Draft Chippewa River Watershed Total Maximum Daily Load

A Total Maximum Daily Flow Report compiled by the Minnesota Pollution Control Agency

August 2016

Authors and contributors:

Matthew Moon

Chuck Regan

Paul Wymar

Scott MacLean

Marco Graziani

Josh Stock

Nick Gervino

Benjamin Roush

Mark Hanson

Wayne Cords

The MPCA is reducing printing and mailing costs by using the Internet to distribute reports and information to wider audience. Visit our web site for more information.

The MPCA reports are printed on 100% postconsumer recycled content paper manufactured without chlorine or chlorine derivatives

Contents

Contents		3
List of Table	es	5
List of Figur	es	6
Acronyms .		9
Executive S	ummary	11
1. Project	t Overview	12
1.1 Pu	urpose	12
1.2 ld	entification of Waterbodies	12
1.3 Pr	iority Ranking	17
2. Applica	able Water Quality Standards and Numeric Water Quality Targets	18
3. Waters	shed and Waterbody Characterization	21
3.1 La	ıkes	22
3.2 St	reams	23
3.3 Su	ubwatersheds	24
3.4 La	and Use	25
3.5 Cu	urrent/Historic Water Quality	26
3.6 Pc	ollutant Source Summary	38
3.6.1	E. coli	38
3.6.2	TSS	42
3.6.3	Nutrient Eutrophication	44
4. TMDL	Development	48
4.1 Da	ata Sources	48
4.1.1	Hydrologic Simulation Program – FORTRAN (HSPF)	48
4.1.2	Environmental Quality Information System (EQuIS)	49
4.2 Lc	pading Capacity Methodology	49
4.2.1 S	treams, <i>E. coli</i>	50
4.2.2 S	treams, TSS	52
4.2.3	Dissolved Oxygen	54
4.2.4	Lakes, Nutrient Eutrophication	55
4.3 W	asteload Allocation Methodology	57
4.3.1	Wastewater Treatment Facilities	58
4.3.2	Industrial Process Wastewater	
4.3.3	Stormwater	
4.3.4	Straight Pipe Septic Systems	64

	4.4	Load Allocation Methodology	64
	4.5	Margin of Safety	64
	4.5.1	E. coli	64
	4.5.2	TSS	64
	4.5.3	Nutrient Eutrophication	64
	4.5.4	Dissolved Oxygen	65
	4.6	Seasonal Variation	65
	4.6.1	Streams, E. coli	65
	4.6.2	Streams, TSS	65
	4.6.3	Streams, DO	65
	4.6.4	Lakes, Nutrient Eutrophication	66
	4.7	TMDL Summary	66
	4.7.1	Bacteria Impaired Stream Reach Loading Capacities	66
	4.7.2	TSS Impaired Stream Reach Loading Capacities	71
	4.7.3	Dissolved Oxygen Phosphorus Loading Capacities	72
	4.7.4	Index of Biological Integrity TSS Stressor Loading Capacities	73
	4.7.5	Impaired Lake Loading Capacities	73
5	Futu	re Growth Considerations	78
	5.1 Nev	v or Expanding Permitted MS4 WLA Transfer Process	78
	5.1	New or Expanding Wastewater (TSS and <i>E. coli</i> TMDLs only)	78
6	Reas	onable Assurance	79
7	Mon	itoring Plan	80
8	Impl	ementation Strategy Summary	81
	8.1	Permitted Sources	81
	8.1.1	Construction Stormwater	81
	8.1.2	Industrial Stormwater	81
	8.1.3	MS4	81
	8.1.4	Wastewater	82
	8.2	Non-Permitted Sources	82
	8.3	Cost	83
	8.4	Adaptive Management	83
9	Publ	c Participation	84
	Chippe	wa River Watershed	84
	Public N	Meetings	85
	Public N	Notice	86
1	0 Lit	erature Cited	87

Appendix A: Load duration curves for stream reach impairments90
Appendix B: BATHTUB outputs for lake models97
Appendix C: HSPF Calibration and Validation
Hydrologic Calibration and Validation for the Chippewa River HSPF Model148
Water Quality Calibration and Validation for the Chippewa River Watershed HSPF Model149
List of Tables
Table 1.1: Chippewa River Watershed 303(d) impairments addressed in this TMDL report grouped by HUC10 watersheds
Table 2.1: Surface water quality standards for Chippewa River Watershed stream reaches addressed in this TMDL report
Table 2.2: Lake water quality standards for lakes within the Chippewa River Watershed20
Table 3.1: Morphometry and watershed area of lakes addressed in this TMDL report22
Table 3.2: Approximate watershed areas of impaired stream reaches24
Table 3.3: Approximate land use % breakdowns of Chippewa River Watershed HUC10 subwatersheds (MRLC 2011)
Table 3.4: Summary of <i>E. coli</i> data from 2007-2010 for stream reaches impaired for <i>E. coli</i> . Red indicates exceedances of the <i>E. coli</i> standard as listed in Minn. R. 7050.0222, subp. 4
Table 3.5: Summary of T-tube converted into S-tube equivalent data from 2002-2011 for stream reaches impaired for turbidity. Red indicates exceedances of the S-tube surrogate TSS standard
Table 3.6: Summary of DO data from 2001-2008 for stream reaches impaired for low DO. Red indicates exceedances of standard
Table 3.7: Summary of IBI data from 2009 for stream reaches impaired for IBI score. Red indicates exceedances of and/or within the confidence interval of the standard
Table 3.8: Mean in-lake conditions for impaired lakes in the Chippewa River Watershed. The number of samples taken June through September is listed in brackets. Red indicates exceedances of the standard
Table 3.9: Number of feedlot facilities and animal units, by HUC10 subwatershed40
Table 3.10: Land cover categories and ranges of relative coverage and TP load contribution in the lake catchments
Table 4.1: Unit conversion factors used for <i>E. coli</i> load calculations
Table 4.2: Percent reductions for <i>E. coli</i> impaired stream reaches based on 2002-2011 monitoring data51
Table 4.3: Unit conversion factors used for TSS load calculations
Table 4.4: Percent reductions for TSS impaired stream reaches based on 2002-2011 TSS data54
Table 4.5: Percent reductions for DO impaired stream reaches based on HSPF model reductions in phosphorus using 2009-2010 DO and phosphorus data

Table 4.6: Observed and modeled mean phosphorus conditions in Chippewa River Watershed lakes phosphorus load reduction necessary to meet the water quality standard	
Table 4.7: WWTF permits applicable to this TMDL report	58
Table 4.8: Individual WWTF <i>E. coli</i> WLA calculations	59
Table 4.9: Individual WWTF Total Suspended Solids WLA calculations	60
Table 4.10: Individual WWTF Total Phosphorus WLA calculations	61
Table 4.11: Industrial Wastewater permitted facilities applicable to this TMDL report	61
Table 4.12: Industrial Wastewater facility Total Suspended Solids WLA calculations	61
Table 4.13: Large CAFO livestock facilities by subwatershed	63
Table 4.14: E. coli loading capacities and allocations for stream reaches	66
Table 4.15: Loading capacities and allocations for stream reaches impaired for TSS	71
Table 4.16: Loading capacities and allocations for stream reaches impaired for DO	72
Table 4.17: TSS Loading capacities and allocations for IBI impaired stream reaches	73
Table 4.18: Total phosphorus loading capacities and allocations for impaired lakes within the Chipp River Watershed	
List of Figures	
Figure 1.1 Overview map of the Chippewa River Watershed and map of subwatershed areas	17
Figure 3.1: Ecoregions within the Chippewa River Watershed	21
Figure 3.2: Land use of the Chippewa River Watershed	26
Figure 3.3: Turbidity stream reach impairments	29
Figure 3.4: Turbidity stream reach impairments	31
Figure 3.5: DO stream reach impairments	33
Figure 3.6: IBI stream reach impairments	35
Figure 3.7: Lake nutrient eutrophication impairments as indicated from water monitoring data	38
Figure 3.8: Feedlot facility locations of county permitted and state NPDES permitted facilities	41
Figure 3.9: Altered hydrology of Chippewa River Watershed	44
Figure 8.1 A conceptual model to address water quality impairments in agriculturally dominated watersheds	82
Figure 8.2: Adaptive Management	84
Figure 8.3: Minnesota water quality framework	84

TMDL Summary Table						
EPA/MPCA Required Elements	Summary	TMDL Page #				
Location	The Chippewa River Watershed is located in southwestern Minnesota. See Figure 1.1	17				
303(d) Listing Information	There are impairments for 13 stream reaches, 12* listings for <i>E. coli</i> bacteria, 1* listings for Total Suspended Solids (TSS), 2* listings for DO, 2* listings for macroinvertebrates IBI, and 1* listing for fish IBI. 25 lake impairments are listed for nutrient eutrophication; see Table 1.1 *Numbers are not cumulative	12				
Applicable Water Quality Standards/ Numeric Targets	See Section 2	18				
Loading Capacity (expressed as daily load) TMDL Summary, see Section 4.7		66				
Wasteload Allocation	TMDL Summary, see Section 4.7	66				
Load Allocation	TMDL Summary, see Section 4.7	66				
Margin of Safety	<i>E. coli</i> , TSS, DO, fish IBI, macro IBI, and lake nutrient eutrophication impairments: Explicit MOS of 10% used; <i>See Section 4.5</i>	64				
Seasonal Variation	E. coli: Load duration curve methodology accounts for seasonal variation and the standard is developed for critical conditions; See Section 4.6.1 TSS: Load duration curve methodology accounts for seasonal variation and the standard is developed for critical conditions; See Section 4.6.2 Dissolved Oxygen: HSPF model accounts for seasonal variation Nutrient eutrophication: Standard is developed for critical conditions; See Section 4.6.3	65				
Reasonable Assurance	Changes in the landscape and hydrology will need to occur if pollutant levels are going to decrease. The source reduction strategies detailed in the implementation section have been shown to be effective in improving water quality. Many of the goals outlined in this TMDL report run parallel to objectives outlined in the local water plans. Various programs and funding sources are currently being utilized in the watershed and will also be used in the future. Additionally, Minnesota voters have approved an	79				

	amendment to increase the state sales tax to fund water quality improvements. See Section 6					
Monitoring	Intensive watershed monitoring will occur on a 10-year schedule. Long term load monitoring at the watershed outlet is currently occurring. <i>See Section 7</i>	80				
Implementation	A summary of potential management measures is included with a rough approximation of the overall implementation cost to achieve the TMDL. See Section 8					
Public Participation	Public participation in the Chippewa River Watershed has been ongoing for the past two years. With respect to this specific TMDL: A public comment period was open from with a formal public meeting on There were comment letters received and responded to as a result of the public comment period. See Section 9	84				

Acronyms

ARM Agricultural Runoff Model

µg/L Micrograms per Liter

ac-ft/yr acre feet per year

AUID Assessment Unit ID

AWQCP Agricultural Water Quality Certification Program

BMP Best Management Practice
CAC Citizens Advisory Committee

CAFO Concentrated Animal Feeding Operation

cfs cubic feet per second cfu colony-forming unit Chl-a Chlorophyll-a CWA Clean Water Act

CWLA Clean Water Legacy Act

DNR Minnesota Department of Natural Resources

DO Dissolved Oxygen

EPA U. S. Environmental Protection Agency
EQuIS Environmental Quality Information System
FWMC Flow Weighted Mean Concentration

GW Groundwater

10DE

HSPF Hydrologic Simulation Program – FORTRAN

HUC Hydrologic Unit Code
IBI Index of Biological Integrity

in/yr Inches per Year

kg/ha Kilograms per Hectare km² Square Kilometer LA Load Allocation

lb(s) Pound(s)

Ibs/yrPounds per YearIbs/dayPounds per DayLCLoading Capacity

m Meter

MDA Minnesota Department of Agriculture

mg Milligrams

mg/L Milligrams per Liter

mg/m²-day Milligrams per Square Meter per Day

mgd Million Gallons per Day

mL Milliliters

MLCCS Minnesota Land Cover Classification System

MOS Margin of Safety

MPCA Minnesota Pollution Control Agency
MS4 Municipal Separate Storm Sewer System

MSU-WRC Minnesota State University, Mankato – Water Resources Center

NCHF North Central Hardwood Forests

NGP Northern Glaciated Plains

NPDES National Pollutant Discharge Elimination System

NPS Non-Point Source

NTU Nephelometric TSS Unit

org Organisms

SDS State Disposal System
SOD Sediment Oxygen Demand

SONAR Statement of Need and Reasonableness

SRO Surface Runoff

SSTS Subsurface Sewage Treatment System
SWPPP Stormwater Pollution Prevention Plan

TDLC Total Daily Loading Capacity
TMDL Total Maximum Daily Load

TP Total Phosphorus
TSS Total Suspended Solid

USGS United States Geological Survey

WCBP Western Corn Belt Plains
WLA Wasteload Allocations

WRAPS Watershed Restoration and Protection Strategy

WWTF Wastewater Treatment Facility

μg/L Microgram per Liter

Executive Summary

Section 303(d) of the Clean Water Act (CWA) provides authority for completing Total Maximum Daily Loads (TMDLs) to achieve state water quality standards and/or designated uses. The TMDL establishes the maximum amount of a pollutant a waterbody can receive on a daily basis and still meet water quality standards. The TMDL is divided into wasteload allocations (WLA) for point or permitted sources, load allocations (LA) for nonpoint sources and natural background plus a margin of safety (MOS).

This TMDL report addresses impairments for 13 stream reaches consisting of 12 bacteria impairments, 1 total suspended solid (TSS) impairment, 2 dissolved oxygen (DO) impairments, 2 macroinvertebrate Index of Biological Integrity (IBI) impairments, 1 fish IBI impairment, and 25 lakes for nutrient eutrophication impairments in the Chippewa River Watershed. Addressing multiple impairments in one TMDL report is consistent with Minnesota's Water Quality Framework that seeks to develop watershed wide protection and restoration strategies rather than focus on individual reach impairments.

The Chippewa River Watershed covers more than 1.3 million acres in the Western Corn Belt Plains (WCBP), Northern Glaciated Plains (NGP), and the North Central Hardwood Forests (NCHF) ecoregions and drains portions of nine counties (Chippewa, Douglas, Grant, Kandiyohi, Meeker, Otter Tail, Pope, Stevens, and Swift) in the Minnesota River Basin.

This TMDL report used a variety of methods to evaluate current loading contributions by the various pollutant sources as well as the allowable pollutant loading capacity (LC) of the impaired water bodies. These methods include the Hydrologic Simulation Program – FORTRAN (HSPF) model, the load duration curve approach, and the BATHTUB lake eutrophication model.

A general strategy and cost estimate for implementation to address the impairments are included. Non-point sources (NPS) will be the focus of implementation efforts. NPS contributions are not regulated and will need to proceed on a voluntary basis. Permitted point sources will be addressed through the Minnesota Pollution Control Agency's (MPCA) National Pollutant Discharge Elimination System (NPDES)/State Disposal System (SDS) Permit (Permit) programs.

1. Project Overview

1.1 Purpose

The CWA Section 303(d) requires that states publish a list of surface waters that do not meet water quality standards and therefore, do not support their designated use(s). These waters are then classified as impaired and placed on the impaired waters list, which dictates that a TMDL report must be completed. The TMDL report calculates the maximum amount of a pollutant that a waterbody can receive and still meet water quality standards.

The passage of Minnesota's Clean Water Legacy Act (CWLA) in 2006 provided a policy framework and resources to state and local governments to accelerate efforts to monitor, assess and restore impaired waters and to protect unimpaired waters. The result has been a comprehensive "watershed approach" that integrates water resource management efforts, local governments, and stakeholders to develop watershed-scale TMDLs, restoration and protection strategies, and plans for each of Minnesota's 80 major watersheds. The information gained and strategies developed in the watershed approach are presented in major watershed-scale Watershed Restoration and Protection Strategy (WRAPS) Reports, which should help restore and protect streams, lakes, and wetlands across the watershed, including those for which TMDL calculations are not made.

The watershed approach started in the Chippewa River Watershed in 2009 with intensive watershed monitoring (MPCA 2012a) and subsequent assessment which resulted in 13 stream reaches and 25 lakes being listed as impaired for one or more water quality parameters (Figure 1.1).

This document addresses Chippewa River Watershed impairments identified in the 2009 monitoring and assessment cycle that have not been addressed in prior TMDLs, have an approved water quality standard, and have sufficient data for assessment. The findings of this report are similar to previous TMDLs that were done in the study area. Refer to these TMDL report webpages for more details: *Pope Lakes TMDL* (MPCA 2011b), the *TSS TMDL for Chippewa River Watershed* (Wenck 2014), and the *Chippewa River Fecal Coliform TMDL Report* (MPCA 2006). Slight differences are attributed to the change in standards (from fecal coliform to *E. coli* and Turbidity to Total Suspended Solids) that occurred between TMDL reports. Several biological impairments and the stressors identified with those impairments were identified within the watershed; however, due to lack of supporting data some of these impairments were deferred until sufficient data can be collected.

1.2 Identification of Waterbodies

This TMDL report applies to 43

separate impairment listings for 13 stream reaches and 25 lakes in the Chippewa River Watershed (Table 1.1). Supporting documentation for the proposed listing of the impairments can be found in:

Chippewa River Watershed Monitoring and Assessment Report (MPCA 2012b)

Chippewa River Watershed Stressor Identification Report (MPCA 2012d)

Table 1.1: Chippewa River Watershed 303(d) impairments addressed in this TMDL report grouped by HUC10 watersheds

HUC10 Subwatershed	Stream Reach or Lake Name Stream Reach Description	Stream Use Class or Lake Ecoregi on & Type	Assessment Unit ID or DNR Lake #	Affected Designated Use	Year Listed	Impairment
	Chippewa River Shakopee Cr to Cottonwood Cr	2B	07020005- 507	Aquatic Life	2012	Macro Invertebrate IBI
Chippewa River	Cottonwood Ci			Aquatic Life/ Recreation	2012	Turbidity
	Tributary to Chippewa River Unnamed cr to	2B	07020005- 584	Aquatic Recreation	2014	Escherichia coli
	Chippewa R		001	Aquatic Life	2012	Dissolved Oxygen
	Chippewa River E Br Chippewa R to Shakopee Cr	2B	07020005- 506	Aquatic Recreation	2012	Escherichia coli
County Ditch No. 3 - Chippewa River	County Ditch No. 3 CD 7 to Chippewa R	2B	07020005- 579	Aquatic Recreation	2014	Escherichia coli
	Long Lake	NGP	75-0024-00	Aquatic Life/ Recreation	2012	Nutrient Eutrophication
Cottonwood Creek	Cottonwood Creek T120 R41W S21, west line to Chippewa R	2B	07020005- 511	Aquatic Recreation	2014	Escherichia coli
East Branch Chippewa River	East Branch Chippewa River Headwaters (Amelia Lk 61- 0064-00) to Mud Cr	2B	07020005- 515	Aquatic Recreation	2012	Escherichia coli
	Swenoda	NCHF	61-0051-00	Aquatic Life/ Recreation	2012	Nutrient Eutrophication
	Hanson	NCHF	61-0080-00	Aquatic Life/ Recreation	2012	Nutrient Eutrophication

HUC10 Subwatershed	Stream Reach or Lake Name Stream Reach Description	Stream Use Class or Lake Ecoregi on & Type	Assessment Unit ID or DNR Lake #	Affected Designated Use	Year Listed	Impairment
	Rasmuson	NGP	61-0086-00	Aquatic Life/ Recreation	2012	Nutrient Eutrophication
	Mary	NCHF	61-0099-00	Aquatic Life/ Recreation	2012	Nutrient Eutrophication
	Edwards	NCHF	61-0106-00	Aquatic Life/ Recreation	2012	Nutrient Eutrophication
	Hassel	NGP	76-0086-00	Aquatic Life/ Recreation	2012	Nutrient Eutrophication
Judicial Ditch No. 19	South Mud Creek T121 R39W S2, south line to E Br Chippewa R	2B	07020005- 518	Aquatic Recreation	2014	Escherichia coli
	Hollerberg	WCBP	76-0057-00	Aquatic Life/ Recreation	2010	Nutrient Eutrophication
	Outlet Creek Lk Minnewaska to Lk Emily			Aquatic Life	2012	Macro Invertebrate IBI
		2В	07020005- 523	Aquatic Life	2012	Fish IBI
Lake Minnewaska				Aquatic Recreation	2012	Escherichia coli
	Trappers Run Creek Strandness Lk to Pelican Lk	2B	07020005- 628	Aquatic Recreation	2014	Escherichia coli
	John	NCHF	61-0123-00	Aquatic Life/ Recreation	2012	Nutrient Eutrophication
Mud Creek	North Mud Creek	2B	07020005-	Aquatic Recreation	2014	Escherichia coli
	CD 15 to E Br Chippewa R	20	554	Aquatic Life	2012	Dissolved Oxygen

HUC10 Subwatershed	Stream Reach or Lake Name Stream Reach Description	Stream Use Class or Lake Ecoregi on & Type	Assessment Unit ID or DNR Lake #	Affected Designated Use	Year Listed	Impairment
	Johanna	NCHF	61-0006-00	Aquatic Life/ Recreation	2010	Nutrient Eutrophication
	Simon	NCHF	61-0034-00	Aquatic Life/ Recreation	2012	Nutrient Eutrophication
	Monson	NCHF	76-0033-00	Aquatic Life/ Recreation	2012	Nutrient Eutrophication
	Shakopee Creek Swan Lk to Shakopee Lk	2C	07020005- 557	Aquatic Recreation	2012	Escherichia coli
Shakopee Creek	Huse Creek Headwater to Norway Lk	2B	07020005- 917	Aquatic Recreation	2010	Escherichia coli
	Norway	NCHF Lake	34-0251-02	Aquatic Life/ Recreation	2012	Nutrient Eutrophication
	West Norway	NCHF Shallow Lake	34-0251-01	Aquatic Life/ Recreation	2012	Nutrient Eutrophication
Little Chippewa River	Little Chippewa River Unnamed cr to CD 2	2B	07020005- 713	Aquatic Recreation	2010	Escherichia coli
	Jorgenson	NCHF	61-0164-00	Aquatic Life/ Recreation	2012	Nutrient Eutrophication
	McIver	NGP	61-0199-00	Aquatic Life/ Recreation	2012	Nutrient Eutrophication
	Irgens	NCHF	61-0211-00	Aquatic Life/ Recreation	2012	Nutrient Eutrophication
Headwaters Chippewa River	Gilbert	NCHF	21-0189-00	Aquatic Life/ Recreation	2012	Nutrient Eutrophication

HUC10 Subwatershed	Stream Reach or Lake Name Stream Reach Description	Stream Use Class or Lake Ecoregi on & Type	Assessment Unit ID or DNR Lake #	Affected Designated Use	Year Listed	Impairment
	Red Rock	NGP	21-0291-00	Aquatic Life/ Recreation	2008	Nutrient Eutrophication
	Jennie	NGP	21-0323-00	Aquatic Life/ Recreation	2008	Nutrient Eutrophication
	Long	NCHF	21-0343-00	Aquatic Life/ Recreation	2012	Nutrient Eutrophication
	Thompson	NGP	26-0020-00	Aquatic Life/ Recreation	2012	Nutrient Eutrophication
	Block	NCHF	56-0079-00	Aquatic Life/ Recreation	2012	Nutrient Eutrophication
	Wicklund	NGP	61-0204-00	Aquatic Life/ Recreation	2012	Nutrient Eutrophication
	Danielson Slough	NGP	61-0194-00	Aquatic Life/ Recreation	2012	Nutrient Eutrophication

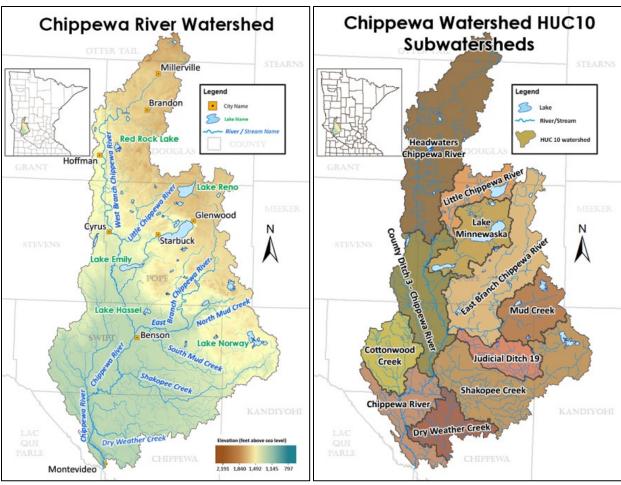


Figure 1.1 Overview map of the Chippewa River Watershed and map of subwatershed areas

1.3 Priority Ranking

The MPCA's projected schedule for TMDL completions, as indicated on the 303(d) impaired waters list, reflects Minnesota's priority ranking of this TMDL. Every 10 years Minnesota's 80 major watersheds are on a schedule to be monitored and assessed. Ranking criteria for scheduling TMDL projects include, but are not limited to: impairment impacts on public health and aquatic life; public value of the impaired water resource; likelihood of completing the TMDL in an expedient manner, including a strong base of existing data and restorability of the waterbody; technical capability and willingness locally to assist with the TMDL; and appropriate sequencing of TMDLs within a watershed or basin.

2. Applicable Water Quality Standards and Numeric Water Quality Targets

The criteria used to determine stream and lake impairments are outlined in the MPCA's document Guidance Manual for Assessing the Quality of Minnesota Surface Waters for the Determination of Impairment: 305(b) Report and 303(d) List (MPCA 2014a). Minn. R. ch. 7050.0470 lists waterbody classifications and Minn. R. ch. 7050.2222 lists applicable water quality standards. The impaired waters covered in this TMDL are classified as Class 2B or 2C, 3B, 3C, 4A, 5, 6 and 7. Relative to aquatic life and recreation, the designated beneficial uses for the most stringent classifications, 2B and 2C waters, are:

Class 2B waters – The quality of Class 2B surface waters shall be such as to permit the propagation and maintenance of a healthy community of cool or warm water sport or commercial fish and associated aquatic life and their habitats. These waters shall be suitable for aquatic recreation of all kinds, including bathing, for which the waters may be usable.

