31.60.461.9402/20/1814:4075-35-	1
1,4-DichlorobenzeneNDug/m32.40.421.9402/20/1814:40106-44DichlorodifluoromethaneNDug/m32.00.811.9402/20/1814:4075-71-1,1-DichloroethaneNDug/m31.60.411.9402/20/1814:4075-34-1,2-DichloroethaneNDug/m30.800.381.9402/20/1814:40107-061,1-DichloroetheneNDug/m31.60.461.9402/20/1814:4075-35-	3-1
DichlorodifluoromethaneNDug/m32.00.811.9402/20/1814:4075-71-1,1-DichloroethaneNDug/m31.60.411.9402/20/1814:4075-34-1,2-DichloroethaneNDug/m30.800.381.9402/20/1814:40107-061,1-DichloroethaneNDug/m31.60.461.9402/20/1814:4075-35-	5-7
1,1-DichloroethaneNDug/m31.60.411.9402/20/1802/20/1814:4075-34-1,2-DichloroethaneNDug/m30.800.381.9402/20/1814:40107-061,1-DichloroetheneNDug/m31.60.461.9402/20/1814:4075-35-	8
1,2-Dichloroethane ND ug/m3 0.80 0.38 1.94 02/20/18 14:40 107-06 1,1-Dichloroethene ND ug/m3 1.6 0.46 1.94 02/20/18 14:40 75-35-	
1,1-Dichloroethene ND ug/m3 1.6 0.46 1.94 02/20/18 14:40 75-35-	
•	
cis-1,2-Dichloroethene ND ug/m3 1.6 0.66 1.94 02/20/18 14:40 156-59	
trans-1,2-Dichloroethene ND ug/m3 1.6 0.57 1.94 02/20/18 14:40 156-60	
1,2-Dichloropropane ND ug/m3 1.8 0.59 1.94 02/20/18 14:40 78-87-	
cis-1,3-Dichloropropene ND ug/m3 1.8 0.48 1.94 02/20/18 14:40 10061	
trans-1,3-Dichloropropene ND ug/m3 1.8 0.81 1.94 02/20/18 14:40 10061	
Dichlorotetrafluoroethane ND ug/m3 2.8 0.86 1.94 02/20/18 14:40 76-14-	
Ethanol ND ug/m3 3.7 0.90 1.94 02/20/18 14:40 64-17-	
Ethyl acetate ND ug/m3 1.4 0.38 1.94 02/20/18 14:40 141-78	
Ethylactatic No ug/m3 1.4 0.50 1.54 02/20/10 14.40 141 40 Ethylbenzene 3.6 ug/m3 1.7 0.33 1.94 02/20/18 14:40 100-47	-
4-Ethyltoluene ND ug/m3 1.9 0.42 1.94 02/20/18 14:40 622-96	
n-Heptane 13.0 ug/m3 1.6 0.41 1.94 02/20/18 14:40 142-82	-
Hexachloro-1,3-butadiene ND ug/m3 4.2 1.7 1.94 02/20/18 14:40 87-68-	
n-Hexane 30.6 ug/m3 1.4 0.65 1.94 02/20/18 14:40 110-54	
2-Hexanone ND ug/m3 8.1 1.2 1.94 02/20/18 14:40 591-78	
Methylene Chloride ND ug/m3 6.8 2.9 1.94 02/20/18 14:40 75-09-	
4-Methyl-2-pentanone (MIBK) 4.9J ug/m3 8.1 0.69 1.94 02/20/18 14:40 73-05-	
, , ,	
Naphthalene ND ug/m3 5.2 1.2 1.94 02/20/18 14:40 91-20- 2 Propagel 8 4 2 4 1.94 02/20/18 14:40 67 63	
2-Propanol 8.7 ug/m3 4.8 2.4 1.94 02/20/18 14:40 67-63- Propulace 422 ug/m3 0.68 0.30 1.04 02/20/18 14:40 145 0.7	
Propylene 432 ug/m3 0.68 0.30 1.94 02/20/18 14:40 115-07 Sturane ND ug/m2 1.7 0.32 1.04 02/20/18 14:40 100.44	
Styrene ND ug/m3 1.7 0.32 1.94 02/20/18 14:40 100-42 4.4.2.2 Tetrachlassethere ND ug/m2 4.4 0.5 4.04 02/20/18 4.44.0 70.24	
1,1,2,2-Tetrachloroethane ND ug/m3 1.4 0.56 1.94 02/20/18 14:40 79-34-	5

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-15	Lab ID:	10420487002	Collecte	d: 02/10/1	8 09:23	Received: 02	/13/18 11:05 Ma	atrix: Air	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
Tetrachloroethene	ND	ug/m3	1.3	0.56	1.94		02/20/18 14:40	127-18-4	
Tetrahydrofuran	ND	ug/m3	1.2	0.53	1.94		02/20/18 14:40	109-99-9	
Toluene	24.2	ug/m3	1.5	0.31	1.94		02/20/18 14:40	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	7.3	1.9	1.94		02/20/18 14:40	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	2.2	0.66	1.94		02/20/18 14:40	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	1.1	0.44	1.94		02/20/18 14:40	79-00-5	
Trichloroethene	ND	ug/m3	1.1	0.52	1.94		02/20/18 14:40	79-01-6	
Trichlorofluoromethane	ND	ug/m3	2.2	0.81	1.94		02/20/18 14:40	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	3.0	0.72	1.94		02/20/18 14:40	76-13-1	
1,2,4-Trimethylbenzene	3.0	ug/m3	1.9	0.33	1.94		02/20/18 14:40	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/m3	1.9	0.80	1.94		02/20/18 14:40	108-67-8	
Vinyl acetate	ND	ug/m3	1.4	0.32	1.94		02/20/18 14:40	108-05-4	
Vinyl chloride	ND	ug/m3	2.5	0.24	1.94		02/20/18 14:40	75-01-4	
m&p-Xylene	10.0	ug/m3	3.4	0.68	1.94		02/20/18 14:40	179601-23-1	
o-Xylene	2.0	ug/m3	1.7	0.72	1.94		02/20/18 14:40	95-47-6	
TO3 GCV AIR Meth, Ethane, Ethene	Analytical	Method: TO-3	Air						
Methane	7240	ppmv	27.0	1.1	2.7		03/02/18 09:05	74-82-8	E

