WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

Project/Site: SPP	_City/County: <u>Carlton</u>	Sampling Date: 5/26/2014				
Applicant/Owner: Enbridge	State: M	IN Sampling Point: CR130c1W				
Investigator(s): BJC/DGL	Section, -	Township, Range:				
Landform (hillslope, terrace, etc.): Depression	Local relief (c	concave, convex, none): CC				
Slope (%): <u>0 - 2%</u> Lat.: <u>46.610744</u>	Long.: <u>-92.396948</u> Datur					
Soil Map Unit Name: 536		NWI Classification:				
Are climatic/hydrologic conditions of the site typical		(If no, explain in remarks)				
Are vegetation, soil, or hydrol		<u> </u>				
Are vegetation \square , soil \square , or hydrol	ogy \Box naturally problematic	? circumstances" present?				
(If needed, explain any answers in remarks)						
SUMMARY OF FINDINGS	1					
Hydrophytic vegetation present? Y	Is the sampled area wit	hin a wetland?				
Hydric soil present?	_ lis the sampled area with	inii a wetiana:				
Indicators of wetland hydrology present?	If yes, optional wetland si	ite ID:				
	_					
Remarks: (Explain alternative procedures here or in						
The wetland consists of an open meadow co	ommunity within a maintained	pipeline corridor.				
HYDROLOGY						
		Secondary Indicators (minimum of two				
Primary Indicators (minimum of one is required; che		required)				
	ater-Stained Leaves (B9)	Surface Soil Cracks (B6)				
	juatic Fauna (B13) arl Deposits (B15)	☐ Drainage Patterns (B10)☐ Moss Trim Lines (B16)				
	drogen Sulfide Odor (C1)	Dry-Season Water Table (C2)				
	kidized Rhizospheres on	Crayfish Burrows (C8)				
	ring Roots (C3)	Saturation Visible on Aerial Imagery				
	esence of Reduced Iron (C4)	(C9)				
	ecent Iron Reduction in Tilled	☐ Stunted or Stressed Plants (D1)				
Imagery (B7)	in Muck Surface (C7)	☐ Shallow Aquitard (D3)				
☐ Sparsely Vegetated Concave ☐ Ot						
Surface (B8)		FAC-Neutral Test (D5)				
Field Observations:						
Surface water present? Yes	Depth (inches): 6	Indicators of				
Water table present?	Depth (inches):	wetland				
Saturation present? Yes	Depth (inches):	hydrology				
(includes capillary fringe)	_ span (s.)	present? Y				
Describe recorded data (stream gauge, monitoring						
Surface water was observed throughout the	ne wetland. Due to digging res	strictions, water table and saturation				
could not be documented.						
Remarks:						

SOIL								Sampl	ing Point:	CR130c1W
		(Describe	to the de	pth needed t		ent the i Feature		confirm	the absence of	indicators.)
Depth (In.)		(moist)	%	Color (m		%	Type*	Loc**	Texture	Remarks
(111.)	00101	(moist)	70	00101 (111		70	Турс	LOC	Texture	
*Type:	C=Concent	I ration, D=Γ	Depletion.	RM=Reduce	d Matrix	CS=Co	vered or C	oated Sa	nd Grains	
	ion: PL=Por		•							
Hydric	Soil Indica	tors:						Indicate	ors for Proble	matic Hydric Soils:
☐ Histosol (A1) ☐ Polyvalue Below Surface (S8) (LRR R, MLRA) ☐ Black Histic (A3) ☐ Thin Dark Surface (CLRR R, MLRA) ☐ Hydrogen Sulfide (A4) ☐ Loamy Mucky Mineral (S1) ☐ Depleted Below Dark Surface (A11) ☐ Loamy Gleyed Matrix (F3) ☐ Sandy Mucky Mineral (S1) ☐ Loamy Gleyed Matrix (F3) ☐ Sandy Gleyed Matrix (S4) ☐ Depleted Matrix (F3) ☐ Sandy Redox (S5) ☐ Redox Dark Surface ☐ Stripped Matrix (S6) ☐ Redox Depressions ☐ Dark Surface (S7) (LRR R, MLRA) *Indicators of hydrophytic vegetation and wetland hydrology must be					Coast Prairie Redox (A16) (LRR K, L, R) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Dark Surface (S7) (LRR K, L Polyvalue Below Surface (S8) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Piedmont Floodplain Soils (F19) (MLRA 149B) (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Red Parent Material (F21) Very Shallow Dark Surface (TF12) Other (Explain in Remarks)					
Restrictive Layer (if observed): Type: Depth (inches):								Hydric soil present?Y		
	s could no						• .	•	corridor. Soil face water.	s are assumed to be