Class 2C waters – The quality of Class 2C surface waters shall be such as to permit the propagation and maintenance of a healthy community of indigenous fish and associated aquatic life, and their habitats. These waters shall be suitable for boating and other forms of aquatic recreation for which the waters may be usable.

The water quality standards shown in Table 2.1 and Table 2.2 are the numeric water quality target for each parameter shown. For more detailed information refer to the <u>MPCA TMDL Policies and Guidance</u> (MPCA 2014b).

Table 2.1: Surface water quality standards for Chippewa River Watershed stream reaches addressed in this TMDL report

Parameter	Water Quality Standard	Units	Criteria	Period of Time Standard Applies	
<i>Escherichia coli</i> ; Class 2 waters	Not to exceed 126	org/100 mL	Monthly geo mean of at least 5 samples within one calendar month	Audid Oteler	
	Not to exceed 1,260	org/100 mL	Monthly upper 10 th percentile	April 1 – October 31	
TSS; Class 2 waters	Not to Exceed 65	mg/L	> 10% of total samples cannot exceed 65 mg/L	April - September	
Dissolved Oxygen	Daily Minimum 5.0	mg/L	100% of days above 7Q10 flow; 50% of days at 7Q10 flow	Year Round	
Fish Class	2 - Southern Streams				
Fish Bio Assessment Threshold Scores	Not Below 54				
Invert Class	2 – Prairie Forest Rivers 7 - Prairie Streams Glide Pool				
Macro-invertebrate Bio Assessment Threshold Scores	Not Below 41.5 Not Below 51.9				

The class 2B turbidity standard (Minn. R. ch. 7050.0222) that was in place at the time of the impairment assessment for reaches in the Chippewa River Watershed was 25 nephelometric turbidity units (NTUs). Impairment listings occur when greater than 10% of data points collected within the previous 10-year period exceed the 25 NTU standards (or equivalent values for TSS or the transparency tube).

The aforementioned 25 NTU turbidity standard had several weaknesses, including its application statewide and, since turbidity is a measure of light scatter and absorption, it is not a mass unit measurement and therefore not amenable to TMDLs and other load-based studies. Although previously recognized, these weaknesses became a significant problem when the U.S. Environmental Protection Agency (EPA) and the MPCA's TMDL program became fully realized in the early 2000s.

As a result, a committee of MPCA staff across several divisions met for over a year to develop TSS criteria to replace the turbidity standards. These TSS criteria are regional in scope and based on a combination of both biotic sensitivity to the TSS concentrations and reference streams/least impacts streams as data allow. The results of the TSS criteria development were published by the MPCA in 2011 and proposed a 65 mg/L TSS standard for Class 2B waters in the southern region of the state of Minnesota that may not be exceeded more than 10% of the time over a multiyear data window. The assessment season is identified as April through September. The new TSS standards were approved by EPA in January of 2015. For the purpose of this TMDL report, the newly adopted 65 mg/L standard for

Class 2B waters will be used to address the turbidity impairment listings in the Chippewa River Watershed.

Table 2.2: Lake water quality standards for lakes within the Chippewa River Watershed

Ecoregion & Lake Type	Total Phosphorus Standard (µg/L)	Chlorophyll –a Standard (µg/L)	Secchi Depth (m)	Criteria	Period of Time Standard Applies
NGP Shallow Lake	Not to exceed 90	Not to exceed 30	Not below 0.7	Summer average of all samples	June 1 – September 30
WCBP Shallow Lake	Not to exceed 90	Not to exceed 30	Not below 0.7	Summer average of all samples	June 1 – September 30
NCHF Shallow Lake	Not to exceed 60	Not to exceed 20	Not below 0.7	Summer average of all samples	June 1 – September 30
NCHF Lake	Not to exceed 40	Not to exceed 14	Not below 1.4	Summer average of all samples	June 1 – September 30

In addition to meeting phosphorus limits, chlorophyll-a (Chl-a) and Secchi transparency standards must also be met. In developing the lake nutrient standards for Minnesota lakes (Minn. R. 7050), the MPCA evaluated data from a large cross-section of lakes within each of the state's ecoregions (MPCA 2005). Clear relationships were established between the causal factor total phosphorus (TP) and the response variables Chl-a and Secchi transparency. Based on these relationships it is expected that by meeting the phosphorus target in each lake, the Chl-a and Secchi standards will likewise be met.

3. Watershed and Waterbody Characterization

Located in West Central Minnesota, the Chippewa River Watershed covers more than 1.3 million acres in the Western Cornbelt Plains (WCBP), Northern Glaciated Plains (NGP), and North Central Hardwood Forest (NCHF) ecoregions and drains portions of nine counties (Otter Tail, Douglas, Grant, Stevens, Pope, Meeker, Swift, Kandiyohi, Chippewa). Benson and Glenwood are the largest towns in this largely rural watershed. Land use statistics of the Chippewa River Watershed are shown in Table 3.3 within Section 3.4. For more information on the Chippewa River Watershed, refer to the *Chippewa River Watershed Monitoring and Assessment Report* (MPCA 2012b).

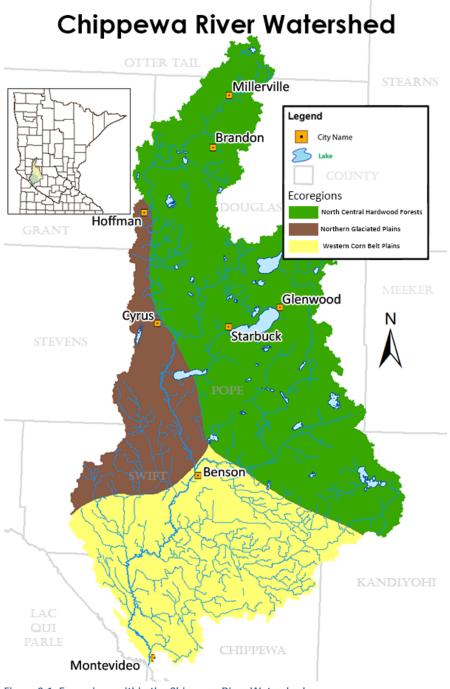


Figure 3.1: Ecoregions within the Chippewa River Watershed

3.1 Lakes

Chippewa River Watershed lake and morphometry data are listed in Table 3.1.

Table 3.1: Morphometry and watershed area of lakes addressed in this TMDL report

HUC 10 Subwatershed	Lake Name	DNR Lake #	Surface Area (acres)	Average Depth (feet)	Max Depth (feet)	Lakeshed Area (acres)	Lakeshed Area : Surface Area Ratio	Littoral Area (%)
County Ditch 3	Long Lake	75-0024- 00	620	4.9	9.5	3,481	5.6 : 1	100
County Ditch 3	Danielson Slough	61- 0194-00	142	3.3	4.9	6,029	42.5 : 1	100
	Mary	61- 0099-00	100	3.3	16.1	1,359	13.6 : 1	100
	Swenoda	61- 0051-00	388	3.3	5.9	2,048	5.3 : 1	100
East Branch Chippewa River	Edwards	61- 0106-00	165	3.3	8.5	4,317	26.2 : 1	100
Chippewa Kivei	Hanson	61- 0080-00	601	3.3	5.9	31,519	52.4 : 1	100
	Hassel	76- 0086-00	706	2	5	22,230	31.5 : 1	100
	Rasmuson	61- 0086-00	130	3.3	16.1	1,055	8.1 : 1	100
	Block	56- 0079-00	301	12.8	23	2,128	7.1 : 1	50
	Jennie	21- 0323-00	316	6.9	2	2,336	7.4 : 1	100
Headwaters Chippewa River	Long	21- 0343-00	205	5.9	18	91,284	445.3 : 1	100
	Gilbert	21-0189- 00	265	5.9	18	1,794	6.7 : 1	100
	Red Rock	21- 0291-00	781	11.5	22	5,762	7.4 : 1	56

HUC 10 Subwatershed	Lake Name	DNR Lake #	Surface Area (acres)	Average Depth (feet)	Max Depth (feet)	Lakeshed Area (acres)	Lakeshed Area: Surface Area Ratio	Littoral Area (%)
	Thompson	26- 0020-00	149	13.5	22	975	6.5 : 1	47
	Wicklund	61- 0204-00	148	3.3	4.9	6,213	41.9 : 1	100
Judicial Ditch 19	Hollerberg	76- 0057-00	260	3.3	5	2,713	10.4 : 1	100
	Jorgenson	61- 0164-00	119	3.3	16.1	1,062	8.9 : 1	92
Little Chippewa River	Irgens	61- 0211-00	198	3.3	5.6	13,119	66.3 : 1	100
	McIver	61- 0199-00	156	3.3	16.1	2,345	15 : 1	100
Minnnewaska	John	61- 0123-00	119	3.9	6.9	6,297	52.9 : 1	100
	Johanna	61- 0006-00	1,204	3.3	9.8	7,316	6.1 : 1	100
Mud Creek	Simon	61- 0034-00	569	3.3	8.9	3,384	5.9 : 1	100
	Monson	76- 0033-00	143	6.6	16.1	957	6.7 : 1	90
Shakopee Creek	Norway	34- 0251-02	1,197	9	33.1	24,893	21 : 1	78
Shakepoo or ook	West Norway	34- 0251-01	1,147	5.4	10	21,044	18.3:1	100

3.2 Streams

Estimated watershed drainage areas of impaired stream reaches addressed in this TMDL report are listed in Table 3.2. These areas consist of all of the land that drains into the respective reach.

Table 3.2: Approximate watershed areas of impaired stream reaches

HUC 10 Subwatershed	Stream Name – Reach Location Description	Assessment Unit ID #	Area (acres)
Chinnowa Divor	Chippewa River – Shakopee Creek to Cottonwood Creek	07020005-507	1,115,206
Chippewa River	Tributary to Chippewa River – Unnamed creek to Chippewa River	07020005-584	19,410
Cottonwood Creek	Cottonwood Creek – T120 R41W S21, west line to Chippewa River	07020005-511	79,357
County Ditch No. 3	Chippewa River – County Ditch No. 3 – County Ditch 7 to Chippewa River	07020005-579	59,537
County Ditch No. 3 - Chippewa River	Chippewa River – East Branch Chippewa River to Shakopee Creek	07020005-506	887,386
East Branch Chippewa River	· ·		133,820
Judicial Ditch No. 19	South Mud Creek – T121 R39W S2, south line to East Branch Chippewa River	07020005-518	56,716
Lake Minnewaska	Outlet Creek – Lake Minnewaska to Lake Emily	07020005-523	144,595
	Trapper Run Creek – Strandness Lake to Pelican Lake	07020005-628	24,404
Little Chippewa River	Little Chippewa River – Unnamed creek to County Ditch 2	07020005-713	63,853
Mud Creek	North Mud Creek – CD 15 to East Branch Chippewa River	07020005-554	82,806
	Shakopee Creek – Swan Lake to Shakopee Lake	07020005-557	124,142
	Judicial Ditch 29 – Headwaters to CD 29	07020005-566	1,631
Shakopee Creek	County Ditch 29 – Headwaters to unnamed ditch	07020005-567	4,276
	County Ditch 27 – unnamed ditch to unnamed ditch	07020005-570	8,209
	Huse Creek – Headwater to Norway Lake	07020005-917	2,273

3.3 Subwatersheds

The Chippewa River Watershed (07020005) is located in west central Minnesota. The watershed falls in three different Ecoregions. The NCHF Ecoregion covers the eastern two-thirds of the watershed, the NGP Ecoregion covers the west central part of the watershed, and the WCBP Ecoregion covers the southern part of the watershed. Much of the landscape of this watershed was modified by the early

settlers in the area. Draining wetlands and modifying stream channels were done to gain land for agriculture. Now approximately 79% of the watershed is used for agricultural production. Area within the watershed has been grouped together by HUC 10 subwatershed areas. This was done in order to group together land area that drains into the individual streams and tributaries that flow into the Chippewa River. The Headwaters HUC 10 in the northern part of the watershed marks the beginning of the watershed. As the river flows south it is joined by the Little Chippewa River and Outlet Creek from Lake Minnewaska. Downstream several small tributaries drain into the river, including the East Branch Chippewa River, Shakopee Creek, and Cottonwood Creek. Dry Weather Creek joins the Chippewa just before the confluence with the Minnesota River (See Figure 1.1).

3.4 Land Use

The land use for the entire watershed and HUC10 subwatersheds is summarized in Table 3.3 and shown in Figure 3.1 with the majority of the land being used for agricultural purposes.

Table 3.3: Approximate land use % breakdowns of Chippewa River Watershed HUC10 subwatersheds (MRLC 2011)

HUC-10 Subwatershed	Open Water	Developed	Barren/ Mining	Forest/ Shrub	Pasture/ Hay/ Grassland	Cropland	Wetland
Entire Chippewa River Watershed	6.1	5.0	0.1	4.3	10.7	68.5	5.3
County Ditch No. 3 - Chippewa River	2.0	5.8	0.4	1.2	6.5	73.9	10.2
Cottonwood Creek	0.2	6.3	0.1	0.5	2.4	82.8	7.7
East Branch Chippewa River	5.9	4.1	0	4.8	15.8	61.7	7.7
Judicial Ditch No. 19	1.1	5.0	0	1.4	5.0	83.9	3.6
Lake Minnewaska	14.8	6.3	0	4.5	12.7	57.7	4.0
Mud Creek	10.6	4.0	0	10.3	19.8	49.6	5.7
Shakopee Creek	5.0	4.7	0	3.8	6.6	76.9	3.0
Little Chippewa River	12.2	4.3	0	5.6	14.4	60.4	3.1
Headwaters Chippewa River	9.5	5.1	0	7.5	16.0	58.4	3.5
Chippewa River	0.7	6.1	0.1	1.6	4.7	80.2	6.6

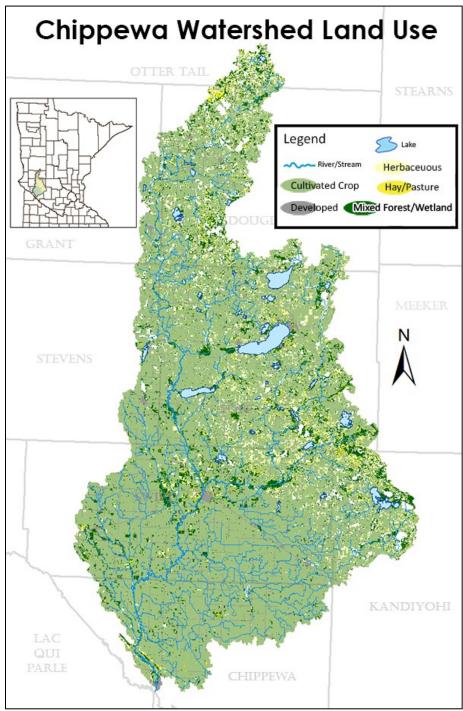


Figure 3.2: Land use of the Chippewa River Watershed

3.5 Current/Historic Water Quality

A summary of current water quality is provided in this section related to the *E. coli*, TSS, DO, IBI, and nutrient eutrophication impairments addressed in this TMDL report. Additional water quality data and analysis for impaired stream reaches can be found in the *Chippewa River Watershed Monitoring and Assessment Report* (MPCA 2012b) and the *Chippewa River Watershed Biotic Stressor Identification Report* (MPCA 2015).

3.5.1 Streams

3.5.1.1 *E. coli*

Bacteria data has been collected for multiple years in the Chippewa River Watershed. The summarized data is presented in Table 3.4. Geometric means were calculated using the following equation:

Geometric mean =
$$\sqrt[n]{x_1 * x_2 * \dots x_n}$$

Table 3.4: Summary of *E. coli* data from 2007-2010 for stream reaches impaired for *E. coli*. Red indicates exceedances of the *E. coli* standard as listed in Minn. R. 7050.0222, subp. 4

Reach Name	Range	% of samples exceeding				tric Mean # of samp			
Reach AUID # EQuIS Station ID	of data (org/mL)	1260 org/100mL [# of samples]	Apr	May	June	July	Aug	Sep	Oct
Chippewa River		July							
07020005-506 \$000-383	31- 1,414	25% [4]	-	-	143.3 [6]	200.7 [4]	239.6 [5]	-	-
Cottonwood		June							
Creek 07020005-511 S002-202	170 - 1,553	11% [6]	-	-	685.4 [6]	280 [4]	362.8 [5]	-	-
East Branch		July				363.9 [4]	467.1 [4]	-	
Chippewa River 07020005-515 S005-861	20 - 2,400	25% [4]	-	45.6 [6]	184.4 [6]				-
		Aug							
South Mud Creek 07020005-518 S002-195	50 - 1,553	20% [5]	-	-	91.6 [6]	83.4 [4]	174.4 [5]	-	-
		June							
Outlet Creek 07020004-523 S000-898	20 - 2,400	16.7% [6]	-	34.9 [8]	160.9 [6]	119.1 [6]	116.9 [5]	-	-
		June							
North Mud Creek 07020004-554 S005-633 S003- 372	115 - 1,352	16.7% [6]	-	-	334.8 [6]	184 .5 [4]	274.9 [6]	-	-

Reach Name	Range	% of samples exceeding				tric Mean # of sampl			
Reach AUID # EQuIS Station ID	of data (org/mL)	1260 org/100mL [# of samples]	Apr	May	June	July	Aug	Sep	Oct
Shakopee Creek 07020005-557 S005-374 S002- 550	4 – 2,419	June 30.7% [13] July 18.2% [11]	52 .5 [2]	29.9 [14]	304 [13]	326 [11]	203.5 [8]	399.9 [2]	-
County Ditch No. 3 07020005-579 S003-507	42-548	0%	-	-	265.7 [6]	118.9 [4]	120.6 [5]	-	-
Tributary to Chippewa River 07020005-584 S005-629	64 – 2,419	June 16.7% [6]	-	-	397.7 [6]	170.2 [4]	146.2 [5]	-	-
Trappers Run Creek 07020005-628 S005-631	59 – 2,419	July 25% [4]	-	-	144 [6]	399. 8 [4]	375.4 [5]	-	-
Little Chippewa River 07020005-713 S004-705	5 – 2,419	July 11% [9]	-	37.1 [8]	847.6 [12]	603 [9]	398.1 [10]	-	-
Huse Creek 07020005-917	1 – 2,400	April	55.7 [6]	9.3 [13]	143.8 [8]	-	-	-	-
S002-207	2,400	33.3% [6]		[13]					

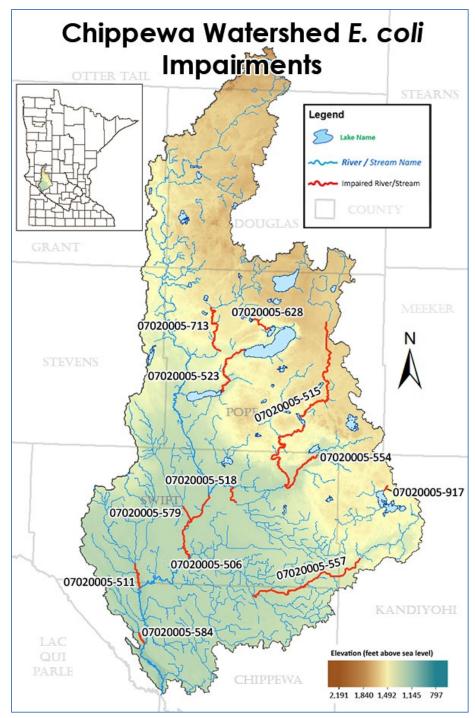


Figure 3.3: E. coli stream reach impairments

3.5.1.2 TSS

Transparency tube data has been collected for multiple years in the Chippewa River Watershed, the summarized data is presented in Tables 3.5-3.6.

Table 3.5: Summary of T-tube converted into S-tube equivalent data from 2002-2011 for stream reaches impaired for turbidity. Red indicates exceedances of the S-tube surrogate TSS standard

Stream Name Reach AUID #	Range of Data		% of M	_	amples (imples]	<10 cm		% of Total Samples <10cm
EQuIS Station ID	(cm)	Apr	May	Jun	Jul	Aug	Sep	[# of samples]
Chippewa River 07020005-507 S000-397; S000- 398; S000-399; 09MN063; 09MN068	8 – 69+	0% [0]	0% [3]	42 % [7]	11% [18]	6% [17]	0 % [3]	12.5% [48]

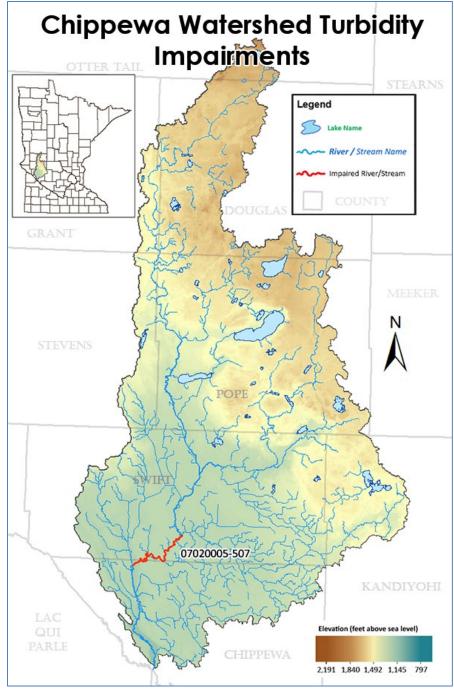


Figure 3.4: Turbidity stream reach impairments

3.5.1.3 Dissolved Oxygen

The DO data has been collected for multiple years in the Chippewa River Watershed, the summarized data is presented in Table 3.7.

Table 3.6: Summary of DO data from 2001-2008 for stream reaches impaired for low DO. Red indicates exceedances of standard

Reach Name Reach AUID #	Station ID	% of measurements <5mg/L [# of samples]
North Mud Creek 07020005-554	09MN002; 03MN056; S005-629; S005-864	<mark>12.7%</mark> [71]
Tributary to Chippewa River 07020005-584	S003-372; S005-633; S005-990	<mark>16%</mark> [31]

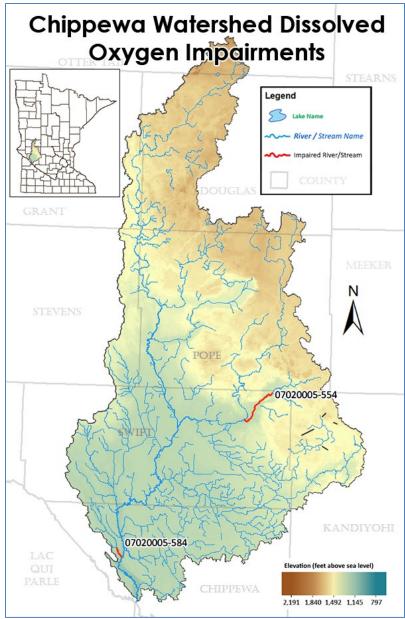


Figure 3.5: DO stream reach impairments

3.5.1.4 Index of Biological Integrity (IBI)

Minnesota's standard for biotic integrity is set forth in Minn. R. 7050.0150. The standard uses an IBI, which evaluates and integrates multiple attributes of the aquatic community or "metrics" to evaluate a complex biological system. Each metric is based upon a structural (e.g., species composition) or functional (e.g., feeding habits) aspect of the aquatic community that changes in a predictable way in response to human disturbance. Fish and macroinvertebrate IBIs are expressed as a score that ranges from 0 to 100, with 100 being the best score possible. The MPCA has evaluated fish and macroinvertebrate communities at numerous reference sites across Minnesota that have been minimally impacted by human activity, and has established IBI impairment thresholds based on stream drainage area, ecoregion and major basin. A stream's biota is considered to be impaired when the IBI for fish or macroinvertebrates falls below the threshold established for that category of stream.

Biological data has been collected for multiple years in the Chippewa River Watershed; the summarized data is presented in Table 3.7.

Table 3.7: Summary of IBI data from 2009 for stream reaches impaired for IBI score. Red indicates exceedances of and/or within the confidence interval of the standard

Reach Name Reach AUID # Station ID	Macro Inverteb	rate IBI Score	Fish IBI	Score
Chippewa River	8/6/2009	8/11/2009		
07020005-507 Invert Class 2 09MN063; 09MN068	ss 2 34.41		N/A	
Tributary to Chippewa River	8/12/2	2009	6/10/2009	6/17/2009
07020005-523 Invert Class 7 Fish Class 2 09MN065; 09MN077	33.4	15	41	49

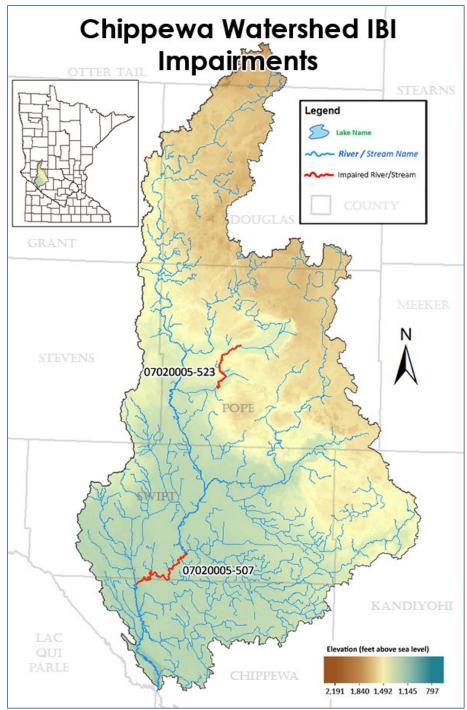


Figure 3.6: IBI stream reach impairments

3.5.2 Lakes

Current lake conditions are based on monitoring completed within the last 10 years. The summarized data presented in Table 3.8 indicates that the listed lakes have exceeded the nutrient eutrophication standard as listed in Minn. R. 7050.0222, subp. 4. and Table 2.2.