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-1	Lab ID:	10420487003	Collected	d: 02/10/1	8 10:00	Received: 02	2/13/18 11:05 M	latrix: Air	
Denemeters	Desults	l la ita	Report			Drenered	Analyzad		Qual
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytica	l Method: TO-15	5						
Acetone	122	ug/m3	4.3	2.7	1.77		02/20/18 15:15	67-64-1	
Benzene	16.1	ug/m3	0.58	0.27	1.77		02/20/18 15:15	5 71-43-2	
Benzyl chloride	ND	ug/m3	1.9	0.42	1.77		02/20/18 15:15	5 100-44-7	
Bromodichloromethane	ND	ug/m3	2.4	0.63	1.77		02/20/18 15:15	5 75-27-4	
Bromoform	ND	ug/m3	9.3	1.2	1.77		02/20/18 15:15	5 75-25-2	
Bromomethane	ND	ug/m3	1.4	0.37	1.77		02/20/18 15:15	5 74-83-9	
1,3-Butadiene	ND	ug/m3	2.0	0.36	1.77		02/20/18 15:15	5 106-99-0	
2-Butanone (MEK)	26.7	ug/m3	5.3	0.36	1.77		02/20/18 15:15	5 78-93-3	
Carbon disulfide	ND	ug/m3	1.1	0.32	1.77		02/20/18 15:15	5 75-15-0	
Carbon tetrachloride	ND	ug/m3	1.1	0.56	1.77		02/20/18 15:15	5 56-23-5	
Chlorobenzene	ND	ug/m3	1.7	0.32	1.77		02/20/18 15:15	5 108-90-7	
Chloroethane	ND	ug/m3	2.4	0.36	1.77		02/20/18 15:15	5 75-00-3	
Chloroform	ND	ug/m3	0.88	0.41	1.77		02/20/18 15:15	5 67-66-3	
Chloromethane	ND	ug/m3	0.74	0.24	1.77		02/20/18 15:15	5 74-87-3	
Cyclohexane	10	ug/m3	1.2	0.40	1.77		02/20/18 15:15	5 110-82-7	
Dibromochloromethane	ND	ug/m3	3.1	0.78	1.77		02/20/18 15:15	5 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/m3	2.8	0.59	1.77		02/20/18 15:15		
1,2-Dichlorobenzene	ND	ug/m3	2.2	0.58	1.77		02/20/18 15:15		
1,3-Dichlorobenzene	ND	ug/m3	2.2	0.82	1.77		02/20/18 15:15		
1,4-Dichlorobenzene	ND	ug/m3	2.2	0.39	1.77		02/20/18 15:15		
Dichlorodifluoromethane	ND	ug/m3	1.8	0.74	1.77		02/20/18 15:15		
1,1-Dichloroethane	ND	ug/m3	1.5	0.38	1.77		02/20/18 15:15		
1,2-Dichloroethane	ND	ug/m3	0.73	0.35	1.77		02/20/18 15:15		
1,1-Dichloroethene	ND	ug/m3	1.4	0.42	1.77		02/20/18 15:15		
cis-1,2-Dichloroethene	ND	ug/m3	1.4	0.42	1.77		02/20/18 15:15		
trans-1,2-Dichloroethene	ND	ug/m3	1.4	0.52	1.77		02/20/18 15:15		
	ND	0	1.4	0.52	1.77		02/20/18 15:15		
1,2-Dichloropropane cis-1,3-Dichloropropene	ND	ug/m3 ug/m3	1.7	0.54	1.77		02/20/18 15:15		
	ND	-	1.6	0.43	1.77		02/20/18 15:15		
trans-1,3-Dichloropropene		ug/m3							
Dichlorotetrafluoroethane	ND	ug/m3	2.5	0.78	1.77 1.77		02/20/18 15:15		
Ethanol	17.1	ug/m3	3.4	0.82			02/20/18 15:15		
Ethyl acetate	ND	ug/m3	1.3	0.35	1.77		02/20/18 15:15		
Ethylbenzene	5.5	ug/m3	1.6	0.30	1.77		02/20/18 15:15		
4-Ethyltoluene	ND	ug/m3	1.8	0.38	1.77		02/20/18 15:15		
n-Heptane	12.3	ug/m3	1.5	0.37	1.77		02/20/18 15:15		
Hexachloro-1,3-butadiene	ND	ug/m3	3.8	1.5	1.77		02/20/18 15:15		
n-Hexane	34.7	ug/m3	1.3	0.59	1.77		02/20/18 15:15		
2-Hexanone	ND	ug/m3	7.4	1.1	1.77		02/20/18 15:15		
Methylene Chloride	77.9	ug/m3	6.2	2.7	1.77		02/20/18 15:15		
4-Methyl-2-pentanone (MIBK)	ND	ug/m3	7.4	0.63	1.77		02/20/18 15:15		
Methyl-tert-butyl ether	ND	ug/m3	6.5	1.2	1.77		02/20/18 15:15		
Naphthalene	ND	ug/m3	4.7	1.1	1.77		02/20/18 15:15		
2-Propanol	6.8	ug/m3	4.4	2.2	1.77		02/20/18 15:15		
Propylene	ND	ug/m3	0.62	0.28	1.77		02/20/18 15:15		
Styrene	ND	ug/m3	1.5	0.30	1.77		02/20/18 15:15		
1,1,2,2-Tetrachloroethane	ND	ug/m3	1.2	0.51	1.77		02/20/18 15:15	5 79-34-5	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-1	Lab ID:	10420487003	Collected	d: 02/10/1	8 10:00	Received: 02	/13/18 11:05 M	atrix: Air	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
Tetrachloroethene	ND	ug/m3	1.2	0.51	1.77		02/20/18 15:15	127-18-4	
Tetrahydrofuran	ND	ug/m3	1.1	0.48	1.77		02/20/18 15:15	109-99-9	
Toluene	28.4	ug/m3	1.4	0.28	1.77		02/20/18 15:15	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	6.7	1.7	1.77		02/20/18 15:15	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	2.0	0.61	1.77		02/20/18 15:15	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	0.98	0.40	1.77		02/20/18 15:15	79-00-5	
Trichloroethene	ND	ug/m3	0.97	0.47	1.77		02/20/18 15:15	79-01-6	
Trichlorofluoromethane	ND	ug/m3	2.0	0.74	1.77		02/20/18 15:15	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	2.8	0.65	1.77		02/20/18 15:15	76-13-1	
1,2,4-Trimethylbenzene	1.5J	ug/m3	1.8	0.30	1.77		02/20/18 15:15	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/m3	1.8	0.73	1.77		02/20/18 15:15	108-67-8	
Vinyl acetate	ND	ug/m3	1.3	0.29	1.77		02/20/18 15:15	108-05-4	
Vinyl chloride	ND	ug/m3	2.3	0.22	1.77		02/20/18 15:15	75-01-4	
m&p-Xylene	6.0	ug/m3	3.1	0.62	1.77		02/20/18 15:15	179601-23-1	
o-Xylene	1.3J	ug/m3	1.6	0.66	1.77		02/20/18 15:15	95-47-6	
TO3 GCV AIR Meth, Ethane, Ethene	Analytical	Method: TO-3	Air						
Methane	72.1	ppmv	29.7	1.3	2.97		03/02/18 09:15	74-82-8	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-3	Lab ID:	10420487004	Collected	d: 02/10/1	8 10:48	Received: 02	2/13/18 11:05 M	atrix: Air	
Demonstern	Decelle	11-26-	Report			Davasa	Assel		Qual
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytica	I Method: TO-1	5						
Acetone	110	ug/m3	4.2	2.6	1.74		02/20/18 15:49	67-64-1	
Benzene	18.1	ug/m3	0.57	0.26	1.74		02/20/18 15:49	71-43-2	
Benzyl chloride	ND	ug/m3	1.8	0.41	1.74		02/20/18 15:49	100-44-7	
Bromodichloromethane	ND	ug/m3	2.4	0.62	1.74		02/20/18 15:49	75-27-4	
Bromoform	ND	ug/m3	9.1	1.2	1.74		02/20/18 15:49	75-25-2	
Bromomethane	ND	ug/m3	1.4	0.36	1.74		02/20/18 15:49	74-83-9	
1,3-Butadiene	ND	ug/m3	2.0	0.36	1.74		02/20/18 15:49	106-99-0	
2-Butanone (MEK)	29.4	ug/m3	5.2	0.35	1.74		02/20/18 15:49	78-93-3	
Carbon disulfide	ND	ug/m3	1.1	0.31	1.74		02/20/18 15:49	75-15-0	
Carbon tetrachloride	ND	ug/m3	1.1	0.55	1.74		02/20/18 15:49	56-23-5	
Chlorobenzene	1.2J	ug/m3	1.6	0.31	1.74		02/20/18 15:49	108-90-7	
Chloroethane	ND	ug/m3	2.3	0.35	1.74		02/20/18 15:49	75-00-3	
Chloroform	ND	ug/m3	0.86	0.40	1.74		02/20/18 15:49	67-66-3	
Chloromethane	ND	ug/m3	0.73	0.23	1.74		02/20/18 15:49	74-87-3	
Cyclohexane	ND	ug/m3	1.2	0.39	1.74		02/20/18 15:49	110-82-7	
Dibromochloromethane	ND	ug/m3	3.0	0.77	1.74		02/20/18 15:49	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/m3	2.7	0.58	1.74		02/20/18 15:49	106-93-4	
1,2-Dichlorobenzene	ND	ug/m3	2.1	0.57	1.74		02/20/18 15:49	95-50-1	
1,3-Dichlorobenzene	ND	ug/m3	2.1	0.81	1.74		02/20/18 15:49	541-73-1	
1,4-Dichlorobenzene	ND	ug/m3	2.1	0.38	1.74		02/20/18 15:49	106-46-7	
Dichlorodifluoromethane	ND	ug/m3	1.8	0.72	1.74		02/20/18 15:49	75-71-8	
1,1-Dichloroethane	ND	ug/m3	1.4	0.37	1.74		02/20/18 15:49		
1,2-Dichloroethane	ND	ug/m3	0.72	0.34	1.74		02/20/18 15:49		
1,1-Dichloroethene	ND	ug/m3	1.4	0.41	1.74		02/20/18 15:49		
cis-1,2-Dichloroethene	ND	ug/m3	1.4	0.59	1.74		02/20/18 15:49		
trans-1,2-Dichloroethene	ND	ug/m3	1.4	0.51	1.74		02/20/18 15:49		
1,2-Dichloropropane	ND	ug/m3	1.6	0.53	1.74		02/20/18 15:49		
cis-1,3-Dichloropropene	ND	ug/m3	1.6	0.43	1.74		02/20/18 15:49		
trans-1,3-Dichloropropene	ND	ug/m3	1.6	0.73	1.74		02/20/18 15:49		
Dichlorotetrafluoroethane	ND	ug/m3	2.5	0.77	1.74		02/20/18 15:49		
Ethanol	ND	ug/m3	3.3	0.81	1.74		02/20/18 15:49		
Ethyl acetate	ND	ug/m3	1.3	0.34	1.74		02/20/18 15:49		
Ethylbenzene	9.2	ug/m3	1.5	0.30	1.74		02/20/18 15:49		
4-Ethyltoluene	ND	ug/m3	1.7	0.30	1.74		02/20/18 15:49		
n-Heptane	13.9	ug/m3	1.7	0.37	1.74		02/20/18 15:49		
Hexachloro-1,3-butadiene	ND	ug/m3	3.8	1.5	1.74		02/20/18 15:49		
	27.7	ug/m3	1.2	0.58	1.74				
n-Hexane 2-Hexanone	ND	ug/m3	7.2	1.1	1.74		02/20/18 15:49 02/20/18 15:49		
		0							
Methylene Chloride	ND	ug/m3	6.1 7.2	2.6	1.74 1.74		02/20/18 15:49		
4-Methyl-2-pentanone (MIBK)	ND	ug/m3	7.2	0.62	1.74		02/20/18 15:49		
Methyl-tert-butyl ether	ND	ug/m3	6.4	1.2	1.74		02/20/18 15:49		
Naphthalene	ND	ug/m3	4.6	1.0	1.74		02/20/18 15:49		
2-Propanol	ND	ug/m3	4.4	2.2	1.74		02/20/18 15:49		-
Propylene	380	ug/m3	0.61	0.27	1.74		02/20/18 15:49		E
Styrene	ND	ug/m3	1.5	0.29	1.74		02/20/18 15:49		
1,1,2,2-Tetrachloroethane	ND	ug/m3	1.2	0.50	1.74		02/20/18 15:49	79-34-5	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-3	Lab ID:	10420487004	Collected	d: 02/10/1	8 10:48	Received: 02	/13/18 11:05 M	atrix: Air	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
Tetrachloroethene	ND	ug/m3	1.2	0.50	1.74		02/20/18 15:49	127-18-4	
Tetrahydrofuran	ND	ug/m3	1.0	0.48	1.74		02/20/18 15:49	109-99-9	
Toluene	25.9	ug/m3	1.3	0.28	1.74		02/20/18 15:49	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	6.6	1.7	1.74		02/20/18 15:49	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	1.9	0.60	1.74		02/20/18 15:49	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	0.97	0.39	1.74		02/20/18 15:49	79-00-5	
Trichloroethene	ND	ug/m3	0.95	0.47	1.74		02/20/18 15:49	79-01-6	
Trichlorofluoromethane	ND	ug/m3	2.0	0.73	1.74		02/20/18 15:49	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	2.7	0.64	1.74		02/20/18 15:49	76-13-1	
1,2,4-Trimethylbenzene	1.0J	ug/m3	1.7	0.30	1.74		02/20/18 15:49	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/m3	1.7	0.72	1.74		02/20/18 15:49	108-67-8	
Vinyl acetate	ND	ug/m3	1.2	0.29	1.74		02/20/18 15:49	108-05-4	
Vinyl chloride	ND	ug/m3	2.3	0.22	1.74		02/20/18 15:49	75-01-4	
m&p-Xylene	18.5	ug/m3	3.1	0.61	1.74		02/20/18 15:49	179601-23-1	
o-Xylene	9.4	ug/m3	1.5	0.65	1.74		02/20/18 15:49	95-47-6	
TO3 GCV AIR Meth, Ethane, Ethene	Analytical	Method: TO-3	Air						
Methane	35.7	ppmv	24.2	1.0	2.42		03/02/18 09:24	74-82-8	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-6	Lab ID:	10420487005	Collecte	d: 02/10/18	8 11:22	Received: 02	2/13/18 11:05 M	latrix: Air	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytica	Method: TO-18	5						
Acetone	100	ug/m3	4.3	2.7	1.8		02/20/18 16:22	67-64-1	
Benzene	10.7	ug/m3	0.58	0.27	1.8		02/20/18 16:22	71-43-2	
Benzyl chloride	ND	ug/m3	1.9	0.42	1.8		02/20/18 16:22	100-44-7	
Bromodichloromethane	ND	ug/m3	2.4	0.64	1.8		02/20/18 16:22	75-27-4	
Bromoform	ND	ug/m3	9.5	1.2	1.8		02/20/18 16:22	75-25-2	
Bromomethane	ND	ug/m3	1.4	0.37	1.8		02/20/18 16:22	74-83-9	
1,3-Butadiene	ND	ug/m3	2.0	0.37	1.8		02/20/18 16:22	106-99-0	
2-Butanone (MEK)	22.4	ug/m3	5.4	0.37	1.8		02/20/18 16:22	78-93-3	
Carbon disulfide	6.7	ug/m3	1.1	0.32	1.8		02/20/18 16:22	75-15-0	
Carbon tetrachloride	ND	ug/m3	1.2	0.57	1.8		02/20/18 16:22	56-23-5	
Chlorobenzene	ND	ug/m3	1.7	0.32	1.8		02/20/18 16:22	108-90-7	
Chloroethane	ND	ug/m3	2.4	0.37	1.8		02/20/18 16:22	75-00-3	
Chloroform	ND	ug/m3	0.89	0.42	1.8		02/20/18 16:22	67-66-3	
Chloromethane	ND	ug/m3	0.76	0.24	1.8		02/20/18 16:22	74-87-3	
Cyclohexane	ND	ug/m3	1.3	0.41	1.8		02/20/18 16:22	110-82-7	
Dibromochloromethane	ND	ug/m3	3.1	0.80	1.8		02/20/18 16:22	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/m3	2.8	0.60	1.8		02/20/18 16:22		
1,2-Dichlorobenzene	ND	ug/m3	2.2	0.59	1.8		02/20/18 16:22		
1,3-Dichlorobenzene	ND	ug/m3	2.2	0.84	1.8		02/20/18 16:22		
1,4-Dichlorobenzene	ND	ug/m3	2.2	0.39	1.8		02/20/18 16:22		
Dichlorodifluoromethane	ND	ug/m3	1.8	0.75	1.8		02/20/18 16:22		
1,1-Dichloroethane	ND	ug/m3	1.5	0.38	1.8		02/20/18 16:22		
1,2-Dichloroethane	ND	ug/m3	0.74	0.36	1.8		02/20/18 16:22		
1,1-Dichloroethene	ND	ug/m3	1.5	0.43	1.8		02/20/18 16:22		
cis-1,2-Dichloroethene	ND	ug/m3	1.5	0.43	1.8		02/20/18 16:22		
trans-1,2-Dichloroethene	ND	ug/m3	1.5	0.53	1.8		02/20/18 16:22		
1,2-Dichloropropane	ND	ug/m3	1.5	0.55	1.8		02/20/18 16:22		
cis-1,3-Dichloropropene	ND	ug/m3	1.7	0.55	1.0 1.8		02/20/18 16:22		
trans-1,3-Dichloropropene	ND	ug/m3	1.7	0.44	1.8		02/20/18 16:22		
Dichlorotetrafluoroethane	ND	ug/m3	2.6	0.70	1.8		02/20/18 16:22		
Ethanol		ug/m3	2.0 3.4	0.80	1.8		02/20/18 16:22		
	ND	0			1.8				
Ethyl acetate	ND	ug/m3	1.3	0.35			02/20/18 16:22		
Ethylbenzene	3.4	ug/m3	1.6	0.31	1.8		02/20/18 16:22		
4-Ethyltoluene	ND	ug/m3	1.8	0.39	1.8		02/20/18 16:22		
n-Heptane	6.2	ug/m3	1.5	0.38	1.8		02/20/18 16:22		
Hexachloro-1,3-butadiene	ND	ug/m3	3.9	1.6	1.8		02/20/18 16:22		
n-Hexane	13.1	ug/m3	1.3	0.60	1.8		02/20/18 16:22		
2-Hexanone	ND	ug/m3	7.5	1.1	1.8		02/20/18 16:22		
Methylene Chloride	ND	ug/m3	6.4	2.7	1.8		02/20/18 16:22		
4-Methyl-2-pentanone (MIBK)	ND	ug/m3	7.5	0.64	1.8		02/20/18 16:22		
Methyl-tert-butyl ether	ND	ug/m3	6.6	1.2	1.8		02/20/18 16:22		
Naphthalene	ND	ug/m3	4.8	1.1	1.8		02/20/18 16:22		
2-Propanol	7.8	ug/m3	4.5	2.2	1.8		02/20/18 16:22		_
Propylene	237	ug/m3	0.63	0.28	1.8		02/20/18 16:22		E
Styrene	ND	ug/m3	1.6	0.30	1.8		02/20/18 16:22		
1,1,2,2-Tetrachloroethane	ND	ug/m3	1.3	0.52	1.8		02/20/18 16:22	79-34-5	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-6	Lab ID:	10420487005	Collected	l: 02/10/18	8 11:22	Received: 02	/13/18 11:05 M	atrix: Air	
Doromotoro	Deculto	Linita	Report			Dranarad	Applyzod		Qual
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
Tetrachloroethene	ND	ug/m3	1.2	0.52	1.8		02/20/18 16:22	127-18-4	
Tetrahydrofuran	ND	ug/m3	1.1	0.49	1.8		02/20/18 16:22	109-99-9	
Toluene	28.9	ug/m3	1.4	0.29	1.8		02/20/18 16:22	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	6.8	1.7	1.8		02/20/18 16:22	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	2.0	0.62	1.8		02/20/18 16:22	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	1.0	0.40	1.8		02/20/18 16:22	79-00-5	
Trichloroethene	ND	ug/m3	0.98	0.48	1.8		02/20/18 16:22	79-01-6	
Trichlorofluoromethane	ND	ug/m3	2.1	0.75	1.8		02/20/18 16:22	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	2.8	0.66	1.8		02/20/18 16:22	76-13-1	
1,2,4-Trimethylbenzene	0.96J	ug/m3	1.8	0.31	1.8		02/20/18 16:22	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/m3	1.8	0.74	1.8		02/20/18 16:22	108-67-8	
Vinyl acetate	ND	ug/m3	1.3	0.30	1.8		02/20/18 16:22	108-05-4	
Vinyl chloride	ND	ug/m3	2.3	0.23	1.8		02/20/18 16:22	75-01-4	
m&p-Xylene	5.2	ug/m3	3.2	0.63	1.8		02/20/18 16:22	179601-23-1	
o-Xylene	ND	ug/m3	1.6	0.67	1.8		02/20/18 16:22	95-47-6	
TO3 GCV AIR Meth, Ethane, Ethene	Analytical	Method: TO-3	Air						
Methane	24.3	ppmv	23.7	1.0	2.37		03/02/18 09:34	74-82-8	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-8	Lab ID:	10420487006	Collecte	d: 02/10/1	8 11:48	Received: 02	2/13/18 11:05 M	atrix: Air	
Parameters	Results	Units	Report Limit	MDL	DF	Droporod	Applyzod	CAS No.	Qual
						Prepared	Analyzed	CAS NO.	Qual
TO15 MSV AIR	Analytica	I Method: TO-15	5						
Acetone	88.4	ug/m3	4.2	2.6	1.74		02/20/18 16:55	67-64-1	
Benzene	10.3	ug/m3	0.57	0.26	1.74		02/20/18 16:55	71-43-2	
Benzyl chloride	ND	ug/m3	1.8	0.41	1.74		02/20/18 16:55	100-44-7	
Bromodichloromethane	ND	ug/m3	2.4	0.62	1.74		02/20/18 16:55	75-27-4	
Bromoform	ND	ug/m3	9.1	1.2	1.74		02/20/18 16:55	75-25-2	
Bromomethane	ND	ug/m3	1.4	0.36	1.74		02/20/18 16:55	74-83-9	
1,3-Butadiene	ND	ug/m3	2.0	0.36	1.74		02/20/18 16:55	106-99-0	
2-Butanone (MEK)	19.7	ug/m3	5.2	0.35	1.74		02/20/18 16:55	78-93-3	
Carbon disulfide	ND	ug/m3	1.1	0.31	1.74		02/20/18 16:55	75-15-0	
Carbon tetrachloride	ND	ug/m3	1.1	0.55	1.74		02/20/18 16:55	56-23-5	
Chlorobenzene	ND	ug/m3	1.6	0.31	1.74		02/20/18 16:55	108-90-7	
Chloroethane	ND	ug/m3	2.3	0.35	1.74		02/20/18 16:55	75-00-3	
Chloroform	ND	ug/m3	0.86	0.40	1.74		02/20/18 16:55	67-66-3	
Chloromethane	ND	ug/m3	0.73	0.23	1.74		02/20/18 16:55	74-87-3	
Cyclohexane	ND	ug/m3	1.2	0.39	1.74		02/20/18 16:55	110-82-7	
Dibromochloromethane	ND	ug/m3	3.0	0.77	1.74		02/20/18 16:55	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/m3	2.7	0.58	1.74		02/20/18 16:55	106-93-4	
1,2-Dichlorobenzene	ND	ug/m3	2.1	0.57	1.74		02/20/18 16:55		
1,3-Dichlorobenzene	ND	ug/m3	2.1	0.81	1.74		02/20/18 16:55	541-73-1	
1,4-Dichlorobenzene	ND	ug/m3	2.1	0.38	1.74		02/20/18 16:55		
Dichlorodifluoromethane	ND	ug/m3	1.8	0.72	1.74		02/20/18 16:55		
1,1-Dichloroethane	ND	ug/m3	1.4	0.37	1.74		02/20/18 16:55		
1,2-Dichloroethane	ND	ug/m3	0.72	0.34	1.74		02/20/18 16:55		
1,1-Dichloroethene	ND	ug/m3	1.4	0.41	1.74		02/20/18 16:55		
cis-1,2-Dichloroethene	ND	ug/m3	1.4	0.59	1.74		02/20/18 16:55		
trans-1,2-Dichloroethene	ND	ug/m3	1.4	0.51	1.74		02/20/18 16:55		
1,2-Dichloropropane	ND	ug/m3	1.6	0.53	1.74		02/20/18 16:55		
cis-1,3-Dichloropropene	ND	ug/m3	1.6	0.43	1.74		02/20/18 16:55		
trans-1,3-Dichloropropene	ND	ug/m3	1.6	0.73	1.74		02/20/18 16:55		
Dichlorotetrafluoroethane	ND	ug/m3	2.5	0.77	1.74		02/20/18 16:55		
Ethanol	ND	ug/m3	3.3	0.81	1.74		02/20/18 16:55		
Ethyl acetate	ND	ug/m3	1.3	0.34	1.74		02/20/18 16:55		
Ethylbenzene	3.7	ug/m3	1.5	0.30	1.74		02/20/18 16:55		
4-Ethyltoluene	ND	ug/m3	1.7	0.30	1.74		02/20/18 16:55		
n-Heptane	6.6	ug/m3	1.4	0.37	1.74		02/20/18 16:55		
Hexachloro-1,3-butadiene	ND	0	3.8	1.5	1.74		02/20/18 16:55		
	15.7	ug/m3 ug/m3	1.2	0.58	1.74		02/20/18 16:55		
n-Hexane 2-Hexanone	ND	ug/m3	7.2	1.1	1.74		02/20/18 16:55		
		-							
Methylene Chloride	ND	ug/m3	6.1 7.2	2.6	1.74 1.74		02/20/18 16:55		
4-Methyl-2-pentanone (MIBK)	ND	ug/m3	7.2	0.62	1.74		02/20/18 16:55		
Methyl-tert-butyl ether	ND	ug/m3	6.4	1.2	1.74		02/20/18 16:55		
Naphthalene	ND	ug/m3	4.6	1.0	1.74		02/20/18 16:55		
2-Propanol	6.7	ug/m3	4.4	2.2	1.74		02/20/18 16:55		-
Propylene	264	ug/m3	0.61	0.27	1.74		02/20/18 16:55		E
Styrene	ND	ug/m3	1.5	0.29	1.74		02/20/18 16:55		
1,1,2,2-Tetrachloroethane	ND	ug/m3	1.2	0.50	1.74		02/20/18 16:55	79-34-5	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-8	Lab ID:	10420487006	Collected	d: 02/10/1	8 11:48	Received: 02	/13/18 11:05 M	atrix: Air	
Devenuetere	Desults	Linite	Report	MDI	DE	Dranauad	Anglung		Qual
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
Tetrachloroethene	ND	ug/m3	1.2	0.50	1.74		02/20/18 16:55	127-18-4	
Tetrahydrofuran	ND	ug/m3	1.0	0.48	1.74		02/20/18 16:55	109-99-9	
Toluene	32.0	ug/m3	1.3	0.28	1.74		02/20/18 16:55	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	6.6	1.7	1.74		02/20/18 16:55	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	1.9	0.60	1.74		02/20/18 16:55	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	0.97	0.39	1.74		02/20/18 16:55	79-00-5	
Trichloroethene	ND	ug/m3	0.95	0.47	1.74		02/20/18 16:55	79-01-6	
Trichlorofluoromethane	ND	ug/m3	2.0	0.73	1.74		02/20/18 16:55	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	2.7	0.64	1.74		02/20/18 16:55	76-13-1	
1,2,4-Trimethylbenzene	ND	ug/m3	1.7	0.30	1.74		02/20/18 16:55	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/m3	1.7	0.72	1.74		02/20/18 16:55	108-67-8	
Vinyl acetate	ND	ug/m3	1.2	0.29	1.74		02/20/18 16:55	108-05-4	
Vinyl chloride	ND	ug/m3	2.3	0.22	1.74		02/20/18 16:55	75-01-4	
m&p-Xylene	5.4	ug/m3	3.1	0.61	1.74		02/20/18 16:55	179601-23-1	
o-Xylene	ND	ug/m3	1.5	0.65	1.74		02/20/18 16:55	95-47-6	
TO3 GCV AIR Meth, Ethane, Ethene	Analytical	Method: TO-3	Air						
Methane	26.9	ppmv	23.0	0.97	2.3		03/02/18 09:43	74-82-8	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-7	Lab ID:	10420487007	Collecte	d: 02/10/1	8 12:22	Received: 02	2/13/18 11:05 N	latrix: Air	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytica	I Method: TO-15	5						-
Acetone	49.6	ug/m3	4.0	2.5	1.68		02/20/18 17:28	67-64-1	
Benzene	26.5	ug/m3	0.55	0.25	1.68		02/20/18 17:28	71-43-2	
Benzyl chloride	ND	ug/m3	1.8	0.40	1.68		02/20/18 17:28	100-44-7	
Bromodichloromethane	ND	ug/m3	2.3	0.60	1.68		02/20/18 17:28	75-27-4	
Bromoform	ND	ug/m3	8.8	1.2	1.68		02/20/18 17:28	75-25-2	
Bromomethane	ND	ug/m3	1.3	0.35	1.68		02/20/18 17:28	74-83-9	
1,3-Butadiene	ND	ug/m3	1.9	0.35	1.68		02/20/18 17:28	106-99-0	
2-Butanone (MEK)	9.6	ug/m3	5.0	0.34	1.68		02/20/18 17:28	78-93-3	
Carbon disulfide	ND	ug/m3	1.1	0.30	1.68		02/20/18 17:28	75-15-0	
Carbon tetrachloride	ND	ug/m3	1.1	0.53	1.68		02/20/18 17:28	56-23-5	
Chlorobenzene	ND	ug/m3	1.6	0.30	1.68		02/20/18 17:28	108-90-7	
Chloroethane	ND	ug/m3	2.3	0.34	1.68		02/20/18 17:28		
Chloroform	ND	ug/m3	0.83	0.39	1.68		02/20/18 17:28		
Chloromethane	ND	ug/m3	0.71	0.23	1.68		02/20/18 17:28	74-87-3	
Cyclohexane	15.9	ug/m3	1.2	0.38	1.68		02/20/18 17:28	110-82-7	
Dibromochloromethane	ND	ug/m3	2.9	0.74	1.68		02/20/18 17:28	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/m3	2.6	0.56	1.68		02/20/18 17:28		
1,2-Dichlorobenzene	ND	ug/m3	2.0	0.55	1.68		02/20/18 17:28		
1,3-Dichlorobenzene	ND	ug/m3	2.0	0.78	1.68		02/20/18 17:28		
1,4-Dichlorobenzene	ND	ug/m3	2.0	0.37	1.68		02/20/18 17:28		
Dichlorodifluoromethane	ND	ug/m3	1.7	0.70	1.68		02/20/18 17:28		
1,1-Dichloroethane	ND	ug/m3	1.4	0.36	1.68		02/20/18 17:28		
1,2-Dichloroethane	ND	ug/m3	0.69	0.33	1.68		02/20/18 17:28		
1,1-Dichloroethene	ND	ug/m3	1.4	0.40	1.68		02/20/18 17:28		
cis-1,2-Dichloroethene	ND	ug/m3	1.4	0.57	1.68		02/20/18 17:28		
trans-1,2-Dichloroethene	ND	ug/m3	1.4	0.50	1.68		02/20/18 17:28		
1,2-Dichloropropane	ND	ug/m3	1.6	0.50	1.68		02/20/18 17:28		
cis-1,3-Dichloropropene	ND	ug/m3	1.6	0.01	1.68		02/20/18 17:28		
trans-1,3-Dichloropropene	ND	ug/m3	1.6	0.71	1.68		02/20/18 17:28		
Dichlorotetrafluoroethane	ND	ug/m3	2.4	0.74	1.68		02/20/18 17:28		
Ethanol	ND	ug/m3	3.2	0.74	1.68		02/20/18 17:28		
	ND	0	1.2	0.78	1.68		02/20/18 17:28		
Ethyl acetate Ethylbenzene	16.6	ug/m3 ug/m3	1.2	0.33	1.68		02/20/18 17:28		
•	ND	ug/m3	1.5	0.29	1.68		02/20/18 17:28		
4-Ethyltoluene		0		0.35					
n-Heptane	17.6	ug/m3	1.4		1.68		02/20/18 17:28		
Hexachloro-1,3-butadiene	ND	ug/m3	3.6	1.5	1.68		02/20/18 17:28		
n-Hexane	34.5	ug/m3	1.2	0.56	1.68		02/20/18 17:28		
2-Hexanone	ND	ug/m3	7.0	1.0	1.68		02/20/18 17:28		
Methylene Chloride	ND	ug/m3	5.9	2.6	1.68		02/20/18 17:28		
4-Methyl-2-pentanone (MIBK)	ND	ug/m3	7.0	0.60	1.68		02/20/18 17:28		
Methyl-tert-butyl ether	ND	ug/m3	6.1	1.1	1.68		02/20/18 17:28		
Naphthalene	ND	ug/m3	4.5	1.0	1.68		02/20/18 17:28		
2-Propanol	ND	ug/m3	4.2	2.1	1.68		02/20/18 17:28		-
Propylene	265	ug/m3	0.59	0.26	1.68		02/20/18 17:28		E
Styrene	ND	ug/m3	1.5	0.28	1.68		02/20/18 17:28		
1,1,2,2-Tetrachloroethane	ND	ug/m3	1.2	0.49	1.68		02/20/18 17:28	79-34-5	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-7	Lab ID:	10420487007	Collected	d: 02/10/1	8 12:22	Received: 02	/13/18 11:05 Ma	atrix: Air	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15	;						
Tetrachloroethene	ND	ug/m3	1.2	0.48	1.68		02/20/18 17:28	127-18-4	
Tetrahydrofuran	ND	ug/m3	1.0	0.46	1.68		02/20/18 17:28	109-99-9	
Toluene	37.0	ug/m3	1.3	0.27	1.68		02/20/18 17:28	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	6.3	1.6	1.68		02/20/18 17:28	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	1.9	0.57	1.68		02/20/18 17:28	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	0.93	0.38	1.68		02/20/18 17:28	79-00-5	
Trichloroethene	ND	ug/m3	0.92	0.45	1.68		02/20/18 17:28	79-01-6	
Trichlorofluoromethane	ND	ug/m3	1.9	0.70	1.68		02/20/18 17:28	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	2.6	0.62	1.68		02/20/18 17:28	76-13-1	
1,2,4-Trimethylbenzene	1.4J	ug/m3	1.7	0.29	1.68		02/20/18 17:28	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/m3	1.7	0.69	1.68		02/20/18 17:28	108-67-8	
Vinyl acetate	ND	ug/m3	1.2	0.28	1.68		02/20/18 17:28	108-05-4	
Vinyl chloride	ND	ug/m3	2.2	0.21	1.68		02/20/18 17:28	75-01-4	
m&p-Xylene	6.7	ug/m3	3.0	0.59	1.68		02/20/18 17:28	179601-23-1	
o-Xylene	1.3J	ug/m3	1.5	0.62	1.68		02/20/18 17:28	95-47-6	
TO3 GCV AIR Meth, Ethane, Ethene	Analytical	Method: TO-3	Air						
Methane	27.3	ppmv	22.2	0.94	2.22		03/02/18 09:53	74-82-8	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-9	Lab ID:	10420487008	Collecte	d: 02/10/18	3 15:12	Received: 02	2/13/18 11:05 M	atrix: Air	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytica	l Method: TO-15	5						
Acetone	155	ug/m3	4.3	2.7	1.8		02/20/18 18:01	67-64-1	
Benzene	23.2	ug/m3	0.58	0.27	1.8		02/20/18 18:01	71-43-2	
Benzyl chloride	ND	ug/m3	1.9	0.42	1.8		02/20/18 18:01	100-44-7	
Bromodichloromethane	ND	ug/m3	2.4	0.64	1.8		02/20/18 18:01	75-27-4	
Bromoform	ND	ug/m3	9.5	1.2	1.8		02/20/18 18:01	75-25-2	
Bromomethane	ND	ug/m3	1.4	0.37	1.8		02/20/18 18:01	74-83-9	
1,3-Butadiene	ND	ug/m3	2.0	0.37	1.8		02/20/18 18:01	106-99-0	
2-Butanone (MEK)	35.5	ug/m3	5.4	0.37	1.8		02/20/18 18:01	78-93-3	
Carbon disulfide	ND	ug/m3	1.1	0.32	1.8		02/20/18 18:01	75-15-0	
Carbon tetrachloride	ND	ug/m3	1.2	0.57	1.8		02/20/18 18:01	56-23-5	
Chlorobenzene	ND	ug/m3	1.7	0.32	1.8		02/20/18 18:01	108-90-7	
Chloroethane	ND	ug/m3	2.4	0.37	1.8		02/20/18 18:01	75-00-3	
Chloroform	ND	ug/m3	0.89	0.42	1.8		02/20/18 18:01	67-66-3	
Chloromethane	ND	ug/m3	0.76	0.24	1.8		02/20/18 18:01	74-87-3	
Cyclohexane	23.0	ug/m3	1.3	0.41	1.8		02/20/18 18:01		
Dibromochloromethane	ND	ug/m3	3.1	0.80	1.8		02/20/18 18:01		
1,2-Dibromoethane (EDB)	ND	ug/m3	2.8	0.60	1.8		02/20/18 18:01		
1,2-Dichlorobenzene	ND	ug/m3	2.2	0.59	1.8		02/20/18 18:01		
1,3-Dichlorobenzene	ND	ug/m3	2.2	0.84	1.8		02/20/18 18:01		
1,4-Dichlorobenzene	ND	ug/m3	2.2	0.39	1.8		02/20/18 18:01		
Dichlorodifluoromethane	ND	ug/m3	1.8	0.75	1.8		02/20/18 18:01		
1,1-Dichloroethane	ND	ug/m3	1.5	0.38	1.8		02/20/18 18:01		
1,2-Dichloroethane	ND	ug/m3	0.74	0.36	1.8		02/20/18 18:01		
1,1-Dichloroethene	ND	ug/m3	1.5	0.43	1.8		02/20/18 18:01		
cis-1,2-Dichloroethene	ND	ug/m3	1.5	0.43	1.8		02/20/18 18:01		
trans-1,2-Dichloroethene	ND	ug/m3	1.5	0.53	1.8		02/20/18 18:01		
1,2-Dichloropropane	ND	ug/m3	1.5	0.55	1.8		02/20/18 18:01		
cis-1,3-Dichloropropene	ND	ug/m3	1.7	0.33	1.8		02/20/18 18:01		
trans-1,3-Dichloropropene	ND	ug/m3	1.7	0.44	1.8		02/20/18 18:01		
Dichlorotetrafluoroethane	ND	ug/m3	2.6	0.80	1.8		02/20/18 18:01		
Ethanol	36.8	-	2.0 3.4	0.80	1.8		02/20/18 18:01		
		ug/m3			1.0				
Ethyl acetate	ND	ug/m3	1.3	0.35	1.8		02/20/18 18:01		
Ethylbenzene	19.7	ug/m3	1.6	0.31			02/20/18 18:01		
4-Ethyltoluene	ND	ug/m3	1.8	0.39	1.8		02/20/18 18:01		
n-Heptane	27.7	ug/m3	1.5	0.38	1.8		02/20/18 18:01		
Hexachloro-1,3-butadiene	ND	ug/m3	3.9	1.6	1.8		02/20/18 18:01		
n-Hexane	52.0	ug/m3	1.3	0.60	1.8		02/20/18 18:01		
2-Hexanone	ND	ug/m3	7.5	1.1	1.8		02/20/18 18:01		
Methylene Chloride	ND	ug/m3	6.4	2.7	1.8		02/20/18 18:01		
4-Methyl-2-pentanone (MIBK)	ND	ug/m3	7.5	0.64	1.8		02/20/18 18:01		
Methyl-tert-butyl ether	ND	ug/m3	6.6	1.2	1.8		02/20/18 18:01		
Naphthalene	ND	ug/m3	4.8	1.1	1.8		02/20/18 18:01		
2-Propanol	ND	ug/m3	4.5	2.2	1.8		02/20/18 18:01		_
Propylene	275	ug/m3	0.63	0.28	1.8		02/20/18 18:01		E
Styrene	ND	ug/m3	1.6	0.30	1.8		02/20/18 18:01		
1,1,2,2-Tetrachloroethane	ND	ug/m3	1.3	0.52	1.8		02/20/18 18:01	79-34-5	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-9	Lab ID:	10420487008	Collecte	d: 02/10/1	8 15:12	Received: 02	2/13/18 11:05 M	atrix: Air	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
Tetrachloroethene	ND	ug/m3	1.2	0.52	1.8		02/20/18 18:01	127-18-4	
Tetrahydrofuran	ND	ug/m3	1.1	0.49	1.8		02/20/18 18:01	109-99-9	
Toluene	54.9	ug/m3	1.4	0.29	1.8		02/20/18 18:01	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	6.8	1.7	1.8		02/20/18 18:01	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	2.0	0.62	1.8		02/20/18 18:01	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	1.0	0.40	1.8		02/20/18 18:01	79-00-5	
Trichloroethene	ND	ug/m3	0.98	0.48	1.8		02/20/18 18:01	79-01-6	
Trichlorofluoromethane	ND	ug/m3	2.1	0.75	1.8		02/20/18 18:01	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	2.8	0.66	1.8		02/20/18 18:01	76-13-1	
1,2,4-Trimethylbenzene	1.3J	ug/m3	1.8	0.31	1.8		02/20/18 18:01	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/m3	1.8	0.74	1.8		02/20/18 18:01	108-67-8	
Vinyl acetate	ND	ug/m3	1.3	0.30	1.8		02/20/18 18:01	108-05-4	
Vinyl chloride	ND	ug/m3	2.3	0.23	1.8		02/20/18 18:01	75-01-4	
m&p-Xylene	9.2	ug/m3	3.2	0.63	1.8		02/20/18 18:01	179601-23-1	
o-Xylene	2.1	ug/m3	1.6	0.67	1.8		02/20/18 18:01	95-47-6	
TO3 GCV AIR Meth, Ethane, Ethene	Analytical	Method: TO-3 A	Air						
Methane	5390	ppmv	23.7	1.0	2.37		03/02/18 10:02	74-82-8	Е

