WETLAND DETERMINATION DATA FORM - North Central and Northeast Region

Project/Site: SPP	City/County: Aitk	City/County: Aitkin		Sampling Date: 2016-08-10			
Applicant/Owner: Enbridge		State: Minnesota		Sampling Point: u-50n26w6-b1			
Investigator(s): ZCW, MGH	Section, To	ownship, Range: S6, T50N,	, R26W				
Landform (hillslope, terrace, etc.): Rise	e	Local Relief (conca	ve, convex, none): VL	Slope (%): 3-7%			
Subregion (LRR or MLRA):	Latitu	ıde: 46.8537812261	Longitude: -93.68338518	Datum: NAD83			
Soil Map Unit Name: 504B			NWI Cla	assification: N/A			
re climatic/hydrologic conditions on the site typical for this time of year? (if no, explain in Remarks): No							
Are Vegetation No , Soil No , or		, , , , ,	,				
Are Vegetation No_, Soil No_, or Hy	ydrology No naturally prob	lematic? (If needed, expl	ain any answers in Remarks)				
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.							
Hydrophytic Vegetation Present?	<u>No</u>	Is the Sampled Are	ea				
Hydric Soil Present?	Yes	within a Wetland?		<u>No</u>			
Wetland Hydrology Present?	<u>No</u>	If yes, optional We	etland Site ID:				
Remarks: (Explain alternative proced	ures here or in a separate rep	oort.)					
Climatic conditions are "wet" based	on the results of a WETS anal	ysis.					
HYDROLOGY							
Wetland Hydrology Indicators:			Secondary Indica	ators (minimum of two required)			
Primary Indicators (minimum of one i	is required; check all that app	ıly)	Surface So	vil Cracks (B6)			
Surface Water (A1)		Water-Stained Leaves (B9)		Drainage Patterns (B10)			
High Water Table (A2)	Aquatic Faun		Moss Trim Lines (B16)				
Saturation (A3)	Marl Deposit	Marl Deposits (B15)		Dry-Season Water Table (C2)			
Water Marks (B1)	Hydrogen Su	Hydrogen Sulfide Odor (C1)		Crayfish Burrows (C8)			
Sediment Deposits (B2)	Oxidized Rhiz	Oxidized Rhizospheres on Living Roots (C3)		Saturation Visible on Aerial Imagery (C9)			
Drift Deposits (B3)	Presence of I	Presence of Reduced Iron (C4)		Stunted/Stressed Plants (D1)			
Algal Mat or Crust (B4)	Recent Iron F	Recent Iron Reduction in Tilled Soils (C6)		Geomorphic Position (D2)			
Iron Deposits (B5)	Thin Muck Su	Thin Muck Surface (C7)		Shallow Aquitard (D3)			
Inundation Visible on Aerial Imagery ((B7) Other (Explai	in in Remarks)	Microtopo	graphic Relief (D4)			
Sparsely Vegetated Concave Surface	(B8)		FAC-Neutra	l Test (D5)			
Field Observations:							
Surface Water Present?	No Depth (i	inches)					
Water Table Present?	No Depth (i	inches)					
Saturation Present?	No Depth (i	inches)	Wetland Hydrology P	resent? <u>No</u>			
(includes capillary fringe)							
Describe Recorded Data (stream gaug	ge, monitoring well, aerial pho	otos, previous inspections), if available:				
Remarks:							