Table 3.8: Mean in-lake conditions for impaired lakes in the Chippewa River Watershed. The number of samples taken June through September is listed in brackets. Red indicates exceedances of the standard

Lake Name	DNR#	Ecoregion & Lake Type	Average Total Phosphorus (µg/L) [# of samples]	Average Chlorophyll-a (µg/L) [# of samples]	Average Secchi Disk Transparency (m) [# of samples]
Block	56-0079-00	NCHF Lake	81 [12]	33.3 [12]	1.9 [20]
Danielson Slough	61-0194-00	NGP Shallow Lake	147 [13]	69.5 [13]	0.7 [13]
Edwards	61-0106-00	NCHF Shallow Lake	220 [12]	105.8 [12]	1.0 [12]
Gilbert	21-0189-00	NCHF Lake	72 [10]	36 [10]	0.6 [34]
Hanson	61-0080-00	NCHF Shallow Lake	111 [12]	40.6 [12]	0.7 [12]
Hassel	76-0086-00	NCHF Shallow Lake	200 [9]	72.8 [8]	0.18 [9]
Hollerberg	76-0057-00	NCHF Shallow Lake	76.1 [14]	32.6 [14]	0.77 [14]
Irgens	61-0211-00	NCHF Shallow Lake	203 [12]	90.8 [12]	0.5 [12]
Jennie	21-0323-00	NCHF Shallow Lake	158.8 [19]	76.5 [18]	0.41 [19]
Johanna	61-0006-00	NCHF Shallow Lake	70.1 [29]	45 [29]	1.5 [29]
John	61-0123-00	NCHF Shallow Lake	141 [12]	81.1 [12]	0.6 [12]
Jorgenson	61-0164-00	NCHF Shallow Lake	210 [12]	124.4 [12]	0.5 [12]
Long	21-0343-00	NCHF Lake	99 [8]	44.5 [8]	0.6 [8]
Long	75-0024-00	NGP Shallow Lake	150 [8]	31.8 [8]	0.9 [8]
Mary	61-0099-00	NCHF Shallow Lake	110 [12]	81.5 [12]	0.6 [11]
McIver	61-0199-00	NCHF Shallow Lake	177 [12]	103.8 [12]	0.6 [12]

Monson	76-0033-00	NCHF Shallow Lake	84.1 [8]	39.6 [8]	1.3 [49]
Norway	34-0251-02	NCHF Lake	49.3 [30]	55.5 [31]	1.4 [34]
Rasmuson	61-0086-00	NCHF Shallow Lake	149 [12]	85.3 [12]	0.7 [12]
Red Rock	21-0291-00	NCHF Lake	131 [38]	38 [27]	1.67 [168]
Simon	61-0034-00	NCHF Shallow Lake	124 [13]	68.8 [13]	0.31 [13]
Swenoda	61-0051-00	NCHF Shallow Lake	91 [12]	56.9 [12]	0.6 [12]
Thompson	26-0020-00	NCHF Lake	136 [8]	38.6 [8]	1.4 [8]
West Norway	34-0251-01	NCHF Shallow Lake	78 [29]	36.4 [29]	1.4 [34]
Wicklund	61-0204-00	NCHF Shallow Lake	178 [12]	40.9 [12]	0.8 [12]

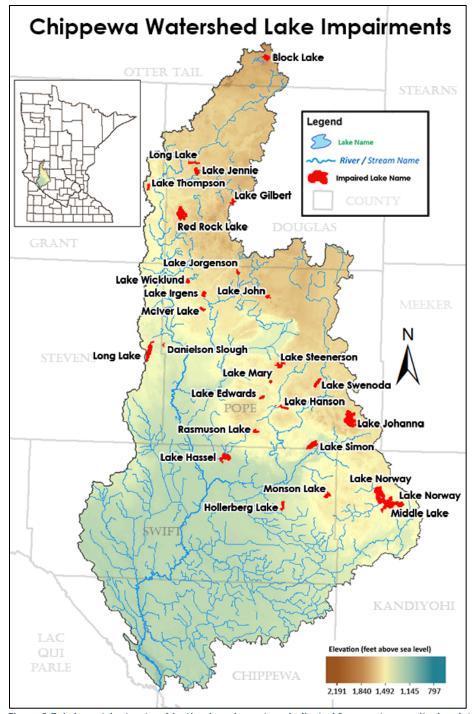


Figure 3.7: Lake nutrient eutrophication impairments as indicated from water monitoring data

3.6 Pollutant Source Summary

3.6.1 *E. coli*

Likely sources of bacteria in the Chippewa River Watershed include feedlot facilities, wastewater treatment facilities (WWTF), subsurface sewage treatment systems (SSTS), livestock manure field application, pasture, natural reproduction, wildlife, and pets. These are described in more detail below.

Feedlot Facilities – Feedlot facilities are present in the Chippewa River Watershed. Facility and livestock numbers by HUC10 watersheds, based on the MPCA record of registered feedlot facilities, are listed in Table 3.9. Out of the 934 feedlots, approximately 22 of them meet or exceed the EPA large CAFO threshold. The majority of the feedlots in the watershed are less than 500 animal units.

Livestock can contribute bacteria to the watershed through runoff from these feedlot facilities. In the Chippewa River Watershed there are 205 feedlots located within 1000 feet of a lake or 300 feet of a stream or river, an area generally defined as shoreland. One hundred eighty-five of these feedlots in shoreland have an open lot. Open lots present a potential pollution hazard if the runoff from the open lot is not treated prior to reaching surface water. Four of the feedlots in shoreland are operating under an Open Lot Agreement (OLA) with the MPCA. These feedlot sites have been identified as actually having a potential pollution hazard and have or will install short term measures to minimize untreated manure runoff until permanent measures can be installed.

Of the approximately of 934 feedlots in the CRW, there are 21 active NPDES permitted operations, of which all of them are Concentrated Animal Feeding Operation (CAFOs). In Minnesota, NPDES permits are issued to facilities with over 1,000 animal units (AUs), most of which are CAFOs (an EPA definition that implies not only a certain number of AUs but also specific animal types e.g. 2500 swine is a CAFO, 1000 cattle is a CAFO but a site with 2499 swine and 999 cattle is not a CAFO according to the EPA definition). The MPCA currently uses the federal definition of a CAFO in its regulation of animal feedlots. In Minnesota, the following types of livestock facilities are issued, and must operate under, a NPDES Permit: a) all federally defined CAFOs, some of which are under 1000 AUs in size; and b) all CAFOs and 60 non-CAFOs that have 1000 or more AUs. These feedlots must be designed to totally contain runoff, and manure management planning requirements are more stringent than for smaller feedlots. In accordance with the state of Minnesota's agreement with EPA, CAFOs with state-issued General NPDES Permits must be inspected twice during every five year permitting cycle and CAFOs with state issued Individual NPDES Permits are inspected annually. The number of AUs by animal type registered with the MPCA feedlot database is summarized in Table 3.9. Facility and livestock numbers by HUC10 subwatersheds, based on the MPCA record of registered feedlot facilities, are listed in Table 3.9. These numbers include both county permitted and NPDES permitted feedlot facilities, both of which are not allowed to discharge animal waste into surface waters. Manure from these feedlots is applied as fertilizer to agricultural fields and is discussed below.

Table 3.9: Number of feedlot facilities and animal units, by HUC10 subwatershed

HUC10 Subwatershed	# of Feedlot Facilities	Livestock Type	Animal Units
Entire Chippewa River Watershed	934	Birds, Bovines, Deer/Elk, Goats/Sheep, Horses, Llamas/Alpacas, Pigs, Other	184,282
Headwaters Chippewa River	255	Birds, Bovines, Goats/Sheep, Horses, Donkey/Mule, Llamas/Alpacas, Pigs	36,343
Little Chippewa River	86	Birds, Bovines, Goats/Sheep, Horses, Donkey/Mule, Llamas/Alpacas, Pigs, Other	13,299
Lake Minnewaska	83	Birds, Bovines, Goats/Sheep, Horses, Pigs	11,969
Mud Creek	71	Bovines, Deer/Elk, Horses, Pigs	9,780
Judicial Ditch 19	34	Birds, Bovines, Goats/Sheep, Horses, Pigs	5,724
East Branch Chippewa River	123	Birds, Bovines, Deer/Elk, Goats/Sheep, Pigs	21,183
County Ditch No. 3 – Chippewa River	85	Bovines, Pigs	23,830
Shakopee Creek	136	Birds, Bovines, Pigs, Goats/Sheep, Horses	37,456
Cottonwood Creek	22	Birds, Bovines, Donkey/Mule, Goats/Sheep, Horses, Pigs, Rabbit	12,283
Dry Weather Creek	15	Birds, Bovines, Goats/Sheep, Horses, Pigs	5,347
Chippewa River	24	Birds, Bovines, Donkey/Mule, Goats/Sheep, Horses, Pigs	7,069

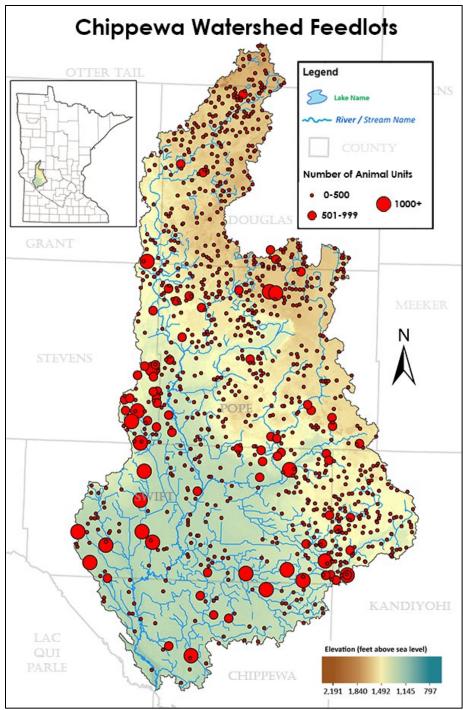


Figure 3.8: Feedlot facility locations of county permitted and state NPDES permitted facilities

Wastewater Treatment Facilities – Human waste can be a significant source of *E. coli* during low flow periods. Fourteen WWTFs discharge into the impaired stream reaches addressed in this TMDL report. Eleven of these facilities have controlled discharge (pond) systems with discharge windows during higher flows. These controlled discharge facilities are not likely to be a source during low flow periods. Three of the facilities are continuous discharge systems, constantly releasing treated wastewater. These continuous discharge facilities are not likely to be a source during low flow periods if the facilities meet their permit limits. Rarely, during extreme high flow conditions, WWTF may also be a source if they

become overloaded and have an emergency discharge of partially or untreated sewage, known as a release.

ssts – Each year counties are required to submit annual reports to the MPCA regarding SSTS activity within their respective county. While only aggregate information is reported by county and thus actual location of individual SSTS is not known, there is a large amount of failing and imminent public health threat classified SSTS systems in the eight counties in the Chippewa River Watershed. These failing systems are inspected and permitted by the counties. Excluding Grant, Kandiyohi, Otter Tail, and Stevens counties as they only have a small portion of their county in the watershed, the remaining four counties, Chippewa, Douglas, Pope and Swift, have a reported 17,535 SSTS located within these counties. Of the 17,535 SSTS, 3,773 are considered failing and an additional 2,118 are considered imminent public health threats, which could potentially discharge inadequately treated wastewater into waterways and are a potential source, especially during low flow conditions.

Manure – Manure is a by-product of animal production and large numbers of animals create large quantities of manure. This manure is usually stockpiled or held in liquid manure storage basins and then spread over agricultural fields to help fertilize the soil. There is significant amount of winter application of manure onto snow covered or frozen soils and can contribute to the initial bacteria that later reproduce.

Pasture – Livestock can contribute bacteria to the watershed through runoff from poorly maintained pasture lands as well as direct loading if livestock are allowed access to streams or lakes.

Natural Reproduction – *E. coli* bacteria may have the ability to reproduce naturally in water and sediment. Two Minnesota studies describe the presence and growth of "naturalized" or "indigenous" strains of *E. coli* in watershed soils (Ishii et al. 2006) and ditch sediment and water (Sadowsky et al. 2010). The latter study was conducted in the agriculturally-dominated Seven Mile Creek Watershed located in south central Minnesota. As much as 36% of *E. coli* strains found in the Seven Mile Study was represented by multiple isolates, suggesting persistence of specific *E. coli*. While the primary author of the study suggests 36% might be used as a rough indicator of "background" levels of bacteria during this study, this percentage is not directly transferable to the concentration and count data of *E. coli* used in water quality standards and TMDLs. Additionally, because the study is not definitive as to the ultimate origins of the bacteria, it would not be appropriate to consider it as "natural" background (MPCA 2012a). Caution should be used before extrapolating the results of the Seven Mile Creek Study to other watersheds.

Wildlife/Pets – E. coli bacteria comes from the digestive tracts of mammals and birds and as such, some E. coli may be present in the water from these sources.

3.6.2 TSS

Likely sources or causes of TSS in the Chippewa River Watershed include atmospheric deposition, WWTFs, overland erosion from land practices, and hydrologic changes within the watershed. These are described in more detail below.

Atmospheric Deposition– Windblown sediment is likely a source of TSS in surface waters in the Chippewa River Watershed. Dust from industrial and construction sites, bare soils, and developed areas can all contribute TSS to surface waters.

Wastewater Treatment Facilities— Human waste can be a source of TSS. Fourteen WWTFs discharge into the impaired stream reaches addressed in this TMDL report. Eleven of these facilities have controlled discharge (pond) systems with discharge windows during higher flows. These controlled discharge facilities are not likely to be a source during low flow periods. Three of the facilities are continuous discharge systems, constantly releasing treated wastewater. These continuous discharge facilities are not likely to be a source of during low flow periods if the facilities meet their permit limits. Rarely, during extreme high flow conditions, WWTF may also be a source if they become overloaded and have an emergency discharge of partially or untreated sewage, known as a release.

Overland Erosion – High TSS can occur when heavy rains fall on unprotected soils, dislodging soil particles, which are transported by surface runoff (SRO) into the rivers and streams (MPCA and MSUM 2009). First order streams, ephemeral streams, and gullies are typically higher up in the watershed and can flow intermittently, which makes them highly susceptible to disturbance. These sensitive areas have a very high erosion potential, which can be exacerbated by farming practices. According to Pierce, "In low-lying areas amenable to extensive row-cropping, forests and perennial grasslands are replaced with annual crops, leaving the land unvegetated (sic) for much of the year. It is well established that removal of vegetation leads to erosion, particularly when followed by recurring conventional tillage". (Pierce 2012). The majority of unprotected soil in the watershed is on agricultural fields, but a percentage every year is unprotected for a variety of reasons, such as construction, mining, or insufficiently vegetated pastures.

Hydrologic Changes – Hydrological changes in the landscape such as subsurface drainage tiling, channelization of waterways, riparian land cover alteration, and increases in impervious surfaces can all lead to increased TSS. There are several different ways that changing the hydrology of the watershed can affect water quality. Draining and tiling wetlands decreases water storage on the landscape. Wetlands often form in low areas where the landscape, soils, or a combination of both create an area where water collects. When a wetland is drained, water is moved off of the land at a higher velocity and in a shorter amount of time. The straightening and ditching of natural rivers, both for agricultural drainage or diversions around cities, increases the slope of the original watercourse and also moves water off of the land at a higher velocity and in a shorter amount of time. Changes to the way water moves through a watershed and how it makes its way into the river can lead to increases in water velocity, scouring of the river channel, and increased erosion of the river banks (Schottler et al. 2012) and ravines. Ravine contributions occur in locations where a flow path drops elevation drastically. The natural erosion rates of many ravines are exponentially increased as the amount of water traveling down the ravine is increased due to a drainage outlet discharging at the top a ravine. Figure 3.9 shows the altered hydrology within the Chippewa River Watershed. Velocity changes associated with unpermitted stormwater systems/drainage ditches are modeled in HSPF by partitioning runoff to SRO (rather than shallow or deeper groundwater) based on land use and impervious to pervious area. The SRO from an impervious area will arrive at the receiving waterbody sooner than shallow and deeper groundwater from pervious areas. The effects of ditching are captured in HSPF through GIS analysis during model framework development. A spatial analysis calculates the average distance from all the land area in a particular land category to the receiving waterbody. The presence of ditches reduces the average length of the overland flow plane for a land category. Therefore the presence of ditches reduces the time it takes for watershed runoff to arrive at the receiving waterbody. The effects of agricultural

tiling is modeled by shallow groundwater/interflow arriving at the receiving waterbody sooner that deeper groundwater/baseflow.

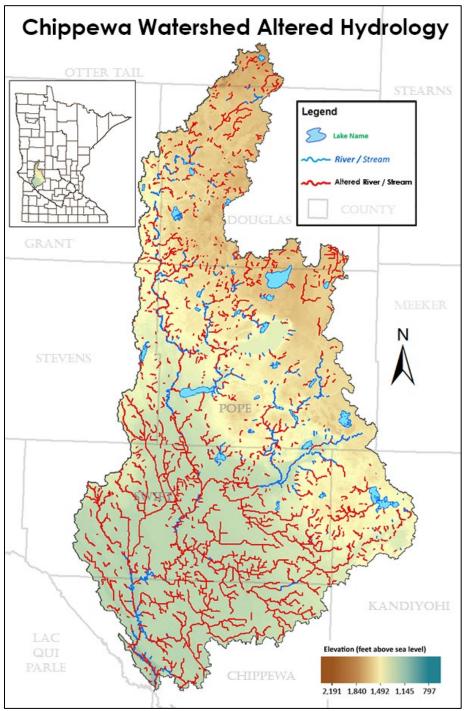


Figure 3.9: Altered hydrology of Chippewa River Watershed

3.6.3 Nutrient Eutrophication

Phosphorus source categories as well as runoff and phosphorus loads were extracted from the Chippewa River Watershed HSPF model. Likely sources of phosphorus in surface water of the Chippewa River Watershed include atmospheric load, SSTS, WWTFs, manure application on agricultural fields, upland erosion, fertilizer application, stream bank erosion, and internal loading. The pathways for

pollutants to make their way into surface water include: overland and in-channel erosion, direct discharges, direct precipitation, open tile in-takes, tile lines, and WWTF. These are described in more detail below.

Atmospheric Deposition – Direct atmospheric deposition to the surface of the lakes was based on regional values (Verry and Timmons 1977). Sources of particulate phosphorus in the atmosphere may include pollen, soil erosion, oil and coal combustion and fertilizers. The atmospheric export coefficient used in the model was 0.3 kg/ha.

SSTS –The compliance rate of septic systems cannot be determined without individual inspections. Each year counties are required to submit annual reports to the MPCA regarding SSTS activity within their respective county. While only aggregate information is reported by county and thus actual location of individual SSTS is not known, there is a large amount of failing and imminent public health threat classified SSTS system in the eight counties in the Chippewa River Watershed. Excluding Grant, Kandiyohi, Otter Tail, and Stevens counties as they only have a small portion of their county in the watershed; the remaining four counties, Chippewa, Douglas, Pope and Swift, have a reported 17,535 SSTS located within these counties. Of the 17,535 SSTS, 3,773 are considered failing and an additional 2,118 are considered imminent public health threats. These systems could potentially discharge inadequately treated wastewater into waterways and are a source of nutrients. Phosphorus loads from septics were applied to the lake models using estimates from the HSPF model. The estimates of phosphorus load represented less than 1% of the external load for each of the lakes modeled.

Manure Application – Manure is a by-product of animal production and large numbers of animals create large quantities of manure. This manure is usually stockpiled or held in liquid manure storage basins and then spread over agricultural fields to help fertilize the soil. There is significant amount of winter application of manure onto snow covered or frozen soils. High intensity precipitation events during the spring can cause erosion of both the soil as well as the manure that is applied onto the soil.

Upland Erosion – Gullies and ephemeral streams are typically higher upstream in the watershed and can flow intermittently, which makes them highly susceptible to disturbance. These sensitive areas have a very high erosion potential, which can be magnified by some farming practices. Since phosphorus is adsorbed to the soil particles erosion of the soil causes nutrients to move into surface waters. The majority of unprotected soil in the watershed is on agricultural fields.

Fertilizer Application – During precipitation events, runoff from fields can contain nutrients from applied fertilizer. Due to overland erosion, runoff makes its way into open tile intakes, through a network of drainage tile, and eventually into surface waters.

Stream Bank Erosion – The increase in both the velocity and amount of water by drainage, channel widening, and channel straightening can increase flows, which increases stream energy. This energy can cause loading of sediment through streambank erosion. Phosphorus ions can be attached to this sediment and can excessively load waterbodies. Removal of vegetation and buffers along the stream can also increase erosion and streambank instability.

Internal Load – Under anoxic conditions, weak iron-phosphorus bonds break, releasing phosphorus in a highly available form for algal uptake. Carp and other rough fish present in lakes can lead to increased nutrients in the water column as they uproot aquatic macrophytes during feeding and spawning and resuspend bottom sediments. Over-abundance of aquatic plants can limit recreation activities and invasive

aquatic species such as curly-leaf pondweed can change the dynamics of internal phosphorus loading. Historical impacts, such as WWTF effluent discharge, can also affect internal phosphorus loading. The nutrient retention models within the BATHTUB framework already account for nutrient recycling. However, additional internal load was added to 12 of the lake models ranging from 0.1 to 2.5 mg·m²·day¹ to bring predicted phosphorus concentrations more in line with the observed. Ideally, independent measurements of internal load would be available to verify the use of additional internal loading. Such data is not available for the impaired Chippewa River Watershed lakes. However, these internal loading values do fall within the range reported in the literature (Nürnberg 1984; Hoverson 2008). Despite the uncertainty as to the exact contribution internal loading has on phosphorus concentrations in the impaired Chippewa River Watershed Lakes, internal processes are likely a significant source of phosphorus loading and should be addressed in lake management plans.

Overland Erosion/Open Tile Intakes/Tile Lines – During some precipitation events, erosion can deliver phosphorus into surface waters. Phosphorus attached to soil particles and dissolved in water moves overland, which can directly discharge into surface waters or into open tile inlets and move through tile lines that discharge into surface waters.

The total external load coming into the lakes from different land use sources were estimated using HSPF for the entire Chippewa River Watershed and the percent that each land use source contributes out of the total external load are listed in Table 3.10.

Table 3.10: Land cover categories and ranges of relative coverage and TP load contribution in the lake catchments

Land Use Source	Land Use Source Description		External Phosphorus Load (%)
Forest	Runoff from forested land can include decomposing vegetation and organic soils.	3 - 53	< 1 - 12
Cropland (Conventional and Conservation Tillage)	Conventional and applied manure, fertilizers, soil particles, and		22 - 92
Grassland/Pasture	Surface runoff can deliver phosphorus from vegetation, livestock and wildlife waste, and soil loss.	3 - 46	1 - 29
Developed (Pervious and Impervious)	Developed (Pervious and Runoff from residences and impervious surfaces can include fertilizer, leaf and grass litter, net waste and numerous other sources.		1 - 6
Wetlands/ Open Water	Wetlands/ Wetlands and open water can export		< 1 – 62**

^{*}Catchment area does not include area of the lake itself.

Wastewater Treatment Facilities – Human waste can be a source of phosphorus. Two WWTFs discharge into Long Lake (21-0343-00). Both facilities are controlled discharge (pond) systems with

^{**} Norway Lake directly connected to West Norway.

discharge windows during higher flows. These controlled discharge facilities are not likely to be a source during low flow periods. Rarely, during extreme high flow conditions, WWTF may also be a source if they become overloaded and have an emergency discharge of partially or untreated sewage, known as a release.

4. TMDL Development

A TMDL for a waterbody that is impaired as a result of excessive loading of a particular pollutant can be described by the following equation:

TMDL = LC =
$$\sum$$
WLA + \sum LA + MOS + RC

Where:

LC = loading capacity, or the greatest pollutant load a waterbody can receive without violating water quality standards;

WLA = wasteload allocation; the portion of the TMDL allocated to existing or future permitted point sources of the relevant pollutant;

LA = load allocation, or the portion of the TMDL allocated to existing or future nonpoint sources of the relevant pollutant;

MOS = margin of safety, or an accounting of uncertainty about the relationship between pollutant loads and receiving water quality. The MOS can be provided implicitly through analytical assumptions or explicitly by reserving a portion of LC (EPA 1999).

RC = **reserve capacity**, an allocation of future growth. This is an MPCA-required element, if applicable. Not applicable in this TMDL.

Per Code of Federal Regulations (40CFR 130.2(1)) TMDLs can be expressed in terms of mass per time, toxicity or other appropriate measures. For the Chippewa River Watershed impairments addressed in this TMDL report, the TMDLs, allocations and margins of safety are expressed in mass/day. Each of the TMDL components is discussed in greater detail below.

4.1 Data Sources

4.1.1 Hydrologic Simulation Program – FORTRAN (HSPF)

The HSPF model was built and calibrated by RESPEC, an environmental consulting company contracted by the MPCA. It is used to simulate DO, phosphorus, and flow in the Chippewa River Watershed; this output was used for analysis and TMDL calculations.