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-13	Lab ID:	10420487009	Collected	d: 02/10/1	8 16:15	Received: 02	2/13/18 11:05 M	atrix: Air	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytica	l Method: TO-15	5						
Acetone	138	ug/m3	4.3	2.7	1.77		02/20/18 18:35	67-64-1	
Benzene	3.3	ug/m3	0.58	0.27	1.77		02/20/18 18:35	71-43-2	
Benzyl chloride	ND	ug/m3	1.9	0.42	1.77		02/20/18 18:35	100-44-7	
Bromodichloromethane	ND	ug/m3	2.4	0.63	1.77		02/20/18 18:35	75-27-4	
Bromoform	ND	ug/m3	9.3	1.2	1.77		02/20/18 18:35	75-25-2	
Bromomethane	ND	ug/m3	1.4	0.37	1.77		02/20/18 18:35	74-83-9	
1,3-Butadiene	ND	ug/m3	2.0	0.36	1.77		02/20/18 18:35	106-99-0	
2-Butanone (MEK)	11.3	ug/m3	5.3	0.36	1.77		02/20/18 18:35	78-93-3	
Carbon disulfide	ND	ug/m3	1.1	0.32	1.77		02/20/18 18:35	75-15-0	
Carbon tetrachloride	ND	ug/m3	1.1	0.56	1.77		02/20/18 18:35	56-23-5	
Chlorobenzene	ND	ug/m3	1.7	0.32	1.77		02/20/18 18:35	108-90-7	
Chloroethane	ND	ug/m3	2.4	0.36	1.77		02/20/18 18:35		
Chloroform	ND	ug/m3	0.88	0.41	1.77		02/20/18 18:35	67-66-3	
Chloromethane	ND	ug/m3	0.74	0.24	1.77		02/20/18 18:35		
Cyclohexane	ND	ug/m3	1.2	0.40	1.77		02/20/18 18:35	110-82-7	
Dibromochloromethane	ND	ug/m3	3.1	0.78	1.77		02/20/18 18:35		
1,2-Dibromoethane (EDB)	ND	ug/m3	2.8	0.59	1.77		02/20/18 18:35		
1,2-Dichlorobenzene	ND	ug/m3	2.2	0.58	1.77		02/20/18 18:35		
1,3-Dichlorobenzene	ND	ug/m3	2.2	0.82	1.77		02/20/18 18:35		
1,4-Dichlorobenzene	ND	ug/m3	2.2	0.39	1.77		02/20/18 18:35		
Dichlorodifluoromethane	ND	ug/m3	1.8	0.74	1.77		02/20/18 18:35		
1,1-Dichloroethane	ND	ug/m3	1.5	0.38	1.77		02/20/18 18:35		
1,2-Dichloroethane	ND	ug/m3	0.73	0.35	1.77		02/20/18 18:35		
1,1-Dichloroethene	ND	ug/m3	1.4	0.42	1.77		02/20/18 18:35		
cis-1,2-Dichloroethene	ND	ug/m3	1.4	0.60	1.77		02/20/18 18:35		
trans-1,2-Dichloroethene	ND	ug/m3	1.4	0.52	1.77		02/20/18 18:35		
1,2-Dichloropropane	ND	ug/m3	1.7	0.54	1.77		02/20/18 18:35		
cis-1,3-Dichloropropene	ND	ug/m3	1.6	0.43	1.77		02/20/18 18:35		
trans-1,3-Dichloropropene	ND	ug/m3	1.6	0.43	1.77		02/20/18 18:35		
Dichlorotetrafluoroethane	ND	ug/m3	2.5	0.74	1.77		02/20/18 18:35		
Ethanol	40.0	ug/m3	3.4	0.78	1.77		02/20/18 18:35		
Ethyl acetate	ND	ug/m3	1.3	0.35	1.77		02/20/18 18:35		
Ethylbenzene	2.6	ug/m3	1.5	0.30	1.77		02/20/18 18:35		
•	2.0 ND	ug/m3	1.8	0.30	1.77		02/20/18 18:35		
4-Ethyltoluene	3.2	0			1.77		02/20/18 18:35		
n-Heptane		ug/m3	1.5	0.37					
Hexachloro-1,3-butadiene	ND	ug/m3	3.8	1.5	1.77		02/20/18 18:35		
n-Hexane	ND	ug/m3	1.3	0.59	1.77		02/20/18 18:35		
2-Hexanone	ND	ug/m3	7.4	1.1	1.77		02/20/18 18:35		
Methylene Chloride	ND	ug/m3	6.2	2.7	1.77		02/20/18 18:35		
4-Methyl-2-pentanone (MIBK)	ND	ug/m3	7.4	0.63	1.77		02/20/18 18:35		
Methyl-tert-butyl ether	ND	ug/m3	6.5	1.2	1.77		02/20/18 18:35		
Naphthalene	ND	ug/m3	4.7	1.1	1.77		02/20/18 18:35		
2-Propanol	20.9	ug/m3	4.4	2.2	1.77		02/20/18 18:35		
Propylene	ND	ug/m3	0.62	0.28	1.77		02/20/18 18:35		
Styrene	ND	ug/m3	1.5	0.30	1.77		02/20/18 18:35		
1,1,2,2-Tetrachloroethane	ND	ug/m3	1.2	0.51	1.77		02/20/18 18:35	79-34-5	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-13	Lab ID:	10420487009	Collected	d: 02/10/18	8 16:15	Received: 02	/13/18 11:05 Ma	atrix: Air	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15	i						
Tetrachloroethene	6.6	ug/m3	1.2	0.51	1.77		02/20/18 18:35	127-18-4	
Tetrahydrofuran	ND	ug/m3	1.1	0.48	1.77		02/20/18 18:35	109-99-9	
Toluene	20.9	ug/m3	1.4	0.28	1.77		02/20/18 18:35	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	6.7	1.7	1.77		02/20/18 18:35	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	2.0	0.61	1.77		02/20/18 18:35	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	0.98	0.40	1.77		02/20/18 18:35	79-00-5	
Trichloroethene	ND	ug/m3	0.97	0.47	1.77		02/20/18 18:35	79-01-6	
Trichlorofluoromethane	ND	ug/m3	2.0	0.74	1.77		02/20/18 18:35	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	2.8	0.65	1.77		02/20/18 18:35	76-13-1	
1,2,4-Trimethylbenzene	0.98J	ug/m3	1.8	0.30	1.77		02/20/18 18:35	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/m3	1.8	0.73	1.77		02/20/18 18:35	108-67-8	
Vinyl acetate	ND	ug/m3	1.3	0.29	1.77		02/20/18 18:35	108-05-4	
Vinyl chloride	ND	ug/m3	2.3	0.22	1.77		02/20/18 18:35	75-01-4	
m&p-Xylene	6.1	ug/m3	3.1	0.62	1.77		02/20/18 18:35	179601-23-1	
o-Xylene	ND	ug/m3	1.6	0.66	1.77		02/20/18 18:35	95-47-6	
TO3 GCV AIR Meth, Ethane, Ethene	Analytical	Method: TO-3	Air						
Methane	1580	ppmv	23.4	0.99	2.34		03/02/18 10:12	74-82-8	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-11	Lab ID:	10420487010	Collected	d: 02/10/1	8 16:48	Received: 02	2/13/18 11:05 M	atrix: Air	
_			Report						- ·
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytica	Method: TO-15	5						
Acetone	119	ug/m3	4.0	2.5	1.68		02/20/18 19:10	67-64-1	
Benzene	12.9	ug/m3	0.55	0.25	1.68		02/20/18 19:10	71-43-2	
Benzyl chloride	ND	ug/m3	1.8	0.40	1.68		02/20/18 19:10	100-44-7	
Bromodichloromethane	ND	ug/m3	2.3	0.60	1.68		02/20/18 19:10		
Bromoform	ND	ug/m3	8.8	1.2	1.68		02/20/18 19:10	75-25-2	
Bromomethane	ND	ug/m3	1.3	0.35	1.68		02/20/18 19:10	74-83-9	
1,3-Butadiene	ND	ug/m3	1.9	0.35	1.68		02/20/18 19:10	106-99-0	
2-Butanone (MEK)	25.8	ug/m3	5.0	0.34	1.68		02/20/18 19:10	78-93-3	
Carbon disulfide	7.4	ug/m3	1.1	0.30	1.68		02/20/18 19:10	75-15-0	
Carbon tetrachloride	ND	ug/m3	1.1	0.53	1.68		02/20/18 19:10	56-23-5	
Chlorobenzene	ND	ug/m3	1.6	0.30	1.68		02/20/18 19:10	108-90-7	
Chloroethane	ND	ug/m3	2.3	0.34	1.68		02/20/18 19:10	75-00-3	
Chloroform	ND	ug/m3	0.83	0.39	1.68		02/20/18 19:10	67-66-3	
Chloromethane	ND	ug/m3	0.71	0.23	1.68		02/20/18 19:10	74-87-3	
Cyclohexane	ND	ug/m3	1.2	0.38	1.68		02/20/18 19:10	110-82-7	
Dibromochloromethane	ND	ug/m3	2.9	0.74	1.68		02/20/18 19:10	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/m3	2.6	0.56	1.68		02/20/18 19:10		
1,2-Dichlorobenzene	ND	ug/m3	2.0	0.55	1.68		02/20/18 19:10		
1,3-Dichlorobenzene	ND	ug/m3	2.0	0.78	1.68		02/20/18 19:10		
1,4-Dichlorobenzene	ND	ug/m3	2.0	0.37	1.68		02/20/18 19:10		
Dichlorodifluoromethane	ND	ug/m3	1.7	0.70	1.68		02/20/18 19:10		
1,1-Dichloroethane	ND	ug/m3	1.4	0.36	1.68		02/20/18 19:10		
1,2-Dichloroethane	ND	ug/m3	0.69	0.33	1.68		02/20/18 19:10		
1,1-Dichloroethene	ND	ug/m3	1.4	0.40	1.68		02/20/18 19:10		
cis-1,2-Dichloroethene	ND	ug/m3	1.4	0.57	1.68		02/20/18 19:10		
trans-1,2-Dichloroethene	ND	ug/m3	1.4	0.50	1.68		02/20/18 19:10		
1,2-Dichloropropane	ND	ug/m3	1.4	0.50	1.68		02/20/18 19:10		
cis-1,3-Dichloropropene	ND	ug/m3	1.6	0.01	1.68		02/20/18 19:10		
trans-1,3-Dichloropropene	ND	ug/m3	1.6	0.41	1.68		02/20/18 19:10		
Dichlorotetrafluoroethane	ND	ug/m3	2.4	0.74	1.68		02/20/18 19:10		
Ethanol	ND	ug/m3	3.2	0.74	1.68		02/20/18 19:10		
		0	3.2 1.2						
Ethyl acetate	ND 4.3	ug/m3		0.33	1.68		02/20/18 19:10		
Ethylbenzene		ug/m3	1.5	0.29	1.68		02/20/18 19:10		
4-Ethyltoluene	ND	ug/m3	1.7	0.36	1.68		02/20/18 19:10		
n-Heptane	9.2	ug/m3	1.4	0.35	1.68		02/20/18 19:10		
Hexachloro-1,3-butadiene	ND	ug/m3	3.6	1.5	1.68		02/20/18 19:10		
n-Hexane	21.9	ug/m3	1.2	0.56	1.68		02/20/18 19:10		
2-Hexanone	ND	ug/m3	7.0	1.0	1.68		02/20/18 19:10		
Methylene Chloride	ND	ug/m3	5.9	2.6	1.68		02/20/18 19:10		
4-Methyl-2-pentanone (MIBK)	ND	ug/m3	7.0	0.60	1.68		02/20/18 19:10		
Methyl-tert-butyl ether	ND	ug/m3	6.1	1.1	1.68		02/20/18 19:10		
Naphthalene	ND	ug/m3	4.5	1.0	1.68		02/20/18 19:10		
2-Propanol	8.1	ug/m3	4.2	2.1	1.68		02/20/18 19:10		_
Propylene	323	ug/m3	0.59	0.26	1.68		02/20/18 19:10		E
Styrene	ND	ug/m3	1.5	0.28	1.68		02/20/18 19:10		
1,1,2,2-Tetrachloroethane	ND	ug/m3	1.2	0.49	1.68		02/20/18 19:10	79-34-5	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-11	Lab ID:	10420487010	Collected	d: 02/10/18	8 16:48	Received: 02/	/13/18 11:05 Ma	atrix: Air	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
Tetrachloroethene	ND	ug/m3	1.2	0.48	1.68		02/20/18 19:10	127-18-4	
Tetrahydrofuran	ND	ug/m3	1.0	0.46	1.68		02/20/18 19:10	109-99-9	
Toluene	34.7	ug/m3	1.3	0.27	1.68		02/20/18 19:10	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	6.3	1.6	1.68		02/20/18 19:10	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	1.9	0.57	1.68		02/20/18 19:10	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	0.93	0.38	1.68		02/20/18 19:10	79-00-5	
Trichloroethene	ND	ug/m3	0.92	0.45	1.68		02/20/18 19:10	79-01-6	
Trichlorofluoromethane	ND	ug/m3	1.9	0.70	1.68		02/20/18 19:10	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	2.6	0.62	1.68		02/20/18 19:10	76-13-1	
1,2,4-Trimethylbenzene	0.95J	ug/m3	1.7	0.29	1.68		02/20/18 19:10	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/m3	1.7	0.69	1.68		02/20/18 19:10	108-67-8	
Vinyl acetate	ND	ug/m3	1.2	0.28	1.68		02/20/18 19:10	108-05-4	
Vinyl chloride	ND	ug/m3	2.2	0.21	1.68		02/20/18 19:10	75-01-4	
m&p-Xylene	7.1	ug/m3	3.0	0.59	1.68		02/20/18 19:10	179601-23-1	
o-Xylene	0.78J	ug/m3	1.5	0.62	1.68		02/20/18 19:10	95-47-6	
TO3 GCV AIR Meth, Ethane, Ethene	Analytical	Method: TO-3	Air						
Methane	61.9	ppmv	28.2	1.2	2.82		03/02/18 10:21	74-82-8	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-10	Lab ID:	10420487011	Collected	d: 02/11/18	8 08:40	Received: 02	2/13/18 11:05 M	latrix: Air	
			Report						
Parameters	Results	Units	Limit	MDL		Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-18	5						
Acetone	72.9	ug/m3	4.0	2.5	1.68		02/20/18 19:45	67-64-1	
Benzene	8.3	ug/m3	0.55	0.25	1.68		02/20/18 19:45	5 71-43-2	
Benzyl chloride	ND	ug/m3	1.8	0.40	1.68		02/20/18 19:45	5 100-44-7	
Bromodichloromethane	ND	ug/m3	2.3	0.60	1.68		02/20/18 19:45	5 75-27-4	
Bromoform	ND	ug/m3	8.8	1.2	1.68		02/20/18 19:45	5 75-25-2	
Bromomethane	ND	ug/m3	1.3	0.35	1.68		02/20/18 19:45	5 74-83-9	
1,3-Butadiene	ND	ug/m3	1.9	0.35	1.68		02/20/18 19:45	5 106-99-0	
2-Butanone (MEK)	24.4	ug/m3	5.0	0.34	1.68		02/20/18 19:45	5 78-93-3	
Carbon disulfide	7.4	ug/m3	1.1	0.30	1.68		02/20/18 19:45	5 75-15-0	
Carbon tetrachloride	ND	ug/m3	1.1	0.53	1.68		02/20/18 19:45	56-23-5	
Chlorobenzene	ND	ug/m3	1.6	0.30	1.68		02/20/18 19:45	5 108-90-7	
Chloroethane	ND	ug/m3	2.3	0.34	1.68		02/20/18 19:45	5 75-00-3	
Chloroform	ND	ug/m3	0.83	0.39	1.68		02/20/18 19:45	67-66-3	
Chloromethane	ND	ug/m3	0.71	0.23	1.68		02/20/18 19:45	5 74-87-3	
Cyclohexane	ND	ug/m3	1.2	0.38	1.68		02/20/18 19:45	5 110-82-7	
Dibromochloromethane	ND	ug/m3	2.9	0.74	1.68		02/20/18 19:45	5 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/m3	2.6	0.56	1.68		02/20/18 19:45	5 106-93-4	
1,2-Dichlorobenzene	ND	ug/m3	2.0	0.55	1.68		02/20/18 19:45		
1,3-Dichlorobenzene	ND	ug/m3	2.0	0.78	1.68		02/20/18 19:45	541-73-1	
1,4-Dichlorobenzene	ND	ug/m3	2.0	0.37	1.68		02/20/18 19:45		
Dichlorodifluoromethane	ND	ug/m3	1.7	0.70	1.68		02/20/18 19:45		
1,1-Dichloroethane	ND	ug/m3	1.4	0.36	1.68		02/20/18 19:45		
1,2-Dichloroethane	ND	ug/m3	0.69	0.33	1.68		02/20/18 19:45		
1,1-Dichloroethene	ND	ug/m3	1.4	0.40	1.68		02/20/18 19:45		
cis-1,2-Dichloroethene	ND	ug/m3	1.4	0.57	1.68		02/20/18 19:45		
trans-1,2-Dichloroethene	ND	ug/m3	1.4	0.50	1.68		02/20/18 19:45		
1,2-Dichloropropane	ND	ug/m3	1.6	0.51	1.68		02/20/18 19:45		
cis-1,3-Dichloropropene	ND	ug/m3	1.6	0.41	1.68		02/20/18 19:45		
trans-1,3-Dichloropropene	ND	ug/m3	1.6	0.71	1.68		02/20/18 19:45		
Dichlorotetrafluoroethane	ND	ug/m3	2.4	0.74	1.68		02/20/18 19:45		
Ethanol	ND	ug/m3	3.2	0.74	1.68		02/20/18 19:45		
	ND	ug/m3	3.2 1.2	0.78	1.68		02/20/18 19:45		
Ethyl acetate	1.6	0	1.2	0.33	1.68		02/20/18 19:45		
Ethylbenzene	ND	ug/m3 ug/m3	1.5	0.29	1.68		02/20/18 19:45		
4-Ethyltoluene	6.7	0					02/20/18 19:45		
n-Heptane		ug/m3	1.4	0.35	1.68				
Hexachloro-1,3-butadiene	ND	ug/m3	3.6	1.5	1.68		02/20/18 19:45		
n-Hexane	16.0	ug/m3	1.2	0.56	1.68		02/20/18 19:45		
2-Hexanone	ND	ug/m3	7.0	1.0	1.68		02/20/18 19:45		
Methylene Chloride	ND	ug/m3	5.9	2.6	1.68		02/20/18 19:45		
4-Methyl-2-pentanone (MIBK)	ND	ug/m3	7.0	0.60	1.68		02/20/18 19:45		
Methyl-tert-butyl ether	ND	ug/m3	6.1	1.1	1.68		02/20/18 19:45		
Naphthalene	ND	ug/m3	4.5	1.0	1.68		02/20/18 19:45		
2-Propanol	ND	ug/m3	4.2	2.1	1.68		02/20/18 19:45		_
Propylene	180	ug/m3	0.59	0.26	1.68		02/20/18 19:45		E
Styrene	ND	ug/m3	1.5	0.28	1.68		02/20/18 19:45		
1,1,2,2-Tetrachloroethane	ND	ug/m3	1.2	0.49	1.68		02/20/18 19:45	79-34-5	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-10	Lab ID:	10420487011	Collected	: 02/11/18	3 08:40	Received: 02	/13/18 11:05 Ma	atrix: Air	
5		11.5	Report		55	. .		0.0.0.1	. .
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
Tetrachloroethene	ND	ug/m3	1.2	0.48	1.68		02/20/18 19:45	127-18-4	
Tetrahydrofuran	ND	ug/m3	1.0	0.46	1.68		02/20/18 19:45	109-99-9	
Toluene	9.7	ug/m3	1.3	0.27	1.68		02/20/18 19:45	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	6.3	1.6	1.68		02/20/18 19:45	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	1.9	0.57	1.68		02/20/18 19:45	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	0.93	0.38	1.68		02/20/18 19:45	79-00-5	
Trichloroethene	ND	ug/m3	0.92	0.45	1.68		02/20/18 19:45	79-01-6	
Trichlorofluoromethane	ND	ug/m3	1.9	0.70	1.68		02/20/18 19:45	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	2.6	0.62	1.68		02/20/18 19:45	76-13-1	
1,2,4-Trimethylbenzene	ND	ug/m3	1.7	0.29	1.68		02/20/18 19:45	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/m3	1.7	0.69	1.68		02/20/18 19:45	108-67-8	
Vinyl acetate	ND	ug/m3	1.2	0.28	1.68		02/20/18 19:45	108-05-4	
Vinyl chloride	ND	ug/m3	2.2	0.21	1.68		02/20/18 19:45	75-01-4	
m&p-Xylene	2.9J	ug/m3	3.0	0.59	1.68		02/20/18 19:45	179601-23-1	
o-Xylene	ND	ug/m3	1.5	0.62	1.68		02/20/18 19:45	95-47-6	
TO3 GCV AIR Meth, Ethane, Ethene	Analytical	Method: TO-3	Air						
Methane	1560	ppmv	28.2	1.2	2.82		03/02/18 11:21	74-82-8	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