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot Size: 30	% Cover	Species?	Status	Number of Dominant Species
1. Quercus rubra	15.00	Yes	FACU	That Are OBL, FACW, or FAC: 0 (A)
2. Pinus resinosa	15.00	Yes	FACU	Total Number of Dominant
3.				Species Across All Strata: 5 (B)
			_	Percent of Dominant Species
			-	That Are OBL, FACW, or FAC: 0 (A/B)
		-		
6				Prevalence Index worksheet:
7		-		Total % Cover of: Multiply by:
	30	= Total Cover		OBL species <u>0.00</u> x 1 <u>0</u>
Sapling/Shrub Stratum (Plot Size: 15				FACW species <u>0.00</u> x 2 <u>0</u>
1. Corylus cornuta	70.00	Yes	UPL	FACU species <u>95.00</u> x 3 <u>380</u>
2. Acer rubrum	20.00	No	FAC	UPL species <u>110.00</u> x 4 <u>550</u>
3. Quercus rubra	15.00	No	FACU	Column Totals <u>225</u> (A) <u>990</u> (B)
4.			- '	Prevalence Index = B/A = 4.4
5.				Hydrophytic Vegetation Indicators:
	-		- 1	1 - Rapid Test for Hydrophytic Vegetation
		-	-	
7			-	no 2 - Dominance Test is > 50%
	105	_ = Total Cover		no 3 - Prevalence Index is ≤ 3.0 ¹
Herb Stratum (Plot Size: 5				4 - Morphological Adaptations (Provide
1. Carex pennsylvanica	40.00	Yes		supporting data in Remarks or on a separate sheet)
2. Eurybia macrophylla	35.00	Yes	FACU	Problematic Hydrophytic Vegetation ¹ (Explain)
3. Pteridium aquilinum	15.00	No	FACU	<u> </u>
4.				Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
5.		-		Definitions of Vegetation Strata:
	-	_		
		-	_	Tree - Woody plants 3 in. (.76 cm) or more in diameter at breast
		-	-	height (DBH), regardless of height.
8			_	1
9		_		Sapling/Shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
10				or equal to 3.25 ft (1 ff) tuil.
11.				Herb - All herbaeceous (non-woody) plants, regardless of size, and
12.				woody plants less than 3.28 ft tall.
	90	- Total Cover		Woody vines - All woody vines greater than 3.28 ft in height.
West Nine Charles (Dist Circ. 20		_ = 10tal cover		Woody Wiles greater than 3.20 te in neight.
Woody Vine Stratum (Plot Size: 30				
1	-		_	-
2.		_		Hydrophytic Vegetation
3		_	_	Present? No No
4.		_		
	0	=Total Cover		
Remarks: (include photo numbers here or on a separate sheet	.)	_		•
Remarks. (include proto numbers here of on a separate sheet	-)			

Sampling Point: u-50n26w... **SOIL** Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Matrix **Redox Features** Depth Loc² (inches) Color (moist) % Color (moist) % Type¹ Texture Remarks 10YR 3 1 0-4 100 FSL 10YR 6 1 10YR 5 6 95 4-24 C M LS ¹Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ²Location: PL=Pore Lining, M=Matrix. Indicators for Problematic Hydric Soil³: Hydric Soil Indicators: Polyvalue Below Surface (S8) (LRR R, MLRA Histosol (A1) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) Coast Prairie Redox (A16)(LRR K, L, R) Thin Dark Surface (S9) (LRR R, MLRA 149B) Black Histic (A3) Loamy Mucky Mineral (F1) (LRR K, L) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) Dark Surface (S7) (LRR K, M) Loamy Gleyed Matrix (F2) Stratified Layers (A5) Depleted Matrix (F3) Polyvalue Below Surface (S8) (LRR K, L) Depleted Below Dark Surface (A11) Redox Dark Surface (F6) Thin Dark Surface (S9) (LRR K, L) Thick Dark Surface (A12) Depleted Dark Surface (F7) Iron-Maganese Masses (F12) (LRR K, L, R) Sandy Mucky Mineral (S1) Redox Depressions (F8) Piedmont Floodplain Soils (F19) (MLRA 149B) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Red Parent Material (F21) Stripped Matrix (S6) Very Shallow Dark Surface (TF12) Dark Surface (S7) (LRR R, MLRA 149B) Other (explain in remarks) Restrictive Layer (if observed): Hydric Soil Present? Yes Depth (inches): Remarks:

Site Photograph 1 Sampling Point: u-50n26w6-b1

Cowardin Classification:			
Circular 39:			
Eggers & Reed:			

Site Photograph 2 Sampling Point: u-50n26w6-b1

A Committee of the control of the co				
Latitude: 46.8537788792018	Cowardin Classification:			
Longitude: -93.6833833438285	Circular 39:			
irection: West				
lemarks:				
Jpland				