The HSPF model is a comprehensive package for simulation of watershed hydrology and water quality for both conventional and toxic organic pollutants. HSPF incorporates watershed-scale Agricultural Runoff Model (ARM) and NPS models into a basin-scale analysis framework that includes fate and transport in one dimensional stream channels. It is a comprehensive model of watershed hydrology and water quality that allows the integrated simulation of point sources, land and soil contaminant runoff processes with in-stream hydraulic and sediment-chemical interactions. The result of this simulation is a time history of the runoff flow rate, sediment load, and nutrient and pesticide concentrations, along with a time history of water quantity and quality at the outlet of any subwatershed.

The HSPF watershed model contains components to address runoff and constituent loading from pervious land surfaces, runoff and constituent loading from impervious land surfaces, and flow of water and transport/transformation of chemical constituents in stream reaches. Primary external forcing is provided by the specification of meteorological time series. The model operates on a lumped basis

within subwatersheds. Upland responses within a subwatershed are simulated on a per-acre basis and converted to net loads on linkage to stream reaches. Within each subwatershed, the upland areas are separated into multiple land use categories.

Multiple spatial and temporal data sources are used to inform the model. Meteorological data originated from the National Weather Service's North Central River Forecasting Center and from the EPA's Basins software, as well as from other Minnesota River Basin sources. Land use/land cover data is taken from the National Landcover Dataset (NLCD). Soil data for each subbasin is based on U.S. Department of Agricultural Soil Survey Geographic Database (SSURGO) GIS data and slope data was calculated using 30 meter DEM data. Land use/land cover, soil, and slope data inform the development of subwatersheds within HSPF and therefore the movement of water and other model constituents from the landscape to stream reaches. The subbasins are delineated based on Minnesota Department of Natural Resources GIS data.

One USGS gage and four non-USGS gages were used to calibrate flow. The non-USGS gages usually only operated from April to September. For some gage data, the frequency at which rating curves were field measured and adjusted was less than USGS standards (*See* Appendix C: HSPF Calibration Reports). The gages used for the model are:

- Chippewa River at Benson (Gage #: H26037001)
- Chippewa River at Cyrus (Gage #: H26003001)
- USGS gage on the Chippewa River near Milan (Gage #: USGS 05340500)
- Dry Weather Creek (Gage #: H26078001)
- Shakopee Creek (Gage #: H26038001)

The accuracy of the information used for HSPF is reflected by the strong hydrologic calibration of the model. There is a good fit between observed and simulated flow data, albeit storm flows are sometimes over-predicted between simulations years 1995 and 2002. Because of this strong calibration of simulated data, the model is appropriate in the use of Load Duration Curves.

The MPCA has used HSPF models in this matter to support the Lower Minnesota River DO TMDL. More recently, the MPCA has used HSPF models to support DO TMDLs in both the Pomme de Terre River Watershed and the Le Sueur River Watershed. All of these TMDLs have been approved by the EPA.

4.1.2 Environmental Quality Information System (EQuIS)

The MPCA uses a system called Environmental Quality Information System (EQuIS) to store water quality data from more than 17,000 sampling locations across the state. The EQuIS contains information from Minnesota streams and lakes dating back to 1926.

All discreet water quality sampling data utilized for assessments and data analysis for this TMDL report are stored in this accessible database: *Environmental Data Access* (MPCA 2014c).

4.2 Loading Capacity Methodology

The load duration curve method is based on an analysis that encompasses the cumulative frequency of historic flow data over a specified period. Because this method uses a long-term record of daily flow volumes virtually the full spectrum of allowable loading capacities is represented by the resulting curve. In the TMDL equation tables of this report (Tables 4.10 - 4.12) only five points on the entire LC curve are

depicted (the midpoints of the designated flow zones). However, it should be understood that the entire curve represents the TMDL and is what is ultimately approved by the EPA.

4.2.1 Streams, E. coli

The duration curve approach (EPA 2007) was utilized to address *E. coli* impairments. A flow duration curve was developed using April through October 1996 through 2012 daily average flow data provided by the Chippewa River Watershed HSPF model. This period is selected based on available data at the time the model was developed (2012). A 16-year period provides simulations of the watershed in varying high-and low-flow years. Flow zones were determined for very high, high, mid, low and very low flow conditions. The mid-range flow value for each flow zone was then multiplied by the standard of 126 org/100ml to calculate the LC. For example, for the "very high flow" zone, the LC is based on the flow value at the 5th percentile. The conversion factors used to compute a flow value and pollutant sample value into a load are shown in Table 4.1. Computed load duration curve graphs are shown in Appendix A.

Table 4.1: Unit conversion factors used for *E. coli* load calculations

Load (billion/day) = Flow (cfs) * Concentration (126 organisms/100 ml) * Conversion Factor								
1	Start wi	th Flow			=	ft³/sec		
2	Multiply by 28,316.8 ml/ft ³ to convert	ft ³	à	ml	ft ³	ml/sec		
3	Multiply by a (Standard set at 1		ml)		=	organisms/sec		
4	Divide by	y 100 ml						
5	Multiply by 60 sec/min to convert	seconds	à	minutes	=	organisms/min		
6	Multiply by 60 min/hr to convert	minutes	à	hours	=	organisms/hour		
7	Multiply by 24 hours/day to convert	hours	à	days	=	organisms/day		
8	Divide by 1 Billion to convert	organisms	à	billion organisms	=	billion organisms/day		

Table 4.14 shows LAs for stream reaches impaired by *E. coli*. Only five points on the entire LC curve are depicted (the midpoints of the designated flow zones). However, it should be understood that the components of the TMDL equation could be illustrated for any point on the entire curve. The load duration curve method can be used to display collected *E. coli* monitoring data and allows for estimation of load reductions necessary for attainment of the *E. coli* water quality standard. Load duration curves for the *E. coli* impaired stream reaches are contained in Appendix A.

Estimated percent reductions for each of the bacteria impaired stream reaches are presented in Table 4.2. Reduction values were computed using a load duration curve and *E. coli* sample data for each impaired reach. The above conversion shown in Table 4.1 was used to compute loads for days when samples were taken. The sample concentration (CFU/100mL) was converted into a load (billion organisms per day) using the daily average flow value for that day and inserting the sample concentration values into Step 3 in Table 4.1. These actual observed load values were then summed up

for all days samples were collected. This observed load, calculated from actual monitoring data, was then compared to the load if the water sample concentration was equivalent to the water quality standard. The process is described further below.

Observed Load

The sample concentration (CFU/100mL) was converted into a load (billion org per day) using the daily average flow value for that day and inserting the sample concentration values into Step 3 in Table 4.1. These actual load values were then summed up for all sample days.

Load at Water Quality Standard

The load value if the concentration of the water met the *E. coli* standard (126 cfu/100ml) was computed using the daily average flow value for the same sample days and multiplying that value through the steps in Table 4.1 using the *E. coli* standard value of 126 cfu/100ml in Step 3. These standard load values were then summed up for all the days a sample was collected and represent the total maximum load that the river is able to take and still meet the water quality standards for the flows on those dates.

The sum of the actual observed loads was compared to the sum of the water quality standard loads. The percent difference is used for the estimated percent reduction values.

Table 4.2: Percent reductions for E. coli impaired stream reaches based on 2002-2011 monitoring data

HUC10 Subwatershed	Stream Name Stream Reach AUID#	Observed Load (billion org) [# of samples]	Load Set at 126 org /100mL Standard (billion org)	Estimated Reduction Needed To Get < 126 org/100 mL
Chippewa River	Unnamed Creek 07020005-584	1,257.3 [15]	298.9	76.2%
Cottonwood Creek	Cottonwood Creek 07020005-511	6,221.7 [15]	1,252.4	79.9%
County Ditch No. 3	County Ditch 3 07020005-579	2,190.3 [15]	1,041.3	52.5%
County Ditch No. 3 - Chippewa River	Chippewa River 07020005-506	35,622.7 [15]	13,511.4	62.1%
East Branch Chippewa River	East Branch Chippewa River 07020005-515	11,375.1 [15]	3,752.2	67%
Judicial Ditch No. 19	Mud Creek 07020005-518	1,517.7 [17]	1,248.1	17.8%
Lake Minnewaska	Outlet Creek	3,336.9 [28]	1,428.1	57.2%

HUC10 Subwatershed	Stream Name Stream Reach AUID#	Observed Load (billion org) [# of samples]	Load Set at 126 org /100mL Standard (billion org)	Estimated Reduction Needed To Get < 126 org/100 mL
	07020005-523			
	Trappers Run Creek 07020005-628	1,084.4 [15]	365.9	66.3%
Little Chippewa River	Little Chippewa River 07020005-713	17,356 [41]	3,425.6	80.3%
Mud Creek	Mud Creek 07020005-554	24,484.3 [33]	3,756.6	84.7%
	Shakopee Creek 07020005-557	28,416 [53]	6,978.3	75.4%
	Judicial Ditch 29 07020005-566	449.3 [39]	126.2	64%
Shakopee Creek	County Ditch 29 07020005-567	1,051.55 [35]	414.6	60.6%
	County Ditch 27 07020005-570	5, 495 .5 [42]	994.3	81.9%
	Huse Creek 07020005-917	209.3 [27]	107.9	48%

The resulting reduction percentage is only intended as a rough approximation. Reduction percentages are not a required element of a TMDL (and do not supersede the allocations provided), but are included here to provide a starting point to assess the magnitude of the effort needed in the watershed to achieve the standard.

4.2.2 Streams, TSS

The duration curve approach (EPA 2007) was utilized to address turbidity impairments. For reasons explained in Section 2, the current southern streams region TSS standard of 65mg/L was chosen to develop the TMDL. A flow duration curve was developed using April through September 1996 through 2012 daily average flow data provided by the Chippewa River Watershed HSPF model. This period is selected based on available data at the time the model was developed (2012). A 16-year period provides simulations of the watershed in varying high- and low-flow years. Flow zones were determined for very high, high, mid, low and very low flow conditions. The mid-range flow value for each flow zone was then

multiplied by the TSS southern streams standard of 65 mg/L to calculate the LC. For example, for the "very high flow" zone, the LC is based on the flow value at the 5th percentile. The conversion factors used to compute a flow value and pollutant sample value into a load are shown in Table 4.3. Computed load duration curve graphs are shown in Appendix A.

Table 4.3: Unit conversion factors used for TSS load calculations

Load (tons/day) = Concentration (mg/1000mL) * Flow (cfs) * Factor								
1	Start w	ith Flow			=	ft³/sec		
2	Multiply by 28,316.8 ml/ft ³ to convert	ft ³	à	ml	=	ml/sec		
3		y by # mg et at 65 mg/L)			=	mg/sec		
4	Divide b	y 1000 ml			_	111g/ 300		
5	Divide by 453,592 mg/lb to convert	mg	à	lbs	=	lbs/sec		
6	Multiply by 60 sec/min to convert	seconds	à	minutes	=	lbs/min		
7	Multiply by 60 min/hr to convert	minutes	à	hours	=	lbs/hour		
8	Multiply by 24 hours/day to convert	hours	à	days	=	lbs/day		
9	Divide by 2000 lbs/ton to convert	lbs	à	tons	=	tons/day		

Table 4.15 shows LAs for TSS for stream reaches impaired for TSS. Only five points on the entire LC curve are depicted (the midpoints of the designated flow zones). However, it should be understood that the components of the TMDL equation could be illustrated for any point on the entire curve. The load duration curve method can be used to display collected TSS monitoring data and allows for estimation of load reductions necessary for attainment of the TSS water quality standard. Load duration curves for the TSS impaired stream reaches are contained in Appendix A.

The TSS was identified as a stressor in reaches 07020005-507 and 07020005-523, impaired for IBI. Since reach 07020005-507 was also impaired for turbidity the load duration curve for TSS was used to address the TSS stressor (Table 4.15). In order to address the IBI impairment for reach 07020005-523 a load duration curve was developed for TSS (Table 4.17).

Estimated percent reductions for each of the TSS impaired stream reaches are presented in Table 4.4. Reduction values were computed using a load duration curve and TSS sample data for each impaired reach. The above conversion shown in Table 4.3 was used to compute loads for days when samples were collected. The sample concentration (mg/L) was converted into a load (tons per day) using the daily average flow value for that day and inserting the sample concentration values into Step 3 in Table 4.3. These actual observed load values were then summed up for all days samples were collected. This observed load, calculated from actual monitoring data, was then compared to the load if the water sample concentration was equivalent to the water quality standard. The process is described further below.

Observed Load

The sample concentration (mg/L) was converted into a load (tons per day) using the daily average flow value for that day and inserting the sample concentration values into Step 3 in Table 4.3. These actual load values were then summed up for all sample days.

Load at Water Quality Standard

The load value if the concentration of the water met the TSS standard (65 mg/L) was computed using the daily average flow value for the same sample days and multiplying that value through the steps in Table 4.3 using the TSS standard value of 65 mg/L in Step 3. These standard load values were then summed up for all the days a sample was collected and represent the total maximum load that the river is able to take and still meet the water quality standards for the flow values on those dates.

The sum of the actual observed loads was compared to the sum of the standard loads. The percent difference is used for the estimated percent reduction values.

HUC10 Subwatershed Stream Reach AUID #	Observed Load (Tons TSS) [# of samples]	Load Set at 65 mg/L Standard (Tons TSS)	Estimated Reduction Needed To Get 65 mg/L
Chippewa River 07020005-507	44,0006.9 [229]	38,921.3	11.6%

Table 4.4: Percent reductions for TSS impaired stream reaches based on 2002-2011 TSS data

Due to the lack of TSS data within stream reach 07020005-507, TSS data from site S002-203 was used to determine the percent reduction for this stream reach. Site S002-203 is located within five miles of the end of reach 07020005-507 and it was determined to adequately represent the conditions within the impaired reach. The resulting reduction percentage is only intended as a rough approximation. Reduction percentages are not a required element of a TMDL (and do not supersede the allocations provided), but are included here to provide a starting point to assess the magnitude of the effort needed in the watershed to achieve the standard.

4.2.3 Dissolved Oxygen

The Chippewa River Watershed HSPF model was used to support the development of a TMDL on the DO impaired reaches. A compliance scenario was developed through several iterative runs of the calibrated model. In each case the baseline scenario, which was calibrated to the existing DO data, indicated excursions of DO concentrations below the 5 mg/l minimum standard. The modeler then reduced the phosphorus loading to the impaired receiving reach. The modeler then extracted the reduction in algal biomass caused by that reduction in phosphorus load to the channel. That percent reduction in algal biomass was then applied to the simulated sediment oxygen demand. A second simulation was then run with both reductions in TP delivered to the stream and in-stream sediment oxygen demand. This approach is taken since a reduction in algal biomass will result in less dead organic material settling to the bed of the reach and therefore reduce the replenishment of sediment oxygen demand. In this manner, phosphorus loading and sediment oxygen demand (SOD) were reduced in lock step, with the reduction in SOD being determined by the percent reduction in algal biomass caused by the reduction in phosphorus loadings. The modeler continued to reduce phosphorus loadings and SOD in a stepwise

fashion until all excursions below the minimum 5mg/l standard were eliminated from the simulated output. At that point, the model simulation is deemed to have achieved compliance.

The calibrated Chippewa HSPF model confirms that high TP concentrations are likely causing low DO; model scenarios demonstrate that DO is sensitive to TP. The need for a decrease in TP and an increase in DO corroborates *Chippewa River Biotic SID Report* (MPCA 2015) findings, which states that high phosphorus concentrations contribute to low DO and is a stressor to the biologically impaired stream reaches. Data used to develop the model framework included: precipitation, evaporation, animal units, watershed area, topography, land use (MRLC 2011), flow and water quality, septic systems and NPDES dischargers.

For each model run, once the NPS TP was reduced by a given percentage, the percent reduction of phytoplankton settling as a result was viewed. The phytoplankton reduction was then applied to the SOD constant to get a subsequent reduction in SOD. This is due to the fact that a reduction in phosphorus would result in a reduction in algal growth, death, and settling to the bottom, which reduces the SOD. A 26% to 32% reduction of nonpoint TP resulted in a modeled attainment of the DO standard. Phosphorus allocations were subsequently developed with consideration of these model results to address the DO impairment. This HSPF model application tabulated loads on an hourly time step. These hourly loads were then summed to give both daily and annual loadings.

Table 4.5: Percent reductions for DO impaired stream reaches based on HSPF model reductions in phosphorus using 2009-2010 DO and phosphorus data

HUC10 Subwatershed Stream Name Stream Reach AUID #	Annual TP Load (Pounds of Phosphorus)	Annual TP Load Reduction + - Error Range (Pounds of Phosphorus)	Approximate TP % Reduction Needed
Chippewa River unnamed creek 07020005-584	3,460	1,106 + - 55	32%
Mud Creek Mud Creek 07020005-554	12,930	3,285 + - 164	26%

4.2.4 Lakes, Nutrient Eutrophication

The BATHTUB (version 6.14; Walker 1999) model framework was used to model phosphorus and water balance for lakes within the Chippewa River Watershed. Data used to develop the model framework included: precipitation, evaporation, lake morphometry, lake water quality, animal units, watershed area, land use, flow and water quality, septic systems and NPDES dischargers. For more detail on the Chippewa sources of model data, refer to the *Chippewa River Watershed Monitoring and Assessment Report* (MPCA 2012b).

BATHTUB's Canfield Bachmann lake and reservoir models were used to estimate loads to the impaired lakes. The nutrient sedimentation models in BATHTUB have been empirically calibrated, so the effects of internal phosphorus loading from sediments are accounted for in the model parameter values (Walker 1999). As such, the model does not explicitly provide an estimate of the internal load. However, in the Chippewa River Watershed, several lake models required additional internal loading for the predicted in-lake phosphorus concentrations to approximate the average phosphorus concentrations based on water quality samples. For some of the lakes in the Chippewa Watershed, internal load is a significant source of phosphorus and in-lake efforts will be important to achieve water quality standards. However, any improvements to water quality derived from in-lake efforts will be temporary if external sources are not better controlled so as to reduce the build-up of internal phosphorus.

To calculate the phosphorus load capacity that allowed each lake to achieve its water quality standard, phosphorus loads were reduced within the model until the predicted in-lake concentration matched the appropriate standard (columns 4-6 in Table 4.6). This was achieved by reducing TP concentrations from land use categories that exceeded the river/stream eutrophication standards down to the applicable concentration standard (150 μ g/L). The land use categories most often affected by these adjustments were cropland and developed land. In addition, contribution from septic systems was reduced to zero. In cases where reducing the TP concentration from the contributing landscape and setting the load from septic systems to zero was not sufficient to meet the lake water quality standard, the internal load was reduced. Using the modeled annual load and the annual load capacity, the load reduction was calculated (column 7 in Table 4.6). Modeled lake LC summaries are shown in Table 4.18.

Table 4.6: Observed and modeled mean phosphorus conditions in Chippewa River Watershed lakes; phosphorus load reduction necessary to meet the water quality standard

Lake Name DNR #	Observed Average TP (µg/L)	Modeled TP (μg/L)	TP Standard (µg/L)	Modeled Annual TP Load (lbs)	Modeled Annual TP Load Capacity (lbs)	Load Reduction to Achieve TP Standard (%)
Block 56-0079-00	81.1	80	40	1,191	343	71
Danielson Slough 61-0194-00	147	156	90	1,993	959	52
Edwards 61-0106-00	220	219	60	1,180	325	72
Gilbert 21-0189-00	72	72	60	564	387	31
Hanson 61-0080-00	111	123	60	4,370	1,953	55
Hassel 76-0086-00	200	197	60	8,351	1,930	77
Hollerberg 76-0057-00	76.1	89	60	1,053	506	52

Lake Name DNR #	Observed Average TP (µg/L)	Modeled TP (μg/L)	TP Standard (µg/L)	Modeled Annual TP Load (lbs)	Modeled Annual TP Load Capacity (lbs)	Load Reduction to Achieve TP Standard (%)
Irgens 61-0211-00	203	198	60	4,020	935	77
Jennie 21-0323-00	159	152	60	693.1	136	80
Johanna 61-0006-00	70.6	78	60	3,008	1,678	44
John 61-0123-00	140.5	141	60	2,140	634	70
Jorgenson 61-0164-00	209.7	205	60	848	117	86
Long 21-0343-00	99.5	117	60	16,029	6,938	57
Long 75-0024-00	150	148	90	2,798	??	59
Mary 61-0099-00	110	110	60	464	192	58
McIver 61-0199-00	177	173	60	1,372	283	79
Monson 76-0033-00	84	75	60	377	248	34
Norway 34-0251-02	49.3	49	40	2,500	1,828	27
Rasmuson 61-0086-00	149	147	60	836	185	78
Red Rock 21-0291-00	131	130	40	6,911	809	88
Simon 61-0034-00	124	123	60	2,532	708	72
Swenoda 61-0051-00	90.7	89	60	452	231	49
Thompson 26-0020-00	136	132	40	1,605	188	88
West Norway 34-0251-01	78	85	60	7,509	3,987	47
Wicklund 61-0204-00	178	178	60	2,042	515	75

4.3 Wasteload Allocation Methodology

Wastewater WLAs are given to individual wastewater or industrial facilities that discharge wastewater into an impaired lake or stream. Stormwater WLAs are calculated in accordance with EPA guidance (EPA 2002) and presented as categorical WLAs. Categorical WLAs are pollutant loads that are equivalent for

multiple permittees (several regulated Municipal Separate Storm Sewer System (MS4s)), or a group of permittees (e.g. construction stormwater).

4.3.1 Wastewater Treatment Facilities

The WWTFs are NPDES/SDS permitted facilities that process primarily wastewater from domestic sanitary sewer sources (sewage). These include city or sanitary district treatment facilities, wayside rest areas, national or state parks, mobile home parks, and resorts. Relevant WWTF for impaired stream reaches and lakes are shown in Table 4.7.

Table 4.7: WWTF permits applicable to this TMDL report

HUC10 Subwatershed	City WWTF	Permit #	System Type	Impairment	Stream Reach/Lake AUID#
Cottonwood Creek	Danvers	MNG580119	Controlled Discharge	E. coli	07020005-511
	Damasa	MN10020027	Continuous	E. coli	07020005-506
	Benson	MN0020036	Discharge	TSS	07020005-507
County Ditch 3 –		M MO500400	Controlled	E. coli	07020005-506
Chippewa River	Clontarf	MNG580108	Discharge	TSS	07020005-507
	Hanasalı	NANIOOGGEOG	Controlled	E. coli	07020005-506
	Hancock	MN0023582	Discharge	TSS	07020005-507
				E. coli	07020005-506
	Evansville	MN0023329	Controlled Discharge	TSS	07020005-507
				Nutrient Eutrophication	21-0343-00
	Farwell	MANGEOGRAGO	Controlled	Ė. coli	07020005-506
	Kensington	MNG580220	Discharge	TSS	07020005-507
	Hoffman	MNG580134	Controlled	E. coli	07020005-506
Headwaters	ПОПППАП	WING000134	Discharge	TSS	07020005-507
Chippewa River			Controlled	E. coli	07020005-506
	Millerville	MN0054305		TSS	07020005-507
	Willier Ville	10110034303	Discharge	Nutrient Eutrophication	21-0343-00
				E. coli	07020005-506
	Urbank	MN0068446	Controlled	TSS	07020005-507
			Discharge	Nutrient Eutrophication	21-0343-00
				E. coli	07020005-506
Lake Minnewaska	Starbuck	MN0021415	Continuous Discharge	TSS	07020005-507
			Ü	E. coli	07020005-523
Little Chippewa River	LOWER	NANIO024007	Controlled	E. coli	07020005-506
Little Glilppewa Rivel	Lowry MN0024007		Discharge	TSS	07020005-507

HUC10 Subwatershed	City WWTF	Permit #	System Type	Impairment	Stream Reach/Lake AUID#					
				E. coli	07020005-523					
				E. coli	07020005-628					
				E. coli	07020005-506					
Mud Creek	Sunburg	Sunhura	MNG580125	MNG580125	MNG580125	MNG580125	Controlled		TSS	07020005-507
Mad Greek	January	WIIV6000 120	Discharge	<i>E. coli/</i> Dissolved Oxygen	07020005-554					
			Continuous	TSS	07020005-507					
	Kerkhoven	MN0020583	Discharge	E. coli	07020005-557					
Chakanaa Cwaak			J	E. coli	07020005-579					
Shakopee Creek			Controlled Discharge	E. coli	07020005-506					
	Murdock	MNG580086		TSS	07020005-507					
			Discharge	E. coli	07020005-518					

For the *E. coli* impaired stream reaches controlled discharge WWTF allocations were determined by multiplying the permit limit of 126 org/100ml by the maximum permitted discharge flow (for controlled systems, this is based on a six-inch per day discharge from the facility's secondary ponds). Individual *E. coli* WLA calculations and allocations are shown in Table 4.8.

Table 4.8: Individual WWTF E. coli WLA calculations

	Α	В	С	A*B*C
City WWTF	Permit Limit (billion org/100ml)	Max Permitted Discharge Flow (mgd)	Conversion factor	Load (billion org/day)
Benson		0.985		4.7
Clontarf		0.212		1.01
Danvers		0.189		0.9
Evansville		0.749		3.57
Farwell Kensington		0.570		2.72
Hancock		1.372		6.54
Hoffman	126	2.5	0.03785	11.8
Kerkhoven	120	0.15	0.03763	0.72
Lowry		0.422		2.01
Millerville		0.254		1.21
Murdock		0.319		1.52
Starbuck		0.35		1.67
Sunburg		0.119		0.57
Urbank		0.080		0.38

For the turbidity impaired stream reaches controlled discharge WWTF allocations were determined by multiplying the TSS permit limit (30 – 45 mg/L) by the maximum permitted discharge flow (for controlled systems, this is based on a six inches per day discharge from the facility's secondary ponds). Individual TSS WLA calculations and allocations are shown in Table 4.9.