TO15 MSY AIR Analytical Method: TO-15 Acatione 109 ug/m3 4.2 2.6 1.74 02/20/18 20:19 67-64-1 Benzene 28.9 ug/m3 0.57 0.26 1.74 02/20/18 20:19 67-64-1 Benzene 28.9 ug/m3 0.41 1.74 02/20/18 20:19 67-64-1 Bromodichloromethane ND ug/m3 2.4 0.62 1.74 02/20/18 20:19 75-27-2 Bromodichloromethane ND ug/m3 9.1 1.2 1.74 02/20/18 20:19 74-83-9 1.3-Butadiene ND ug/m3 5.2 0.35 1.74 02/20/18 20:19 78-93-3 Carbon disulfide 37.5 ug/m3 1.1 0.31 1.74 02/20/18 20:19 78-93-3 Chlorobenzene ND ug/m3 1.6 0.31 1.74 02/20/18 20:19 16-64-3 Chlorobenzene ND ug/m3 0.73 0.23 1.74 02/20/18 20:19 16-74-73 Chlorobenz		Matrix: Air	02/13/18 11:05	Received: 0	8 11:18	: 02/11/1	Collected	10420487012	Lab ID:	Sample: SG-12
TO15 MSV AIR Analytical Method: TO-15 Acatione 109 ug/m3 4.2 2.6 1.74 02/20/18 20:19 67-64-1 Benzene 28.9 ug/m3 0.57 0.26 1.74 02/20/18 20:19 67-64-1 Benzene 28.9 ug/m3 0.41 1.74 02/20/18 20:19 67-64-1 Bromodichloromethane ND ug/m3 2.4 0.62 1.74 02/20/18 20:19 75-27-2 Bromodichloromethane ND ug/m3 9.1 1.2 1.74 02/20/18 20:19 74-83-9 1.3-Butadiene ND ug/m3 5.2 0.35 1.74 02/20/18 20:19 78-93-3 Carbon disulfide 3.75 ug/m3 1.1 0.31 1.74 02/20/18 20:19 78-93-3 Chlorobertane ND ug/m3 1.6 0.31 1.74 02/20/18 20:19 16-64-3 Chlorobertane ND ug/m3 0.73 0.23 1.74 02/20/18 20:19 16-74-73 Chlorobert							Report			
Acetone 109 ug/m3 4.2 2.6 1.74 O2/20/18 20:19 67-64-1 Benzene 28.9 ug/m3 0.57 0.26 1.74 O2/20/18 20:19 100-44-7 Benzyl chloride ND ug/m3 2.4 0.62 1.74 O2/20/18 20:19 75-27-2 Bromodichloromethane ND ug/m3 1.4 0.36 1.74 O2/20/18 20:19 76-52-2 Bromodichloromethane ND ug/m3 2.0 0.36 1.74 O2/20/18 20:19 76-93-3 Carbon disulfde 37.5 ug/m3 1.1 0.31 1.74 O2/20/18 20:19 76-93-3 Chlorobenzene ND ug/m3 1.1 0.35 1.74 O2/20/18 20:19 76-90-3 Chlorobenzene ND ug/m3 1.6 0.31 1.74 O2/20/18 20:19 76-90-3 Chlorobethane ND ug/m3 2.3 0.35 1.74 O2/20/18 20:19 76-63 Chlorobethane ND ug/m3 2.	No. Qual	d CAS No.	Analyzed	Prepared		MDL	Limit	Units	Results	Parameters
Benzene 28.9 ug/m3 0.57 0.26 1.74 02/20/18 20:19 71-342 Benzyl chloride ND ug/m3 1.8 0.41 1.74 02/20/18 20:19 75-27-4 Bromodichloromethane ND ug/m3 9.1 1.2 1.74 02/20/18 20:19 75-27-4 Bromodethane ND ug/m3 9.1 1.2 1.74 02/20/18 20:19 76-37-4 Stromomethane ND ug/m3 2.0 0.36 1.74 02/20/18 20:19 76-39-3 Carbon disulfide 37.5 ug/m3 1.1 0.55 1.74 02/20/18 20:19 76-0-3 Chlorobenzene ND ug/m3 2.3 0.35 1.74 02/20/18 20:19 76-0-3 Chlorobenzene ND ug/m3 0.36 0.40 1.74 02/20/18 20:19 16-89-4 Cyclohexane 90.6 ug/m3 2.3 0.35 1.74 02/20/18 20:19 16-89-4 Cyclohexane ND ug/m3 0.46 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Method: TO-15</td> <td>Analytical</td> <td>TO15 MSV AIR</td>								Method: TO-15	Analytical	TO15 MSV AIR
Benzyl chloride ND ug/m3 1.8 0.41 1.74 02/20/18 20:19 100-44-7 Bromodichloromethane ND ug/m3 2.4 0.62 1.74 02/20/18 20:19 75-25-2 Bromomethane ND ug/m3 1.4 0.36 1.74 02/20/18 20:19 76-35-3 J.3-Butadiene ND ug/m3 2.0 0.36 1.74 02/20/18 20:19 76-33-3 Carbon trachchoride ND ug/m3 1.1 0.35 1.74 02/20/18 20:19 76-33-3 Carbon trachchoride ND ug/m3 1.6 0.31 1.74 02/20/18 20:19 76-63-3 Chlorobenzene ND ug/m3 0.36 0.40 1.74 02/20/18 20:19 10-89-07 Chlorobenzene ND ug/m3 0.36 0.40 1.74 02/20/18 20:19 10-89-07 Chlorobenzene ND ug/m3 0.30 0.77 1.74 02/20/18 20:19 10-82-7 Disconcolhoromethane ND ug/m	1):19 67-64-1	02/20/18 20:			2.6	4.2	ug/m3	109	Acetone
Bromodichloromethane ND ug/m3 2.4 0.62 1.74 02/20/18 20:19 75-27-4 Bromodicm ND ug/m3 9.1 1.2 1.74 02/20/18 20:19 75-27-4 Bromorethane ND ug/m3 2.0 0.36 1.74 02/20/18 20:19 76-39-3 2-Butanoe (MEK) 29.9 ug/m3 1.1 0.31 1.74 02/20/18 20:19 76-15-0 Carbon disulfide 37.5 ug/m3 1.1 0.55 1.74 02/20/18 20:19 76-15-0 Carbon disulfide ND ug/m3 1.6 0.31 1.74 02/20/18 20:19 76-03 Chioroethane ND ug/m3 0.86 0.40 1.74 02/20/18 20:19 10-82-7 Chioroethane ND ug/m3 3.0 0.77 1.74 02/20/18 20:19 10-82-7 Dibromochloromethane ND ug/m3 2.1 0.85 1.74 02/20/18 20:19 10-83-4 1.2-Dichoroethane ND ug/m3						0.26		-		Benzene
Bromotorm ND ug/m3 9.1 1.2 1.74 02/20/18 20:19 74-83-9 Bromotenane ND ug/m3 1.4 0.36 1.74 02/20/18 20:19 74-83-9 1.3-Butatione ND ug/m3 2.0 0.35 1.74 02/20/18 20:19 76-93-0 2-Butanone (MEK) 29.9 ug/m3 1.1 0.31 1.74 02/20/18 20:19 75-15-0 Carbon tetrachioride ND ug/m3 1.6 0.31 1.74 02/20/18 20:19 75-03-0 Chlorobenzene ND ug/m3 0.86 0.40 1.74 02/20/18 20:19 76-63-3 Chloromethane ND ug/m3 0.73 0.23 1.74 02/20/18 20:19 10-82-7 Dibromochloromethane ND ug/m3 3.0 0.77 1.74 02/20/18 20:19 10-82-7 L2-Dichlorobenzene ND ug/m3 2.1 0.57 1.74 02/20/18 20:19 95-50-1 1.3-Dichlorobenzene ND ug/m3	-7):19 100-44-7	02/20/18 20:			0.41	1.8	ug/m3	ND	Benzyl chloride
Bromomethane ND ug/m3 1.4 0.36 1.74 02/20/18 20:19 74-83-9 1,3-Butadiene ND ug/m3 2.0 0.36 1.74 02/20/18 20:19 106-99-0 2-Butanone (MEK) 29.9 ug/m3 5.2 0.35 1.74 02/20/18 20:19 78-93-3 Carbon disulfide 37.5 ug/m3 1.1 0.51 1.74 02/20/18 20:19 76-83-3 Chlorobenzene ND ug/m3 1.6 0.31 1.74 02/20/18 20:19 76-63-3 Chlorobenzene ND ug/m3 0.86 0.40 1.74 02/20/18 20:19 74-87-3 Cyclohexane 90.6 ug/m3 3.0 0.77 1.74 02/20/18 20:19 106-92-4 Ly-Dibromoethane (EDB) ND ug/m3 2.1 0.81 1.74 02/20/18 20:19 106-92-4 Ly-Dibrobenzene ND ug/m3 2.1 0.81 1.74 02/20/18 20:19 106-92-4 Ly-Dibrobenzene ND ug/m3	4):19 75-27-4	02/20/18 20:		1.74	0.62	2.4	ug/m3	ND	Bromodichloromethane
1,3-Butadiene ND ug/m3 2.0 0.36 1.74 02/20/18 20:19 106-99-0 2-Butanone (MEK) 29.9 ug/m3 5.2 0.35 1.74 02/20/18 20:19 76-15-0 Carbon disulfide ND ug/m3 1.1 0.55 1.74 02/20/18 20:19 76-15-0 Charobenzene ND ug/m3 1.6 0.31 1.74 02/20/18 20:19 76-03-3 Chloroethane ND ug/m3 0.86 0.40 1.74 02/20/18 20:19 76-63-3 Chloroethane ND ug/m3 0.73 0.23 1.74 02/20/18 20:19 176-64-3 Cyclohexane 90.6 ug/m3 3.0 0.77 1.74 02/20/18 20:19 106-93-4 1,2-Dichorobenzene ND ug/m3 2.1 0.81 1.74 02/20/18 20:19 106-93-4 1,2-Dichorobenzene ND ug/m3 2.1 0.81 1.74 02/20/18 20:19 106-93-4 1,2-Dichorobenzene ND ug/m3 2.1 0.81 1.74 02/20/18 20:19 95-50-1 <t< td=""><td>2</td><td>):19 75-25-2</td><td>02/20/18 20:</td><td></td><td>1.74</td><td>1.2</td><td>9.1</td><td>ug/m3</td><td>ND</td><td>Bromoform</td></t<>	2):19 75-25-2	02/20/18 20:		1.74	1.2	9.1	ug/m3	ND	Bromoform
2-Butanone (MEK) 29.9 ug/m3 5.2 0.35 1.74 02/20/18 20:19 76-93-3 Carbon tetrachloide ND ug/m3 1.1 0.31 1.74 02/20/18 20:19 76-10 Carbon tetrachloide ND ug/m3 1.6 0.31 1.74 02/20/18 20:19 76-90-3 Chlorobenzene ND ug/m3 2.3 0.35 1.74 02/20/18 20:19 76-00-3 Chlorobenzene ND ug/m3 0.73 0.23 1.74 02/20/18 20:19 76-90-3 Chlorobenzene ND ug/m3 0.73 0.23 1.74 02/20/18 20:19 76-97-3 Cyclohexane ND ug/m3 3.0 0.77 1.74 02/20/18 20:19 16-93-4 1,2-Dichlorobenzene ND ug/m3 2.1 0.57 1.74 02/20/18 20:19 95-50-1 1,3-Dichlorobenzene ND ug/m3 2.1 0.57 1.74 02/20/18 20:19 95-51-8 1,2-Dichloroethane ND ug/m3	Э):19 74-83-9	02/20/18 20:		1.74	0.36	1.4	ug/m3	ND	Bromomethane
Carbon disulfide 37.5 ug/m3 1.1 0.31 1.74 02/20/18 20:19 75-15-0 Carbon tetrachloride ND ug/m3 1.1 0.55 1.74 02/20/18 20:19 75-15-0 Chlorobenzene ND ug/m3 1.6 0.31 1.74 02/20/18 20:19 75-60-3 Chloroberhane ND ug/m3 0.86 0.40 1.74 02/20/18 20:19 75-66-3 Chloromethane ND ug/m3 0.73 0.23 1.74 02/20/18 20:19 74-66-3 Cyclohexane 90.6 ug/m3 3.0 0.77 1.74 02/20/18 20:19 16-8-34 1,2-Dichorobenzene ND ug/m3 2.1 0.58 1.74 02/20/18 20:19 95-50-1 1,3-Dichorobenzene ND ug/m3 2.1 0.88 1.74 02/20/18 20:19 95-54-3 1,4-Dichorobenzene ND ug/m3 2.1 0.38 1.74 02/20/18 20:19 95-54-3 1,2-Dichlorobenzene ND ug	-0):19 106-99-0	02/20/18 20:		1.74	0.36	2.0	ug/m3	ND	1,3-Butadiene
Carbon tetrachloride ND ug/m3 1.1 0.55 1.74 02/20/18 20:19 56-23-5 Chlorobenzene ND ug/m3 1.6 0.31 1.74 02/20/18 20:19 76-00-3 Chlorobenzene ND ug/m3 0.36 0.40 1.74 02/20/18 20:19 76-66-3 Chloromethane ND ug/m3 0.73 0.23 1.74 02/20/18 20:19 74-87-3 Cyclohexane 90.6 ug/m3 3.0 0.77 1.74 02/20/18 20:19 74-87-3 Dibromochloromethane (EDB) ND ug/m3 3.0 0.77 1.74 02/20/18 20:19 96-69-34 1,2-Dichlorobenzene ND ug/m3 2.1 0.58 1.74 02/20/18 20:19 96-64-37 1,3-Dichlorobenzene ND ug/m3 2.1 0.38 1.74 02/20/18 20:19 75-71-8 1,2-Dichlorobenzene ND ug/m3 1.4 0.37 1.74 02/20/18 20:19 75-74-8 1,2-Dichloroethane ND	3):19 78-93-3	02/20/18 20:		1.74	0.35	5.2	ug/m3	29.9	2-Butanone (MEK)
Chlorobenzene ND ug/m3 1.6 0.31 1.74 02/20/18 20:19 108-90-7 Chloroform ND ug/m3 2.3 0.35 1.74 02/20/18 20:19 75-00-3 Chloroform ND ug/m3 0.73 0.23 1.74 02/20/18 20:19 74-87-3 Cyclohexane 90.6 ug/m3 1.2 0.39 1.74 02/20/18 20:19 10-82-7 Dibromochlaromethane ND ug/m3 3.0 0.77 1.74 02/20/18 20:19 124-8-7 1,2-Dibromoethane (EDB) ND ug/m3 2.1 0.55 1.74 02/20/18 20:19 95-50-1 1,3-Dichlorobenzene ND ug/m3 2.1 0.58 1.74 02/20/18 20:19 95-50-1 1,4-Dichlorobenzene ND ug/m3 1.4 0.57 1.74 02/20/18 20:19 75-74-8 1,2-Dichlorobenzene ND ug/m3 1.4 0.31 1.4 0.21 1.74 02/20/18 20:19 75-34-3 1,2-Dichloroet	D):19 75-15-0	02/20/18 20:		1.74	0.31	1.1	ug/m3	37.5	Carbon disulfide
Chloroethane ND ug/m3 2.3 0.35 1.74 02/20/18 20:19 75-00-3 Chlorootrom ND ug/m3 0.86 0.40 1.74 02/20/18 20:19 76-66-3 Chloromethane ND ug/m3 0.73 0.23 1.74 02/20/18 20:19 71-87-3 Cyclohexane 90.6 ug/m3 3.0 0.77 1.74 02/20/18 20:19 10-82-7 Dibromochloromethane ND ug/m3 2.1 0.57 1.74 02/20/18 20:19 10-82-7 1,2-Dichlorobenzene ND ug/m3 2.1 0.57 1.74 02/20/18 20:19 95-50-1 1,3-Dichlorobenzene ND ug/m3 2.1 0.81 1.74 02/20/18 20:19 75-71-8 1,1-Dichloroethane ND ug/m3 1.4 0.72 1.74 02/20/18 20:19 75-34-3 1,2-Dichloroethane ND ug/m3 1.4 0.51 1.74 02/20/18 20:19 75-35-4 1,2-Dichloroethene ND ug	5):19 56-23-5	02/20/18 20:		1.74	0.55	1.1	ug/m3	ND	Carbon tetrachloride
Chloroform ND ug/m3 0.86 0.40 1.74 02/20/18 20:19 67-66-3 Chloromethane ND ug/m3 0.73 0.23 1.74 02/20/18 20:19 74-87-3 Cyclohexane 90.6 ug/m3 1.2 0.39 1.74 02/20/18 20:19 110-82-7 Dibromochhoromethane ND ug/m3 2.7 0.58 1.74 02/20/18 20:19 124-481 1,2-Dibromoethane (EDB) ND ug/m3 2.1 0.57 1.74 02/20/18 20:19 541-73-1 1,4-Dichlorobenzene ND ug/m3 2.1 0.38 1.74 02/20/18 20:19 75-71-8 1,4-Dichlorobenzene ND ug/m3 1.4 0.37 1.74 02/20/18 20:19 75-34-3 1,4-Dichloroethane ND ug/m3 1.4 0.41 1.74 02/20/18 20:19 75-34-3 1,2-Dichloroethene ND ug/m3 1.4 0.51 1.74 02/20/18 20:19 75-65-92 1,3-Dichloroethene ND	-7):19 108-90-7	02/20/18 20:		1.74	0.31	1.6	ug/m3	ND	Chlorobenzene
Chloromethane ND ug/m3 0.73 0.23 1.74 02/20/18 20:19 74-87-3 Cyclohexane 90.6 ug/m3 1.2 0.39 1.74 02/20/18 20:19 110-82-7 Dibromochloromethane ND ug/m3 3.0 0.77 1.74 02/20/18 20:19 124-48-1 1,2-Dibromoethane (EDB) ND ug/m3 2.1 0.57 1.74 02/20/18 20:19 95-50-1 1,3-Dichlorobenzene ND ug/m3 2.1 0.57 1.74 02/20/18 20:19 75-34-3 1,4-Dichlorobenzene ND ug/m3 1.4 0.37 1.74 02/20/18 20:19 75-34-3 1,1-Dichloroethane ND ug/m3 1.4 0.37 1.74 02/20/18 20:19 75-34-3 1,2-Dichloroethane ND ug/m3 1.4 0.37 1.74 02/20/18 20:19 75-34-3 1,2-Dichloroethene ND ug/m3 1.4 0.51 1.74 02/20/18 20:19 75-34-3 1,2-Dichloroethene ND <td>3</td> <td>):19 75-00-3</td> <td>02/20/18 20:</td> <td></td> <td>1.74</td> <td>0.35</td> <td>2.3</td> <td>ug/m3</td> <td>ND</td> <td>Chloroethane</td>	3):19 75-00-3	02/20/18 20:		1.74	0.35	2.3	ug/m3	ND	Chloroethane
Cyclohexane 90.6 ug/m3 1.2 0.39 1.74 02/20/18 20:19 110-82-7 Dibromochloromethane ND ug/m3 3.0 0.77 1.74 02/20/18 20:19 124-48-1 1,2-Dibhorobethane (EDB) ND ug/m3 2.7 0.58 1.74 02/20/18 20:19 95-50-1 1,3-Dichlorobenzene ND ug/m3 2.1 0.57 1.74 02/20/18 20:19 541-73-1 1,4-Dichlorobenzene ND ug/m3 2.1 0.38 1.74 02/20/18 20:19 75-71-8 1,1-Dichloroethane ND ug/m3 1.4 0.37 1.74 02/20/18 20:19 75-34-3 1,2-Dichloroethane ND ug/m3 1.4 0.37 1.74 02/20/18 20:19 75-34-3 1,2-Dichloroethane ND ug/m3 1.4 0.51 1.74 02/20/18 20:19 75-34-3 1,2-Dichloroethene ND ug/m3 1.6 0.53 1.74 02/20/18 20:19 16-60-5 1,2-Dichloropthene <td< td=""><td>3</td><td>):19 67-66-3</td><td>02/20/18 20:</td><td></td><td>1.74</td><td>0.40</td><td>0.86</td><td>ug/m3</td><td>ND</td><td>Chloroform</td></td<>	3):19 67-66-3	02/20/18 20:		1.74	0.40	0.86	ug/m3	ND	Chloroform
DibromochloromethaneNDug/m33.00.771.7402/20/18 20:19124-48-11,2-Dibromoethane (EDB)NDug/m32.70.581.7402/20/18 20:19106-93-41,2-DichlorobenzeneNDug/m32.10.571.7402/20/18 20:1995-50-11,3-DichlorobenzeneNDug/m32.10.811.7402/20/18 20:19541-73-11,4-DichlorobenzeneNDug/m32.10.381.7402/20/18 20:1975-71-81,1-DichloroethaneNDug/m31.40.371.7402/20/18 20:1975-37-81,1-DichloroethaneNDug/m31.40.371.7402/20/18 20:1975-36-41,1-DichloroethaneNDug/m31.40.411.7402/20/18 20:1975-36-41,1-DichloroetheneNDug/m31.40.511.7402/20/18 20:1975-36-41,1-DichloroetheneNDug/m31.40.511.7402/20/18 20:1975-36-41,2-DichloroetheneNDug/m31.60.531.7402/20/18 20:1976-56-521,2-DichloroppaneNDug/m31.60.531.7402/20/18 20:1976-16-221,2-DichloroppaneNDug/m31.60.731.7402/20/18 20:191061-021,2-DichloroppaneNDug/m33.30.811.7402/20/18 20:191061-021,2-DichloroppaneNDug/m31.60.731.74<	3):19 74-87-3	02/20/18 20:		1.74	0.23	0.73	ug/m3	ND	Chloromethane
1,2-Dibromoethane (EDB) ND ug/m3 2.7 0.58 1.74 02/20/18 20:19 106-93-4 1,2-Dichlorobenzene ND ug/m3 2.1 0.57 1.74 02/20/18 20:19 95-50-1 1,3-Dichlorobenzene ND ug/m3 2.1 0.81 1.74 02/20/18 20:19 541-73-1 1,4-Dichlorobenzene ND ug/m3 2.1 0.38 1.74 02/20/18 20:19 75-71-8 1,1-Dichlorobenzene ND ug/m3 1.8 0.72 1.74 02/20/18 20:19 75-71-8 1,1-Dichloroethane ND ug/m3 1.4 0.37 1.74 02/20/18 20:19 75-34-3 1,2-Dichloroethane ND ug/m3 1.4 0.59 1.74 02/20/18 20:19 75-35-4 cis-1,2-Dichloroethene ND ug/m3 1.4 0.51 1.74 02/20/18 20:19 76-65-5 1,2-Dichloroptopane ND ug/m3 1.6 0.53 1.74 02/20/18 20:19 76-65-5 1,2-Dichloroptopene ND ug/m3 1.6 0.73 1.74 02/20/18 20:19	-7):19 110-82-7	02/20/18 20:		1.74	0.39	1.2	ug/m3	90.6	Cyclohexane
1,2-DichlorobenzeneNDug/m32.10.571.7402/20/18 20:1995-50-11,3-DichlorobenzeneNDug/m32.10.811.7402/20/18 20:19541-73-11,4-DichlorobenzeneNDug/m32.10.381.7402/20/18 20:19106-46-7DichlorodifluoromethaneNDug/m31.40.371.7402/20/18 20:1975-71-81,1-DichloroethaneNDug/m31.40.371.7402/20/18 20:1975-34-31,2-DichloroethaneNDug/m31.40.411.7402/20/18 20:1975-35-41,1-DichloroetheneNDug/m31.40.591.7402/20/18 20:1975-35-4cis-1,2-DichloroetheneNDug/m31.40.591.7402/20/18 20:19156-69-2trans-1,2-DichloroetheneNDug/m31.60.531.7402/20/18 20:19166-60-51,2-DichloropropaneNDug/m31.60.731.7402/20/18 20:1910061-02trans-1,3-DichloropropeneNDug/m31.60.731.7402/20/18 20:1910061-02DichlorotetrafluoroethaneNDug/m33.30.811.7402/20/18 20:1964-17-5Ethyl acetateNDug/m31.50.771.7402/20/18 20:1964-17-2EthylacetateNDug/m33.30.811.7402/20/18 20:1910-41-2EthylacetateNDug/m31.50.30 <td< td=""><td>i-1</td><td>):19 124-48-1</td><td>02/20/18 20:</td><td></td><td>1.74</td><td>0.77</td><td>3.0</td><td>ug/m3</td><td>ND</td><td>Dibromochloromethane</td></td<>	i-1):19 124-48-1	02/20/18 20:		1.74	0.77	3.0	ug/m3	ND	Dibromochloromethane
1,2-Dichlorobenzene ND ug/m3 2.1 0.57 1.74 02/20/18 20:19 95-50-1 1,3-Dichlorobenzene ND ug/m3 2.1 0.81 1.74 02/20/18 20:19 541-73-1 1,4-Dichlorobenzene ND ug/m3 2.1 0.38 1.74 02/20/18 20:19 541-73-1 1,1-Dichloroethane ND ug/m3 1.8 0.72 1.74 02/20/18 20:19 75-71-8 1,1-Dichloroethane ND ug/m3 0.72 0.34 1.74 02/20/18 20:19 75-34-3 1,2-Dichloroethane ND ug/m3 1.4 0.41 1.74 02/20/18 20:19 75-34-3 1,2-Dichloroethene ND ug/m3 1.4 0.51 1.74 02/20/18 20:19 75-54-4 1,2-Dichloroethene ND ug/m3 1.4 0.51 1.74 02/20/18 20:19 75-57-5 cis-1,3-Dichloroptopane ND ug/m3 1.6 0.53 1.74 02/20/18 20:19 76-14-2 trans-1,3-Dichloropropane ND ug/m3 1.6 0.73 1.74 02/20/18 20:19 <td< td=""><td>-4</td><td>):19 106-93-4</td><td>02/20/18 20:</td><td></td><td>1.74</td><td>0.58</td><td>2.7</td><td>ug/m3</td><td>ND</td><td>1,2-Dibromoethane (EDB)</td></td<>	-4):19 106-93-4	02/20/18 20:		1.74	0.58	2.7	ug/m3	ND	1,2-Dibromoethane (EDB)
1,3-DichlorobenzeneNDug/m32.10.811.7402/20/18 20:19541-73-11,4-DichlorobenzeneNDug/m32.10.381.7402/20/18 20:19106-46-7DichlorodifluoromethaneNDug/m31.40.371.7402/20/18 20:1975-71-81,1-DichloroethaneNDug/m31.40.371.7402/20/18 20:1975-34-81,2-DichloroethaneNDug/m30.720.341.7402/20/18 20:1975-34-81,2-DichloroetheneNDug/m31.40.411.7402/20/18 20:1975-35-4cis-1,2-DichloroetheneNDug/m31.40.591.7402/20/18 20:19156-59-2trans-1,2-DichloroetheneNDug/m31.60.531.7402/20/18 20:19156-59-2trans-1,2-DichloroppaneNDug/m31.60.531.7402/20/18 20:19166-051,2-DichloroppaneNDug/m31.60.731.7402/20/18 20:1910661-02trans-1,3-DichloroppopeneNDug/m33.30.811.7402/20/18 20:191061-02DichlorotetrafluoroethaneNDug/m31.50.301.7402/20/18 20:19104-14-2Ethyl acetateNDug/m33.30.811.7402/20/18 20:19104-14-2Ethyl acetateNDug/m31.50.301.7402/20/18 20:19104-14-2	1):19 95-50-1	02/20/18 20:		1.74	0.57	2.1	-	ND	1,2-Dichlorobenzene
1,4-DichlorobenzeneNDug/m32.10.381.7402/20/18 20:19106-46-7DichlorodifluoromethaneNDug/m31.80.721.7402/20/18 20:1975-71-81,1-DichloroethaneNDug/m31.40.371.7402/20/18 20:1975-34-31,2-DichloroethaneNDug/m30.720.341.7402/20/18 20:1975-36-31,1-DichloroethaneNDug/m31.40.591.7402/20/18 20:1975-35-41,1-DichloroetheneNDug/m31.40.591.7402/20/18 20:1975-35-4cis-1,2-DichloroetheneNDug/m31.40.511.7402/20/18 20:19156-69-2trans-1,2-DichloroetheneNDug/m31.60.531.7402/20/18 20:1978-87-5cis-1,3-DichloroptopaneNDug/m31.60.731.7402/20/18 20:1978-87-5cis-1,3-DichloroptopeneNDug/m31.60.731.7402/20/18 20:1910061-0trans-1,3-DichloroptopeneNDug/m33.30.811.7402/20/18 20:19141-78-6EthylacetateNDug/m31.50.301.7402/20/18 20:19141-78-6Ethylbenzene 3.7 ug/m31.50.301.7402/20/18 20:19142-82-5Hexachloro-1,3-butadieneNDug/m33.81.51.7402/20/18 20:19142-82-5Hexachloro-1,3-butadieneNDug/m33.8<					1.74	0.81		-	ND	
DichlorodifluoromethaneNDug/m31.80.721.7402/20/18 20:1975-71-81,1-DichloroethaneNDug/m31.40.371.7402/20/18 20:1975-34-31,2-DichloroethaneNDug/m30.720.341.7402/20/18 20:1975-35-41,1-DichloroethaneNDug/m31.40.411.7402/20/18 20:1975-35-41,1-DichloroetheneNDug/m31.40.591.7402/20/18 20:19156-59-2trans-1,2-DichloroetheneNDug/m31.40.511.7402/20/18 20:19156-60-51,2-DichloroetheneNDug/m31.60.531.7402/20/18 20:19156-60-51,2-DichloroptopaneNDug/m31.60.431.7402/20/18 20:19166-0531,2-DichloroptopeneNDug/m31.60.731.7402/20/18 20:1910061-001,3-DichloroptopeneNDug/m31.60.731.7402/20/18 20:1910061-001,14ug/m31.60.731.7402/20/18 20:1910061-001,150.160.731.7402/20/18 20:191061-001,14ug/m31.50.301.7402/20/18 20:191061-001,14ug/m31.30.341.7402/20/18 20:1910-41-41,14ug/m31.30.341.7402/20/18 20:1910-41-41,14ug/m31.50.301.7402/20/18 20:	-7):19 106-46-7	02/20/18 20:		1.74	0.38	2.1	-	ND	1,4-Dichlorobenzene
1,1-DichloroethaneNDug/m31.40.371.7402/20/18 20:1975-34-31,2-DichloroethaneNDug/m30.720.341.7402/20/18 20:19107-06-21,1-DichloroetheneNDug/m31.40.411.7402/20/18 20:19156-59-2trans-1,2-DichloroetheneNDug/m31.40.591.7402/20/18 20:19156-59-2trans-1,2-DichloroetheneNDug/m31.40.511.7402/20/18 20:19156-69-2trans-1,2-DichloroptopaneNDug/m31.60.531.7402/20/18 20:19156-69-5trans-1,3-DichloroptopeneNDug/m31.60.731.7402/20/18 20:191061-02trans-1,3-DichloroptopeneNDug/m31.60.731.7402/20/18 20:191061-02DichlorotetrafluoroethaneNDug/m33.30.811.7402/20/18 20:191061-02DichlorotetrafluoroethaneNDug/m31.30.341.7402/20/18 20:19104-14-2EthanolNDug/m31.30.341.7402/20/18 20:19104-14-2Ethylbenzene 3.7 ug/m31.50.301.7402/20/18 20:19104-14-2Hexachloro-1,3-butadieneNDug/m31.40.371.7402/20/18 20:19104-14-2Hexane111ug/m31.20.581.7402/20/18 20:19104-54-32-HexanoneNDug/m33.81.5	8):19 75-71-8	02/20/18 20:		1.74		1.8	0	ND	Dichlorodifluoromethane
1,2-DichloroethaneNDug/m30.720.341.7402/20/18 20:19107-06-21,1-DichloroetheneNDug/m31.40.411.7402/20/18 20:1975-35-4cis-1,2-DichloroetheneNDug/m31.40.591.7402/20/18 20:19156-59-2trans-1,2-DichloroetheneNDug/m31.40.511.7402/20/18 20:19156-69-51,2-DichloroptopaneNDug/m31.60.531.7402/20/18 20:19166-60-51,2-DichloroptopeneNDug/m31.60.431.7402/20/18 20:191061-0trans-1,3-DichloroptopeneNDug/m31.60.731.7402/20/18 20:191061-0DichloroethaneNDug/m32.50.771.7402/20/18 20:1916-14-2EthanolNDug/m33.30.811.7402/20/18 20:19141-78-6Ethyl acetateNDug/m31.50.301.7402/20/18 20:19141-78-6Ethylbenzene 3.7 ug/m31.50.301.7402/20/18 20:19162-96-8n-HeptaneNDug/m31.40.371.7402/20/18 20:19100-41-44-EthyltolueneNDug/m31.40.371.7402/20/18 20:19162-96-8n-HeptaneMDug/m31.40.371.7402/20/18 20:1962-96-8n-HexaneNDug/m33.81.51.7402/20/18 20:1967-8-3 <td>3</td> <td>):19 75-34-3</td> <td>02/20/18 20:</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>1.1-Dichloroethane</td>	3):19 75-34-3	02/20/18 20:					0		1.1-Dichloroethane
1,1-DichloroetheneNDug/m31.40.411.7402/20/18 20:1975-35-4cis-1,2-DichloroetheneNDug/m31.40.591.7402/20/18 20:19156-59-2trans-1,2-DichloroetheneNDug/m31.40.511.7402/20/18 20:19156-69-21,2-DichloroptopaneNDug/m31.60.531.7402/20/18 20:1978-87-5cis-1,3-DichloropropaneNDug/m31.60.431.7402/20/18 20:1910661-02trans-1,3-DichloropropeneNDug/m31.60.731.7402/20/18 20:1910061-02DichlorotetrafluoroethaneNDug/m32.50.771.7402/20/18 20:1964-17-5EthanolNDug/m31.30.341.7402/20/18 20:19141-78-66Ethyla acetateNDug/m31.50.301.7402/20/18 20:19140-41-464-EthyltolueneNDug/m31.70.371.7402/20/18 20:19140-41-464-EthyltolueneNDug/m31.40.371.7402/20/18 20:19142-82-56Hexachloro-1,3-butadieneNDug/m33.81.51.7402/20/18 20:19142-82-56-HexanoNDug/m33.81.51.7402/20/18 20:19142-82-56-HexanoneNDug/m33.81.51.7402/20/18 20:19142-82-56-HexanoneNDug/m33.81.51.7402/20/18 2								-		
cis-1,2-DichloroetheneNDug/m31.40.591.7402/20/18 20:19156-59-2trans-1,2-DichloroetheneNDug/m31.40.511.7402/20/18 20:19156-69-21,2-DichloropropaneNDug/m31.60.531.7402/20/18 20:19156-69-21,2-DichloropropaneNDug/m31.60.531.7402/20/18 20:1910661-02cis-1,3-DichloropropeneNDug/m31.60.731.7402/20/18 20:1910061-02trans-1,3-DichloropropeneNDug/m32.50.771.7402/20/18 20:1976-14-2EthanolNDug/m33.30.811.7402/20/18 20:1964-17-5Ethyl acetateNDug/m31.30.341.7402/20/18 20:19100-41-44-EthyltolueneNDug/m31.50.301.7402/20/18 20:19100-41-44-EthyltolueneNDug/m31.70.371.7402/20/18 20:19100-41-44-EthyltolueneNDug/m31.70.371.7402/20/18 20:19100-41-44-EthyltolueneNDug/m31.70.371.7402/20/18 20:19100-41-44-EthyltolueneNDug/m31.70.371.7402/20/18 20:19100-41-44-EthyltolueneNDug/m31.70.371.7402/20/18 20:19100-41-44-EthyltolueneNDug/m31.70.371.7402/20/18 20:19 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>								-		
trans-1,2-DichloroetheneNDug/m31.40.511.7402/20/1820:19156-60-51,2-DichloropropaneNDug/m31.60.531.7402/20/1820:1978-87-5cis-1,3-DichloropropeneNDug/m31.60.431.7402/20/1820:1910061-00trans-1,3-DichloropropeneNDug/m31.60.731.7402/20/1820:1910061-00DichlorotetrafluoroethaneNDug/m32.50.771.7402/20/1820:1976-14-2EthanolNDug/m33.30.811.7402/20/1820:1964-17-5Ethyl acetateNDug/m31.30.341.7402/20/1820:19141-78-60Ethylbenzene3.7ug/m31.50.301.7402/20/1820:19140-41-444-EthyltolueneNDug/m31.70.371.7402/20/1820:19142-82-50n-Heptane37.8ug/m31.40.371.7402/20/1820:19142-82-50Hexachloro-1,3-butadieneNDug/m33.81.51.7402/20/1820:19142-82-50-HexanoneNDug/m33.81.51.7402/20/1820:19142-82-50-HexanoneNDug/m33.81.51.7402/20/1820:19142-82-50-HexanoneNDug/m33.81.51.7402/20/1820:19142-82-50 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>,</td></t<>								-		,
1,2-DichloropropaneNDug/m31.60.531.7402/20/18 20:1978-87-5cis-1,3-DichloropropeneNDug/m31.60.431.7402/20/18 20:1910061-00trans-1,3-DichloropropeneNDug/m31.60.731.7402/20/18 20:1910061-00DichlorotetrafluoroethaneNDug/m32.50.771.7402/20/18 20:1964-17-5EthanolNDug/m33.30.811.7402/20/18 20:1964-17-5EthylacetateNDug/m31.50.301.7402/20/18 20:19141-78-6Ethylbenzene3.7ug/m31.50.301.7402/20/18 20:19100-41-44-EthyltolueneNDug/m31.70.371.7402/20/18 20:19142-82-5Hexachloro-1,3-butadieneNDug/m33.81.51.7402/20/18 20:19142-82-5Hexanne111ug/m31.20.581.7402/20/18 20:19142-82-5Methylene ChlorideNDug/m37.21.11.7402/20/18 20:19591-78-6Methylene ChlorideNDug/m37.20.621.7402/20/18 20:19591-78-64-Methyl-2-pentanone (MIBK)NDug/m37.20.621.7402/20/18 20:19108-10-1								0		-
cis-1,3-DichloropropeneNDug/m31.60.431.7402/20/18 20:1910061-07trans-1,3-DichloropropeneNDug/m31.60.731.7402/20/18 20:1910061-07DichlorotetrafluoroethaneNDug/m32.50.771.7402/20/18 20:1976-14-2EthanolNDug/m33.30.811.7402/20/18 20:1964-17-5Ethyl acetateNDug/m31.30.341.7402/20/18 20:19141-78-6Ethylbenzene3.7ug/m31.50.301.7402/20/18 20:19100-41-44-EthyltolueneNDug/m31.70.371.7402/20/18 20:19142-82-5n-Heptane37.8ug/m31.40.371.7402/20/18 20:19142-82-5Hexachloro-1,3-butadieneNDug/m33.81.51.7402/20/18 20:19142-82-5NDug/m31.20.581.7402/20/18 20:19142-82-5Hexanne111ug/m31.20.581.7402/20/18 20:19110-54-32-HexanoneNDug/m37.21.11.7402/20/18 20:19591-78-6Methylene ChlorideNDug/m37.20.621.7402/20/18 20:1975-09-24-Methyl-2-pentanone (MIBK)NDug/m37.20.621.7402/20/18 20:19108-10-1								0		
trans-1,3-DichloropropeneNDug/m31.60.731.7402/20/18 20:1910061-02DichlorotetrafluoroethaneNDug/m32.50.771.7402/20/18 20:1976-14-2EthanolNDug/m33.30.811.7402/20/18 20:1964-17-5Ethyl acetateNDug/m31.30.341.7402/20/18 20:19141-78-6Ethylbenzene 3.7 ug/m31.50.301.7402/20/18 20:19100-41-44-EthyltolueneNDug/m31.70.371.7402/20/18 20:19622-96-8n-Heptane 37.8 ug/m31.40.371.7402/20/18 20:19142-82-5Hexachloro-1,3-butadieneNDug/m33.81.51.7402/20/18 20:19142-82-5NDug/m37.20.581.7402/20/18 20:19110-54-32-HexanoneNDug/m37.21.11.7402/20/18 20:19591-78-6Methylene ChlorideNDug/m37.20.621.7402/20/18 20:1975-09-24-Methyl-2-pentanone (MIBK)NDug/m37.20.621.7402/20/18 20:19108-10-1								-		
DichlorotetrafluorotetnaneNDug/m32.50.771.7402/20/18 20:1976-14-2EthanolNDug/m33.30.811.7402/20/18 20:1964-17-5Ethyl acetateNDug/m31.30.341.7402/20/18 20:19141-78-6Ethylbenzene 3.7 ug/m31.50.301.7402/20/18 20:19100-41-44-EthylbenzeneNDug/m31.70.371.7402/20/18 20:19622-96-8n-HeptaneNDug/m31.40.371.7402/20/18 20:19142-82-5Hexachloro-1,3-butadieneNDug/m33.81.51.7402/20/18 20:19142-82-5n-Hexane111ug/m31.20.581.7402/20/18 20:19110-54-32-HexanoneNDug/m37.21.11.7402/20/18 20:19591-78-6Methylene ChlorideNDug/m37.20.621.7402/20/18 20:1975-09-24-Methyl-2-pentanone (MIBK)NDug/m37.20.621.7402/20/18 20:19108-10-1								-		
EthanolNDug/m33.30.811.7402/20/18 20:1964-17-5Ethyl acetateNDug/m31.30.341.7402/20/18 20:19141-78-6Ethylbenzene 3.7 ug/m31.50.301.7402/20/18 20:19100-41-44-EthylbolueneNDug/m31.70.371.7402/20/18 20:19622-96-8n-Heptane 37.8 ug/m31.40.371.7402/20/18 20:19142-82-5Hexachloro-1,3-butadieneNDug/m33.81.51.7402/20/18 20:19142-82-5n-Hexane 111 ug/m31.20.581.7402/20/18 20:19110-54-32-HexanoneNDug/m37.21.11.7402/20/18 20:19591-78-6Methylene ChlorideNDug/m37.20.621.7402/20/18 20:19108-10-14-Methyl-2-pentanone (MIBK)NDug/m37.20.621.7402/20/18 20:19108-10-1								-		
Ethyl acetateNDug/m31.30.341.7402/20/18 20:19141-78-60Ethylbenzene 3.7 ug/m31.50.301.7402/20/18 20:19100-41-404-EthyltolueneNDug/m31.70.371.7402/20/18 20:19622-96-80n-Heptane 37.8 ug/m31.40.371.7402/20/18 20:19142-82-50Hexachloro-1,3-butadieneNDug/m33.81.51.7402/20/18 20:19142-82-50n-Hexane 111 ug/m31.20.581.7402/20/18 20:19110-54-332-HexanoneNDug/m37.21.11.7402/20/18 20:19591-78-60Methylene ChlorideNDug/m36.12.61.7402/20/18 20:1975-09-204-Methyl-2-pentanone (MIBK)NDug/m37.20.621.7402/20/18 20:19108-10-10								-		
Ethylbenzene3.7ug/m31.50.301.7402/20/18 20:19100-41-44-EthyltolueneNDug/m31.70.371.7402/20/18 20:19622-96-8n-Heptane37.8ug/m31.40.371.7402/20/18 20:19142-82-5Hexachloro-1,3-butadieneNDug/m33.81.51.7402/20/18 20:19142-82-5n-Hexane111ug/m31.20.581.7402/20/18 20:19110-54-32-HexanoneNDug/m37.21.11.7402/20/18 20:19591-78-6Methylene ChlorideNDug/m36.12.61.7402/20/18 20:1975-09-24-Methyl-2-pentanone (MIBK)NDug/m37.20.621.7402/20/18 20:19108-10-1								0		
4-Ethyltoluene ND ug/m3 1.7 0.37 1.74 02/20/18 20:19 622-96-8 n-Heptane 37.8 ug/m3 1.4 0.37 1.74 02/20/18 20:19 622-96-8 n-Heptane 37.8 ug/m3 1.4 0.37 1.74 02/20/18 20:19 142-82-5 Hexachloro-1,3-butadiene ND ug/m3 3.8 1.5 1.74 02/20/18 20:19 87-68-3 n-Hexane 111 ug/m3 1.2 0.58 1.74 02/20/18 20:19 110-54-3 2-Hexanone ND ug/m3 7.2 1.1 1.74 02/20/18 20:19 591-78-6 Methylene Chloride ND ug/m3 6.1 2.6 1.74 02/20/18 20:19 75-09-2 4-Methyl-2-pentanone (MIBK) ND ug/m3 7.2 0.62 1.74 02/20/18 20:19 108-10-1								-		-
n-Heyane37.8ug/m31.40.371.7402/20/18 20:19142-82-5Hexachloro-1,3-butadieneNDug/m33.81.51.7402/20/18 20:1987-68-3n-Hexane111ug/m31.20.581.7402/20/18 20:19110-54-32-HexanoneNDug/m37.21.11.7402/20/18 20:19591-78-6Methylene ChlorideNDug/m36.12.61.7402/20/18 20:1975-09-24-Methyl-2-pentanone (MIBK)NDug/m37.20.621.7402/20/18 20:19108-10-1								-		•
Hexachloro-1,3-butadieneNDug/m33.81.51.7402/20/18 20:1987-68-3n-Hexane111ug/m31.20.581.7402/20/18 20:19110-54-32-HexanoneNDug/m37.21.11.7402/20/18 20:19591-78-6Methylene ChlorideNDug/m36.12.61.7402/20/18 20:1975-09-24-Methyl-2-pentanone (MIBK)NDug/m37.20.621.7402/20/18 20:19108-10-1										
n-Hexane111ug/m31.20.581.7402/20/18 20:19110-54-32-HexanoneNDug/m37.21.11.7402/20/18 20:19591-78-6Methylene ChlorideNDug/m36.12.61.7402/20/18 20:1975-09-24-Methyl-2-pentanone (MIBK)NDug/m37.20.621.7402/20/18 20:19108-10-1										•
2-Hexanone ND ug/m3 7.2 1.1 1.74 02/20/18 20:19 591-78-6 Methylene Chloride ND ug/m3 6.1 2.6 1.74 02/20/18 20:19 75-09-2 4-Methyl-2-pentanone (MIBK) ND ug/m3 7.2 0.62 1.74 02/20/18 20:19 108-10-1								-		
Methylene Chloride ND ug/m3 6.1 2.6 1.74 02/20/18 20:19 75-09-2 4-Methyl-2-pentanone (MIBK) ND ug/m3 7.2 0.62 1.74 02/20/18 20:19 108-10-1								-		
4-Methyl-2-pentanone (MIBK) ND ug/m3 7.2 0.62 1.74 02/20/18 20:19 108-10-1								-		
								-		-
								-		•••
					1.74	1.2	6.4	ug/m3	ND	Methyl-tert-butyl ether
Naphthalene ND ug/m3 4.6 1.0 1.74 02/20/18 20:19 91-20-3 2 Branand ND ug/m3 4.4 2.2 1.74 02/20/18 20:10 67.63 0								-		•
2-Propanol ND ug/m3 4.4 2.2 1.74 02/20/18 20:19 67-63-0 Propulses ND ug/m3 0.61 0.37 1.74 02/20/18 20:10 145 07.4								-		
Propylene ND ug/m3 0.61 0.27 1.74 02/20/18 20:19 115-07-1 Strange ND ug/m3 0.61 0.27 1.74 02/20/18 20:19 140-49								-		
Styrene ND ug/m3 1.5 0.29 1.74 02/20/18 20:19 100-42-5 4.4.9.2 Tetrachlorecthere ND ug/m3 1.5 0.29 1.74 02/20/18 20:19 100-42-5								0		2
1,1,2,2-Tetrachloroethane ND ug/m3 1.2 0.50 1.74 02/20/18 20:19 79-34-5	2	19 79-34-5	02/20/18 20:		1.74	0.50	1.2	ug/m3	ND	1,1,2,2- letrachloroethane

