WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

Project/Site: SPP City	y/County: Carlton Sampling Date: 5/28/2014						
Applicant/Owner: Enbridge	State: MN Sampling Point: CRC5168g1W						
Investigator(s): BJC/DGL	Section, Township, Range:						
Landform (hillslope, terrace, etc.): Depression	Local relief (concave, convex, none): CC						
	ng.: <u>-92.480888</u> Datum:						
Soil Map Unit Name: 355E	NWI Classification:						
Are climatic/hydrologic conditions of the site typical for the Are vegetation ☐ soil ☐ or hydrology							
Are vegetation \Box , soil \Box , or hydrology	□ significantly disturbed? Are "normal circumstances" present? □						
(If needed, explain any answers in remarks)	Indicinally problematic? Circumstances present?						
(ii needed, explain any answers in ternance)							
SUMMARY OF FINDINGS							
Hydrophytic vegetation present? Hydric soil present? Y Y	Is the sampled area within a wetland?						
Indicators of wetland hydrology present?	If yes, optional wetland site ID:						
Remarks: (Explain alternative procedures here or in a se	Leparate report)						
The wetland is a small, depressional area located within a mesic hardwood forest.							
The world to a small, appropriation area results	a manife marawasa tarasa						
HYDROLOGY							
	Secondary Indicators (minimum of two						
Primary Indicators (minimum of one is required; check al ☑ Surface Water (A1) ☐ Water-S	Il that apply) required) Stained Leaves (B9) □ Surface Soil Cracks (B6)						
	Fauna (B13) Drainage Patterns (B10)						
	eposits (B15)						
	en Sulfide Odor (C1)						
· · · · · · · —	d Rhizospheres on						
	Roots (C3) Saturation Visible on Aerial Imagery						
	ce of Reduced Iron (C4) (C9)						
☐ Iron Deposits (B5) ☐ Recent☐ Inundation Visible on Aerial ☐ Soils (C	Iron Reduction in Tilled ☐ Stunted or Stressed Plants (D1) Geomorphic Position (D2)						
	uck Surface (C7) Shallow Aquitard (D3)						
	Explain in Remarks) Microtopographic Relief (D4)						
Surface (B8)	FAC-Neutral Test (D5)						
Field Observations:	Depth (inches): 1 Indicators of						
Surface water present? Water table present? Yes V	Depth (inches): 1 Indicators of Wetland						
Saturation present? Yes	Depth (inches): 0 hydrology						
(includes capillary fringe)	present? Y						
(moration capitally milgs)							
Describe recorded data (stream gauge, monitoring well,	aerial photos, previous inspections), if available:						
Remarks:							
One inch of surface water is present at the sar	mple point.						
, '							

		to the de	pth needed to d			r confirm	the absence	e of indicators.)
pth Matrix n.) Color (moist) %		0/.	Redox Features			1.00**	Taytura	Remarks
	·		Coloi (IIIois	1) 70	туре	LUC		
nue_101K	2/1	100					IVI	
		+ +						
		+ +						
			RM=Reduced N	Matrix, CS=Co	overed or C	oated Sa	and Grains	
ion: PL=Por	e Lining, M	I=Matrix						
Soil Indica	tors:					Indicat	tors for Prob	olematic Hydric Soils:
Histic Epipe Black Histic Hydrogen S Stratified Li Depleted B Thick Dark Sandy Muc Sandy Gley Sandy Red Stripped Mi Dark Surface	edon (A2) c (A3) Sulfide (A4) ayers (A5) elow Dark s Surface (A eky Mineral yed Matrix (ox (S5) atrix (S6) ce (S7) (LR	Suface (A 12) (S1) (S4) RR R, MLI	(S8) (I Thin D (LRR Loamy 11) (LRR Deplet Redox RA	LRR R, MLRA Park Surface (R, MLRA 149 Mucky Mine K, L) Gleyed Matrix Ed Matrix (F3 Dark Surfacted Dark Surfacted Dark Surfacted Dark Surfacted Depressions	A 149B) S9) BB ral (F1) rix (F2) B) e (F6) ace (F7) s (F8)	Co	east Prairie R cm Mucky Pe ark Surface (S lyvalue Belor in Dark Surfa n-Manganes edmont Flood esic Spodic (ed Parent Ma ary Shallow D her (Explain	edox (A16) (LRR K, L, R) eat or Peat (S3) (LRR K, L, R) E7) (LRR K, L w Surface (S8) (LRR K, L) ace (S9) (LRR K, L) e Masses (F12) (LRR K, L, R) dplain Soils (F19) (MLRA 149B) TA6) (MLRA 144A, 145, 149B) terial (F21) eark Surface (TF12) in Remarks)
	f observed)	:				Hydric	c soil presei	nt? <u>Y</u>
(inches):								
	cky throug	ghout the	e profile.		<u>I</u>			
1	Color Hue_10YR C=Concentre tion: PL=Por Soil Indica Histosol (A Histic Epipe Black Histic Hydrogen S Stratified La Depleted B Thick Dark Sandy Muc Sandy Gley Sandy Red Stripped Mic Dark Surfact tors of hydro tive Layer (in (inches): ks:	Color (moist) Hue_10YR 2/1 Hue_10YR 2/1 C=Concentration, D=D tion: PL=Pore Lining, M Soil Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Below Dark : Thick Dark Surface (A Sandy Mucky Mineral Sandy Gleyed Matrix (Sandy Redox (S5) Stripped Matrix (S6) Dark Surface (S7) (LR tors of hydrophytic vegitive Layer (if observed) (inches): ks:	Color (moist) % Hue_10YR	Color (moist)	Color (moist)	Color (moist)	Color (moist) % Color (moist) % Type* Loc** Hue_10YR 2/1 100 C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Scition: PL=Pore Lining, M=Matrix Soil Indicators: Histosol (A1)	Color (moist)