WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

Applicant/Owner: Enbridge Investigator(s): EAB/RAJ Landform (hillslope, terrace, etc.) Depression	Local relief (co g.: <u>-95.228063</u> Datum	ownship, Range: oncave, convex, non(CC NWI Classification: (If no, explain in remarks) ? Are "normal
Hydrophytic vegetation present? Y Hydric soil present? Y Indicators of wetland hydrology present? Y Remarks: (Explain alternative procedures here or in a se The community is an aspen/black ash swamp the		
HYDROLOGY		
✓ High Water Table (A2) ▲ Aquatic ✓ Saturation (A3) ▲ Marl De Water Marks (B1) ➡ Hydroge Sediment Deposits (B2) Oxidized Drift Deposits (B3) Living R Algal Mat or Crust (B4) ➡ Presend Iron Deposits (B5) ➡ Recent Inundation Visible on Aerial Soils (C Imagery (B7) ➡ Thin Mu	Stained Leaves (B9) Fauna (B13) posits (B15) en Sulfide Odor (C1) d Rhizospheres on toots (C3) se of Reduced Iron (C4) Iron Reduction in Tilled	Secondary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Field Observations: Surface water present? Yes Water table present? Yes Saturation present? Yes (includes capillary fringe) Describe recorded data (stream gauge, monitoring well, and the stream gauge)	Depth (inches): Depth (inches): 2 Depth (inches): 0 aerial photos, previous inspect	Indicators of wetland hydrology present? Y
Remarks: Soils are saturated. Surface water is present in		

/EGETATION - Use scientific names of plants				S		Sampling Point:	CLC5085a2W		
Tree Stratum Plot	Size (30 ft)	Absolute % Cover	Dominant Species	Indicator Status	50/20 Thresholds Tree Stratum	20% 50% 13 33	
Abies balsamea				25	Y	FAC	Sapling/Shrub Stratum	7 18	
Populus tremuloides				25	Y	FAC	Herb Stratum	15 38	
Fraxinus nigra				15	Y	FACW	Woody Vine Stratum	0 0	
							Dominance Test Worksh	eet	
							Number of Dominant		
				·			Species that are OBL, FACW, or FAC:	5 (A)	
							Total Number of Dominant	()	
				65	Total Cover		Species Across all Strata:	<u>9</u> (B)	
							Percent of Dominant Species that are OBL,		
apling/Shrub Stratum Plot	Size (15 ft)	Absolute % Cover	Dominant Species	Indicator Status	FACW, or FAC:	<u>55.56%</u> (A/B	
Fraxinus nigra				25	Y	FACW	Prevalence Index Works	heet	
Ulmus americana				10	Y	FACW	Total % Cover of:		
						[OBL species 0 x 1 FACW species 65 x 2		
. <u> </u>						[FAC species 50 x 3		
							FACU species 60 x 4	= 240	
							UPL species 0 x 5 Column totals 175 (A)		
							Prevalence Index = B/A =	2.97	
				35	= Total Cover				
				Absolute	Dominant	Indicator	Hydrophytic Vegetation I		
lerb Stratum Plot	Size (5 ft)	% Cover	Species	Indicator Status	Rapid test for hydrophy X Dominance test is >50		
Carex pedunculata				20	Ý	FACU	X Prevalence index is ≤3	.0*	
Prunus pensylvanica				<u>15</u> 10	<u>Y</u> Y	FACU	Morphological adaptati supporting data in Ren		
Luzula acuminata Thalictrum dioicum				10	Y	FACU FACU	separate sheet)	naiks of off a	
Fraxinus nigra				5	Ν	FACW	Problematic hydrophyt	ic vegetation*	
Rubus pubescens				5	<u>N</u>	FACW	(explain)		
Botrypus virginianus Equisetum pratense				<u>5</u> 5	<u>N</u>	FACU FACW	*Indicators of hydric soil and wet present, unless disturbed or prot		
							Definitions of Vegetation		
							Tree - Woody plants 3 in. (7.6 cr		
							breast height (DBH), regardless	of height.	
							Sapling/shrub - Woody plants le greater than 3.28 ft (1 m) tall.	ess than 3 in. DBH an	
				75	= Total Cover				
Woody Vine							Herb - All herbaceous (non-woo size, and woody plants less than		
Stratum Plot S	Size (30 ft)	Absolute % Cover	Dominant Species	Indicator			
					Species	Status	Woody vines - All woody vines of height.	greater than 3.28 ft in	
							Hydrophytic		
							vegetation		
				•	= Total Cover		present? Y		
				0:				_	
marks: (Include photo nu				ate sheet)				_	
The community featur				ate sheet)		alsam fir, and	black ash. Black ash do	minates the	
				ate sheet)		alsam fir, and		- minates the	