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-12	Lab ID:	10420487012	Collecte	d: 02/11/18	3 11:18	Received: 02	/13/18 11:05 Ma	atrix: Air	
_			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
Tetrachloroethene	ND	ug/m3	1.2	0.50	1.74		02/20/18 20:19	127-18-4	
Tetrahydrofuran	ND	ug/m3	1.0	0.48	1.74		02/20/18 20:19	109-99-9	
Toluene	32.9	ug/m3	1.3	0.28	1.74		02/20/18 20:19	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	6.6	1.7	1.74		02/20/18 20:19	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	1.9	0.60	1.74		02/20/18 20:19	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	0.97	0.39	1.74		02/20/18 20:19	79-00-5	
Trichloroethene	ND	ug/m3	0.95	0.47	1.74		02/20/18 20:19	79-01-6	
Trichlorofluoromethane	ND	ug/m3	2.0	0.73	1.74		02/20/18 20:19	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	2.7	0.64	1.74		02/20/18 20:19	76-13-1	
1,2,4-Trimethylbenzene	ND	ug/m3	1.7	0.30	1.74		02/20/18 20:19	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/m3	1.7	0.72	1.74		02/20/18 20:19	108-67-8	
Vinyl acetate	ND	ug/m3	1.2	0.29	1.74		02/20/18 20:19	108-05-4	
Vinyl chloride	ND	ug/m3	2.3	0.22	1.74		02/20/18 20:19	75-01-4	
m&p-Xylene	7.3	ug/m3	3.1	0.61	1.74		02/20/18 20:19	179601-23-1	
o-Xylene	1.7	ug/m3	1.5	0.65	1.74		02/20/18 20:19	95-47-6	
TO3 GCV AIR Meth, Ethane, Ethene	Analytical	Method: TO-3	Air						
Methane	95600	ppmv	29.2	1.2	2.92		03/02/18 11:30	74-82-8	Е

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-14	Lab ID:	10420487013	Collected	d: 02/11/1	8 11:48	Received: 02	2/13/18 11:05 N	latrix: Air	
Demonstern	Davida	11-1-	Report		DE	December	A s s h ses s d		0
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytica	I Method: TO-15	5						
Acetone	428	ug/m3	4.3	2.7	1.77		02/20/18 20:53	3 67-64-1	
Benzene	14.6	ug/m3	0.58	0.27	1.77		02/20/18 20:53	3 71-43-2	
Benzyl chloride	ND	ug/m3	1.9	0.42	1.77		02/20/18 20:5	3 100-44-7	
Bromodichloromethane	ND	ug/m3	2.4	0.63	1.77		02/20/18 20:53		
Bromoform	ND	ug/m3	9.3	1.2	1.77		02/20/18 20:53	3 75-25-2	
Bromomethane	ND	ug/m3	1.4	0.37	1.77		02/20/18 20:53	3 74-83-9	
1,3-Butadiene	ND	ug/m3	2.0	0.36	1.77		02/20/18 20:53	3 106-99-0	
2-Butanone (MEK)	82.1	ug/m3	5.3	0.36	1.77		02/20/18 20:53	3 78-93-3	
Carbon disulfide	12.8	ug/m3	1.1	0.32	1.77		02/20/18 20:53	3 75-15-0	
Carbon tetrachloride	ND	ug/m3	1.1	0.56	1.77		02/20/18 20:53	3 56-23-5	
Chlorobenzene	ND	ug/m3	1.7	0.32	1.77		02/20/18 20:5	3 108-90-7	
Chloroethane	ND	ug/m3	2.4	0.36	1.77		02/20/18 20:5	3 75-00-3	
Chloroform	ND	ug/m3	0.88	0.41	1.77		02/20/18 20:53	3 67-66-3	
Chloromethane	ND	ug/m3	0.74	0.24	1.77		02/20/18 20:5	3 74-87-3	
Cyclohexane	ND	ug/m3	1.2	0.40	1.77		02/20/18 20:53	3 110-82-7	
Dibromochloromethane	ND	ug/m3	3.1	0.78	1.77		02/20/18 20:5	3 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/m3	2.8	0.59	1.77		02/20/18 20:5	3 106-93-4	
1,2-Dichlorobenzene	ND	ug/m3	2.2	0.58	1.77		02/20/18 20:5	3 95-50-1	
1,3-Dichlorobenzene	ND	ug/m3	2.2	0.82	1.77		02/20/18 20:53	3 541-73-1	
1,4-Dichlorobenzene	ND	ug/m3	2.2	0.39	1.77		02/20/18 20:53		
Dichlorodifluoromethane	ND	ug/m3	1.8	0.74	1.77		02/20/18 20:53		
1,1-Dichloroethane	ND	ug/m3	1.5	0.38	1.77		02/20/18 20:5		
1,2-Dichloroethane	ND	ug/m3	0.73	0.35	1.77		02/20/18 20:5		
1,1-Dichloroethene	ND	ug/m3	1.4	0.42	1.77		02/20/18 20:5		
cis-1,2-Dichloroethene	ND	ug/m3	1.4	0.60	1.77		02/20/18 20:5		
trans-1,2-Dichloroethene	ND	ug/m3	1.4	0.52	1.77		02/20/18 20:5		
1,2-Dichloropropane	ND	ug/m3	1.7	0.54	1.77		02/20/18 20:5		
cis-1,3-Dichloropropene	ND	ug/m3	1.6	0.43	1.77		02/20/18 20:5		
trans-1,3-Dichloropropene	ND	ug/m3	1.6	0.74	1.77		02/20/18 20:5		
Dichlorotetrafluoroethane	ND	ug/m3	2.5	0.78	1.77		02/20/18 20:5		
Ethanol	ND	ug/m3	3.4	0.82	1.77		02/20/18 20:5		
Ethyl acetate	ND	ug/m3	1.3	0.35	1.77		02/20/18 20:5		
Ethylbenzene	2.9	ug/m3	1.5	0.30	1.77		02/20/18 20:5		
4-Ethyltoluene	ND	ug/m3	1.8	0.38	1.77		02/20/18 20:5		
n-Heptane	16.5	ug/m3 ug/m3	1.5	0.38	1.77		02/20/18 20:5		
		-							
Hexachloro-1,3-butadiene	ND 30.0	ug/m3	3.8	1.5	1.77		02/20/18 20:5		
n-Hexane	30.0	ug/m3	1.3	0.59	1.77		02/20/18 20:53		
2-Hexanone	ND	ug/m3	7.4	1.1	1.77				
Methylene Chloride	ND	ug/m3	6.2	2.7	1.77		02/20/18 20:53		
4-Methyl-2-pentanone (MIBK)	ND	ug/m3	7.4	0.63	1.77 1.77		02/20/18 20:53		
Methyl-tert-butyl ether	ND	ug/m3	6.5	1.2	1.77		02/20/18 20:53		
Naphthalene	ND	ug/m3	4.7	1.1	1.77		02/20/18 20:5		
2-Propanol	ND	ug/m3	4.4	2.2	1.77		02/20/18 20:5		
Propylene	ND	ug/m3	0.62	0.28	1.77		02/20/18 20:53		
Styrene	ND	ug/m3	1.5	0.30	1.77		02/20/18 20:53		
1,1,2,2-Tetrachloroethane	ND	ug/m3	1.2	0.51	1.77		02/20/18 20:53	3 79-34-5	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-14	Lab ID:	10420487013	Collecte	d: 02/11/18	3 11:48	Received: 02	2/13/18 11:05 Ma	atrix: Air	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
Tetrachloroethene	ND	ug/m3	1.2	0.51	1.77		02/20/18 20:53	127-18-4	
Tetrahydrofuran	ND	ug/m3	1.1	0.48	1.77		02/20/18 20:53	109-99-9	
Toluene	17.8	ug/m3	1.4	0.28	1.77		02/20/18 20:53	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	6.7	1.7	1.77		02/20/18 20:53	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	2.0	0.61	1.77		02/20/18 20:53	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	0.98	0.40	1.77		02/20/18 20:53	79-00-5	
Trichloroethene	ND	ug/m3	0.97	0.47	1.77		02/20/18 20:53	79-01-6	
Trichlorofluoromethane	ND	ug/m3	2.0	0.74	1.77		02/20/18 20:53	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	2.8	0.65	1.77		02/20/18 20:53	76-13-1	
1,2,4-Trimethylbenzene	0.90J	ug/m3	1.8	0.30	1.77		02/20/18 20:53	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/m3	1.8	0.73	1.77		02/20/18 20:53	108-67-8	
Vinyl acetate	8.6	ug/m3	1.3	0.29	1.77		02/20/18 20:53	108-05-4	
Vinyl chloride	ND	ug/m3	2.3	0.22	1.77		02/20/18 20:53	75-01-4	
m&p-Xylene	6.7	ug/m3	3.1	0.62	1.77		02/20/18 20:53	179601-23-1	
o-Xylene	1.0J	ug/m3	1.6	0.66	1.77		02/20/18 20:53	95-47-6	
TO3 GCV AIR Meth, Ethane, Ethene	Analytical	Method: TO-3 A	Air						
Methane	9220	ppmv	23.4	0.99	2.34		03/02/18 11:40	74-82-8	E