Table 4.9: Individual WWTF Total Suspended Solids WLA calculations

	Α	В	С	A*B*C
City WWTF	TSS Permit Limit (mg/liter)	Max Daily Flow or Max Permitted Discharge Flow (mgd)	Conversion factor	Load (tons/day)
Benson	30	0.985		0.10
Clontarf	45	0.212		0.04
Evansville	45	0.749		0.14
Farwell Kensington	45	0.570		0.11
Hancock	45	1.372		0.26
Hoffman	45	2.476		0.47
Kerkhoven	30	0.15	0.0041722	0.02
Lowry	45	0.422		0.08
Millerville	45	0.254		0.05
Murdock	45	0.319		0.06
Starbuck	30	0.35		0.04
Sunburg	45	0.119		0.02
Urbank	45	0.080		0.01

For the nutrient eutrophication impairments, daily phosphorus WLAs were calculated from the one to two mg/L effluent concentration assumption and the maximum permitted effluent flow rate of six inches per day over the area of the facility's discharging cell(s) (Table 4.10). These controlled discharge facilities are designed to store 180 days' worth of influent flow and to discharge during spring and fall periods of relatively high stream flow and/or low receiving water temperature. Since these facilities discharge intermittently, their daily WLAs do not represent their annual WLAs divided by the days in a year. Evansville WWTP could discharge up to 2.8 kgP/day, Millerville WWTP could discharge up to 1.9 kgP/day and Urbank WWTP could discharge up to 0.6 kgP/day, for any particular day and still be in compliance so long as they do not exceed the annual loads that are specified in their permits.

Table 4.10: Individual WWTF Total Phosphorus WLA calculations

	Α	В	С	D	E	F
City WWTF	Average Wet Weather Design Flow (mgd)	Secondary Pond Area (ac)	6"/day Maximum Daily Flow (mgd)	Effluent Concentration Assumption (mg/L)	Daily WLA (kg/day) WLA = C*D*3.785	Annual WLA (kg/year) WLA = A*D*3.785 *365
Evansville	0.1	4.6	0.75	1.0	2.8	138
Millerville	0.0195	1.56	0.25	2.0	1.9	54
Urbank	0.011	0.49	0.08	2.0	0.6	30

4.3.2 Industrial Process Wastewater

There is one industrial facility that discharges water into the Chippewa River Watershed.

Table 4.11: Industrial Wastewater permitted facilities applicable to this TMDL report

Facility Name	Permit #	Facility	System Type	Stream Reach AUID #
Chippewa Valley Ethanol Company	MN0062898	Ethanol Plant	Controlled Discharge	07020005-502 07020005-503 07020005-506 07020005-507

Table 4.12: Industrial Wastewater facility Total Suspended Solids WLA calculations

		Α	В	С	A*B*C
Facility Name Permit TSS Permit Number Limit (mg/L)	Design Flow (mgd)	Conversion Factor	Load (tons/day)		
Chippewa Valley Ethanol Company	MN0062898	30	0.1325	0.0018925	0.01

4.3.3 Stormwater

Urban and suburban stormwater runoff both from developing and built-out areas carry pollutant loads that can match or exceed agricultural run-off on a per-acre basis. This runoff can increase flows, which contributes to channel instability and streambank erosion. Pollutants from stormwater runoff can include pesticides, fertilizer, oil, chemicals, metals, pathogens, salt, sediment, litter, and other debris. The MPCA has three categories for stormwater permits: municipal, construction, and industrial.

Municipal – In 1987, the CWA was amended to include provisions for a two-phase program to address stormwater runoff. In March of 2003, the second phase of the program began. Phase II includes permitting and regulation of smaller construction sites, municipalities MS4 Permits, and industrial facilities. There are currently no MS4 communities that discharge into any impaired stream reach addressed in this report. There are also no communities likely to become subject to MS4 Permit requirements in the near future. As a result, 0% of the TMDL is apportioned to the MS4 allocation.

Construction – The MPCA issues construction permits for any construction activities disturbing:

- One acre or more of soil
- Less than one acre of soil if that activity is part of a "larger common plan of development or sale" that is greater than one acre
- Less than one acre of soil, but the MPCA determines that the activity poses a risk to water resources

Construction stormwater permit application records indicate approximately 0.7% out of the total land area of the watershed has been subject to construction over the last 10 years. As part of the permit requirements, the sites may be required to develop and implement a Stormwater Pollution Prevention Plan (SWPPP). The SWPPP uses BMPs designed to eliminate or minimize erosion due to stormwater on exposed soils at construction sites. The WLAs stormwater discharges from sites where there is construction activity reflects the number of construction sites greater than one acre expected to be active in the watershed at any one time, and the best management practices (BMPs) and other stormwater control measures that should be implemented at the sites to limit the discharge of pollutants of concern. The BMPs and other stormwater control measures that should be implemented at construction sites are defined in the State's NPDES/SDS General stormwater Permit for Construction Activity (MNR100001). If a construction site owner/operator obtains coverage under the NPDES/SDS General stormwater Permit and properly selects, installs and maintains all BMPs required under the permit, including those related to impaired waters discharges and any applicable additional requirements found in Appendix A of the Construction General Permit, the stormwater discharges would be expected to be consistent with the WLA in this TMDL. It should be noted that all local construction stormwater requirements must also be met.

Industrial – Industrial sites might contribute to stormwater pollution when water comes in contact with pollutants such as toxic metals, oil, grease, de-icing salts and other chemicals from rooftops, roads, parking lots, and from activities such as storage and material handling. Examples of exposed materials that would require a facility to apply for an Industrial Stormwater Permit include: fuels, solvents, stockpiled sand, wood dust, gravel, metal and a variety of other materials. As part of the permit requirements, the facilities are required to develop and implement a SWPPP. The SWPPP uses BMPs designed to eliminate or minimize stormwater contact with significant materials that might result in polluted stormwater discharges from the industrial site. The WLA for stormwater discharges from sites where there is industrial activity reflects the number of sites in the watershed for which NPDES Industrial Stormwater Permit coverage is required as well as BMPs and other stormwater control measures that should be implemented at the sites to limit the discharge of pollutants of concern. Industrial Stormwater Permit application records indicate approximately 1.3% out of the total land area of the watershed has been subject to permitted industrial activity over the last 10 years. The BMPs and other stormwater control measures that should be implemented at the industrial sites are defined in the State's NPDES/SDS Industrial stormwater Multi-Sector General Permit (MNR050000) or NPDES/SDS General Permit for Nonmetallic Mining and Associated Activities facilities (MNG490000). If a facility owner/operator obtains coverage under the appropriate NPDES/SDS General Stormwater Permit and properly selects, installs and maintains all BMPs required under the permit, the stormwater discharges would be expected to be consistent with the WLA in this TMDL. It should be noted that all local stormwater management requirements must also be met.

Since approximately 2% of the land area every year is either under construction or an industrial facility, 2% of the LC is allocated to this category. 0.2% was added in order to account for the potential for higher rates of construction or additional industrial facilities. Therefore, 2.2% of the LC is apportioned to these activities through a categorical WLA.

Livestock Facilities – The NPDES livestock facilities are zero discharge facilities and therefore are given a WLA of zero and should not impact water quality in the watershed as a point source. Livestock facilities with NPDES Permits located within each subwatershed is shown in Table 4.11. These are general feedlot permits and are covered as such under Minnesota's General Feedlot Permit, MNG440000. Discharge of phosphorus from fields where manure has been land-applied are covered under the LA portion of the TMDLs, provided the manure is applied in accordance with the permit.

Table 4.13: Large CAFO livestock facilities by subwatershed

Aggregated HUC12 Subwatershed	NPDES Permit Number	Feedlot Name	Total Animal Units
Cottonwood	MNG440107	Jennie-O Turkey Store – Commerford Grower	2937.78
Creek	MNG440107	Jennie-O Turkey Store - Commerford Brood	1080
County Ditab 2	MNG440305	Canadian Connection - Sec 14	1800
County Ditch 3 – Chippewa River	MNG440855	Hancock Pro Pork Inc - Sec 14	550
omppewa kivei	MNG440856	Hancock Pro Pork Inc	1533
Dry Weather	MNG440127	Tri-R-Pork Inc	1080
Creek	MNG441050	Eric Meyer Farm	990
	MNG440595	Jennie-O Turkey Store - Olson North Farm	989.6
East Branch	MNG440595	Jennie-O Turkey Store - Olson South Farm	990
Chippewa River	MNG441256	Jennie-O Turkey Store - Riverside Farm	953.7
	MNG440747	Stan Schaefer Inc	1057.5
	MNG440748	Riverview LLP - Moore Calves	1698
Lake Minnewaska	MNG441303	Blair West Site	1900
Mud Creek	MNG440595	Jennie-O Turkey Store - Camp Lake Farm	989
	MNG440742	Willmar Poultry Farms Inc - Kerkhoven	500
	MNG441049	Carlson Dairy LLP - Sec 28	2240
	MNG441264	Johnson Dairy Inc	1990.2
Shakopee Creek	MNG440472	Riverview LLP - Dublin Dairy	3952.9
	MNG440797	Riverview LLP - East Dublin Dairy	8890
	MNG441254	Gerald Tofte Farm	1510
	MNG441023	East Dublin Dairy LLP - Chippewa Calves	999.8

4.3.4 Straight Pipe Septic Systems

Straight pipe septic systems are illegal and therefore receive a WLA of zero. According to Minn. Stat. 115.55, subd. 1, a straight pipe "means a sewage disposal system that includes toilet waste and transports raw or partially settled sewage directly to a lake, a stream, a drainage system, or ground surface".

4.4 Load Allocation Methodology

Once the WLA and MOS were determined for each watershed, the LA was assigned the remaining LC. The LA includes nonpoint pollution sources that are not subject to NPDES Permit requirements, as well as "natural background", as defined in Minn. R. 7050.0150, subp. 4.

4.5 Margin of Safety

The purpose of the MOS is to account for uncertainty that the allocations will result in attainment of water quality standards.

4.5.1 E. coli

The Chippewa River Watershed HSPF model was calibrated and validated using 17 years (1996 through 2012) of flow data from USGS gaging station 05304500 and 12 years (1999 through 2010) of water chemistry data. Calibration results indicate that the HSPF model is a valid representation of hydrological conditions in the watershed. See Appendix C of this report for the HSPF model calibration and validation results. The *E. coli* Load Duration Curves were developed using HSPF modeled daily flow data from April thru October. The *E. coli* TMDLs applied a MOS to each flow zone along the duration curves by subtracting 10% of the flow zones loading capacity.

4.5.2 TSS

The Chippewa River Watershed HSPF model was calibrated and validated using 17 years (1996 through 2012) of flow data from USGS gaging station 05304500 and 12 years (1999 through 2010) of water chemistry data. Calibration results indicate that the HSPF model is a valid representation of hydrological and chemical conditions in the watershed. See Appendix C of this report for the HSPF model calibration and validation results. The TSS stream Load Duration Curves were developed using HSPF modeled daily flow data from April thru September. The TSS TMDLs applied a MOS to each flow zone along the duration curves by subtracting 10% of the flow zones loading capacity.

4.5.3 Nutrient Eutrophication

The Chippewa River Watershed HSPF model was calibrated and validated using 17 years (1996 through 2012) of flow data from USGS gaging station 05304500 and 12 years (1999 through 2010) of water chemistry data. Calibration results indicate that the HSPF model is a valid representation of hydrological and water quality conditions in the watershed. See Appendix C of this report for the HSPF model calibration and validation results. The external phosphorus load estimates delivered to each lake from the surrounding land were developed using HSPF modeled daily flow data and loads. In some instances, the external loading estimates did not result in sufficient phosphorus load for the modeled in-lake phosphorus concentrations to match the average phosphorus concentrations. Internal load adjustments were made within the BATHTUB model until the modeled TP value matched the mean value of the

observed samples. Because of the calibration and validation of the HSPF model as well as the morphometric factors suggesting internal load is a source of phosphorus in these lakes, the MPCA believes the BATHTUB models are an appropriate representation of the natural system. Therefore, an explicit MOS of 10% was deemed appropriate for the nutrient eutrophication TMDLs.

4.5.4 Dissolved Oxygen

The calibration sequence for the in-stream simulation is: hydrology, water temperature, sediment, phosphorus, nitrogen, oxygen demand, Chl-a, and DO. This sequence must be complete before any model can be used to support the development of any DO TMDL. The Chippewa River Watershed HSPF model was calibrated and validated using 17 years (1996 through 2012) of flow data from USGS gaging station 05304500 and 12 years (1999 through 2010) of water chemistry data. Further calibration was done specifically on the DO impaired reaches using two years (2009-2010) of observed DO concentration measurements. Calibration results indicate that the HSPF model is a valid representation of in-stream conditions. The MOS was applied to the stream TMDLs by subtracting 10% of the streams loading capacity.

4.6 Seasonal Variation

4.6.1 Streams, E. coli

Concentrations of *E. coli* vary throughout the summer in the Chippewa River Watershed. The standard is based on a monthly geometric mean and must be met for the months April through October. Exceedances of the *E. coli* standard in the impaired stream reaches occur primarily in the months June through August and vary by reach (Table 3.4). The duration curve approach uses multiple years of flow data and the applicable time period of the standard will provide sufficient water quality protection during the critical summer period.

4.6.2 Streams, TSS

Turbidity, transparency tube, and TSS data were all collected in the Chippewa River Watershed and was used to determine whether stream reaches met the TSS standard of 65 mg/L. Elevated TSS is prevalent throughout much of the year (Table 3.5), there are likely differing sources contributing to TSS in different parts of the watershed in different years. The duration curve approach using multiple years of flow data helps to account for some of this variation and will provide adequate protection during the differing times of the year when the standard is exceeded. The standard applies from April through September.

4.6.3 Streams, DO

DO data was collected in the Chippewa River Watershed and was used to determine whether stream reaches met the DO standard of 5 mg/L. Low DO is a consequence of high algae growth and subsequent decay of algal biomass. The calibrated Chippewa HSPF model confirms that high TP concentrations are likely causing increases in algal growth. The DO standard applies year round. Because of this, the model is run for the entire year; however, daily minimum DO concentrations are usually at their lowest and algal growth at its highest, in the summer low flow season. By meeting the standard during this critical time period, the standard should be met for the rest of the year.

4.6.4 Lakes, Nutrient Eutrophication

Water quality monitoring suggests the in-lake TP concentrations vary over the course of the growing season and generally peaks in mid to late summer (Table 3.8). The standard applies from June through September. The MPCA eutrophication water quality guideline for assessing TP is defined as the June through September mean concentration. The BATHTUB model was used to calculate the load capacities of each lake, incorporating mean growing season TP values. TP loadings were calculated to meet the water quality standards during the summer growing season, the most critical period of the year. Calibration to this critical period will provide adequate protection during times of the year with reduced loading.

4.7 TMDL Summary

4.7.1 Bacteria Impaired Stream Reach Loading Capacities

Table 4.14: E. coli loading capacities and allocations for stream reaches

Table 4.14: E. con loading capacities and allocations for stream E. c	coli				
	FLOW ZONE				
Chippewa River E Br Chippewa River to Shakopee Creek AUID# 07020005-506	Very High	High	Mid	Low	Very Low
A010# 07020003-300		<i>E. coli</i> (billio	n organism	s per day)	
Average Daily Loading Capacity	5112.0	2163.5	1089.2	518.4	224.5
Margin of Safety	511.2	216.4	108.9	51.8	22.5
Wasteload	Allocation				
Cities of Clontarf, Evansville, Farwell/Kensington, Hancock, Hoffman, Lowry, Millerville, Murdock, Starbuck, Sunburg, and Urbank Wastewater Treatment Facilities**	33	33	33	33	33
Livestock facilities requiring NPDES permits	0	0	0	0	0
"Straight Pipe" Septic Systems	0	0	0	0	0
Load Allocation	4,567.8	1,914.1	947.3	433.6	169
	FLOW ZONE				
Cottonwood Creek T120 R41W S21, west line to Chippewa River AUID# 07020005-511	Very High	High	Mid	Low	Very Low
Nois# 07020003 311	E. coli (billion organisms per day)				
Average Daily Loading Capacity	525.5	192.4	91.1	46.0	19.0
Margin of Safety	52.3	19.2	9.1	4.6	1.9
Wasteload	Allocation				
City of Danvers Wastewater Treatment Facility	0.9	0.9	0.9	0.9	0.9
Livestock facilities requiring NPDES permits	0	0	0	0	0
"Straight Pipe" Septic Systems	0	0	0	0	0
Load Allocation	472.3	172.3	81.1	40.5	16.2

E. 0	coli				
		F	LOW ZONE		
East Branch Chippewa River Headwaters (Amelia Lake 61-0064-00) to Mud Creek AUID# 07020005-515	Very High	High	Mid	Low	Very Low
A010# 07020003-313		<i>E. coli</i> (billio	on organism	s per day)	
Average Daily Loading Capacity	826.0	336.7	173.8	88.4	37.0
Margin of Safety	82.6	33.7	17.4	8.8	3.7
Wasteload	Allocation				
Permitted Wastewater Treatment Facilities	*	*	*	*	*
Livestock facilities requiring NPDES permits	0	0	0	0	0
"Straight Pipe" Septic Systems	0	0	0	0	0
Load Allocation	743.4	303	156.4	79.6	33.3
South Mud Creek		F	LOW ZONE		
T121 R39W S2, south line to East Branch Chippewa River	Very High	High	Mid	Low	Very Low
AUID# 07020005-518		<i>E. coli</i> (billio	on organism	s per day)	
Average Daily Loading Capacity	420.5	175.3	87.2	40.9	20.1
Margin of Safety	42.1	17.5	8.7	4.1	2.0
Wasteload	d Allocation				
City of Murdock	1.52	1.52	1.52	1.52	1.52
Livestock facilities requiring NPDES permits	0	0	0	0	0
"Straight Pipe" Septic Systems	0	0	0	0	0
Load Allocation	376.9	156.3	77	35.3	16.6
		F	LOW ZONE		
Outlet Creek Lake Minnewaska to Lake Emily	Very High	High	Mid	Low	Very Low
AUID# 07020005-523		<i>E. coli</i> (billio	on organism	s per day)	
Average Daily Loading Capacity	359.3	110.4	38.7	18.1	7.2
Margin of Safety	35.9	11.0	3.9	1.8	0.7
Wasteload	Allocation				
Cities of Lowry and Starbuck Wastewater Treatment Facilities	3.68	3.68	3.68	3.68	3.68
Livestock facilities requiring NPDES permits	0	0	0	0	0
"Straight Pipe" Septic Systems	0	0	0	0	0
Load Allocation	319.7	95.7	31.1	12.6	2.8
North Mud Creek		F	LOW ZONE		
CD 15 to East Branch Chippewa River AUID# 07020005-554	Very High	High	Mid	Low	Very Low

E. (coli					
		<i>E. coli</i> (billio	n organism	s per day)		
Average Daily Loading Capacity	553.8	222.9	104.8	50.9	22.9	
Margin of Safety	55.4	22.3	10.5	5.1	2.3	
City of Sunburg Wastewater Treatment Facility	0.57	0.57	0.57	0.57	0.57	
Livestock facilities requiring NPDES permits	0	0	0	0	0	
"Straight Pipe" Septic Systems	0	0	0	0	0	
Load Allocation	497.8	200	93.7	45.2	20	
Chalana a Caral		F	LOW ZONE			
Shakopee Creek Swan Lake to Shakopee Lake AUID# 07020005-557	Very High	High	Mid	Low	Very Low	
7.615# 6762666 66#		<i>E. coli</i> (billic	n organism	s per day)		
Average Daily Loading Capacity	617.4	235.6	98.0	36.2	9.8	
Margin of Safety	61.7	23.6	9.8	3.6	1.0	
Wasteload	Allocation					
City of Kerkhoven Wastewater Treatment Facility	0.72	0.72	0.72	0.72	0.72	
Livestock facilities requiring NPDES permits	0	0	0	0	0	
"Straight Pipe" Septic Systems	0	0	0	0	0	
Load Allocation	555	211.3	87.5	31.9	8.1	
County Ditch 3	FLOW ZONE					
County Ditch 3 County Ditch 7 to Chippewa River AUID# 07020005-579	Very High	High	Mid	Low	Very Low	
		<i>E. coli</i> (billic	n organism	s per day)		
Average Daily Loading Capacity	397.6	154.9	78.0	39.6	17.1	
Margin of Safety	39.8	15.5	7.8	4.0	1.7	
Wasteload	Allocation					
City of Kerkhoven Wastewater Treatment Facility	0.72	0.72	0.72	0.72	0.72	
Livestock facilities requiring NPDES permits	0	0	0	0	0	
"Straight Pipe" Septic Systems	0	0	0	0	0	
Load Allocation	357.1	138.7	69.5	34.9	14.7	
Tributary to Chippewa River		F	LOW ZONE			
Unnamed creek to Chippewa River AUID# 07020005-584	Very High	High	Mid	Low	Very Low	
	E. coli (billion organisms per day)					
Average Daily Loading Capacity	124.5	45.5	21.3	10.6	4.4	
Margin of Safety	12.5	4.6	2.1	1.1	0.4	

E. (coli					
Wasteload	Allocation					
Permitted Wastewater Treatment Facilities	*	*	*	*	*	
Livestock facilities requiring NPDES permits	0	0	0	0	0	
"Straight Pipe" Septic Systems	0	0	0	0	0	
Load Allocation	112	40.9	19.2	9.5	4	
T D 0 1		F	LOW ZONE			
Trappers Run Creek Strandness Lake to Pelican Lake AUID# 07020005-628	Very High	High	Mid	Low	Very Low	
7.018# 0702000 020		<i>E. coli</i> (billio	n organism	s per day)		
Average Daily Loading Capacity	134.2	54.8	29.3	14.4	6.0	
Margin of Safety	13.4	5.5	2.9	1.4	0.6	
Wasteload	Allocation					
City of Lowry Wastewater Treatment Facility	2.01	2.01	2.01	2.01	2.01	
Livestock facilities requiring NPDES permits	0	0	0	0	0	
"Straight Pipe" Septic Systems	0	0	0	0	0	
Load Allocation	118.8	47.3	24.4	11	3.4	
Little Chienesses Diver	FLOW ZONE					
Little Chippewa River Unnamed creek to County Ditch 2 AUID# 07020005-713	Very High	High	Mid	Low	Very Low	
	E. coli (billion organisms per day)					
Average Daily Loading Capacity	352.7	143.5	77.2	36.9	14.6	
Margin of Safety	35.3	14.4	7.7	3.7	1.5	
Wasteload	Allocation					
Permitted Wastewater Treatment Facilities	*	*	*	*	*	
Livestock facilities requiring NPDES permits	0	0	0	0	0	
"Straight Pipe" Septic Systems	0	0	0	0	0	
Load Allocation	317.4	129.1	69.5	33.2	13.1	
Huse Creek		F	LOW ZONE			
Huse Greek Headwaters to Norway Lake AUID# 07020005-917	Very High	High	Mid	Low	Very Low	
Nois# 07020003 717	E. coli (billion organisms per day)					
Average Daily Loading Capacity	10.0	4.0	1.8	0.9	0.4	
Margin of Safety	1.0	0.4	0.2	0.09	0.04	
Wasteload	Allocation					
Permitted Wastewater Treatment Facilities	*	*	*	*	*	
Livestock facilities requiring NPDES permits	0	0	0	0	0	

E. coli							
"Straight Pipe" Septic Systems	0	0	0	0	0		
Load Allocation	9	3.6	1.6	0.8	0.36		

^{*}None located within watershed

 $[\]ensuremath{^{\star\star}}$ See section 4.3.1 for individual WWTF permit limits

4.7.2 TSS Impaired Stream Reach Loading Capacities

Table 4.15: Loading capacities and allocations for stream reaches impaired for TSS

TSS						
Chippewa River Shakopee Creek to Cottonwood Creek AUID# 07020005-507	FLOW ZONE					
	Very High	High	Mid	Low	Very Low	
	TSS (tons per day)					
Average Daily Loading Capacity	402.4	168.4	87.6	41.6	17.6	
Margin of Safety	40.2	16.8	8.8	4.2	1.8	
Wasteload Allocation						
Cities of Benson, Clontarf, Evansville, Farwell Kensington, Hancock, Hoffman, Kerkhoven, Lowry, Millerville, Murdock, Starbuck, Sunburg, and Urbank Wastewater Treatment Facilities*	1.4	1.4	1.4	1.4	1.4	
Livestock facilities requiring NPDES permits	0	0	0	0	0	
"Straight Pipe" Septic Systems	0	0	0	0	0	
Chippewa Valley Ethanol Wastewater	0.01	0.01	0.01	0.01	0.01	
Construction and Industrial Stormwater 2.2%	8.9	3.7	1.9	0.9	0.4	
Load Allocation	351.9	146.5	75.5	35.1	14.0	

^{*} See section 4.3.1 for individual WWTF permit limits

4.7.3 Dissolved Oxygen Phosphorus Loading Capacities

Table 4.16: Loading capacities and allocations for stream reaches impaired for DO

Phosphorus (DO)				
Mud Creek County Ditch 15 to East Branch Chippewa River AUID# 07020005-554	Pounds per Day (P)			
Average Daily Loading Capacity	26.4			
Margin of Safety	2.6			
Wasteload Allocation				
City of Sunburg Wastewater Treatment Facility	**			
Livestock facilities requiring NPDES permits	0			
"Straight Pipe" Septic Systems	0			
Construction and Industrial Stormwater 2.2%	0.6			
Load Allocation	23.2			
Tributary to Chippewa River Unnamed creek to Chippewa River AUID# 07020005-584	Pounds per Day (P)			
Average Daily Loading Capacity	6.5			
Margin of Safety	0.7			
Wasteload Allocation				
Permitted Wastewater Treatment Facilities	*			
Livestock facilities requiring NPDES permits	0			
"Straight Pipe" Septic Systems	0			
Construction and Industrial Stormwater 2.2%	0.1			
Load Allocation	5.7			

^{*}None located within watershed

^{**} Sunburg WWTP does not (and will not) have a daily phosphorus limit. Upon reissuance of their permit the facility will have a 12 month moving total annual phosphorus limit of 43 kg/year, which is equivalent to the facility's draft Lake Pepin TMDL WLA. This limit/WLA was calculated from the permit's average wet weather design flow (0.0157 mgd) and a 2 mg/L effluent concentration assumption. Sunburg WWTF will be prohibited from discharging during the months of July and August, which has been determined to be the critical period for stream reach 07020004-554. Therefore, the facilities permit is consistent with the phosphorus requirements of the DO impairment.