I

SOIL								Samp	ling Point:	CLC5085a2W	
Profile	Description:	(Describe	to the	depth needed t	o docume	nt the ii	ndicator o	r confirm	the absence	of indicators.)	
Depth				•	Redox F						
(In.)	Color	(moist)	%	Color (m	oist)	%	Type*	Loc**	Texture	Remarks	
0-11	Hue_10YR	2/1	100						MMI		
11-18	Hue_10YR	6/1	95	Hue_10YR	5/3	5	С	М	SC		
*Type:	C=Concentr	ation. D=De	epletio	n, RM=Reduce	d Matrix. C	CS=Cov	vered or C	oated Sa	and Grains		
	ion: PL=Por				, .						
Hydric	Soil Indica	tors:						Indicat	ors for Prob	olematic Hydric Soils:	
	☐ Histic Epipedon (A2) (S8) (LRR R, MLRA 149B) ☐ Coast Prairie Redox (A16) (LRR K, L, I ☐ Black Histic (A3) ☐ Thin Dark Surface (S9) ☐ Stratified Layers (A5) ☐ LRR R, MLRA 149B ☐ Stratified Layers (A5) [LRR R, MLRA 149B] ☐ Depleted Below Dark Suface (A11) ☐ Loamy Mucky Mineral (F1) ☐ Thick Dark Surface (A12) [Loamy Gleyed Matrix (F2)] ☐ Thin Dark Surface (S9) (LRR K, L) ☐ Sandy Mucky Mineral (S1) [Depleted Matrix (F3)] [Depleted Matrix (F3)] ☐ Sandy Redox (S5) [Depleted Dark Surface (F6)] [Depleted Dark Surface (F7)] [] Stripped Matrix (S6) [Depleted Dark Surface (F7)] [Dark Surface (S7) (LRR R, MLRA] [] Dark Surface (S7) (LRR R, MLRA] [Depleted Dark Surface (F7)] [Depleted Dark Surface (F7)] [] Dark Surface (S7) (LRR R, MLRA] [Depleted Dark Surface (F7)] [Depleted Dark Surface (F7)] [] Dark Surface (S7) (LRR R, MLRA] [Depleted Dark Surface (F7)] [Depleted Dark Surface (F7)] [] Dark Surface (S7) (LRR R, MLRA] [Depleted Dark Surface (F7)] [Depleted Dark Surface (F7)] [] Dark Surface (S7) (LRR R, MLRA] [Depleted Dark Surface (F7)] [Depleted Dark Surface (F7)] [] Dark Surface (S7) (LRR R, MLRA] [Depleted Dark Surface (F7)] [Depleted Dark Surface (F7)]						57) (LRR K, L w Surface (S8) (LRR K, L) ace (S9) (LRR K, L) e Masses (F12) (LRR K, L, R) dplain Soils (F19) (MLRA 149B TA6) (MLRA 144A, 145, 149B) terial (F21) ark Surface (TF12) in Remarks)				
Restrictive Layer (if observed): Type: Depth (inches):								Hydric soil present? Y			
Remark		soil is pre	esent	at the surfac	e.						