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-2	Lab ID:	10420487014	Collecte	d: 02/12/1	8 10:34	Received: 02	2/13/18 11:05 M	Matrix: Air	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytica	I Method: TO-15	5						
Acetone	90.7	ug/m3	4.2	2.6	1.74		02/20/18 21:5	9 67-64-1	
Benzene	19.0	ug/m3	0.57	0.26	1.74		02/20/18 21:5	9 71-43-2	
Benzyl chloride	ND	ug/m3	1.8	0.41	1.74		02/20/18 21:5	9 100-44-7	
Bromodichloromethane	ND	ug/m3	2.4	0.62	1.74		02/20/18 21:5	9 75-27-4	
Bromoform	ND	ug/m3	9.1	1.2	1.74		02/20/18 21:5	9 75-25-2	
Bromomethane	ND	ug/m3	1.4	0.36	1.74		02/20/18 21:5	9 74-83-9	
1,3-Butadiene	ND	ug/m3	2.0	0.36	1.74		02/20/18 21:5	9 106-99-0	
2-Butanone (MEK)	30.3	ug/m3	5.2	0.35	1.74		02/20/18 21:5	9 78-93-3	
Carbon disulfide	10.4	ug/m3	1.1	0.31	1.74		02/20/18 21:5	9 75-15-0	
Carbon tetrachloride	ND	ug/m3	1.1	0.55	1.74		02/20/18 21:5	9 56-23-5	
Chlorobenzene	ND	ug/m3	1.6	0.31	1.74		02/20/18 21:5	9 108-90-7	
Chloroethane	ND	ug/m3	2.3	0.35	1.74		02/20/18 21:5	9 75-00-3	
Chloroform	ND	ug/m3	0.86	0.40	1.74		02/20/18 21:5	9 67-66-3	
Chloromethane	ND	ug/m3	0.73	0.23	1.74		02/20/18 21:5	9 74-87-3	
Cyclohexane	9.0	ug/m3	1.2	0.39	1.74		02/20/18 21:5	9 110-82-7	
Dibromochloromethane	ND	ug/m3	3.0	0.77	1.74		02/20/18 21:5		
1,2-Dibromoethane (EDB)	ND	ug/m3	2.7	0.58	1.74		02/20/18 21:5		
1,2-Dichlorobenzene	ND	ug/m3	2.1	0.57	1.74		02/20/18 21:5		
1,3-Dichlorobenzene	ND	ug/m3	2.1	0.81	1.74		02/20/18 21:5		
1,4-Dichlorobenzene	ND	ug/m3	2.1	0.38	1.74		02/20/18 21:5		
Dichlorodifluoromethane	ND	ug/m3	1.8	0.72	1.74		02/20/18 21:5		
1,1-Dichloroethane	ND	ug/m3	1.4	0.37	1.74		02/20/18 21:5		
1,2-Dichloroethane	ND	ug/m3	0.72	0.34	1.74		02/20/18 21:5		
1,1-Dichloroethene	ND	ug/m3	1.4	0.41	1.74		02/20/18 21:5		
cis-1,2-Dichloroethene	ND	ug/m3	1.4	0.59	1.74		02/20/18 21:5		
trans-1,2-Dichloroethene	ND	ug/m3	1.4	0.51	1.74		02/20/18 21:5		
1,2-Dichloropropane	ND	ug/m3	1.4	0.53	1.74		02/20/18 21:5		
cis-1,3-Dichloropropene	ND	ug/m3	1.6	0.33	1.74			9 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/m3	1.6	0.43	1.74			9 10061-02-6	
Dichlorotetrafluoroethane	ND	ug/m3 ug/m3	2.5	0.73	1.74		02/20/18 21:5		
Ethanol	ND	ug/m3	3.3	0.81	1.74		02/20/18 21:5		
Ethyl acetate	ND	ug/m3	3.3 1.3	0.34	1.74		02/20/18 21:5		
Ethylbenzene	2.4	ug/m3 ug/m3	1.5	0.34	1.74		02/20/18 21:5		
4-Ethyltoluene	2.4 ND	-	1.5	0.30	1.74		02/20/18 21:5		
		ug/m3		0.37			02/20/18 21:5		
n-Heptane	12.4	ug/m3	1.4		1.74				
Hexachloro-1,3-butadiene	ND	ug/m3	3.8	1.5	1.74		02/20/18 21:5		
n-Hexane	28.7	ug/m3	1.2	0.58	1.74		02/20/18 21:5		
2-Hexanone	ND	ug/m3	7.2	1.1	1.74		02/20/18 21:5		
Methylene Chloride	ND	ug/m3	6.1	2.6	1.74		02/20/18 21:5		
4-Methyl-2-pentanone (MIBK)	ND	ug/m3	7.2	0.62	1.74		02/20/18 21:5		
Methyl-tert-butyl ether	ND	ug/m3	6.4	1.2	1.74		02/20/18 21:5		
Naphthalene	ND	ug/m3	4.6	1.0	1.74		02/20/18 21:5		
2-Propanol	ND	ug/m3	4.4	2.2	1.74		02/20/18 21:5		-
Propylene	460	ug/m3	0.61	0.27	1.74		02/20/18 21:5		E
Styrene	ND	ug/m3	1.5	0.29	1.74		02/20/18 21:5		
1,1,2,2-Tetrachloroethane	ND	ug/m3	1.2	0.50	1.74		02/20/18 21:5	9 79-34-5	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-2	Lab ID:	10420487014	Collected	d: 02/12/1	8 10:34	Received: 02	/13/18 11:05 M	atrix: Air	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
Tetrachloroethene	1.5	ug/m3	1.2	0.50	1.74		02/20/18 21:59	127-18-4	
Tetrahydrofuran	ND	ug/m3	1.0	0.48	1.74		02/20/18 21:59	109-99-9	
Toluene	13.0	ug/m3	1.3	0.28	1.74		02/20/18 21:59	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	6.6	1.7	1.74		02/20/18 21:59	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	1.9	0.60	1.74		02/20/18 21:59	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	0.97	0.39	1.74		02/20/18 21:59	79-00-5	
Trichloroethene	ND	ug/m3	0.95	0.47	1.74		02/20/18 21:59	79-01-6	
Trichlorofluoromethane	ND	ug/m3	2.0	0.73	1.74		02/20/18 21:59	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	2.7	0.64	1.74		02/20/18 21:59	76-13-1	
1,2,4-Trimethylbenzene	ND	ug/m3	1.7	0.30	1.74		02/20/18 21:59	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/m3	1.7	0.72	1.74		02/20/18 21:59	108-67-8	
Vinyl acetate	ND	ug/m3	1.2	0.29	1.74		02/20/18 21:59	108-05-4	
Vinyl chloride	ND	ug/m3	2.3	0.22	1.74		02/20/18 21:59	75-01-4	
m&p-Xylene	3.1	ug/m3	3.1	0.61	1.74		02/20/18 21:59	179601-23-1	
o-Xylene	ND	ug/m3	1.5	0.65	1.74		02/20/18 21:59	95-47-6	
TO3 GCV AIR Meth, Ethane, Ethene	Analytical	Method: TO-3	Air						
Methane	31.4	ppmv	22.9	0.97	2.29		03/02/18 11:49	74-82-8	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-4	Lab ID:	10420487015	Collected	d: 02/12/1	8 11:33	Received: 02	2/13/18 11:05 M	latrix: Air	
			Report			-			. .
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytica	I Method: TO-15	5						
Acetone	133	ug/m3	3.9	2.4	1.63		02/20/18 22:33	67-64-1	
Benzene	9.9	ug/m3	0.53	0.25	1.63		02/20/18 22:33	3 71-43-2	
Benzyl chloride	ND	ug/m3	1.7	0.38	1.63		02/20/18 22:33	3 100-44-7	
Bromodichloromethane	ND	ug/m3	2.2	0.58	1.63		02/20/18 22:33	-	
Bromoform	ND	ug/m3	8.6	1.1	1.63		02/20/18 22:33	3 75-25-2	
Bromomethane	ND	ug/m3	1.3	0.34	1.63		02/20/18 22:33	3 74-83-9	
1,3-Butadiene	ND	ug/m3	1.8	0.34	1.63		02/20/18 22:33	106-99-0	
2-Butanone (MEK)	18.4	ug/m3	4.9	0.33	1.63		02/20/18 22:33	8 78-93-3	
Carbon disulfide	ND	ug/m3	1.0	0.29	1.63		02/20/18 22:33	3 75-15-0	
Carbon tetrachloride	ND	ug/m3	1.0	0.52	1.63		02/20/18 22:33	56-23-5	
Chlorobenzene	ND	ug/m3	1.5	0.29	1.63		02/20/18 22:33	108-90-7	
Chloroethane	ND	ug/m3	2.2	0.33	1.63		02/20/18 22:33	3 75-00-3	
Chloroform	ND	ug/m3	0.81	0.38	1.63		02/20/18 22:33	67-66-3	
Chloromethane	ND	ug/m3	0.68	0.22	1.63		02/20/18 22:33	3 74-87-3	
Cyclohexane	ND	ug/m3	1.1	0.37	1.63		02/20/18 22:33	3 110-82-7	
Dibromochloromethane	ND	ug/m3	2.8	0.72	1.63		02/20/18 22:33	3 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/m3	2.5	0.54	1.63		02/20/18 22:33		
1,2-Dichlorobenzene	ND	ug/m3	2.0	0.53	1.63		02/20/18 22:33	95-50-1	
1.3-Dichlorobenzene	ND	ug/m3	2.0	0.76	1.63		02/20/18 22:33	541-73-1	
1,4-Dichlorobenzene	ND	ug/m3	2.0	0.36	1.63		02/20/18 22:33		
Dichlorodifluoromethane	ND	ug/m3	1.6	0.68	1.63		02/20/18 22:33		
1,1-Dichloroethane	ND	ug/m3	1.3	0.35	1.63		02/20/18 22:33		
1,2-Dichloroethane	ND	ug/m3	0.67	0.32	1.63		02/20/18 22:33		
1,1-Dichloroethene	ND	ug/m3	1.3	0.39	1.63		02/20/18 22:33		
cis-1,2-Dichloroethene	ND	ug/m3	1.3	0.56	1.63		02/20/18 22:33		
trans-1,2-Dichloroethene	ND	ug/m3	1.3	0.48	1.63		02/20/18 22:33		
1,2-Dichloropropane	ND	ug/m3	1.5	0.50	1.63		02/20/18 22:33		
cis-1,3-Dichloropropene	ND	ug/m3	1.5	0.40	1.63		02/20/18 22:33		
trans-1,3-Dichloropropene	ND	ug/m3	1.5	0.68	1.63		02/20/18 22:33		
Dichlorotetrafluoroethane	ND	ug/m3	2.3	0.00	1.63		02/20/18 22:33		
Ethanol	24.0	ug/m3	3.1	0.72	1.63		02/20/18 22:33		
Ethyl acetate	ND	ug/m3 ug/m3	1.2	0.32	1.63		02/20/18 22:33		
Ethylbenzene	3.3	ug/m3 ug/m3	1.2	0.32	1.63		02/20/18 22:33		
	3.3 ND	-	1.4	0.28	1.63		02/20/18 22:33		
4-Ethyltoluene		ug/m3	1.6	0.35	1.63				
n-Heptane	6.6	ug/m3					02/20/18 22:33		
Hexachloro-1,3-butadiene	ND	ug/m3	3.5	1.4	1.63		02/20/18 22:33		
n-Hexane	38.3	ug/m3	2.0	0.91	2.74		02/21/18 13:20		
2-Hexanone	ND	ug/m3	6.8	1.0	1.63		02/20/18 22:33		
Methylene Chloride	118	ug/m3	9.7	4.2	2.74		02/21/18 13:20		
4-Methyl-2-pentanone (MIBK)	ND	ug/m3	6.8	0.58	1.63		02/20/18 22:33		
Methyl-tert-butyl ether	ND	ug/m3	6.0	1.1	1.63		02/20/18 22:33		
Naphthalene	ND	ug/m3	4.3	0.97	1.63		02/20/18 22:33		
2-Propanol	ND	ug/m3	4.1	2.0	1.63		02/20/18 22:33		
Propylene	ND	ug/m3	0.57	0.26	1.63		02/20/18 22:33		
Styrene	ND	ug/m3	1.4	0.27	1.63		02/20/18 22:33		
1,1,2,2-Tetrachloroethane	ND	ug/m3	1.1	0.47	1.63		02/20/18 22:33	3 79-34-5	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-4	Lab ID:	10420487015	Collecte	d: 02/12/1	8 11:33	Received: 02	/13/18 11:05 Ma	atrix: Air	
Doromotoro	Deculto	Linita	Report			Dranarad	Applyzod		Qual
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
Tetrachloroethene	ND	ug/m3	1.1	0.47	1.63		02/20/18 22:33	127-18-4	
Tetrahydrofuran	ND	ug/m3	0.98	0.45	1.63		02/20/18 22:33	109-99-9	
Toluene	14.0	ug/m3	1.2	0.26	1.63		02/20/18 22:33	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	6.1	1.6	1.63		02/20/18 22:33	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	1.8	0.56	1.63		02/20/18 22:33	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	0.90	0.37	1.63		02/20/18 22:33	79-00-5	
Trichloroethene	ND	ug/m3	0.89	0.44	1.63		02/20/18 22:33	79-01-6	
Trichlorofluoromethane	ND	ug/m3	1.9	0.68	1.63		02/20/18 22:33	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	2.5	0.60	1.63		02/20/18 22:33	76-13-1	
1,2,4-Trimethylbenzene	ND	ug/m3	1.6	0.28	1.63		02/20/18 22:33	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/m3	1.6	0.67	1.63		02/20/18 22:33	108-67-8	
Vinyl acetate	ND	ug/m3	1.2	0.27	1.63		02/20/18 22:33	108-05-4	
Vinyl chloride	ND	ug/m3	2.1	0.21	1.63		02/20/18 22:33	75-01-4	
m&p-Xylene	2.8J	ug/m3	2.9	0.57	1.63		02/20/18 22:33	179601-23-1	
o-Xylene	ND	ug/m3	1.4	0.60	1.63		02/20/18 22:33	95-47-6	
TO3 GCV AIR Meth, Ethane, Ethene	Analytical	Method: TO-3	Air						
Methane	40.4	ppmv	36.1	1.5	3.61		03/02/18 11:59	74-82-8	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-5	Lab ID:	10420487016	Collected	1: 02/12/1	8 13:14	Received: 02	2/13/18 11:05 N	latrix: Air	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytica	l Method: TO-15	5						
Acetone	149	ug/m3	4.0	2.5	1.68		02/20/18 23:07	67-64-1	
Benzene	5.2	ug/m3	0.55	0.25	1.68		02/20/18 23:07	71-43-2	
Benzyl chloride	ND	ug/m3	1.8	0.40	1.68		02/20/18 23:07	100-44-7	
Bromodichloromethane	ND	ug/m3	2.3	0.60	1.68		02/20/18 23:07	75-27-4	
Bromoform	ND	ug/m3	8.8	1.2	1.68		02/20/18 23:07	75-25-2	
Bromomethane	ND	ug/m3	1.3	0.35	1.68		02/20/18 23:07	74-83-9	
1,3-Butadiene	ND	ug/m3	1.9	0.35	1.68		02/20/18 23:07	106-99-0	
2-Butanone (MEK)	78.4	ug/m3	5.0	0.34	1.68		02/20/18 23:07	78-93-3	
Carbon disulfide	ND	ug/m3	1.1	0.30	1.68		02/20/18 23:07	75-15-0	
Carbon tetrachloride	ND	ug/m3	1.1	0.53	1.68		02/20/18 23:07	56-23-5	
Chlorobenzene	ND	ug/m3	1.6	0.30	1.68		02/20/18 23:07	108-90-7	
Chloroethane	ND	ug/m3	2.3	0.34	1.68		02/20/18 23:07		
Chloroform	ND	ug/m3	0.83	0.39	1.68		02/20/18 23:07	67-66-3	
Chloromethane	ND	ug/m3	0.71	0.23	1.68		02/20/18 23:07		
Cyclohexane	ND	ug/m3	1.2	0.38	1.68		02/20/18 23:07		
Dibromochloromethane	ND	ug/m3	2.9	0.74	1.68		02/20/18 23:07	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/m3	2.6	0.56	1.68		02/20/18 23:07		
1,2-Dichlorobenzene	ND	ug/m3	2.0	0.55	1.68		02/20/18 23:07		
1,3-Dichlorobenzene	ND	ug/m3	2.0	0.78	1.68		02/20/18 23:07		
1,4-Dichlorobenzene	ND	ug/m3	2.0	0.37	1.68		02/20/18 23:07		
Dichlorodifluoromethane	ND	ug/m3	1.7	0.70	1.68		02/20/18 23:07		
1,1-Dichloroethane	ND	ug/m3	1.4	0.36	1.68		02/20/18 23:07		
1,2-Dichloroethane	ND	ug/m3	0.69	0.33	1.68		02/20/18 23:07		
1,1-Dichloroethene	ND	ug/m3	1.4	0.40	1.68		02/20/18 23:07		
cis-1,2-Dichloroethene	ND	ug/m3	1.4	0.40	1.68		02/20/18 23:07		
trans-1,2-Dichloroethene	ND	ug/m3	1.4	0.57	1.68		02/20/18 23:07		
1,2-Dichloropropane	ND	ug/m3	1.4	0.50	1.68		02/20/18 23:07		
cis-1,3-Dichloropropene	ND	ug/m3	1.6	0.31	1.68		02/20/18 23:07		
trans-1,3-Dichloropropene	ND	ug/m3	1.6	0.41	1.68		02/20/18 23:07		
Dichlorotetrafluoroethane	ND	-	2.4	0.71	1.68		02/20/18 23:07		
Ethanol	ND	ug/m3 ug/m3	3.2	0.74	1.68		02/20/18 23:07		
		0	3.2 1.2				02/20/18 23:07		
Ethyl acetate	ND 2.2	ug/m3		0.33	1.68				
Ethylbenzene		ug/m3	1.5	0.29	1.68		02/20/18 23:07		
4-Ethyltoluene	ND	ug/m3	1.7	0.36	1.68		02/20/18 23:07		
n-Heptane	5.9	ug/m3	1.4	0.35	1.68		02/20/18 23:07		
Hexachloro-1,3-butadiene	ND	ug/m3	3.6	1.5	1.68		02/20/18 23:07		
n-Hexane	16.0	ug/m3	1.2	0.56	1.68		02/20/18 23:07		
2-Hexanone	ND	ug/m3	7.0	1.0	1.68		02/20/18 23:07		
Methylene Chloride	ND	ug/m3	5.9	2.6	1.68		02/20/18 23:07		
4-Methyl-2-pentanone (MIBK)	ND	ug/m3	7.0	0.60	1.68		02/20/18 23:07		
Methyl-tert-butyl ether	ND	ug/m3	6.1	1.1	1.68		02/20/18 23:07		
Naphthalene	ND	ug/m3	4.5	1.0	1.68		02/20/18 23:07		
2-Propanol	ND	ug/m3	4.2	2.1	1.68		02/20/18 23:07		
Propylene	ND	ug/m3	0.59	0.26	1.68		02/20/18 23:07		
Styrene	ND	ug/m3	1.5	0.28	1.68		02/20/18 23:07		
1,1,2,2-Tetrachloroethane	ND	ug/m3	1.2	0.49	1.68		02/20/18 23:07	79-34-5	

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Sample: SG-5	Lab ID:	10420487016	Collected	l: 02/12/1	8 13:14	Received: 02	/13/18 11:05 Ma	atrix: Air	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
Tetrachloroethene	ND	ug/m3	1.2	0.48	1.68		02/20/18 23:07	127-18-4	
Tetrahydrofuran	ND	ug/m3	1.0	0.46	1.68		02/20/18 23:07	109-99-9	
Toluene	6.6	ug/m3	1.3	0.27	1.68		02/20/18 23:07	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	6.3	1.6	1.68		02/20/18 23:07	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	1.9	0.57	1.68		02/20/18 23:07	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	0.93	0.38	1.68		02/20/18 23:07	79-00-5	
Trichloroethene	ND	ug/m3	0.92	0.45	1.68		02/20/18 23:07	79-01-6	
Trichlorofluoromethane	ND	ug/m3	1.9	0.70	1.68		02/20/18 23:07	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	2.6	0.62	1.68		02/20/18 23:07	76-13-1	
1,2,4-Trimethylbenzene	ND	ug/m3	1.7	0.29	1.68		02/20/18 23:07	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/m3	1.7	0.69	1.68		02/20/18 23:07	108-67-8	
Vinyl acetate	ND	ug/m3	1.2	0.28	1.68		02/20/18 23:07	108-05-4	
Vinyl chloride	ND	ug/m3	2.2	0.21	1.68		02/20/18 23:07	75-01-4	
m&p-Xylene	3.1	ug/m3	3.0	0.59	1.68		02/20/18 23:07	179601-23-1	
o-Xylene	ND	ug/m3	1.5	0.62	1.68		02/20/18 23:07	95-47-6	
TO3 GCV AIR Meth, Ethane, Ethene	Analytical	Method: TO-3	Air						
Methane	2020	ppmv	22.1	0.93	2.21		03/02/18 12:08	74-82-8	

Project:	31401059.001 I-35W MN Rvr Brdg
1 10,000.	

Pace Project No.:	10420487
-------------------	----------

QC Batch: 52	23866	Analysis Method:	TO-15
QC Batch Method: TO	O-15	Analysis Description:	TO15 MSV AIR Low Level
Associated Lab Samples	/ /		10420487005, 10420487006, 10420487007, 10420487012, 10420487013, 10420487014,

METHOD BLANK: 2843458

Matrix: Air

Analysis Method:

Associated Lab Samples: 10420487001, 10420487002, 10420487003, 10420487004, 10420487005, 10420487006, 10420487007, 10420487008, 10420487009, 10420487010, 10420487011, 10420487012, 10420487013, 10420487014, 10420487015, 10420487016