4.7.4 Index of Biological Integrity TSS Stressor Loading Capacities

Table 4.17: TSS Loading capacities and allocations for IBI impaired stream reaches

IBI TSS Stressor										
Outlist Const.	FLOW ZONE									
Outlet Creek Lake Minnewaska to Lake Emily AUID# 07020005-523	Very High	High	Mid	Low	Very Low					
A010# 07020003-323		TSS ((tons per da	y)						
Average Daily Loading Capacity	23	7	2.4	1.2	0.5					
Margin of Safety	2.3	0.7	0.2	0.1	0.05					
Wasteload	Allocation									
Cities of Lowry and Starbuck Wastewater Treatment Facilities	0.12	0.12	0.12	0.12	0.12					
Livestock facilities requiring NPDES permits	0	0	0	0	0					
"Straight Pipe" Septic Systems	0	0	0	0	0					
Construction and Industrial Stormwater 2.2%	0.5	0.2	0.05	0.03	0.01					
Load Allocation	20.1	6.0	2.0	1.0	0.3					

4.7.5 Impaired Lake Loading Capacities

Table 4.18: Total phosphorus loading capacities and allocations for impaired lakes within the Chippewa River Watershed

Block 56-0079-00	TP lbs/day	Danielson Slough 61-0194-00	TP lbs/day
Loading Capacity	0.94	Loading Capacity	2.63
Margin of Safety	0.09	Margin of Safety	0.26
Wasteload Allocat	tion*	Wasteload Allocation	k
Construction and industrial stormwater	0.02	Construction and industrial stormwater	0.06
Livestock facilities requiring NPDES permits	0	Livestock facilities requiring NPDES permits	0
"Straight pipe" septic systems	0	"Straight pipe" septic systems	0
Load Allocation**	0.83	Load Allocation**	2.31
Edwards 61-0106-00	TP lbs/day	Gilbert 21-0189-00	TP lbs/day
Loading Capacity	0.89	Loading Capacity	1.06
Margin of Safety	0.09	Margin of Safety	0.1
Wasteload Allocation*		Wasteload Allocation	k
Construction and industrial	0.02	Construction and industrial	0.02

stormwater - 1%		stormwater	
Livestock facilities requiring NPDES permits	0	Livestock facilities requiring NPDES permits	0
"Straight pipe" septic systems	0	"Straight pipe" septic systems	0
Load Allocation**	0.78	Load Allocation**	0.94
Hanson 61-0080-00	TP lbs/day	Hassel 76-0086-00	TP lbs/day
Loading Capacity	5.35	Loading Capacity	5.29
Margin of Safety	0.52	Margin of Safety	0.52
Wasteload Alloca	tion*	Wasteload Allocation	*
Construction and industrial stormwater	0.11	Construction and industrial stormwater	0.12
Livestock facilities requiring NPDES permits	0	Livestock facilities requiring NPDES permits	0
"Straight pipe" septic systems	0	"Straight pipe" septic systems	0
Load Allocation**	4.72	Load Allocation**	4.65
Hollerberg 76-0057-00	TP lbs/day	Irgens 61-0211-00	TP lbs/day
Loading Capacity	1.38	Loading Capacity	2.56
Margin of Safety	0.14	Margin of Safety	0.25
Wasteload Alloca	tion*	Wasteload Allocation	k
Construction and industrial stormwater	0.03	Construction and industrial stormwater	0.06
Livestock facilities requiring NPDES permits	0	Livestock facilities requiring NPDES permits	0
"Straight pipe" septic systems	0	"Straight pipe" septic systems	0
Load Allocation**	1.21	Load Allocation**	2.25
Jennie 21-0323-00	TP lbs/day	Johanna 61-0006-00	TP lbs/day
Loading Capacity	0.37	Loading Capacity	4.6
Margin of Safety	0.036	Margin of Safety	0.46
Wasteload Alloca	tion*	Wasteload Allocation	k
Construction and industrial stormwater	0.01	Construction and industrial stormwater	0.1

Livestock facilities requiring NPDES permits	()		Livestock facilities requiring NPDES permits	0
"Straight pipe" septic systems	0			"Straight pipe" septic systems	0
Load Allocation**	0.	32		Load Allocation**	4.04
John 61-0123-00	T lbs/	P 'day		Jorgenson 61-0164-00	TP lbs/day
Loading Capacity	1.	74		Loading Capacity	0.32
Margin of Safety	0.	17		Margin of Safety	0.03
Wasteload Alloca	tion*			Wasteload Allocation	k
Construction and industrial stormwater	0.	04		Construction and industrial stormwater	0.01
Livestock facilities requiring NPDES permits	()		Livestock facilities requiring NPDES permits	0
"Straight pipe" septic systems	()		"Straight pipe" septic systems	0
Load Allocation**	1.	53		Load Allocation**	0.28
Long 21-0343-00	TP lbs/day	TP lbs/year		Long 75-0024-00	TP lbs/day
Loading Capacity	19.01	9.01 6,938.6		Loading Capacity	3.11
Margin of Safety	1.9	693.8		Margin of Safety	0.3
Wasteload Alloca	tion*			Wasteload Allocation	k
Construction and industrial stormwater	0.12	126.7		Construction and industrial stormwater	0.07
Livestock facilities requiring NPDES permits	0	0		Livestock facilities requiring NPDES permits	0
"Straight pipe" septic systems	0	0		"Straight pipe" septic systems	0
Evansville WWTP Millerville WWTP Urbank WWTP	6.17 4.19 1.3	304.2 119 66.1			
Load Allocation**	5.33	5,633.2		Load Allocation**	2.74
Mary 61-0099-00		P 'day		McIver 61-0199-00	TP lbs/day
Loading Capacity	0.	53		Loading Capacity	0.78
Margin of Safety	0.	05		Margin of Safety	0.08

Wasteload Allocation*		Wasteload Allocation	k
Construction and industrial stormwater	0.01	Construction and industrial stormwater	0.02
Livestock facilities requiring NPDES permits	0	Livestock facilities requiring NPDES permits	0
"Straight pipe" septic systems	0	"Straight pipe" septic systems	0
Load Allocation**	0.47	Load Allocation**	0.68
Monson 76-0033-00	TP lbs/day	Norway 34-0251-02	TP lbs/day
Loading Capacity	0.68	Loading Capacity	5.01
Margin of Safety	0.07	Margin of Safety	0.5
Wasteload Allocat	tion*	Wasteload Allocation	k
Construction and industrial stormwater	0.015	Construction and industrial stormwater	0.1
Livestock facilities requiring NPDES permits	0	Livestock facilities requiring NPDES permits	0
"Straight pipe" septic systems	0	"Straight pipe" septic systems	0
Load Allocation**	0.6	Load Allocation**	4.41
Rasmuson 61-0086-00	TP lbs/day	Red Rock 21-0291-00	TP lbs/day
Loading Capacity	0.51	Loading Capacity	2.22
Margin of Safety	0.05	Margin of Safety	0.22
Wasteload Allocat	tion*	Wasteload Allocation ³	k
Construction and industrial stormwater	0.01	Construction and industrial stormwater	0.05
Livestock facilities requiring NPDES permits	0	Livestock facilities requiring NPDES permits	0
"Straight pipe" septic systems	0	"Straight pipe" septic systems	0
Load Allocation**	0.45	Load Allocation**	1.95
Simon 61-0034-00	TP lbs/day	Swenoda 61-0051-00	TP lbs/day
Loading Capacity	1.94	Loading Capacity	0.63
Margin of Safety	0.19	Margin of Safety	0.06

Wasteload Allocation*			Wasteload Allocation ³	k
Construction and industrial stormwater	0.04		Construction and industrial stormwater	0.01
Livestock facilities requiring NPDES permits	0		Livestock facilities requiring NPDES permits	0
"Straight pipe" septic systems	0		"Straight pipe" septic systems	0
Load Allocation**	1.71		Load Allocation**	0.56
Thompson 26-0020-00	TP lbs/day		West Norway 34-0251-01	TP lbs/day
Loading Capacity	0.52		Loading Capacity	10.92
Margin of Safety	0.05		Margin of Safety	1.09
Wasteload Allocat	ion*		Wasteload Allocation ^a	k
Construction and industrial stormwater	0.01		Construction and industrial stormwater	0.22
Livestock facilities requiring NPDES permits	0		Livestock facilities requiring NPDES permits	0
"Straight pipe" septic systems	0		"Straight pipe" septic systems	0
Load Allocation**	0.46		Load Allocation	9.61
Wicklund 61-0204-00	TP lbs/day			
Loading Capacity	1.41			
Margin of Safety	0.14			
Wasteload Allocat	ion*			
Construction and industrial stormwater	0.03			
Livestock facilities requiring NPDES permits	0			
"Straight pipe" septic systems	0			
Load Allocation**	1.24			

^{*} No Communities Subject to MS4 NPDES requirements or Industrial process wastewater discharges located in the watershed

^{**} Load allocations sub-divided into watershed, atmospheric load (precipitation) and internal load in Appendix B.

5 Future Growth Considerations

Potential changes in population and land use over time in the Chippewa River Watershed could result in changing sources of pollutants. Overall, there is likely very little to no anticipated future growth in the watershed. Possible changes and how they may or may not impact TMDL allocations are discussed below.

5.1 New or Expanding Permitted MS4 WLA Transfer Process

Future transfer of watershed runoff loads in this TMDL may be necessary if any of the following scenarios occur within the project watershed boundaries:

- 1. New development occurs within a regulated MS4. Newly developed areas that are not already included in the WLA must be transferred from the LA to the WLA to account for the growth.
- 2. One regulated MS4 acquires land from another regulated MS4. Examples include annexation or highway expansions. In these cases, the transfer is WLA to WLA.
- 3. One or more non-regulated MS4s become regulated. If this has not been accounted for in the WLA, then a transfer must occur from the LA.
- 4. Expansion of a U.S. Census Bureau Urban Area encompasses new regulated areas for existing permittees. An example is existing state highways that were outside an Urban Area at the time the TMDL was completed, but are now inside a newly expanded Urban Area. This will require either a WLA to WLA transfer or a LA to WLA transfer.
- 5. A new MS4 or other stormwater-related point source is identified and is covered under a NPDES Permit. In this situation, a transfer must occur from the LA.

Load transfers will be based on methods consistent with those used in setting the allocations in this TMDL. In cases where WLA is transferred from or to a regulated MS4, the permittees will be notified of the transfer and have an opportunity to comment.

5.2 New or Expanding Wastewater (TSS and *E. coli* TMDLs only)

The MPCA, in coordination with the EPA Region 5, has developed a streamlined process for setting or revising WLAs for new or expanding wastewater discharges to waterbodies with an EPA approved TMDL (MPCA 2012c). This procedure will be used to update WLAs in approved TMDLs for new or expanding wastewater dischargers whose permitted effluent limits are at or below the instream target and will ensure that the effluent concentrations will not exceed applicable water quality standards or surrogate measures. The process for modifying any and all WLAs will be handled by the MPCA, with input and involvement by the EPA, once a permit request or reissuance is submitted. The overall process will use the permitting public notice process to allow for the public and EPA to comment on the permit changes based on the proposed WLA modification(s). Once any comments or concerns are addressed, and the MPCA determines that the new or expanded wastewater discharge is consistent with the applicable water quality standards, the permit will be issued and any updates to the TMDL WLA(s) will be made.

There are currently three unsewered communities in the Chippewa River Watershed. The MPCA has completed a report for small community wastewater needs with the goal of eliminating these sources of

pollution (MPCA 2008). It is unlikely that any new communities will develop in the future. All noncompliant SSTS upgrades are being addressed through local ordinances, though some additional programs will be utilized if deemed necessary.

For more information on the overall process visit the MPCA's <u>TMDL Policy and Guidance</u> (MPCA 2014b) webpage.

6 Reasonable Assurance

Point sources were not identified as a primary source of *E. coli*, TSS, or TP in the Chippewa River Watershed. The permitted facilities in the watershed discharge at concentrations that meet the applicable water quality standards. No point source reductions have been identified within the Chippewa River Watershed. Point source permitting staff works closely with facilities to adjust permits as necessary for limits, adjustments in release times, and/or adjustments to when releases can occur based on current stream flow to ensure the continued compliance of the facilities with minimal disruption to current facility operations. This hands-on approach has proven successful for multiple point source reductions in Minnesota and provides reasonable assurance that any future point source reductions will be achieved.

In order for the impaired waters to meet water quality standards the majority of pollutant reductions in the Chippewa River Watershed will need to come from non-point source contributors. Of these sources, agricultural drainage and surface runoff are the dominant sources, while other non-point sources contribute a small portion of the pollutant loads. There is reasonable assurance that adopting the various practices and strategies in the required amounts will allow surface waters to meet water quality standards. However, due to the lack of existing state and federal regulations, the current federal exemptions in creating regulations, and the monetary incentives for practices that can degrade water quality, there is no guarantee that landowners will do the necessary practices and BMPs to meet these standards. Agencies, organizations, and citizens alike need to recognize that resigning waters to an impaired condition is not acceptable.

See Table 10 of the *Chippewa River WRAPS Report* (MPCA 2016) for strategies that summarize the conditions discussed in Section 3 of the WRAPS report: the pollutants/stressors of concern, the current water quality conditions for each pollutant/stressor, and the watershed-wide water quality goals and targets. This table also presents the allocations of the pollutant/stressor goals and targets to the primary sources and the estimated years to meet the goal (both developed by the WRAPS Workshop Team) and an estimate. While these model summaries indicate that wide-scale adoption of agricultural BMPs will allow waters to meet water quality standards, there is no way to guarantee that citizens and communities will voluntarily adopt the necessary practices at the necessary rate. To best assure that NPS reductions are achieved, a large emphasis has been placed on citizen engagement, where the citizens and communities that hold the power to improve water quality conditions are involved in discussions and decision-making so that local water planners organize and develop focused implementation plans on a watershed scale. Both counties and SWCDs administer and track water quality BMP implementation projects that are funded by BWSR. Areas are identified as possible BMP projects by a strategy of prioritizing and targeting geographic areas that focus on critical conditions and pathways to impaired lakes and streams. Refer to Section 9 for citizen engagement that has occurred in the Chippewa River Watershed.

In addition to citizen engagement, several government programs have been created to support a political and social infrastructure that aims to increase the adoption of strategies that will improve watershed conditions. Selection of sites for implementation of BMPs will be led by local units of government and SWCDs with guidance and support from BWSR. One example of a program is the Minnesota Agricultural Water Quality Certification Program (AWQCP), which provides regulatory security and incentives to landowners who adopt conservation practices. Additional financial programs include the Clean Water Act Section 319 grant programs, and BWSR and NRCS incentive programs. Programs and activities are also occurring at the local government level, where county staff, commissioners, and residents are beginning to come together to address water quality issues.

7 Monitoring Plan

Data from three water quality monitoring programs enables water quality condition assessment and creates a long-term data set to track progress towards water quality goals. BMPs implemented by local units of government will be tracked through BWSR's e-Link system. These programs will continue to collect and analyze data in the Chippewa River Watershed as part of <u>Minnesota's Water Quality</u> <u>Monitoring Strategy</u> (MPCA 2011a). Data needs are considered by each program and additional monitoring is implemented when deemed necessary and feasible. These monitoring programs are summarized below:

<u>Intensive Watershed Monitoring</u> (MPCA 2012a) data provides a periodic but intensive "snapshot" of water quality throughout the watershed. This program collects water quality and biological data at roughly 100 stream and 50 lake monitoring stations across the watershed in 1 to 2 years, every 10 years. To measure pollutants across the watershed the MPCA will re-visit and re-assess the watershed, as well as have capacity to visit new sites in areas with BMP implementation activity. This work is scheduled to start its second iteration in the Chippewa River Watershed in 2019.

<u>Watershed Pollutant Load Monitoring Network</u> (MPCA 2013a) data provide a continuous and long-term record of water quality conditions at the major watershed and subwatershed scale. This program collects pollutant samples and flow data to calculate continuous daily flow, sediment, and nutrient loads. In the Chippewa River Watershed, there is an annual site near the outlet of the Chippewa River and three seasonal (spring through fall) subwatershed sites.

<u>Citizen Stream and Lake Monitoring Program</u> (MPCA 2013b) data provide a continuous record of waterbody transparency throughout much of the watershed. This program relies on a network of private citizen volunteers who make monthly lake and river measurements annually. Approximately 43 citizen monitoring locations exist in the Chippewa River Watershed.

8 Implementation Strategy Summary

8.1 Permitted Sources

8.1.1 Construction Stormwater

The WLA for stormwater discharges from sites where there is construction activity reflects the number of construction sites greater than one acre expected to be active in the watershed at any one time, and the BMPs and other stormwater control measures that should be implemented at the sites to limit the discharge of pollutants of concern. The BMPs and other stormwater control measures that should be implemented at construction sites are defined in the State's NPDES/SDS General Stormwater Permit for Construction Activity (MNR100001). If a construction site owner/operator obtains coverage under the NPDES/SDS General Stormwater Permit and properly selects, installs and maintains all BMPs required under the permit, including those related to impaired waters discharges and any applicable additional requirements found in Appendix A of the Construction General Permit, the stormwater discharges would be expected to be consistent with the WLA in this TMDL. It should be noted that all local construction stormwater requirements must also be met.

8.1.2 Industrial Stormwater

The WLA for stormwater discharges from sites where there is industrial activity reflects the number of sites in the watershed for which NPDES Industrial Stormwater Permit coverage is required, and the BMPs and other stormwater control measures that should be implemented at the sites to limit the discharge of pollutants of concern. The BMPs and other stormwater control measures that should be implemented at the industrial sites are defined in the State's NPDES/SDS Industrial Stormwater Multi-Sector General Permit (MNR050000) or NPDES/SDS General Permit for Construction Sand & Gravel, Rock Quarrying and Hot Mix Asphalt Production facilities (MNG490000). If a facility owner/operator obtains stormwater coverage under the appropriate NPDES/SDS Permit and properly selects, installs and maintains all BMPs required under the permit, the stormwater discharges would be expected to be consistent with the WLA in this TMDL. It should be noted that all local stormwater management requirements must also be met.

8.1.3 MS4

The MPCA oversees all regulated MS4 entities in stormwater management accounting activities. There are no MS4 permitted communities that discharge into any impaired stream Assessment Unit IDs (AUIDs) addressed in this report. For any cities that may become a MS4 in the future, the baseline year for implementation will be 2004, the mid-range year of the flow data used for development of the load duration curves. The rationale for this is that projects undertaken recently may take a few years to influence water quality. Any load-reducing BMP implemented since the baseline year will be eligible to "count" toward an MS4's load reductions. If a BMP was implemented during or just prior to the baseline year, the MPCA is open to presentation of evidence by the MS4 permit holder to demonstrate that it should be considered as a credit.

8.1.4 Wastewater

The MPCA issues permits for WWTFs that discharge into waters of the state. The permits have site specific limits that are based on water quality standards. Permits regulate discharges with the goals of 1) protecting public health and aquatic life, and 2) assuring that every facility treats wastewater. In addition, SDS Permits set limits and establish controls for land application of sewage.

8.2 Non-Permitted Sources

A group of professional water quality, planning, and conservation staff collaboratively will develop the strategies presented in the <u>Chippewa River WRAPS Report</u> (MPCA 2016). These strategies, adopted at generally wide-scale and integrated in suites, are expected to bring waters in the Chippewa River Watershed into a supporting status. Refer to the <u>Chippewa River WRAPS Report</u> (MPCA 2016) for details and adoption rates. Below is a summary of the recommended strategies, all of which cannot be credited toward WLA reductions for MS4 communities with permit requirements:

- No-till or strip till conservation tillage
- Cover crops and grassed waterways
- Perennial cover on sensitive areas
- Nutrient, manure, and animal management
- Water retention and increased evapotranspiration from the landscape (basins, wetlands, extended retention)
- Field and riparian vegetated buffers
- Drainage volume reductions by system design
- Drainage water pollutant reductions through edge-of-field treatments (bioreactors, saturated buffers, treatment wetlands)
- Citizen education and discussions
- Urban stormwater BMPs
- Changes in policy and increased funding and other support
- Protect currently higher quality areas

Figure 8.1 A conceptual model to address water quality impairments in agriculturally dominated watersheds

The strategies and corresponding adoption rates presented in the <u>Chippewa River WRAPS Report</u> (MPCA 2016) are intended to meet interim water quality targets. To fully address the widespread water quality impairments in agriculturally dominated watersheds such as the Chippewa River Watershed, an integrated and multi-faceted approach using suites of BMPs is likely necessary. Initial activity for lake

impairments will focus on reducing external loading. Internal load controls will be identified within Section 3, Restoration, and Protection, of the <u>Chippewa River WRAPS Report</u> (MPCA 2016). Several models/methods have been developed and are very similar to Figure 8.1 and described in the reports: <u>Combining precision conservation technologies into a flexible framework to facilitate agricultural watershed planning</u> (Tomer et al. 2013), the <u>Minnesota Nutrient Reduction Strategy</u> (MPCA 2013c), and the <u>"Treatment Train" approach as being demonstrated in the Elm Creek Watershed</u> (ENRTF 2013).

8.3 **Cost**

Estimating the cost of bringing waters in the Chippewa River Watershed into a supporting status is more an exercise of scale than a practical dollar estimate. Specifically, the costs are highly variable and include many assumptions. Furthermore, the costs will change as progressive practices are voluntarily adopted as the new farming standard. For these reasons, a rough estimate of cost was developed using NRCS cost-share rates, an estimated land value for crops taken out of production, and with assumptions regarding the specific items needed for a practice. This number is a representation of the scale of change that is needed more so than an actual tax-payer or individual burden. The cost also does not include ecosystem benefits, which if considered, could off-set much of the cost. The costs are based on the watershed-wide adoption rates as presented in the *Chippewa River WRAPS Report* (MPCA 2016).

The estimated cost of agricultural BMPs to meet the Chippewa River WRAPS 10-year water quality targets is roughly \$230 million. The 10-year targets represent pollutant (or stressor) reductions that range from 5% to 27%. So very roughly, this number can be extrapolated by (considering the ratio of the total goal to the 10-year target) a factor of five to roughly \$1.15 billion to estimate the total agricultural BMP expenditure necessary for waters to meet water quality standards. Additional costs to implement city stormwater, resident, and lake-specific BMPs are roughly estimated to total \$100 million based on the scale of reductions needed from these sources.

8.4 Adaptive Management

Adaptive management is an iterative implementation process that makes progress toward achieving water quality goals while using new data and information to reduce uncertainty and adjust implementation activities. The state of Minnesota has a unique opportunity to adaptively manage water resource plans and implementation activities every 10 years (Figure 8.2). This opportunity resulted from a voter-approved tax increase to improve state waters. The resulting interagency coordination effort is referred to as the Minnesota Water Quality Framework (Figure 8.3), which works to monitor and assess Minnesota's 80 major watersheds every 10 years. This Framework supports ongoing implementation and adaptive management of conservation activities and watershed-based local planning efforts.

Implementation of TMDL related activities can take many years, and water quality benefits associated with these activities can also take many years. As the pollutant source dynamics within the watershed are better understood, implementation strategies and activities will be adjusted and refined to efficiently meet the TMDL and lay the groundwork for de-listing the impaired stream reaches. The follow up water monitoring program outlined in Section 7 will be integral to the adaptive management approach, providing assurance that implementation measures are succeeding in attaining water quality standards.

Adaptive management does not include changes to water quality standards or LC. Any changes to water quality standards or LC must be preceded by appropriate administrative processes, including public notice and an opportunity for public review and comment.

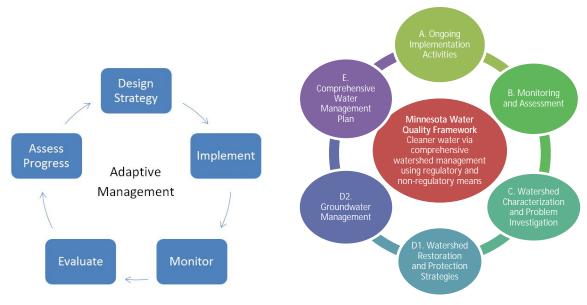


Figure 8.2: Adaptive Management

Figure 8.3: Minnesota water quaility framework

9 Public Participation

This section summarizes civic engagement/public participation efforts sponsored by the MPCA in collaboration with local partners: 1) Chippewa River Watershed Project, 2) SWCD staff, 3) NRCS staff, 4) state agencies, 5) citizen and farmer participants, and 6) county and township officials.