TO-15

Parameter Units Result Limit MDL Analyzed Qualifiers 1,1,1-Titchioroethane ug/m3 ND 1.1 0.34 02/2018 11:58 02/2018 11:58 1,1.2-Titchioroethane ug/m3 ND 0.56 0.22 02/2018 11:58 1,1.2-Titchioroethane ug/m3 ND 0.66 0.22 02/2018 11:58 1,1-Dichioroethane ug/m3 ND 0.82 0.21<02/18 11:58 0.22/018 11:58 1,2-Titchioroethane ug/m3 ND 0.81 0.24 02/2018 11:58 1,2-Dichoroethane ug/m3 ND 1.0 0.17 0.22/2018 11:58 1,2-Dichoroethane ug/m3 ND 1.6 0.33 02/2018 11:58 1,2-Dichoroethane ug/m3 ND 0.41 0.20 02/2018 11:58 1,2-Dichoroethane ug/m3 ND 0.41 0.20 02/2018 11:58 1,2-Dichoroethane ug/m3 ND 1.1 0.21 02/2018 11:58 1,2-Dichoroethane ug/m3 <		,	Blank	Reporting			
1,1,2-2-Tetrachloroethane ug/m3 ND 0.70 0.29 02/20/18 11:58 1,1,2-Trichloroethane ug/m3 ND 0.56 0.22 02/20/18 11:58 1,1-2-Trichloroethane ug/m3 ND 0.82 0.21 02/20/18 11:58 1,1-Dichloroethane ug/m3 ND 0.81 0.24 02/20/18 11:58 1,2-Trichloroethane ug/m3 ND 0.81 0.24 02/20/18 11:58 1,2-Trichloroethane ug/m3 ND 1.0 0.17 02/20/18 11:58 1,2-Dichoroethane (EDB) ug/m3 ND 1.6 0.33 02/20/18 11:58 1,2-Dichoroethane (EDB) ug/m3 ND 0.41 0.20 02/20/18 11:58 1,2-Dichloroperpane ug/m3 ND 0.41 0.20 02/20/18 11:58 1,3-Dichlorobenzene ug/m3 ND 1.0 0.41 0.22 02/20/18 11:58 1,3-Dichlorobenzene ug/m3 ND 1.2 0.47 02/20/18 11:58 MN 1,3-Dichlorobenzene ug/m3 ND 1.2 0.47 02/20/18 11:58 MN	Parameter	Units	Result		MDL	Analyzed	Qualifiers
1,1,2-Trichioroethane ug/m3 ND 0.56 0.22 0220/18 11:58 1,1-2:Trichioroethane ug/m3 ND 1.6 0.37 0220/18 11:58 1,1-Dichioroethane ug/m3 ND 0.81 0.24 0220/18 11:58 1,2-4:Trichioroethane ug/m3 ND 0.81 0.24 0220/18 11:58 1,2-4:Trichioroethane ug/m3 ND 1.0 0.17 0220/18 11:58 1,2-4:Trichioroethane ug/m3 ND 1.6 0.33 0220/18 11:58 1,2-Dichioroethane ug/m3 ND 1.6 0.33 0220/18 11:58 1,2-Dichioroethane ug/m3 ND 0.41 0.20 0220/18 11:58 1,3-Dichioroethane ug/m3 ND 1.0 0.41 0220/18 11:58 1,3-Dichioroethane ug/m3 ND 1.1 0.21 0220/18 11:58 1,3-Dichiorobenzene ug/m3 ND 1.2 0.42 0220/18 11:58 1,3-Dichiorobenzene ug/m3 ND 1.2 0.22 0220/18 11:58 1,4-Dichiorobenzene ug/m3 ND	1,1,1-Trichloroethane	ug/m3	ND	1.1	0.34	02/20/18 11:58	
1,1.2-Trichlorotrifluoroethane ug/m3 ND 1.6 0.37 02/20/18 11:58 1,1-Dichloroethane ug/m3 ND 0.81 0.24 02/20/18 11:58 1,1-Dichloroethane ug/m3 ND 3.8 0.96 02/20/18 11:58 1,2,4-Trimethylbenzene ug/m3 ND 1.0 0.17 02/20/18 11:58 1,2-Dioromethane (EDB) ug/m3 ND 1.6 0.33 02/20/18 11:58 1,2-Dioromethane (EDB) ug/m3 ND 1.6 0.33 02/20/18 11:58 1,2-Dichloropethane ug/m3 ND 0.41 0.20 02/20/18 11:58 1,2-Dichloropethane ug/m3 ND 0.41 0.20 02/20/18 11:58 1,3-Dichloropethane ug/m3 ND 1.1 0.21 02/20/18 11:58 MN 1,3-Dichlorobenzene ug/m3 ND 1.2 0.47 02/20/18 11:58 MN 1,3-Dichlorobenzene ug/m3 ND 1.2 0.47 02/20/18 11:58 MN 1,3-Dichlorobenzene ug/m3 ND 2.2 0.20 02/20/18 11:58 MN <td>1,1,2,2-Tetrachloroethane</td> <td>ug/m3</td> <td>ND</td> <td>0.70</td> <td>0.29</td> <td>02/20/18 11:58</td> <td></td>	1,1,2,2-Tetrachloroethane	ug/m3	ND	0.70	0.29	02/20/18 11:58	
1,1-Dichloroethane ug/m3 ND 0.82 0.21 02/20/18 11:58 1,1-Dichloroethane ug/m3 ND 0.81 0.24 02/20/18 11:58 1,2.4-Trichlorobenzene ug/m3 ND 1.0 0.17 02/20/18 11:58 1,2.4-Trichlorobenzene ug/m3 ND 1.0 0.17 02/20/18 11:58 1,2-Dichlorobenzene ug/m3 ND 0.41 0.20 02/20/18 11:58 1,2-Dichlorobenzene ug/m3 ND 0.41 0.20 02/20/18 11:58 1,2-Dichloropropane ug/m3 ND 0.41 0.20 02/20/18 11:58 1,3-Dichlorobenzene ug/m3 ND 1.1 0.21 0.22/0/18 11:58 1,3-Dichlorobenzene ug/m3 ND 1.1 0.21 02/20/18 11:58 1,3-Dichlorobenzene ug/m3 ND 1.2 0.47 0/2/20/18 11:58 2-Butanone (MEK) ug/m3 ND 3.0 0.20 02/20/18 11:58 2-Hropanol ug/m3 ND 4.2 0.61 0/20/18 11:58 2-Hropanol ug/m3 ND 0.21 <td>1,1,2-Trichloroethane</td> <td>ug/m3</td> <td>ND</td> <td>0.56</td> <td>0.22</td> <td>02/20/18 11:58</td> <td></td>	1,1,2-Trichloroethane	ug/m3	ND	0.56	0.22	02/20/18 11:58	
1,1-Dichloroethene ug/m3 ND 0.81 0.24 02/20/18 11:58 1,2,4-Trinchlorobenzene ug/m3 ND 3.8 0.96 02/20/18 11:58 1,2-Dibromoethane (EDB) ug/m3 ND 1.6 0.33 02/20/18 11:58 1,2-Dichlorobenzene ug/m3 ND 1.2 0.33 02/20/18 11:58 1,2-Dichlorobenzene ug/m3 ND 0.41 0.20 02/20/18 11:58 1,2-Dichlorobenzene ug/m3 ND 0.41 0.20 02/20/18 11:58 1,3-Dichlorobenzene ug/m3 ND 1.0 0.41 02/20/18 11:58 1,3-Dichlorobenzene ug/m3 ND 1.1 0.21 02/20/18 11:58 1,3-Dichlorobenzene ug/m3 ND 1.2 0.47 02/20/18 11:58 1,4-Dichlorobenzene ug/m3 ND 1.2 0.47 02/20/18 11:58 2-Butanone (MEK) ug/m3 ND 1.2 0.47 02/20/18 11:58 2-Hexanone ug/m3 ND 2.4 0.61 02/20/18 11:58 2-Hexanone ug/m3 ND 2.4	1,1,2-Trichlorotrifluoroethane	ug/m3	ND	1.6	0.37	02/20/18 11:58	
1,2,4-Trichlorobenzene ug/m3 ND 3.8 0.96 02/20/18 11:58 1,2,4-Trimethylbenzene ug/m3 ND 1.0 0.17 02/20/18 11:58 1,2-Diotromoethane (EDB) ug/m3 ND 1.2 0.33 02/20/18 11:58 1,2-Dichlorobenzene ug/m3 ND 0.41 0.20 02/20/18 11:58 1,2-Dichloroptpane ug/m3 ND 0.41 0.20 02/20/18 11:58 1,3-Dichlorobenzene ug/m3 ND 0.41 0.20 02/20/18 11:58 1,3-Dichlorobenzene ug/m3 ND 1.1 0.21 02/20/18 11:58 1,3-Dichlorobenzene ug/m3 ND 1.2 0.47 02/20/18 11:58 2-Butanone (MEK) ug/m3 ND 3.0 0.20 02/20/18 11:58 2-Hexanone ug/m3 ND 1.0 0.21	1,1-Dichloroethane	ug/m3	ND	0.82	0.21	02/20/18 11:58	
1,2.4-Trimethylbenzene ug/m3 ND 1.0 0.17 02/20/18 11:58 1,2-Dichorobenzene ug/m3 ND 1.2 0.33 02/20/18 11:58 1,2-Dichorobenzene ug/m3 ND 0.41 0.20 02/20/18 11:58 1,2-Dichoropropane ug/m3 ND 0.41 0.20 02/20/18 11:58 1,3-Dichoropropane ug/m3 ND 0.41 0.21 02/20/18 11:58 1,3-Dichorobenzene ug/m3 ND 1.1 0.21 02/20/18 11:58 1,3-Dichorobenzene ug/m3 ND 1.2 0.47 02/20/18 11:58 1,4-Dichorobenzene ug/m3 ND 1.2 0.22 02/20/18 11:58 1,4-Dichorobenzene ug/m3 ND 3.0 0.20 02/20/18 11:58 2-Hexanone ug/m3 ND 4.2 0.61 02/20/18 11:58 2-Hexanone ug/m3 ND 1.0 0.21 02/20/18 11:58 4-Ethyltoluene ug/m3 ND 1.0 0.24 0.22/0/18 11:58 4-Aethyl-2-pentanone (MIBK) ug/m3 ND 1.0	1,1-Dichloroethene	ug/m3	ND	0.81	0.24	02/20/18 11:58	
1,2-Dibromoethane (EDB) ug/m3 ND 1.6 0.33 02/20/18 11:58 1,2-Dichlorobenzene ug/m3 ND 0.41 0.20 02/20/18 11:58 1,2-Dichlorobenzene ug/m3 ND 0.94 0.31 02/20/18 11:58 1,3-Dichloropropane ug/m3 ND 0.94 0.31 02/20/18 11:58 1,3-Dichlorobenzene ug/m3 ND 1.0 0.41 02/20/18 11:58 1,3-Dichlorobenzene ug/m3 ND 1.1 0.21 02/20/18 11:58 1,4-Dichlorobenzene ug/m3 ND 1.2 0.47 02/20/18 11:58 1,4-Dichlorobenzene ug/m3 ND 3.0 0.20 02/20/18 11:58 2-Hexanone ug/m3 ND 4.2 0.61 02/20/18 11:58 2-Hexanone ug/m3 ND 4.2 0.61 02/20/18 11:58 4-Ethyltoluene ug/m3 ND 4.2 0.62 02/20/18 11:58 4-Ethyltoluene ug/m3 ND 0.42 0.20 02/20/18 11:58 Benzene ug/m3 ND 0.32 0.15	1,2,4-Trichlorobenzene	ug/m3	ND	3.8	0.96	02/20/18 11:58	
1,2-Dichlorobenzene ug/m3 ND 1.2 0.33 02/20/18 11:58 1,2-Dichloroethane ug/m3 ND 0.41 0.20 02/20/18 11:58 1,2-Dichloroethane ug/m3 ND 0.94 0.31 0/22/018 11:58 1,3-Dirimethylbenzene ug/m3 ND 1.0 0.41 02/20/18 11:58 1,3-Dichlorobenzene ug/m3 ND 1.1 0.21 02/20/18 11:58 1,4-Dichlorobenzene ug/m3 ND 1.2 0.47 02/20/18 11:58 2-Hexanone ug/m3 ND 1.2 0.22 02/20/18 11:58 2-Hexanone ug/m3 ND 3.0 0.20 02/20/18 11:58 2-Propanol ug/m3 ND 4.2 0.61 02/20/18 11:58 4-Ethyltoluene ug/m3 ND 1.0 0.21 02/20/18 11:58 4-Ethyltoluene ug/m3 ND 0.24 1.5 02/20/18 11:58 Benzyl chloride ug/m3 ND 0.32 0.15 02/20/18 11:58 Benzyl chloride ug/m3 ND 0.32 0.15 <td< td=""><td>1,2,4-Trimethylbenzene</td><td>ug/m3</td><td>ND</td><td>1.0</td><td>0.17</td><td>02/20/18 11:58</td><td></td></td<>	1,2,4-Trimethylbenzene	ug/m3	ND	1.0	0.17	02/20/18 11:58	
1,2-Dichloropthane ug/m3 ND 0.41 0.20 02/20/18 11:58 1,2-Dichloroptopane ug/m3 ND 0.94 0.31 02/20/18 11:58 1,3,5-Trimethylbenzene ug/m3 ND 1.0 0.41 02/20/18 11:58 MN 1,3-Butadiene ug/m3 ND 1.1 0.21 02/20/18 11:58 MN 1,3-Dichlorobenzene ug/m3 ND 1.2 0.47 02/20/18 11:58 MN 1,4-Dichlorobenzene ug/m3 ND 3.0 0.20 02/20/18 11:58 2.1 2-Butanone (MEK) ug/m3 ND 4.2 0.61 02/20/18 11:58 2.2 2-Propanol ug/m3 ND 4.2 0.36 02/20/18 11:58 3.1 4-Ethyltoluene ug/m3 ND 2.4 1.5 02/20/18 11:58 3.1 Acetone ug/m3 ND 0.32 0.15 02/20/18 11:58 3.1 Benzene ug/m3 ND 1.4 0.36 02/20/18 11:58 3.1 Bromodichloromethane ug/m3 ND 1.4 0.62	1,2-Dibromoethane (EDB)	ug/m3	ND	1.6	0.33	02/20/18 11:58	
1,2-Dichloropropane ug/m3 ND 0.94 0.31 02/20/18 11:58 1,3-5-Trimethylbenzene ug/m3 ND 1.0 0.41 02/20/18 11:58 1,3-Bichlorobenzene ug/m3 ND 1.2 0.47 02/20/18 11:58 1,4-Dichlorobenzene ug/m3 ND 1.2 0.47 02/20/18 11:58 2-Butanone (MEK) ug/m3 ND 3.0 0.20 02/20/18 11:58 2-Hexanone ug/m3 ND 3.0 0.20 02/20/18 11:58 2-Hexanone ug/m3 ND 4.2 0.61 02/20/18 11:58 4-Ethyltouene ug/m3 ND 1.0 0.21 02/20/18 11:58 4-Ethyltouene ug/m3 ND 1.0 0.21 02/20/18 11:58 Acetone ug/m3 ND 1.0 0.24 02/20/18 11:58 Benzye Ichloride ug/m3 ND 1.0 0.24 02/20/18 11:58 Benzye Ichloride ug/m3 ND 1.0 0.24 02/20/18 11:58 Bromodichloromethane ug/m3 ND 0.63 0.618 02	1,2-Dichlorobenzene	ug/m3	ND	1.2	0.33	02/20/18 11:58	
1,3,5-Trimethylbenzene ug/m3 ND 1.0 0.41 02/20/18 11:58 1,3-Butadiene ug/m3 ND 1.1 0.21 02/20/18 11:58 MN 1,3-Dichlorobenzene ug/m3 ND 1.2 0.47 02/20/18 11:58 MN 1,4-Dichlorobenzene ug/m3 ND 1.2 0.22 02/20/18 11:58 MN 1,4-Dichlorobenzene ug/m3 ND 3.0 0.20 02/20/18 11:58 MN 2-Butanone (MEK) ug/m3 ND 4.2 0.61 02/20/18 11:58 MN 4-Ehyltoluene ug/m3 ND 1.0 0.21 02/20/18 11:58 MN 4-Methyl-2-pentanone (MIBK) ug/m3 ND 4.2 0.36 02/20/18 11:58 Benzene ug/m3 ND 0.32 0.15 02/20/18 11:58 Benzyl chloride ug/m3 ND 1.0 0.24 02/20/18 11:58 Bromodichloromethane ug/m3 ND 1.4 0.36 02/20/18 11:58 Carbon disulfide ug/m3 ND 0.63 0.18 02/20/18 11:58	1,2-Dichloroethane	ug/m3	ND	0.41	0.20	02/20/18 11:58	
1,3-Butadiene ug/m3 ND 1.1 0.21 02/20/18 11:58 MN 1,3-Dichlorobenzene ug/m3 ND 1.2 0.47 02/20/18 11:58 Integration 1,4-Dichlorobenzene ug/m3 ND 1.2 0.22 02/20/18 11:58 Integration 2-Butanone (MEK) ug/m3 ND 3.0 0.20 02/20/18 11:58 Integration 2-Hexanone ug/m3 ND 4.2 0.61 02/20/18 11:58 Integration 2-Propanol ug/m3 ND 2.5 1.2 02/20/18 11:58 Integration 4-Ethyltoluene ug/m3 ND 1.0 0.21 02/20/18 11:58 Integration 4-Methyl-2-pentanone (MIBK) ug/m3 ND 2.4 1.5 02/20/18 11:58 Integration Benzene ug/m3 ND 0.32 0.15 02/20/18 11:58 Integration Bromodichloromethane ug/m3 ND 1.4 0.36 02/20/18 11:58 Integration Garbon disulfide ug/m3 ND 0.63 0.18 02/20/18 11:58 Integration	1,2-Dichloropropane	ug/m3	ND	0.94	0.31	02/20/18 11:58	
1,3-Dichlorobenzeneug/m3ND1.20.4702/20/18 11:581,4-Dichlorobenzeneug/m3ND1.20.2202/20/18 11:582-Butanone (MEK)ug/m3ND3.00.2002/20/18 11:582-Hexanoneug/m3ND4.20.6102/20/18 11:582-Propanolug/m3ND2.51.202/20/18 11:584-Ethyltolueneug/m3ND1.00.2102/20/18 11:584-Methyl-2-pentanone (MIBK)ug/m3ND4.20.3602/20/18 11:58Benzeneug/m3ND0.320.1502/20/18 11:58Benzeneug/m3ND1.00.2402/20/18 11:58Benzeneug/m3ND1.00.2402/20/18 11:58Bromodichloromethaneug/m3ND1.00.2402/20/18 11:58Bromodichloromethaneug/m3ND5.30.6902/20/18 11:58Bromodichloromethaneug/m3ND0.630.1802/20/18 11:58Carbon disulfideug/m3ND0.630.1802/20/18 11:58Chlorobenzeneug/m3ND0.640.3202/20/18 11:58Chlorobenzeneug/m3ND0.420.1302/20/18 11:58Chlorobenzeneug/m3ND0.640.3202/20/18 11:58Chlorobenzeneug/m3ND0.500.2302/20/18 11:58Chlorobenzeneug/m3ND0.420.1302/20/18 11:58Chloroberthane <td>1,3,5-Trimethylbenzene</td> <td>ug/m3</td> <td>ND</td> <td>1.0</td> <td>0.41</td> <td>02/20/18 11:58</td> <td></td>	1,3,5-Trimethylbenzene	ug/m3	ND	1.0	0.41	02/20/18 11:58	
1,4-Dichlorobenzeneug/m3ND1.20.2202/20/18 11:582-Butanone (MEK)ug/m3ND3.00.2002/20/18 11:582-Hexanoneug/m3ND4.20.6102/20/18 11:582-Propanolug/m3ND2.51.202/20/18 11:584-Ethytlolueneug/m3ND4.20.3602/20/18 11:584-Methyl-2-pentanone (MIBK)ug/m3ND4.20.3602/20/18 11:58Acetoneug/m3ND0.320.1502/20/18 11:58Benzeneug/m3ND1.00.2402/20/18 11:58Benzeneug/m3ND1.00.2402/20/18 11:58Bromodichloromethaneug/m3ND1.00.2402/20/18 11:58Bromodifdeug/m3ND1.40.3602/20/18 11:58Bromodethaneug/m3ND0.790.2102/20/18 11:58Bromodethaneug/m3ND0.630.1802/20/18 11:58Carbon disulfideug/m3ND0.630.1802/20/18 11:58Chlorobenzeneug/m3ND0.940.1802/20/18 11:58Chlorobentaneug/m3ND0.500.2302/20/18 11:58Chlorobentaneug/m3ND0.420.1302/20/18 11:58Chlorobentaneug/m3ND0.500.2302/20/18 11:58Chlorobentaneug/m3ND0.420.1302/20/18 11:58Chlorobertaneug/m3ND <td>1,3-Butadiene</td> <td>ug/m3</td> <td>ND</td> <td>1.1</td> <td>0.21</td> <td>02/20/18 11:58</td> <td>MN</td>	1,3-Butadiene	ug/m3	ND	1.1	0.21	02/20/18 11:58	MN
2-Butanone (MEK)ug/m3ND3.00.2002/20/18 11:582-Hexanoneug/m3ND4.20.6102/20/18 11:582-Propanolug/m3ND2.51.202/20/18 11:584-Ethyltolueneug/m3ND1.00.2102/20/18 11:584-Methyl-2-pentanone (MIBK)ug/m3ND4.20.3602/20/18 11:58Acetoneug/m3ND2.41.502/20/18 11:58Benzeneug/m3ND0.320.1502/20/18 11:58Benzeneug/m3ND1.00.2402/20/18 11:58Bromodichloromethaneug/m3ND1.40.3602/20/18 11:58Bromoformug/m3ND5.30.6902/20/18 11:58Bromothaneug/m3ND0.640.3202/20/18 11:58Carbon tetrachlorideug/m3ND0.640.3202/20/18 11:58Carbon tetrachlorideug/m3ND0.640.3202/20/18 11:58Chlorobenzeneug/m3ND0.640.3202/20/18 11:58Chloroformug/m3ND0.500.2302/20/18 11:58Chloroformug/m3ND0.500.2302/20/18 11:58Chloroformug/m3ND0.500.2302/20/18 11:58Chloroformug/m3ND0.500.2302/20/18 11:58Chloroformug/m3ND0.420.1302/20/18 11:58Chloroformug/m3ND0.81	1,3-Dichlorobenzene	ug/m3	ND	1.2	0.47	02/20/18 11:58	
2-Hexanone ug/m3 ND 4.2 0.61 02/20/18 11:58 2-Propanol ug/m3 ND 2.5 1.2 02/20/18 11:58 4-Ethyltoluene ug/m3 ND 1.0 0.21 02/20/18 11:58 4-Methyl-2-pentanone (MIBK) ug/m3 ND 4.2 0.36 02/20/18 11:58 Acetone ug/m3 ND 2.4 1.5 02/20/18 11:58 Benzene ug/m3 ND 0.32 0.15 02/20/18 11:58 Bromodichloromethane ug/m3 ND 1.0 0.24 02/20/18 11:58 Bromoform ug/m3 ND 1.0 0.24 02/20/18 11:58 Bromomethane ug/m3 ND 1.4 0.36 02/20/18 11:58 Bromomethane ug/m3 ND 0.79 0.21 02/20/18 11:58 Carbon disulfide ug/m3 ND 0.63 0.18 02/20/18 11:58 Chlorobenzene ug/m3 ND 0.64 0.32 02/20/18	1,4-Dichlorobenzene	ug/m3	ND	1.2	0.22	02/20/18 11:58	
2-Propanol ug/m3 ND 2.5 1.2 02/20/18 11:58 4-Ethyltoluene ug/m3 ND 1.0 0.21 02/20/18 11:58 4-Methyl-2-pentanone (MIBK) ug/m3 ND 4.2 0.36 02/20/18 11:58 Acetone ug/m3 ND 2.4 1.5 02/20/18 11:58 Benzene ug/m3 ND 0.32 0.15 02/20/18 11:58 Benzene ug/m3 ND 1.0 0.24 02/20/18 11:58 Bromodichloromethane ug/m3 ND 1.4 0.36 02/20/18 11:58 Bromoform ug/m3 ND 5.3 0.69 02/20/18 11:58 Bromoform ug/m3 ND 0.63 0.18 02/20/18 11:58 Carbon disulfide ug/m3 ND 0.64 0.32 02/20/18 11:58 Carbon tetrachloride ug/m3 ND 0.64 0.32 02/20/18 11:58 Chlorobenzene ug/m3 ND 0.64 0.32 02/20/18 11:58 Chlorothane ug/m3 ND 0.50 0.23 02/20/18 11:58	2-Butanone (MEK)	ug/m3	ND	3.0	0.20	02/20/18 11:58	
2-Propanol ug/m3 ND 2.5 1.2 02/20/18 11:58 4-Ethyltoluene ug/m3 ND 1.0 0.21 02/20/18 11:58 4-Methyl-2-pentanone (MIBK) ug/m3 ND 4.2 0.36 02/20/18 11:58 Acetone ug/m3 ND 2.4 1.5 02/20/18 11:58 Benzene ug/m3 ND 0.32 0.15 02/20/18 11:58 Benzene ug/m3 ND 1.0 0.24 02/20/18 11:58 Bromodichloromethane ug/m3 ND 1.4 0.36 02/20/18 11:58 Bromoform ug/m3 ND 5.3 0.69 02/20/18 11:58 Bromoform ug/m3 ND 0.63 0.18 02/20/18 11:58 Carbon disulfide ug/m3 ND 0.64 0.32 02/20/18 11:58 Carbon tetrachloride ug/m3 ND 0.64 0.32 02/20/18 11:58 Chlorobenzene ug/m3 ND 0.64 0.32 02/20/18 11:58 Chlorothane ug/m3 ND 0.50 0.23 02/20/18 11:58	2-Hexanone	ug/m3	ND	4.2	0.61	02/20/18 11:58	
4-Methyl-2-pentanone (MIBK)ug/m3ND4.20.3602/20/18 11:58Acetoneug/m3ND2.41.502/20/18 11:58Benzeneug/m3ND0.320.1502/20/18 11:58Benzyl chlorideug/m3ND1.00.2402/20/18 11:58Bromodichloromethaneug/m3ND1.40.3602/20/18 11:58Bromoformug/m3ND5.30.6902/20/18 11:58Bromomethaneug/m3ND0.790.2102/20/18 11:58Carbon disulfideug/m3ND0.630.1802/20/18 11:58Carbon tetrachlorideug/m3ND0.640.3202/20/18 11:58Chlorobenzeneug/m3ND0.940.1802/20/18 11:58Chlorothaneug/m3ND0.500.2302/20/18 11:58Chlorothaneug/m3ND0.500.2302/20/18 11:58Chlorothaneug/m3ND0.420.1302/20/18 11:58Chloromethaneug/m3ND0.420.1302/20/18 11:58Chloromethaneug/m3ND0.810.3402/20/18 11:58cis-1,2-Dichloroetheneug/m3ND0.920.2402/20/18 11:58cis-1,3-Dichloropropeneug/m3ND0.920.2402/20/18 11:58Cyclohexaneug/m3ND0.700.2302/20/18 11:58Dibromochloromethaneug/m3ND0.700.2302/20/18 11:58 <td>2-Propanol</td> <td></td> <td>ND</td> <td>2.5</td> <td>1.2</td> <td>02/20/18 11:58</td> <td></td>	2-Propanol		ND	2.5	1.2	02/20/18 11:58	
Acetonug/m3ND2.41.502/20/18 11:58Benzeneug/m3ND0.320.1502/20/18 11:58Benzyl chlorideug/m3ND1.00.2402/20/18 11:58Bromodichloromethaneug/m3ND1.40.3602/20/18 11:58Bromoformug/m3ND5.30.6902/20/18 11:58Bromomethaneug/m3ND0.790.2102/20/18 11:58Bromotormug/m3ND0.630.1802/20/18 11:58Carbon disulfideug/m3ND0.640.3202/20/18 11:58Carbon tetrachlorideug/m3ND0.640.3202/20/18 11:58Chlorobenzeneug/m3ND0.940.1802/20/18 11:58Chloroethaneug/m3ND0.500.2302/20/18 11:58Chloroethaneug/m3ND0.500.2302/20/18 11:58Chloromethaneug/m3ND0.420.1302/20/18 11:58Chloroptopeneug/m3ND0.810.3402/20/18 11:58cis-1,2-Dichloroetheneug/m3ND0.810.3402/20/18 11:58cis-1,3-Dichloropropeneug/m3ND0.920.2402/20/18 11:58Cyclohexaneug/m3ND0.700.2302/20/18 11:58Dibromochloromethaneug/m3ND0.700.2302/20/18 11:58	4-Ethyltoluene	ug/m3	ND	1.0	0.21	02/20/18 11:58	
Benzeneug/m3ND0.320.1502/20/18 11:58Benzyl chlorideug/m3ND1.00.2402/20/18 11:58Bromodichloromethaneug/m3ND1.40.3602/20/18 11:58Bromoformug/m3ND5.30.6902/20/18 11:58Bromomethaneug/m3ND0.790.2102/20/18 11:58Bromomethaneug/m3ND0.630.1802/20/18 11:58Carbon disulfideug/m3ND0.640.3202/20/18 11:58Carbon tetrachlorideug/m3ND0.640.3202/20/18 11:58Chlorobenzeneug/m3ND0.940.1802/20/18 11:58Chloroformug/m3ND0.500.2302/20/18 11:58Chloromethaneug/m3ND0.420.1302/20/18 11:58Chloroformug/m3ND0.420.1302/20/18 11:58Chloromethaneug/m3ND0.810.3402/20/18 11:58cis-1,2-Dichloroetheneug/m3ND0.920.2402/20/18 11:58cis-1,3-Dichloropropeneug/m3ND0.920.2402/20/18 11:58Cyclohexaneug/m3ND0.700.2302/20/18 11:58Dibromochloromethaneug/m3ND0.700.2302/20/18 11:58	4-Methyl-2-pentanone (MIBK)	ug/m3	ND	4.2	0.36	02/20/18 11:58	
Benzyl chlorideug/m3ND1.00.2402/20/18 11:58Bromodichloromethaneug/m3ND1.40.3602/20/18 11:58Bromoformug/m3ND5.30.6902/20/18 11:58MNBromomethaneug/m3ND0.790.2102/20/18 11:58MSCarbon disulfideug/m3ND0.630.1802/20/18 11:58MSCarbon tetrachlorideug/m3ND0.640.3202/20/18 11:58MSChlorobenzeneug/m3ND0.940.1802/20/18 11:58MSChloroethaneug/m3ND1.30.2002/20/18 11:58MSChloroethaneug/m3ND0.500.2302/20/18 11:58MSChloroethaneug/m3ND0.420.1302/20/18 11:58MSChloroethaneug/m3ND0.610.3402/20/18 11:58MSChloroethaneug/m3ND0.810.3402/20/18 11:58MScis-1,2-Dichloroetheneug/m3ND0.810.3402/20/18 11:58MScis-1,3-Dichloropropeneug/m3ND0.920.2402/20/18 11:58MSCyclohexaneug/m3ND0.700.2302/20/18 11:58MSDibromochloromethaneug/m3ND1.70.4402/20/18 11:58	Acetone	ug/m3	ND	2.4	1.5	02/20/18 11:58	
Bromodichloromethaneug/m3ND1.40.3602/20/18 11:58Bromoformug/m3ND5.30.6902/20/18 11:58MNBromomethaneug/m3ND0.790.2102/20/18 11:58MNCarbon disulfideug/m3ND0.630.1802/20/18 11:58MNCarbon tetrachlorideug/m3ND0.640.3202/20/18 11:58MNChlorobenzeneug/m3ND0.940.1802/20/18 11:58MNChloroethaneug/m3ND1.30.2002/20/18 11:58MNChloromethaneug/m3ND0.500.2302/20/18 11:58MNChloromethaneug/m3ND0.420.1302/20/18 11:58MNChloromethaneug/m3ND0.810.3402/20/18 11:58MNcis-1,2-Dichloroetheneug/m3ND0.920.2402/20/18 11:58cis-1,3-Dichloropropeneug/m3ND0.700.2302/20/18 11:58Cyclohexaneug/m3ND0.700.2302/20/18 11:58Dibromochloromethaneug/m3ND0.700.2302/20/18 11:58	Benzene	ug/m3	ND	0.32	0.15	02/20/18 11:58	
Bromoformug/m3ND5.30.6902/20/18 11:58MNBromomethaneug/m3ND0.790.2102/20/18 11:58MNCarbon disulfideug/m3ND0.630.1802/20/18 11:58Carbon tetrachlorideug/m3ND0.640.3202/20/18 11:58Chlorobenzeneug/m3ND0.940.1802/20/18 11:58Chloroethaneug/m3ND1.30.2002/20/18 11:58Chloroethaneug/m3ND0.500.2302/20/18 11:58Chloromethaneug/m3ND0.420.1302/20/18 11:58Chloropropeneug/m3ND0.810.3402/20/18 11:58cis-1,2-Dichloropropeneug/m3ND0.920.2402/20/18 11:58Cyclohexaneug/m3ND0.700.2302/20/18 11:58Dibromochloromethaneug/m3ND0.700.2302/20/18 11:58	Benzyl chloride	ug/m3	ND	1.0	0.24	02/20/18 11:58	
Bromomethaneug/m3ND0.790.2102/20/18 11:58Carbon disulfideug/m3ND0.630.1802/20/18 11:58Carbon tetrachlorideug/m3ND0.640.3202/20/18 11:58Chlorobenzeneug/m3ND0.940.1802/20/18 11:58Chloroethaneug/m3ND1.30.2002/20/18 11:58Chloroformug/m3ND0.500.2302/20/18 11:58Chloromethaneug/m3ND0.420.1302/20/18 11:58Chloromethaneug/m3ND0.810.3402/20/18 11:58cis-1,2-Dichloroetheneug/m3ND0.920.2402/20/18 11:58cis-1,3-Dichloropropeneug/m3ND0.700.2302/20/18 11:58Cyclohexaneug/m3ND0.700.2302/20/18 11:58Dibromochloromethaneug/m3ND0.700.2302/20/18 11:58	Bromodichloromethane	ug/m3	ND	1.4	0.36	02/20/18 11:58	
Carbon disulfideug/m3ND0.630.1802/20/18 11:58Carbon tetrachlorideug/m3ND0.640.3202/20/18 11:58Chlorobenzeneug/m3ND0.940.1802/20/18 11:58Chloroethaneug/m3ND1.30.2002/20/18 11:58Chloroformug/m3ND0.500.2302/20/18 11:58Chloromethaneug/m3ND0.420.1302/20/18 11:58cis-1,2-Dichloroetheneug/m3ND0.810.3402/20/18 11:58cis-1,3-Dichloropropeneug/m3ND0.920.2402/20/18 11:58Cyclohexaneug/m3ND0.700.2302/20/18 11:58Dibromochloromethaneug/m3ND1.70.4402/20/18 11:58	Bromoform	ug/m3	ND	5.3	0.69	02/20/18 11:58	MN
Carbon tetrachlorideug/m3ND0.640.3202/20/18 11:58Chlorobenzeneug/m3ND0.940.1802/20/18 11:58Chloroethaneug/m3ND1.30.2002/20/18 11:58Chloroformug/m3ND0.500.2302/20/18 11:58Chloromethaneug/m3ND0.420.1302/20/18 11:58cis-1,2-Dichloroetheneug/m3ND0.810.3402/20/18 11:58cis-1,3-Dichloropropeneug/m3ND0.920.2402/20/18 11:58Cyclohexaneug/m3ND0.700.2302/20/18 11:58Dibromochloromethaneug/m3ND1.70.4402/20/18 11:58	Bromomethane	ug/m3	ND	0.79	0.21	02/20/18 11:58	
Chlorobenzeneug/m3ND0.940.1802/20/18 11:58Chloroethaneug/m3ND1.30.2002/20/18 11:58MNChloroformug/m3ND0.500.2302/20/18 11:58MSChloromethaneug/m3ND0.420.1302/20/18 11:58MScis-1,2-Dichloroetheneug/m3ND0.810.3402/20/18 11:58MScis-1,3-Dichloropropeneug/m3ND0.920.2402/20/18 11:58MSCyclohexaneug/m3ND0.700.2302/20/18 11:58MSDibromochloromethaneug/m3ND1.70.4402/20/18 11:58	Carbon disulfide	ug/m3	ND	0.63	0.18	02/20/18 11:58	
Chloroethaneug/m3ND1.30.2002/20/18 11:58MNChloroformug/m3ND0.500.2302/20/18 11:58Chloromethaneug/m3ND0.420.1302/20/18 11:58cis-1,2-Dichloroetheneug/m3ND0.810.3402/20/18 11:58cis-1,3-Dichloropropeneug/m3ND0.920.2402/20/18 11:58Cyclohexaneug/m3ND0.700.2302/20/18 11:58Dibromochloromethaneug/m3ND1.70.4402/20/18 11:58	Carbon tetrachloride	ug/m3	ND	0.64	0.32	02/20/18 11:58	
Chloroethaneug/m3ND1.30.2002/20/18 11:58MNChloroformug/m3ND0.500.2302/20/18 11:58Chloromethaneug/m3ND0.420.1302/20/18 11:58cis-1,2-Dichloroetheneug/m3ND0.810.3402/20/18 11:58cis-1,3-Dichloropropeneug/m3ND0.920.2402/20/18 11:58Cyclohexaneug/m3ND0.700.2302/20/18 11:58Dibromochloromethaneug/m3ND1.70.4402/20/18 11:58	Chlorobenzene	ug/m3	ND	0.94	0.18	02/20/18 11:58	
Chloromethaneug/m3ND0.420.1302/20/18 11:58cis-1,2-Dichloroetheneug/m3ND0.810.3402/20/18 11:58cis-1,3-Dichloropropeneug/m3ND0.920.2402/20/18 11:58Cyclohexaneug/m3ND0.700.2302/20/18 11:58Dibromochloromethaneug/m3ND1.70.4402/20/18 11:58	Chloroethane		ND	1.3	0.20	02/20/18 11:58	MN
cis-1,2-Dichloroetheneug/m3ND0.810.3402/20/18 11:58cis-1,3-Dichloropropeneug/m3ND0.920.2402/20/18 11:58Cyclohexaneug/m3ND0.700.2302/20/18 11:58Dibromochloromethaneug/m3ND1.70.4402/20/18 11:58	Chloroform	ug/m3	ND	0.50	0.23	02/20/18 11:58	
cis-1,3-Dichloropropeneug/m3ND0.920.2402/20/18 11:58Cyclohexaneug/m3ND0.700.2302/20/18 11:58Dibromochloromethaneug/m3ND1.70.4402/20/18 11:58	Chloromethane	ug/m3	ND	0.42	0.13	02/20/18 11:58	
Cyclohexane ug/m3 ND 0.70 0.23 02/20/18 11:58 Dibromochloromethane ug/m3 ND 1.7 0.44 02/20/18 11:58	cis-1,2-Dichloroethene	ug/m3	ND	0.81	0.34	02/20/18 11:58	
Dibromochloromethane ug/m3 ND 1.7 0.44 02/20/18 11:58	cis-1,3-Dichloropropene	ug/m3	ND	0.92	0.24	02/20/18 11:58	
o	Cyclohexane	ug/m3	ND	0.70	0.23	02/20/18 11:58	
	Dibromochloromethane	ug/m3	ND	1.7	0.44	02/20/18 11:58	
	Dichlorodifluoromethane	ug/m3	ND	1.0	0.42	02/20/18 11:58	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

METHOD BLANK: 28434	58 Matrix: Air
Associated Lab Samples:	10420487001, 10420487002, 10420487003, 10420487004, 10420487005, 10420487006, 10420487007, 10420487008, 10420487009, 10420487010, 10420487011, 10420487012, 10420487013, 10420487014, 10420487015, 10420487016
	Blank Reporting

Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Dichlorotetrafluoroethane	ug/m3			0.44	02/20/18 11:58	
Ethanol	ug/m3	ND	1.9	0.46	02/20/18 11:58	MN
Ethyl acetate	ug/m3	ND	0.73	0.40	02/20/18 11:58	
-	0	ND	0.73	0.20	02/20/18 11:58	
Ethylbenzene	ug/m3			-		
Hexachloro-1,3-butadiene	ug/m3	ND	2.2	0.87	02/20/18 11:58	
m&p-Xylene	ug/m3	ND	1.8	0.35	02/20/18 11:58	
Methyl-tert-butyl ether	ug/m3	ND	3.7	0.67	02/20/18 11:58	
Methylene Chloride	ug/m3	ND	3.5	1.5	02/20/18 11:58	
n-Heptane	ug/m3	ND	0.83	0.21	02/20/18 11:58	
n-Hexane	ug/m3	ND	0.72	0.33	02/20/18 11:58	
Naphthalene	ug/m3	ND	2.7	0.60	02/20/18 11:58	
o-Xylene	ug/m3	ND	0.88	0.37	02/20/18 11:58	
Propylene	ug/m3	ND	0.35	0.16	02/20/18 11:58	
Styrene	ug/m3	ND	0.87	0.17	02/20/18 11:58	
Tetrachloroethene	ug/m3	ND	0.69	0.29	02/20/18 11:58	
Tetrahydrofuran	ug/m3	ND	0.60	0.27	02/20/18 11:58	
Toluene	ug/m3	ND	0.77	0.16	02/20/18 11:58	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	0.30	02/20/18 11:58	
trans-1,3-Dichloropropene	ug/m3	ND	0.92	0.42	02/20/18 11:58	
Trichloroethene	ug/m3	ND	0.55	0.27	02/20/18 11:58	
Trichlorofluoromethane	ug/m3	ND	1.1	0.42	02/20/18 11:58	
Vinyl acetate	ug/m3	ND	0.72	0.17	02/20/18 11:58	
Vinyl chloride	ug/m3	ND	1.3	0.13	02/20/18 11:58	MN

LABORATORY CONTROL SAMPLE: 2843459

	2010100	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	53.9	97	70-135	
1,1,2,2-Tetrachloroethane	ug/m3	69.8	60.9	87	70-146	
1,1,2-Trichloroethane	ug/m3	55.5	49.0	88	70-135	
1,1,2-Trichlorotrifluoroethane	ug/m3	77.9	86.9	112	63-139	
1,1-Dichloroethane	ug/m3	41.1	42.7	104	70-134	
1,1-Dichloroethene	ug/m3	40.3	43.7	108	70-137	
1,2,4-Trichlorobenzene	ug/m3	75.4	54.8	73	60-133	
1,2,4-Trimethylbenzene	ug/m3	50	40.1	80	70-137	
1,2-Dibromoethane (EDB)	ug/m3	78.1	72.2	92	70-140	
1,2-Dichlorobenzene	ug/m3	61.1	49.7	81	70-137	
1,2-Dichloroethane	ug/m3	41.1	41.6	101	70-136	
1,2-Dichloropropane	ug/m3	47	44.4	95	70-136	
1,3,5-Trimethylbenzene	ug/m3	50	40.9	82	70-133	
1,3-Butadiene	ug/m3	22.5	28.0	125	64-141	
1,3-Dichlorobenzene	ug/m3	61.1	50.2	82	70-137	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

LABORATORY CONTROL SAMPLE: 2843459

ABORATORY CONTROL SAMPLE:	2843459	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
4-Dichlorobenzene	ug/m3	61.1	49.3	81	70-134	
Butanone (MEK)	ug/m3	30	32.3	108	65-143	
Hexanone	ug/m3	104	82.0	79	60-148	
Propanol	ug/m3	125	130	104	65-135	
Ethyltoluene	ug/m3	50	41.5	83	70-132	
Methyl-2-pentanone (MIBK)	ug/m3	104	89.7	86	70-135	
cetone	ug/m3	121	123	102	59-132	
enzene	ug/m3	32.5	31.0	95	70-134	
enzyl chloride	ug/m3	52.6	41.6	79	56-150	
omodichloromethane	ug/m3	68.1	67.0	98	70-142	
omoform	ug/m3	105	92.8	88	69-150	
pmomethane	ug/m3	39.5	41.9	106	61-141	
rbon disulfide	ug/m3	31.6	35.3	112	66-134	
Irbon tetrachloride	ug/m3	64	58.1	91	60-134 60-145	
lorobenzene	ug/m3	46.8	40.9	87	70-145	
loroethane	-	46.8 26.8	40.9 32.0	87 119	65-143	
loroform	ug/m3	26.8 49.6	32.0 48.0	97	65-143 70-132	
	ug/m3					
loromethane	ug/m3	21	24.1	115	58-140	
1,2-Dichloroethene	ug/m3	40.3	41.5	103	70-136	
1,3-Dichloropropene	ug/m3	46.1	44.4	96	70-136	
lohexane	ug/m3	35	33.9	97	70-133	
romochloromethane	ug/m3	86.6	89.7	104	68-149	
hlorodifluoromethane	ug/m3	50.3	48.4	96	69-130	
nlorotetrafluoroethane	ug/m3	71	72.9	103	68-130	
anol	ug/m3	91.6	115	125	65-146	
/l acetate	ug/m3	36.6	38.0	104	68-136	
/lbenzene	ug/m3	44.1	38.6	87	70-133	
achloro-1,3-butadiene	ug/m3	108	84.8	78	59-140	
p-Xylene	ug/m3	88.3	71.8	81	70-133	
hyl-tert-butyl ether	ug/m3	91.6	86.3	94	70-132	
hylene Chloride	ug/m3	177	184	104	67-132	
leptane	ug/m3	41.6	39.4	95	64-136	
lexane	ug/m3	35.8	35.5	99	70-130	
ohthalene	ug/m3	53.3	37.9	71	55-136	
ylene	ug/m3	44.1	39.1	89	70-132	
pylene	ug/m3	17.5	18.8	107	37-150	
rene	ug/m3	43.3	37.8	87	70-139	
achloroethene	ug/m3	68.9	62.6	91	70-133	
ahydrofuran	ug/m3	30	32.2	108	62-141	
Jene	ug/m3	38.3	35.2	92	70-130	
ns-1,2-Dichloroethene	ug/m3	40.3	43.8	109	70-132	
ns-1,3-Dichloropropene	ug/m3	46.1	44.2	96	70-135	
chloroethene	ug/m3	54.6	50.3	92	70-135	
chlorofluoromethane	ug/m3	57.1	59.6	104	59-140	
	~g/110					
nyl acetate	ug/m3	35.8	38.6	108	57-150	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

SAMPLE DUPLICATE: 2844488

Parameter	Units	92372987001 Result	Dup Result	RPD	Max RPD	Qualifiers
						Qualifiers
,1,1-Trichloroethane	ug/m3	ND	ND		25	
,1,2,2-Tetrachloroethane	ug/m3	ND	ND		25	
,1,2-Trichloroethane	ug/m3	ND	ND		25	
,1,2-Trichlorotrifluoroethane	ug/m3	ND	ND		25	
,1-Dichloroethane	ug/m3	ND	ND		25	
,1-Dichloroethene	ug/m3	ND	ND		25	
2,4-Trichlorobenzene	ug/m3	ND	ND	_	25	
,2,4-Trimethylbenzene	ug/m3	3.3	3.1	7	25	
,2-Dibromoethane (EDB)	ug/m3	ND	ND		25	
,2-Dichlorobenzene	ug/m3	ND	ND	_	25	
,2-Dichloroethane	ug/m3	2.9	2.9	3	25	
2-Dichloropropane	ug/m3	ND	ND		25	
3,5-Trimethylbenzene	ug/m3	ND	ND		25	
3-Butadiene	ug/m3	ND	ND		25	
,3-Dichlorobenzene	ug/m3	ND	ND		25	
4-Dichlorobenzene	ug/m3	ND	ND		25	
Butanone (MEK)	ug/m3	27.5	28.0	2	25	
Hexanone	ug/m3	ND	ND		25	
Propanol	ug/m3	45.6	42.9	6	25	
Ethyltoluene	ug/m3	2.8	2.7	2	25	
Methyl-2-pentanone (MIBK)	ug/m3	ND	ND		25	
cetone	ug/m3	63.0	54.7	14	25	
enzene	ug/m3	6.2	6.2	1	25	
enzyl chloride	ug/m3	ND	ND		25	
omodichloromethane	ug/m3	ND	ND		25	
omoform	ug/m3	ND	ND		25	
omomethane	ug/m3	ND	ND		25	
arbon disulfide	ug/m3	ND	ND		25	
arbon tetrachloride	ug/m3	ND	ND		25	
hlorobenzene	ug/m3	ND	ND		25	
hloroethane	ug/m3	ND	ND		25	
hloroform	ug/m3	ND	ND		25	
hloromethane	ug/m3	ND	ND		25	
s-1,2-Dichloroethene	ug/m3	ND	ND		25	
s-1,3-Dichloropropene	ug/m3	ND	ND		25	
yclohexane	ug/m3	ND	ND		25	
, ibromochloromethane	ug/m3	ND	ND		25	
ichlorodifluoromethane	ug/m3	ND	ND		25	
chlorotetrafluoroethane	ug/m3	ND	ND		25	
thanol	ug/m3	173	160	8	25	
thyl acetate	ug/m3	4.5	4.4	2	25	
thylbenzene	ug/m3	4.1	3.9	5	25	
exachloro-1,3-butadiene	ug/m3	ND	ND	-	25	
i&p-Xylene	ug/m3	12.1	11.7	4	25	
lethyl-tert-butyl ether	ug/m3	ND	ND	·	25	
1ethylene Chloride	ug/m3	ND	ND		25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

SAMPLE DUPLICATE: 2844488

		92372987001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
n-Hexane	ug/m3	10.4	10.4	0	25	
Naphthalene	ug/m3	ND	ND		25	
o-Xylene	ug/m3	3.7	3.5	4	25	
Propylene	ug/m3	ND	ND		25	
Styrene	ug/m3	1.7	1.7	2	25	
Tetrachloroethene	ug/m3	ND	ND		25	
Tetrahydrofuran	ug/m3	108	106	2	25	
Toluene	ug/m3	27.1	26.3	3	25	
trans-1,2-Dichloroethene	ug/m3	ND	ND		25	
trans-1,3-Dichloropropene	ug/m3	ND	ND		25	
Trichloroethene	ug/m3	ND	ND		25	
Trichlorofluoromethane	ug/m3	ND	ND		25	
Vinyl acetate	ug/m3	ND	ND		25	
Vinyl chloride	ug/m3	ND	ND		25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	314010 104204		₩ MN Rvr Brdg									
QC Batch:	52552			Analys	is Method:	Т	O-3 Air					
QC Batch Method:	TO-3 /	Air		Analys	is Descripti	on: T	O3 GCV	AIR MET	H,ETHANE	E,ETHENI	E	
Associated Lab San	nples:	104204870	01, 10420487002, 08, 10420487009, 15, 10420487016									
METHOD BLANK:	285198	4		N	latrix: Air							
Associated Lab San	nples:	104204870	01, 10420487002, 08, 10420487009, 15, 10420487016		,	,		,	,		,	
				Blank	Re	eporting						
Paran	neter		Units	Result	t	Limit	M	DL	Analyz	ed	Qualifiers	_
Methane			ppmv		8.8J	10.0)	0.42	03/02/18	08:38		_
LABORATORY COM	NTROL S	AMPLE & L	CSD: 2851985		2	851986						
				Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Paran	neter		Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Methane			ppmv	1000	774	788	8 77	79	70-130	:	2 30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

E Analyte concentration exceeded the calibration range. The reported result is estimated.

MN The reporting limit has been raised in accordance with Minnesota Statutes 4740.2100 Subpart 8. C, D. Reporting Limit Evaluation Rule.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 31401059.001 I-35W MN Rvr Brdg

Pace Project No.: 10420487

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10420487001	SG-16	TO-15	523866		
10420487002	SG-15	TO-15	523866		
10420487003	SG-1	TO-15	523866		
10420487004	SG-3	TO-15	523866		
0420487005	SG-6	TO-15	523866		
0420487006	SG-8	TO-15	523866		
0420487007	SG-7	TO-15	523866		
0420487008	SG-9	TO-15	523866		
0420487009	SG-13	TO-15	523866		
0420487010	SG-11	TO-15	523866		
0420487011	SG-10	TO-15	523866		
0420487012	SG-12	TO-15	523866		
0420487013	SG-14	TO-15	523866		
0420487014	SG-2	TO-15	523866		
0420487015	SG-4	TO-15	523866		
0420487016	SG-5	TO-15	523866		
0420487001	SG-16	TO-3 Air	525524		
0420487002	SG-15	TO-3 Air	525524		
0420487003	SG-1	TO-3 Air	525524		
0420487004	SG-3	TO-3 Air	525524		
0420487005	SG-6	TO-3 Air	525524		
0420487006	SG-8	TO-3 Air	525524		
0420487007	SG-7	TO-3 Air	525524		
0420487008	SG-9	TO-3 Air	525524		
0420487009	SG-13	TO-3 Air	525524		
0420487010	SG-11	TO-3 Air	525524		
0420487011	SG-10	TO-3 Air	525524		
0420487012	SG-12	TO-3 Air	525524		
0420487013	SG-14	TO-3 Air	525524		
0420487014	SG-2	TO-3 Air	525524		
10420487015	SG-4	TO-3 Air	525524		
0420487016	SG-5	TO-3 Air	525524		

Pace Analytical "			AIR: CHAIN-OF-CUSTODY / A The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fi		1042048			
formation:	Section B Required Project Information:	Section C Invoice Information:			(,)	31302	Page:	L . 7
58	Report To: Paulo R Pro PT	Attention: Arr ounts	S Paualle			Program		
N 3th St St SDF		Name:				Superfund T Emissions	_	Clean Air Act
Iots NN sstol	5	Address:			Voluntary Clean Up	n Up T Dry Clean T	RCRA	Other
ry ere usp. com	Purchase Order No.:	Pace Quote Reference:			Cation of	N W	Reporting 1 un/m ²	Inits motec
	Project Name I-35W MN R: Uer Bid		· Bob M: chels	5	Sampling by State	te ////	PPBV PPMV	
	Project Number: 314 OLOSP, OO I	Pace Profile #:	1		Report Level II.	Ш. – И.	Other	
Section D Required Client Information	JO E	COLLECTED	(QH ni Sure (QH ni		Me	1///	EX Drinaked	
Sample IDs MUST BE UNIQUE	ellO) grib		ter Pres Field - I field - I Field - I			Tist NOC	L LIST CON	
# W∃11		RT COMPOSITE - COM	lsitinl) teineO IeniT)	Number Number	101 10 10 10 10 10 10 10 10 10 10 10 10	0.12 EUL	40115	
20-1	8-0-2 11077	240-18 1	20424	1174	X		la	
26-15	1 0 2-10-18 0918	2408 0923	25 4 23	7507	X N		89	
)	0,6 2-10-13 0953	0953 2-10-18 1000	28 4 2 S	2 C S	K S	X	8	
		1041 2-10-18 1048	29 4 26	Z 6 / / 3	у Х	×	ST S	
56-6		1116 2404 1122	29 4 32	1409	X X X	\times	æ چ	••
\$ \$ \$ \$		142 240 to 148 148	Z		X	\times	900	
י פ עייייייייייייייייייייייייייייייייייי		NS 2-6-8 120	7	94070	V6 X	×	5	
ser4	3.4	1206 24048 1514	M	20 20 20 20 20	N X	×	88	
		16082-10-78 1615	<u>Ъ.</u>	2307	36	≮.	600	
، و ۱ ۸ ۱		3491 8492	<u>30 4 25</u>	- - - - - - - - - - - - 		×	010	
<u>ع</u>	07 24-8 0853	28532-11-18 0840	29 4 31			×	ତା(
12 SG-12	02-11-18	2-11-13 1118	-	22030	08 X		610	
Comments :	RELINQUISHED BY / AFFILIAT	≃ N	TIME	ACCEPTED BY / AFFILIATION	TION DATE	TIME	SAMPLE CONDITIONS	IDITIONS
	R. M.S.	N WSP2/12/12	<u>201</u>	7200	Hace 2/13/18 1	1105 A	Àm∱⊊	₩4. (31/1
	-				•		N/A	N/A N/A
							N/A	N/A N/A
			-				N/A	N/A N/A
ORIGINAL	JAL.	SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER. Kevin SIGNATURE of SAMPLER.	VD SIGNATURE) a (fer IDATE Signed (MM/			emp in °C. sceived on lce	Custody aled Cooler nples Intact

FC046Rev.01, 03Feb2010

.

the second se

į

1

.

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414 Air Technical Phone: 612.607,6386

· Pace Analytical			CHAIN.	AIR: CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LECAL DOCUMENT. All relevant fields must be completed accurately.	Analytical t fields must be com	Request D	ocumer 104	ment 104 204 8 7	H 8
Rection A Required Client Information:	Section B Required Project Information:	Section C Invoice Information:				26026		2 «	
350	Report To: Paula R. R. R. 13	Attention: ACC CUMN	ts Dauah	hle		Program			
Address: 12 5 No In 2 3 5. 54 52	EDATO: Keulin Walt	Ra			in UST	Superfund	Emissions	Clean Air Act	t l
000		Address:			Voluntary C	Voluntary Clean Up 👘 Dry C	Dry Clean 📃 RCR	RCRA Other	er
Email To Paul & Romer	Purchase Order No.:				Location of	V V	Reporting	Reporting Units ug/m ³ mg/m ³	
Phone, 243 - 0:36 Eax		Pace Project Manager/Sales Rep.	ہ۔ 2°	Michels	Sampling by State	State /*1 / V	PPBV	PPMV	
Requested Due Date/TAT:	Project Number: 31401059.001	Pace Profile #:			Report Level	nn	IV. Other		
Section D Required Client Information	DDE TB	COLLECTED	ente (6)si		Method:	////			
AIK SAMIPLE IU Sample IDS MUST BE UNIQUE #	1 Lifer Summe Can 11: Lifer Summe Can 11: Low Volume Put Inve Low Volume Put Inve CODE COLIGIT C	at composite -	lster Press al Field - p ster Press al Field - p	Summa Flow Can Control Number	5 pg	PAH)	255 255 255		
Matt	S AICIEM AICIEM AICIEM	TIME DATE TIME	tini) nsO niA)		101/20/20/ 101/20/20/	2/0/0/0	5101	Pace I ah ID	_
- SC-14	00	2-1-8 1	2	14551119		×		37	
ء د ک	1 11 22-4	N12 212 KO	34 5	N4281208		X	0	CH	
s 56-4	8-21-2-18		20 X 20 X	- -		\times		\checkmark	
ء م م	0,8 2-12-18		29 4	31210938	~	X		16	-
2									
9									
8									
6									
10									
11									
Comments :	RELINQUISHED BY / AFI		TIME	ACCEPTED BY / AFFILIATION	ION DATE	TIME	SAMPLE CONDITIONS		S
		s/12/2 JSM	- 501 ×	Rell	Pace 2/13/18	5011	Amb 😴	D/^	NA
							+	N/A	N/A
							N/A	N/A	N/A
							N/A	N/A	N/A
	ORIGINAL		ND SIGNATURE	<u>Nalter</u>			O° ni qme no beviece sol	Custody aled Cooler	nples Intact
2 46 0			N A	1/20 57	2/13/18				Sar

÷

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414 Air Technical Phone: 612.607.6386

FC046Rev.01, 03Feb2010

......

	(and a second s			Document Name: Air Sample Condition Upon Receipt			Docum	Document Revised: 28Dec2017 Page 1 of 1			
	Pace Analytical*		\$ ⁴	Document No.:			Issuing Authority:				
					F-MN-A-106-rev.3	 r~	Pace Minnesota Quality Office				
Air Sample Co Upon Rec		ient Name:			. Proje	WU	<u>#:104</u>	42048	87		
Co	_	ed Ex commercial		Speede Other:	e DClient	PM: E CLIEN	BM2 IT: WSP E &	Due Date: E	02/27/1	8	
Tracking Nu				+ • • • • • • •			·				
Custody Seal	on Cooler/B	ox Present?	Yes	No	Seals Intact?	🗋 Yes 🖉 🕅	Optional:	Proj. Due Date:	Proj. Name:		
Packing Mate	rial: 🗌 Búl	bble Wrap	Bubble Ba	gs 🗌 Foan	n 🗌 None	🗍 Tin Can 🔲 O	ther:	Temp E	Blank rec: 🗌	Yes 🖉 No	
Temp. (TO17 a	nd TO13 samp	les only) (°C):	$\underline{\times}$	Corrected Tem	p (°C):	Thermom. Use	d:		□1514012 □G87A91551		
Temp should I	be above freezi	ing to 6°C Co	prrection Facto	r:	\times	Date & Initials	of Person Examin	ing Contents:	2-13-1	<u>8 Aq</u>	
Type of ice Re	ceived 🗌 Bi	ue 🗌 Wet	None						-		
				·····				Comments:			
Chain of Cus	tody Present?			<u> </u>		/A 1.				·	
Chain of Cus	tody Filled Ou	it?		<u>Ves</u>		/A 2.					
Chain of Cus	tody Relinqui:	shed?		<u> </u>	⊡No ⊡N	/A 3.					
Sampler Nar	me and/or Sig	nature on COC	?	Yes		/A 4.					
Samples Arr	ived within Ho	old Time?		✓Yes		/A 5.					
Short Hold 1	lime Analysis	(<72 hr)?		Yes							
Rush Turn A	round Time R	equested?		 Yes	No No	/A 7. 5 V	any .	,			
Sufficient Vo	olume?			<u>Ves</u>		/A 8.					
Correct Cont	tainers Used?			∠ Yes		/A 9.					
-Pace Cor	ntainers Used?			Ves		/A					
Containers l	ntact?			Yes		/A 10.					
Media:	Air Can	Airbag	Filter	TDT	Passive	11. Inc	dividually Certifie	d Cans Y N	list which sa	mples)	
Sample Labe	els Match COC	?		Yes		/A 12.			/		
Complex Devel							Drossuro		26		
Samples Received:				·				Pressure Gauge # 10AIR26			
Canisters Flow				Initial Final			Canisters Flow Initial Final				
Sample N	lumber	Can ID	Controller	Pressure	Pressure	Sample Numb	er Can ID		Pressure	Pressure	
56-	16			+0.5	10	SG-11			0	10	
	15		K576	N-4	10	-10			0	10	
	·			-1.5	10	-12			-1	10	
-	3			1	10	-14			-1.5	10	
- (φ			-2	10	-2			-1	10	
5	\$			1	10	~4	· · · ·		+0.5	10	
~ ~	7			0	ω	-5			0	10	
_ 0	3			-2	10	unusedo	on 273(0 1527	-29	-	
-1	3			-1.5	10	(1	240		-29.5		
CLIENT NOTIFICATION/RESOLUTION Person Contacted:				Data/Time			Field Data Required? Yes No				
	ments/Resolu										
Com	mentaj neault						······				
									.		
	·	0	1 11		· · · · · · · · · · · · · · · · · · ·		. 1.	1110			
Project Mana Note: Wheneve	r there is a disc	repancy affecti	ing North Carol rrect container	- lina compliance	samples, a copy	Date of this form will be	$\frac{2}{14}$	f / 18 Carolina DEHNR C	ertification Offi	ce (i.e. out c	

¢