Chippewa River Watershed

The <u>Chippewa River Watershed Project</u> is a non-regulatory, cooperative partnership and citizen based approach focused on improving water quality and watershed life in the Chippewa River and its tributaries. The summarized recommendations of the project include:

- Buffer strips
- Wetland restoration
- Reduced tillage/increased residue
- Water and sediment retention basins
- Grassed waterways
- Shoreline stabilization with native plants
- Perennial Cover
- Alternative tile intakes
- Cover crops
- Rotational grazing

- Terraces
- Side and/or drop inlets on ditches/streams
- · Septic system compliance

Public Meetings

In addition to a meeting held in April of 2013 to survey the opinions and values in a Zonation Analysis, a similar watershed survey was conducted of citizens who are interested in improving and protecting the waters within the Chippewa River Watershed. These efforts were part of a greater interactive community assessment and civic engagement effort that included one on one meetings with farmers and residents, meetings with local conservation staff and regional public meetings. The findings of these meetings and survey were:

Values that progress clean water

- Leaving a legacy for future generations
- Clean surface water for outdoor recreation
- Clean ground water for drinking
- Local pride and stewardship ethos
- Education and continual learning
- · Recognition that marginal ground may be better for conservation

Values that hinder clean water

- Fear of unknown/resistance to change
- Financial risk avoidance
- High agricultural productivity/yield
- Lack of ownership/responsibility for problem
- Lack of understanding/trust in government

Constraints to higher BMP adoption

- Policies (Farm Bill), rules, and funding that perpetuate status quo
- BMP practices may not be flexible enough to fit into residents' system
- Inability to guarantee income when making changes
- Unwillingness to break from status quo/differ from those one trusts
- Lack of knowledge of problems and solutions
- Ineffective/conflicting communication/messaging

Opportunities to get higher BMP adoption

BMPs need to work for the adopters and meet their needs beyond conservation

- Policies (e.g. Farm Bill) need to facilitate change, flexibility, and less bureaucracy
- Funding for more practices and to prevent income loss when transitioning farms to sustainable practices
- Developing/identifying water friendly practices that also increase farm profitability
- Funding needs to be flexible so that BMPs can be adapted to local conditions
- · Identify and foster early sustainable farming BMP adopters to be leaders to community
- More/better education on sustainable practices, technologies, benefits, and progress
- · Build trust to perpetuate cooperation and stewardship

Recommendations for Engagement, Education, and Networking

- Peer-leader and peer-to-peer networking events such as fields days and one on one engagement
- Collaboration with and education/information sharing with Ag professionals: co-ops, crop consultants, etc.
- Community events/gatherings including clean-ups, banquets, citizen groups, school education
- Increased messaging and education including advertisements, social media, billboards, documentaries

Public Notice

CL:- TN //DI	the second second second second		public comments on	
inis iiv/ii)i	renort will be	nunlished for	ni iniic comments on	
11113 11VIDL		published for		

10 Literature Cited

Environmental and Natural Resources Trust Fund (ENRTF), 2013. "Project Proposal: Demonstrating Farmer Led Conservation in the Elm Creek Watershed" http://www.lccmr.leg.mn/proposals/2014/pre-presentation_by_category/047-b.pdf

Environmental Protection Agency, United States (EPA), 1999. "Protocol for Developing Sediment TMDLs, First Edition" EPA 841-B-99-004

https://owpubauthor.epa.gov/lawsregs/lawsguidance/cwa/tmdl/upload/1999_12_08_tmdl_sediment_sediment_pdf

Environmental Protection Agency, United States (EPA), 2002. "Establishing Total Maximum Daily Load Wasteload Allocations for stormwater Sources and NPDES Permit Requirements Based on Those WLAs" http://www.epa.gov/npdes/pubs/final-wwtmdl.pdf

Environmental Protection Agency, United States (EPA), 2007. "An Approach for Using Load Duration Curves in the Development of TMDLs" EPA 841-B-07-006

https://www.epa.gov/sites/production/files/2015-

07/documents/2007_08_23_tmdl_duration_curve_guide_aug2007.pdf

Hoverson, D. 2008. Phosphorus Release from sediments in Shawano Lake, Wisconsin College of Natural resources, University of Wisconsin - Stevens Point. http://www.uwsp.edu/cnr-ap/watershed/Documents/hoverson.pdf

Ishii, S., W.B. Ksoll, R.E. Hicks, M.J. Sadowsky. 2006. Presence and Growth of Naturalized Escherichia coli in Temperate Soils from Lake Superior Watersheds. Applied and Environmental Microbiology. Vol. 72:612-621. Prairie, Y.T. and J. Kalff. 1986. Effect of catchment size on phosphorus export. Wat. Resour. Bull. 22(3) 465-470. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1352292/

Minnesota Pollution Control Agency (MPCA), 2005. "Minnesota Lake Water Quality Assessment report: Developing Nutrient Criteria, 3rd Edition" http://www.pca.state.mn.us/index.php/view-document.html?qid=6503. September 2005.

Minnesota Pollution Control Agency (MPCA), 2006. Chippewa River Fecal Coliform TMDL report. https://www.pca.state.mn.us/sites/default/files/wq-iw7-06e.pdf

Minnesota Pollution Control Agency (MPCA), 2007. "Statewide Mercury TMDL"

http://www.pca.state.mn.us/index.php/water/water-types-and-programs/minnesotas-impaired-waters-and-tmdls/tmdl-projects/special-projects/statewide-mercury-tmdl-pollutant-reduction-plan.html

Minnesota Pollution Control Agency (MPCA), 2008. "Small Community Wastewater Needs in Minnesota" http://www.pca.state.mn.us/index.php/view-document.html?gid=5192

Minnesota Pollution Control Agency (MPCA), 2011a. "Minnesota's Water Quality Monitoring Strategy" http://www.pca.state.mn.us/index.php/view-document.html?qid=10228

Minnesota Pollution Control Agency (MPCA), 2011b. "Pope 8 Lakes TMDL" http://www.pca.state.mn.us/index.php/view-document.html?qid=18089

Minnesota Pollution Control Agency (MPCA), 2012a. "Intensive Watershed Monitoring" https://www.pca.state.mn.us/water/watershed-sampling-design-intensive-watershed-monitoring

Minnesota Pollution Control Agency (MPCA), 2012b. "Chippewa River Watershed Monitoring and Assessment report" https://www.pca.state.mn.us/sites/default/files/wg-ws3-07020005b.pdf

Minnesota Pollution Control Agency (MPCA) 2012c. "Zumbro Watershed TSS Total Maximum Daily Load" http://www.pca.state.mn.us/index.php/view-document.html?gid=17902

Minnesota Pollution Control Agency (MPCA), 2013a. "Watershed Pollutant Load Monitoring Network" http://www.pca.state.mn.us/index.php/water/water-types-and-programs/surface-water/streams-and-rivers/watershed-pollutant-load-monitoring-network.html

Minnesota Pollution Control Agency (MPCA), 2013b. "Volunteer Surface Water Monitoring" http://www.pca.state.mn.us/index.php/water/water-monitoring-and-reporting/volunteer-water-monitoring.html

Minnesota Pollution Control Agency (MPCA), 2013c. "Minnesota Nutrient Reduction Strategy" http://www.pca.state.mn.us/index.php/view-document.html?gid=20213

Minnesota Pollution Control Agency (MPCA), 2014a. Guidance Manual for Assessing the Quality of Minnesota Surface Waters for Determination of Impairment: 305(b) report and 303(d) List. http://www.pca.state.mn.us/index.php/view-document.html?gid=16988

Minnesota Pollution Control Agency (MPCA), 2014b. "TMDL Policy and Guidance" http://www.pca.state.mn.us/index.php/water/water-types-and-programs/minnesotas-impaired-waters-and-tmdls/project-resources/tmdl-policy-and-quidance.html

Minnesota Pollution Control Agency (MPCA), 2014c. "Environmental Data" http://www.pca.state.mn.us/index.php/data/environmental-data-access.html

Minnesota Pollution Control Agency (MPCA), 2015. "Chippewa River Watershed Biotic Stressor identification report" https://www.pca.state.mn.us/sites/default/files/wq-ws5-07020005a.pdf

Minnesota Pollution Control Agency (MPCA), 2016. "Chippewa River Watershed Restoration and Protection Strategy report" https://www.pca.state.mn.us/water/tmdl/chippewa-river-watershed

Minnesota Pollution Control Agency (MPCA) and MSUM. 2009. State of the Minnesota River, Summary of Surface Water Quality Monitoring 2000-2008.

http://mrbdc.mnsu.edu/sites/mrbdc.mnsu.edu/files/public/reports/basin/state_08/2008_fullreport110 9.pdf

Multi-Resolution Land Characteristics Consortium (MRLC), 2011. "National Land Cover Database" http://www.mrlc.gov/nlcd2011.php

Nürnberg Gertrud K., 1984. "Prediction of annual and seasonal phosphorus concentrations in stratified and polymictic lakes" American Society of Limnology and Oceanography, 43(7), 1998, 1544-1552. http://aslo.org/lo/toc/vol_43/issue_7/1544.pdf

Pierce, Samuel C., R. Kröger, and R. Pezeshki, 2012. "Managing Artificially Drained Low-Gradient Agricultural Headwaters for Enhanced Ecosystem Functions". Biology, 1(3), 794-856, Dec. 10, 2012. http://www.mdpi.com/2079-7737/1/3/794

Sadowsky, M.J., S. Matteson, M. Hamilton, R. Chandrasekaran, 2010. "Growth, Survival, and Genetic Structure of *E. coli* found in Ditch Sediments and Water at the Seven Mile Creek Watershed".

http://www.mda.state.mn.us/protecting/cleanwaterfund/research/~/~/media/Files/protecting/cwf/ecolliditch7milecreek.ashx

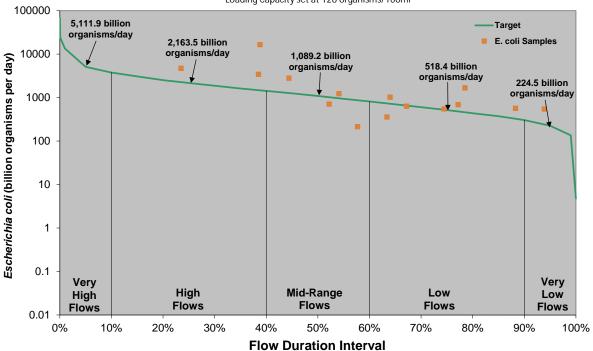
Schottler, S.TP, Jason Ulrich, Patrick Belmont, Richard Moore, J. Wesley Lauer, Daniel R. Engstrom, and James E. Almendinger, 2012. "Twentieth century agricultural drainage creates more erosive rivers" Hydrological Processes, 28(4):1951-1961, Feb. 15, 2014.

http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_021703.pdf

Tomer, Mark D., Sarah A. Porter, David E. James, Kathleen M.B. Boomer, Jill A. Kostel, and Eileen McLellan, 2013. "Combining precision conservation technologies into a flexible framework to facilitate agricultural watershed planning" Journal of Soil and Water Conservation, 68(5):113A-120A http://www.jswconline.org/content/68/5/113A.full.pdf+html

Walker, William, 1999. "Simplified Procedures for Eutrophication Assessment and Prediction: User Manual" https://wiki.umn.edu/pub/Nieber/WebHome/FLUX-Bathtub_MANUAL_IR-W-96_2.pdf

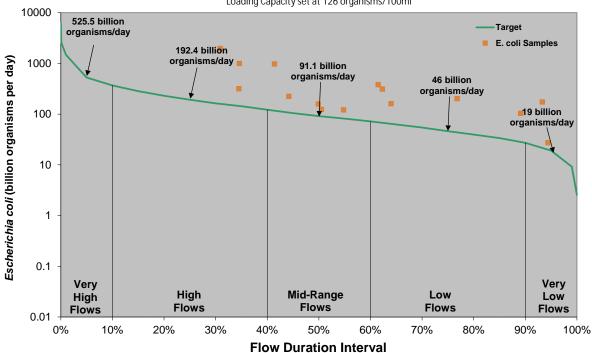
Wenck Associates, 2014. TSS TMDL for Chippewa River Watershed. https://www.pca.state.mn.us/sites/default/files/wq-iw7-19e.pdf


Verry, E.S. and D.R. Timmons, 1977. "Precipitation nutrients in the open and under two forests in Minnesota" Can. J. For. Res. 7:112-119 http://www.nrs.fs.fed.us/pubs/2974

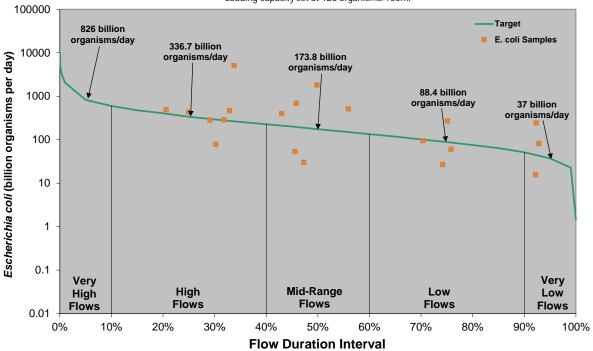
Chippewa River Watershed Project. http://www.chippewariver.org/

Chippewa River AUID# 07020005-506

1996-2012 Modeled Flows from the Chippewa River HSPF model using April-October Average Daily Flows 2009-2010 *E. coli* samples from EQuIS monitoring station S000-383

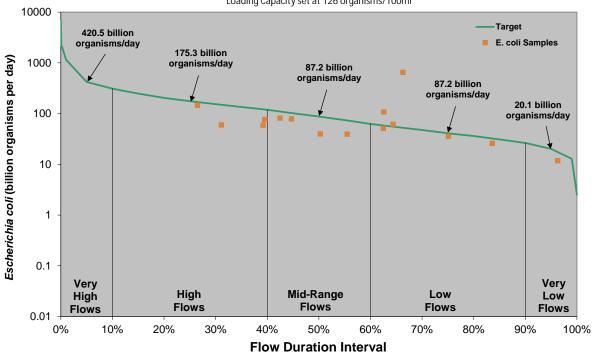

Loading Capacity set at 126 organisms/100ml

Cottonwood Creek AUID# 07020005-511

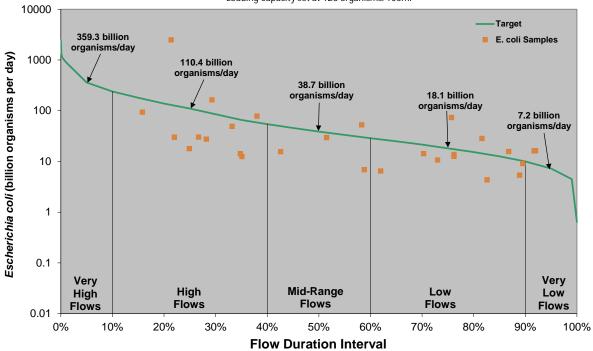

1996-2012 Modeled Flows from the Chippewa River HSPF model using April-October Average Daily Flows 2009-2010 *E. coli* samples from EQuIS monitoring station S002-202

Loading Capacity set at 126 organisms/100ml

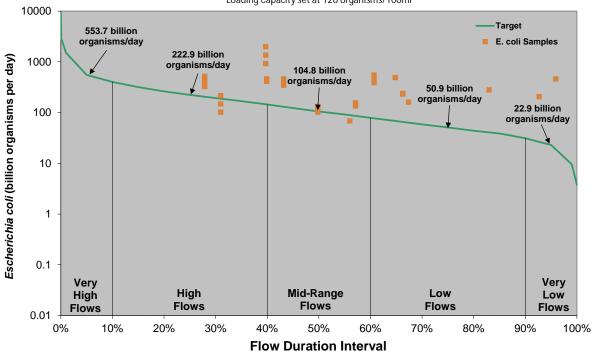
East Branch Chippewa River AUID# 07020005-515


1996-2012 Modeled Flows from Chippewa River HSPF model using April-October Average Daily Flows 2009-2010 *E. coli* samples from EQuIS monitoring station S005-861 Loading Capacity set at 126 organisms/100ml

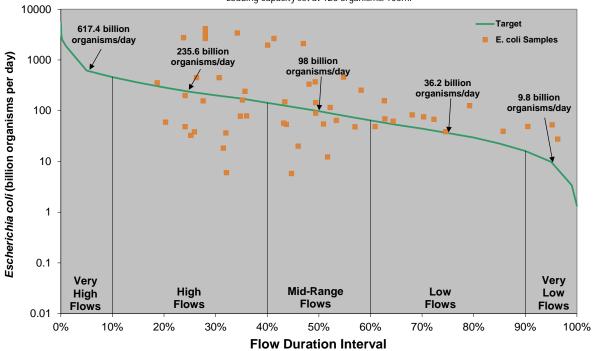
Mud Creek AUID# 07020005-518


1996-2012 Modeled Flows from the Chippewa River HSPF model using April-October Average Daily Flows 2009-2010 *E. coli* samples from EQuIS monitoring station S002-195

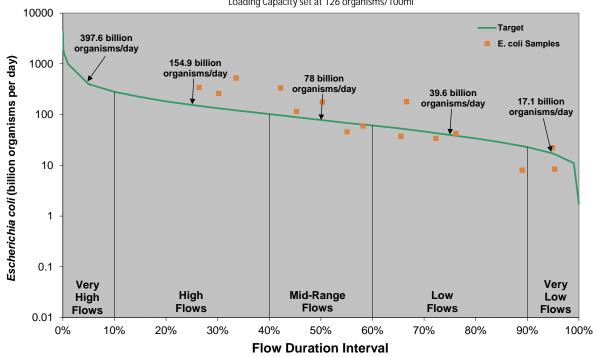
Loading Capacity set at 126 organisms/100ml


Outlet Creek AUID# 07020005-523

1996-2012 Modeled Flows from the Chippewa River HSPF model using April-October Average Daily Flows 2007-2009 *E. coli* samples from EQuIS monitoring station S000-898 Loading Capacity set at 126 organisms/100ml

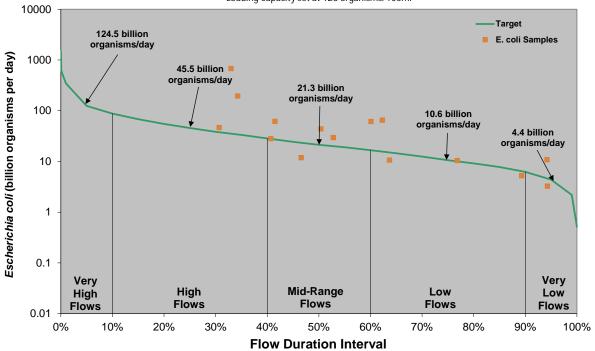

Mud Creek AUID# 07020005-554

1996-2012 Modeled Flows from the Chippewa River HSPF model using April-October Average Daily Flows 2009-2010 *E. coli* samples from EQuIS monitoring stations S005-633, S003-372 Loading Capacity set at 126 organisms/100ml

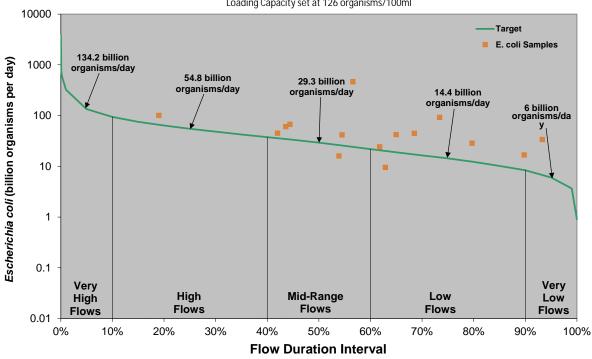

Shakopee Creek AUID# 07020005-557

1996-2012 Modeled Flows from the Chippewa River HSPF model using April-October Average Daily Flows 2008-2010 *E. coli* samples from EQuIS monitoring stations S005-374, S002-550 Loading Capacity set at 126 organisms/100ml

County Ditch 3 AUID# 07020005-579

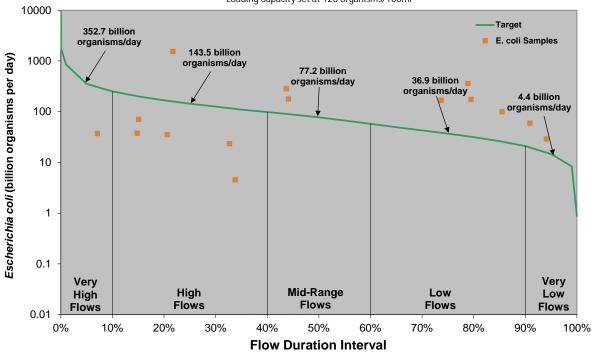

1996-2012 Modeled Flows from the Chippewa River HSPF model using April-October Average Daily Flows 2009-2010 *E. coli* samples from EQuIS monitoring station S003-507 Loading Capacity set at 126 organisms/100ml

Tributary to Chippewa River AUID# 07020005-584

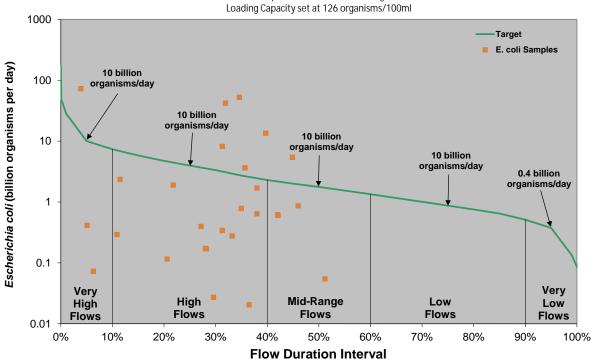

1996-2012 Modeled Flows from the Chippewa River HSPF model using April-October Average Daily Flows 2009-2010 *E. coli* samples from EQuIS monitoring station S005-629

Loading Capacity set at 126 organisms/100ml

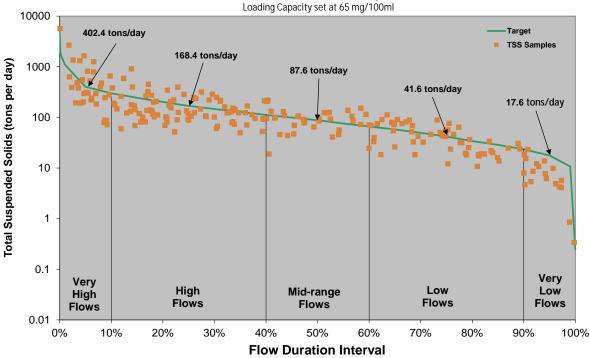
Trappers Run Creek AUID# 07020005-628


1996-2012 Modeled Flows from the Chippewa River HSPF model using April-October Average Daily Flows 2009-2010 *E. coli* samples from EQuIS monitoring station S005-631 Loading Capacity set at 126 organisms/100ml

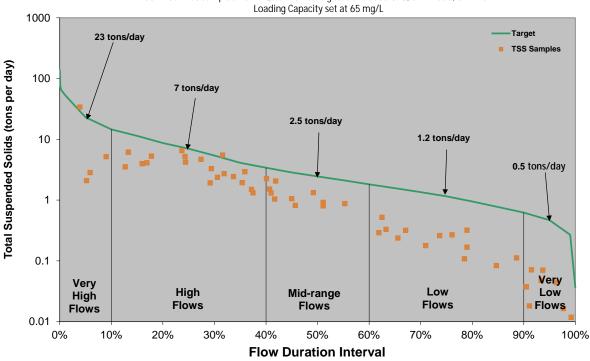
Little Chippewa River AUID# 07020005-713


1996-2012 Modeled Flows from the Chippewa River HSPF model using April-October Average Daily Flows 2007-2010 *E. coli* samples from EQuIS monitoring station S004-705

Loading Capacity set at 126 organisms/100ml


Huse Creek AUID# 07020005-917

1996-2012 Modeled Flows from the Chippewa River HSPF model using April-October Average Daily Flows 2007-2010 *E. coli* samples from EQuIS monitoring station S002-207 Loading Capacity set at 126 organisms/100ml


Chippewa River AUID# 07020004-507

1996-2012 Modeled Flows from the Hawk Creek HSPF model using April-September Average Daily Flows 2002-2011 TSS samples from EQuIS monitoring station S002-203

Outlet Creek AUID# 07020005-523

1996-2012 Modeled Flows from the Chippewa River HSPF model using April-September Average Daily Flows 2007-2009 TSS samples from EQuIS monitoring stations S000-898; 09MN065; 09MN077

Block Lake Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Overall Water Balance		Averaging Period =			years
	Area	Flow	Variance	CV	Runoff
<u>Trb Type Seg Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	_=	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Block Lake Shed		0.7	0.00E+00	0.00	
PRECIPITATION	1.2	0.7	0.00E+00	0.00	0.59
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		0.7	0.00E+00	0.00	
***TOTAL INFLOW	1.2	1.4	0.00E+00	0.00	1.21
ADVECTIVE OUTFLOW	1.2	0.1	0.00E+00	0.00	0.12
***TOTAL OUTFLOW	1.2	0.1	0.00E+00	0.00	0.12
***EVAPORATION		1.3	0.00E+00	0.00	

Overall Mass Balance Based Upon Component:	Predicted TOTAL P	Outflow & Reservoir Concentra				rations	
	Load	L	oad Varian	ce		Conc	Export
<u>Trb Type Seg Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	0.0	0.0%	0.00E+00		0.00	4.3	
2 2 1 Block Lake Shed	120.6	22.3%	0.00E+00		0.00	168.9	
PRECIPITATION	35.1	6.5%	3.08E+02	100.0%	0.50	50.6	30.0
INTERNAL LOAD	384.6	71.2%	0.00E+00		0.00		
TRIBUTARY INFLOW	0.0	0.0%	0.00E+00		0.00	4.3	
NONPOINT INFLOW	120.6	22.3%	0.00E+00		0.00	168.9	
***TOTAL INFLOW	540.4	100.0%	3.08E+02	100.0%	0.03	381.1	461.9
ADVECTIVE OUTFLOW	11.5	2.1%	2.41E+01		0.43	80.3	9.8
***TOTAL OUTFLOW	11.5	2.1%	2.41E+01		0.43	80.3	9.8
***RETENTION	528.9	97.9%	3.25E+02		0.03		
Overflow Rate (m/yr)	0.1	Nutrient Resid. Time (y		ırs)	0.6785		
Hydraulic Resid. Time (yrs)	31.9740	Turnover Ratio 1.5					
Reservoir Conc (mg/m3)	80						

Block Lake Bathtub Model Output – Modeled to Phosphorus Standard

Overall Water Balance	Averaging Period =			1.00	years
	Area	Flow	Variance	CV	Runoff
Trb Type Seg Name	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Block Lake Shed		0.7	0.00E+00	0.00	
PRECIPITATION	1.2	0.7	0.00E+00	0.00	0.59
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		0.7	0.00E+00	0.00	
***TOTAL INFLOW	1.2	1.4	0.00E+00	0.00	1.21
ADVECTIVE OUTFLOW	1.2	0.1	0.00E+00	0.00	0.12
***TOTAL OUTFLOW	1.2	0.1	0.00E+00	0.00	0.12
***EVAPORATION		1.3	0.00E+00	0.00	

Overall Mass Balance Based Upon Component:	Predicted TOTAL P	Outflow & Reservoir Co				rations	
	Load	L	oad Varian	ce		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
2 2 1 Block Lake Shed	86.1	55.3%	0.00E+00		0.00	120.5	
PRECIPITATION	35.1	22.5%	3.08E+02	100.0%	0.50	50.6	30.0
INTERNAL LOAD	34.6	22.2%	0.00E+00		0.00		
NONPOINT INFLOW	86.1	55.3%	0.00E+00		0.00	120.5	
***TOTAL INFLOW	155.8	100.0%	3.08E+02	100.0%	0.11	109.9	133.2
ADVECTIVE OUTFLOW	5.7	3.7%	6.00E+00		0.43	40.3	4.9
***TOTAL OUTFLOW	5.7	3.7%	6.00E+00		0.43	40.3	4.9
***RETENTION	150.0	96.3%	3.01E+02		0.12		
Overflow Rate (m/yr)	0.1	Nutrient Resid. Time (yr			yrs)	1.1801	
Hydraulic Resid. Time (yrs)	31.9740	3 ,				0.8	
Reservoir Conc (mg/m3)	40	40 Retention Coef.				0.963	

Danielson Slough Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Overall Water Balance					Averagin	g Period =	1.00	years
				Area	Flow	Variance	CV	Runoff
<u>Trb</u>	<u>Type</u>	<u>Seg</u>	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	_=	<u>m/yr</u>
1	1	1	SSTS		0.0	0.00E+00	0.00	
2	2	1	Danielson Lake Shed		2.5	0.00E+00	0.00	
PREC	CIPITAT	ION		0.6	0.1	0.00E+00	0.00	0.24
TRIB	UTARY	INFLO	WC		0.0	0.00E+00	0.00	
NON	IPOINT	INFL	WC		2.5	0.00E+00	0.00	
***T	OTAL I	NFLO'	W	0.6	2.7	0.00E+00	0.00	4.61
ADVECTIVE OUTFLOW			0.6	2.4	0.00E+00	0.00	4.17	
***T	OTAL (OUTFL	OW	0.6	2.4	0.00E+00	0.00	4.17
***EVAPORATION					0.3	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	dicted Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load	Load Variance				Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	kg/yr	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	0.8	0.1%	0.00E+00		0.00	78.0	
2 2 1 Danielson Lake Shed	882.4	98.0%	0.00E+00		0.00	352.5	
PRECIPITATION	17.3	1.9%	7.44E+01	100.0%	0.50	125.0	30.0
TRIBUTARY INFLOW	0.8	0.1%	0.00E+00		0.00	78.0	
NONPOINT INFLOW	882.4	98.0%	0.00E+00		0.00	352.5	
***TOTAL INFLOW	900.4	100.0%	7.44E+01	100.0%	0.01	339.6	1566.0
ADVECTIVE OUTFLOW	374.2	41.6%	9.36E+03		0.26	156.1	650.9
***TOTAL OUTFLOW	374.2	41.6%	9.36E+03		0.26	156.1	650.9
***RETENTION	526.2	58.4%	9.39E+03		0.18		
Overflow Rate (m/yr)	4.2	Nutrient Resid. Time (yrs)			rs)	0.1495	
Hydraulic Resid. Time (yrs)	0.3597	Turnover Ratio			6.7		
Reservoir Conc (mg/m3)	156	F	Retention Co	oef.		0.584	

Danielson Slough Bathtub Model Output – Modeled to Phosphorus Standard Overall Water & Nutrient Balances

Overall Wa	ter Balance		Averaging Period =			1.00 years	
		Area	Flow	Variance	CV	Runoff	
<u>Trb</u> <u>Type</u>	Seg Name	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>	
1 1	1 SSTS		0.0	0.00E+00	0.00		
2 2	1 Danielson Lake Shed		2.5	0.00E+00	0.00		
PRECIPITATI	ION	0.6	0.1	0.00E+00	0.00	0.24	
TRIBUTARY I	INFLOW		0.0	0.00E+00	0.00		
NONPOINT	INFLOW		2.5	0.00E+00	0.00		
***TOTAL IN	NFLOW	0.6	2.7	0.00E+00	0.00	4.61	
ADVECTIVE	OUTFLOW	0.6	2.4	0.00E+00	0.00	4.17	
***TOTALO	UTFLOW	0.6	2.4	0.00E+00	0.00	4.17	
***EVAPOR	ATION		0.3	0.00E+00	0.00		

Overall Mass Balance Based Upon	Predicted	Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load		Load Varian	ce		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
2 2 1 Danielson Lake Shed	418.0	96.0%	0.00E+00		0.00	167.0	
PRECIPITATION	17.3	4.0%	7.44E+01	100.0%	0.50	125.0	30.0
NONPOINT INFLOW	418.0	96.0%	0.00E+00		0.00	167.0	
***TOTAL INFLOW	435.2	100.0%	7.44E+01	100.0%	0.02	164.2	756.9
ADVECTIVE OUTFLOW	216.8	49.8%	2.34E+03		0.22	90.4	377.0
***TOTAL OUTFLOW	216.8	49.8%	2.34E+03		0.22	90.4	377.0
***RETENTION	218.5	50.2%	2.36E+03		0.22		
Overflow Rate (m/yr)	4.2		Nutrient Res	id. Time (yrs)	0.1791	
Hydraulic Resid. Time (yrs)	0.3597		Turnover Rat	'	, ,	5.6	
Reservoir Conc (mg/m3)	90		Retention Co	oef.		0.502	

Edwards Lake Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Overall Water Balance		Averagin	g Period =	1.00 years	
	Area	Flow	Variance	CV	Runoff
<u>Trb Type Seg Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u> -</u>	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Edwards Lake Shed		2.1	0.00E+00	0.00	
PRECIPITATION	0.7	0.4	0.00E+00	0.00	0.59
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		2.1	0.00E+00	0.00	
***TOTAL INFLOW	0.7	2.5	0.00E+00	0.00	3.70
ADVECTIVE OUTFLOW	0.7	1.8	0.00E+00	0.00	2.66
***TOTAL OUTFLOW	0.7	1.8	0.00E+00	0.00	2.66
***EVAPORATION		0.7	0.00E+00	0.00	

Overall Mass Balance Based Upon Component:	Predicted TOTAL P		Outflow & F	Reservoir (Concent	rations	
	Load	L	oad Varian.	ce		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	0.5	0.1%	0.00E+00		0.00	54.2	
2 2 1 Edwards Lake Shed	343.9	64.2%	0.00E+00		0.00	166.3	
PRECIPITATION	20.0	3.7%	1.00E+02	100.0%	0.50	50.8	30.0
INTERNAL LOAD	170.8	31.9%	0.00E+00		0.00		
TRIBUTARY INFLOW	0.5	0.1%	0.00E+00		0.00	54.2	
NONPOINT INFLOW	343.9	64.2%	0.00E+00		0.00	166.3	
***TOTAL INFLOW	535.3	100.0%	1.00E+02	100.0%	0.02	216.4	801.3
ADVECTIVE OUTFLOW	389.1	72.7%	2.30E+03		0.12	218.8	582.5
***TOTAL OUTFLOW	389.1	72.7%	2.30E+03		0.12	218.8	582.5
***RETENTION	146.1	27.3%	2.26E+03		0.33		
Overflow Rate (m/yr)	2.7	Nutrient Resid. Time (yrs)			rs)	0.2730	
Hydraulic Resid. Time (yrs)	0.3756	Turnover Ratio			3.7		
Reservoir Conc (mg/m3)	219	Retention Coef.			0.273		

Edwards Lake Bathtub Model Output – Modeled to Phosphorus Standard Overall Water & Nutrient Balances

Overall Water Balance					Averagin	1.00 years		
				Area	Flow	Variance	CV	Runoff
<u>Trb</u>	<u>Type</u>	<u>Seg</u>	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1	1	1	SSTS		0.0	0.00E+00	0.00	
2	2	1	Edwards Lake Shed		2.1	0.00E+00	0.00	
PRECIPITATION				0.7	0.4	0.00E+00	0.00	0.59
TRIB	UTARY	INFLO	WC		0.0	0.00E+00	0.00	
NON	IPOINT	INFL	OW		2.1	0.00E+00	0.00	
***T	OTALI	NFLO	W	0.7	2.5	0.00E+00	0.00	3.70
ADV	ECTIVE	OUT	FLOW	0.7	1.8	0.00E+00	0.00	2.66
***TOTAL OUTFLOW			0.7	1.8	0.00E+00	0.00	2.66	
***E	VAPO	RATIO	N		0.7	0.00E+00	0.00	

Predicted		Outflow & I	Concent	rations		
_					_	
Load						Export
<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
127.3	86.4%	0.00E+00		0.00	61.5	
20.0	13.6%	1.00E+02	100.0%	0.50	50.8	30.0
127.3	86.4%	0.00E+00		0.00	61.5	
147.3	100.0%	1.00E+02	100.0%	0.07	59.6	220.6
107.1	72.7%	2.23E+02		0.14	60.2	160.4
107.1	72.7%	2.23E+02		0.14	60.2	160.4
40.2	27.3%	1.78E+02		0.33		
2.7		Nutrient Res	sid. Time (y	ırs)	0.2730	
0.3756	-	Turnover Rat	tio		3.7	
60	!	Retention Co	oef.		0.273	
	TOTAL P Load kg/yr 127.3 20.0 127.3 147.3 107.1 107.1 40.2 2.7 0.3756	TOTAL P Load kg/yr %Total 127.3 86.4% 20.0 13.6% 127.3 86.4% 147.3 100.0% 107.1 72.7% 107.1 72.7% 40.2 27.3%	TOTAL P Load kg/yr %Total (kg/yr) ² 127.3 86.4% 0.00E+00 20.0 13.6% 1.00E+02 127.3 86.4% 0.00E+00 147.3 100.0% 1.00E+02 107.1 72.7% 2.23E+02 107.1 72.7% 2.23E+02 40.2 27.3% Nutrient Resonance 0.3756 Turnover Rate	TOTAL P Load kg/yr %Total 127.3 86.4% 0.00E+00 20.0 13.6% 1.00E+02 100.0% 127.3 86.4% 0.00E+00 147.3 100.0% 1.00E+02 100.0% 107.1 72.7% 2.23E+02 107.1 72.7% 2.23E+02 40.2 27.3% Nutrient Resid. Time (your open of the control of the cont	TOTAL P kg/yr %Total (kg/yr)² %Total CV 127.3 86.4% 0.00E+00 0.00 20.0 13.6% 1.00E+02 100.0% 0.50 127.3 86.4% 0.00E+00 0.00 147.3 100.0% 1.00E+02 100.0% 0.07 107.1 72.7% 2.23E+02 0.14 107.1 72.7% 2.23E+02 0.14 40.2 27.3% 1.78E+02 0.33 2.7 Nutrient Resid. Time (yrs) 0.3756 Turnover Ratio	TOTAL P Load Load Variance Conc kg/yr %Total (kg/yr)² %Total CV mg/m³ 127.3 86.4% 0.00E+00 0.00 61.5 20.0 13.6% 1.00E+02 100.0% 0.50 50.8 127.3 86.4% 0.00E+00 0.00 61.5 147.3 100.0% 1.00E+02 100.0% 0.07 59.6 107.1 72.7% 2.23E+02 0.14 60.2 107.1 72.7% 2.23E+02 0.14 60.2 40.2 27.3% 1.78E+02 0.33 2.7 Nutrient Resid. Time (yrs) 0.2730 0.3756 Turnover Ratio 3.7

Gilbert Lake Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Overall Water Balance		Averaging Period =			1.00 years		
	Area	Flow	Variance	CV	Runoff		
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	_	<u>m/yr</u>		
1 1 1 SSTS		0.0	0.00E+00	0.00			
2 2 1 Gilbert Lake Shed		0.7	0.00E+00	0.00			
PRECIPITATION	0.8	0.5	0.00E+00	0.00	0.59		
TRIBUTARY INFLOW		0.0	0.00E+00	0.00			
NONPOINT INFLOW		0.7	0.00E+00	0.00			
***TOTAL INFLOW	0.8	1.2	0.00E+00	0.00	1.47		
ADVECTIVE OUTFLOW	0.8	0.3	0.00E+00	0.00	0.38		
***TOTAL OUTFLOW	0.8	0.3	0.00E+00	0.00	0.38		
***EVAPORATION		0.9	0.00E+00	0.00			

Overall Mass Balance Based Upon	Predicted	Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load	L	_oad Varian	ice		Conc	Export
<u>Trb Type</u> <u>Seg Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	0.2	0.1%	0.00E+00		0.00	18.6	
2 2 1 Gilbert Lake Shed	231.1	90.3%	0.00E+00		0.00	326.4	
PRECIPITATION	24.5	9.6%	1.50E+02	100.0%	0.50	50.6	30.0
TRIBUTARY INFLOW	0.2	0.1%	0.00E+00		0.00	18.6	
NONPOINT INFLOW	231.1	90.3%	0.00E+00		0.00	326.4	
***TOTAL INFLOW	255.8	100.0%	1.50E+02	100.0%	0.05	212.7	313.2
ADVECTIVE OUTFLOW	22.5	8.8%	8.10E+01		0.40	72.4	27.5
***TOTAL OUTFLOW	22.5	8.8%	8.10E+01		0.40	72.4	27.5
***RETENTION	233.4	91.2%	2.18E+02		0.06		
Overflow Rate (m/yr)	0.4	Nutrient Resid. Time (yrs)			rs)	0.4163	
Hydraulic Resid. Time (yrs)	4.7378	Turnover Ratio				2.4	
Reservoir Conc (mg/m3)	72	Retention Coef. 0.4			0.912		

Gilbert Lake Bathtub Model Output – Modeled to Phosphorus Standard

Overall Water Balance		Averagin	g Period =	1.00	years
	Area	Flow	Variance	CV	Runoff
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Gilbert Lake Shed		0.7	0.00E+00	0.00	
PRECIPITATION	0.8	0.5	0.00E+00	0.00	0.59
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		0.7	0.00E+00	0.00	
***TOTAL INFLOW	0.8	1.2	0.00E+00	0.00	1.47
ADVECTIVE OUTFLOW	0.8	0.3	0.00E+00	0.00	0.38
***TOTAL OUTFLOW	0.8	0.3	0.00E+00	0.00	0.38
***EVAPORATION		0.9	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	cted Outflow & Reservoir Concentr					
Component:	TOTAL P						
	Load	Load Variance				Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	<u>%Total</u>	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
2 2 1 Gilbert Lake Shed	151.0	86.0%	0.00E+00		0.00	213.3	
PRECIPITATION	24.5	14.0%	1.50E+02	100.0%	0.50	50.6	30.0
NONPOINT INFLOW	151.0	86.0%	0.00E+00		0.00	213.3	
***TOTAL INFLOW	175.6	100.0%	1.50E+02	100.0%	0.07	146.0	214.9
ADVECTIVE OUTFLOW	18.6	10.6%	5.35E+01		0.39	59.9	22.8
***TOTAL OUTFLOW	18.6	10.6%	5.35E+01		0.39	59.9	22.8
***RETENTION	157.0	89.4%	1.88E+02		0.09		
Overflow Rate (m/yr)	0.4		Nutrient Res	id. Time (yrs)	0.5018	
Hydraulic Resid. Time (yrs)	4.7378		Turnover Rat	io		2.0	
Reservoir Conc (mg/m3)	60		Retention Co	oef.		0.894	

Hanson Lake Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Overall Water Balance		Averagin	g Period =	1.00 years	
	Area	Flow	Variance	CV	Runoff
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	m/yr
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Hanson Lake Shed		11.9	0.00E+00	0.00	
PRECIPITATION	0.8	0.5	0.00E+00	0.00	0.62
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		11.9	0.00E+00	0.00	
***TOTAL INFLOW	0.8	12.4	0.00E+00	0.00	16.29
ADVECTIVE OUTFLOW	0.8	11.5	0.00E+00	0.00	15.20
***TOTAL OUTFLOW	0.8	11.5	0.00E+00	0.00	15.20
***EVAPORATION		0.8	0.00E+00	0.00	

Overall Mass Balance Based Upon Component:	Predicted TOTAL P	Outflow & Reservoir Concentrations					
	Load	L	oad Varian	ce		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	3.2	0.2%	0.00E+00		0.00	316.2	
2 2 1 Hanson Lake Shed	1956.2	98.7%	0.00E+00		0.00	164.4	
PRECIPITATION	22.8	1.2%	1.30E+02	100.0%	0.50	48.5	30.0
TRIBUTARY INFLOW	3.2	0.2%	0.00E+00		0.00	316.2	
NONPOINT INFLOW	1956.2	98.7%	0.00E+00		0.00	164.4	
***TOTAL INFLOW	1982.1	100.0%	1.30E+02	100.0%	0.01	160.1	2608.1
ADVECTIVE OUTFLOW	1424.7	71.9%	3.20E+04		0.13	123.4	1874.6
***TOTAL OUTFLOW	1424.7	71.9%	3.20E+04		0.13	123.4	1874.6
***RETENTION	557.4	28.1%	3.20E+04		0.32		
Overflow Rate (m/yr)	15.2	1	Nutrient Res	id. Time (y	rs)	0.0473	
Hydraulic Resid. Time (yrs)	0.0658	T	urnover Rat	tio		21.1	
Reservoir Conc (mg/m3)	123	F	Retention Co	oef.		0.281	

Hanson Lake Bathtub Model Output – Modeled to Phosphorus Standard Overall Water & Nutrient Balances

Ove	rall Wa	ater B	alance	Averaging Period =			1.00	years
				Area	Flow	Variance	CV	Runoff
<u>Trb</u>	<u>Type</u>	Seg	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1	1	1	SSTS		0.0	0.00E+00	0.00	
2	2	1	Hanson Lake Shed		11.9	0.00E+00	0.00	
PRE(CIPITAT	ΓΙΟN		0.8	0.5	0.00E+00	0.00	0.62
TRIB	UTARY	INFL	WC		0.0	0.00E+00	0.00	
NON	IPOINT	INFL	OW		11.9	0.00E+00	0.00	
***T	OTAL I	NFLO	W	0.8	12.4	0.00E+00	0.00	16.29
ADV	ECTIVE	OUT	FLOW	0.8	11.5	0.00E+00	0.00	15.20
***T	OTAL (OUTFL	LOW .	0.8	11.5	0.00E+00	0.00	15.20
***E	VAPO	RATIC	N		0.8	0.00E+00	0.00	

Predicted		Outflow & I	Concent	rations		
TOTAL P						
Load	Load Variance				Conc	Export
<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
863.0	97.4%	0.00E+00		0.00	72.5	
22.8	2.6%	1.30E+02	100.0%	0.50	48.5	30.0
863.0	97.4%	0.00E+00		0.00	72.5	
885.8	100.0%	1.30E+02	100.0%	0.01	71.6	1165.5
697.2	78.7%	4.47E+03		0.10	60.4	917.3
697.2	78.7%	4.47E+03		0.10	60.4	917.3
188.6	21.3%	4.42E+03		0.35		
15.2		Nutrient Res	sid. Time (yrs)	0.0518	
0.0658		Turnover Rat	tio		19.3	
60		Retention Co	oef.		0.213	
	TOTAL P Load kg/yr 863.0 22.8 863.0 885.8 697.2 697.2 188.6	TOTAL P Load kg/yr %Total 863.0 97.4% 22.8 2.6% 863.0 97.4% 885.8 100.0% 697.2 78.7% 697.2 78.7% 188.6 21.3% 15.2 0.0658	TOTAL P Load kg/yr 863.0 97.4% 0.00E+00 22.8 2.6% 1.30E+02 863.0 97.4% 0.00E+00 885.8 100.0% 1.30E+02 697.2 78.7% 4.47E+03 697.2 78.7% 188.6 21.3% Nutrient Resolution Resolution Turnover Rate	TOTAL P kg/yr %Total (kg/yr)² %Total 863.0 97.4% 0.00E+00 22.8 2.6% 1.30E+02 100.0% 863.0 97.4% 0.00E+00 885.8 100.0% 1.30E+02 100.0% 697.2 78.7% 4.47E+03 697.2 78.7% 4.47E+03 188.6 21.3% 4.42E+03 Nutrient Resid. Time (specific type) Turnover Ratio	TOTAL P kg/yr %Total (kg/yr)² %Total CV 863.0 97.4% 0.00E+00 0.00 22.8 2.6% 1.30E+02 100.0% 0.50 863.0 97.4% 0.00E+00 0.00 885.8 100.0% 1.30E+02 100.0% 0.01 697.2 78.7% 4.47E+03 0.10 697.2 78.7% 4.47E+03 0.10 188.6 21.3% 4.42E+03 0.35 Nutrient Resid. Time (yrs) 70.0658 Turnover Ratio	TOTAL P Load Load Varian → September 1 Conces (kg/yr) %Total (kg/yr) ² %Total (kg/yr) ² %Total (kg/yr) ² Conces (kg/yr) ³ %Total (kg/yr) ² %Total (kg/yr) ² Conces (kg/yr) ³ mg/m³ 863.0 97.4% 0.00E+00 0.00 72.5 885.8 100.0% 1.30E+02 100.0% 0.01 71.6 697.2 78.7% 4.47E+03 0.10 60.4 697.2 78.7% 4.47E+03 0.10 60.4 188.6 21.3% 4.42E+03 0.35 0.0518 15.2 Nutrient Resid. Time (yrs) 0.0518 0.0658 Turnover Ratio 19.3

Hassel Lake Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Overall Water Balance		Averagin	g Period =	1.00	years
	Area	Flow	Variance	CV	Runoff
<u>Trb Type Seg Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Hassel Lake Shed		11.0	0.00E+00	0.00	
PRECIPITATION	2.9	1.5	0.00E+00	0.00	0.53
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		11.0	0.00E+00	0.00	
***TOTAL INFLOW	2.9	12.5	0.00E+00	0.00	4.37
ADVECTIVE OUTFLOW	2.9	9.8	0.00E+00	0.00	3.43
***TOTAL OUTFLOW	2.9	9.8	0.00E+00	0.00	3.43
***EVAPORATION		2.7	0.00E+00	0.00	

Overall Mass Balance Based Upon Component:	Predicted TOTAL P						
	Load	L	oad Varian.	ce		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	3.0	0.1%	0.00E+00		0.00	303.5	
2 2 1 Hassel Lake Shed	1818.7	48.0%	0.00E+00		0.00	165.8	
PRECIPITATION	85.8	2.3%	1.84E+03	100.0%	0.50	56.2	30.0
INTERNAL LOAD	1880.3	49.6%	0.00E+00		0.00		
TRIBUTARY INFLOW	3.0	0.1%	0.00E+00		0.00	303.5	
NONPOINT INFLOW	1818.7	48.0%	0.00E+00		0.00	165.8	
***TOTAL INFLOW	3787.9	100.0%	1.84E+03	100.0%	0.01	302.8	1324.4
ADVECTIVE OUTFLOW	1929.2	50.9%	1.77E+05		0.22	196.6	674.5
***TOTAL OUTFLOW	1929.2	50.9%	1.77E+05		0.22	196.6	674.5
***RETENTION	1858.7	49.1%	1.77E+05		0.23		
Overflow Rate (m/yr)	3.4	Ν	lutrient Res	id. Time (y	ırs)	0.0891	
Hydraulic Resid. Time (yrs)	0.1749	•				11.2	
Reservoir Conc (mg/m3)	197					0.491	

Hassel Lake Bathtub Model Output – Modeled to Phosphorus Standard

Overall Water Balance	Averaging Period =			1.00	years
	Area	Flow	Variance	CV	Runoff
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Hassel Lake Shed		11.0	0.00E+00	0.00	
PRECIPITATION	2.9	1.5	0.00E+00	0.00	0.53
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		11.0	0.00E+00	0.00	
***TOTAL INFLOW	2.9	12.5	0.00E+00	0.00	4.37
ADVECTIVE OUTFLOW	2.9	9.8	0.00E+00	0.00	3.43
***TOTAL OUTFLOW	2.9	9.8	0.00E+00	0.00	3.43
***EVAPORATION		2.7	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	ed Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load	Load Variance				Conc	Export
Trb Type Seg Name	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
2 2 1 Hassel Lake Shed	789.6	90.2%	0.00E+00		0.00	72.0	
PRECIPITATION	85.8	9.8%	1.84E+03	100.0%	0.50	56.2	30.0
NONPOINT INFLOW	789.6	90.2%	0.00E+00		0.00	72.0	
***TOTAL INFLOW	875.4	100.0%	1.84E+03	100.0%	0.05	70.0	306.1
ADVECTIVE OUTFLOW	586.5	67.0%	8.03E+03		0.15	59.8	205.1
***TOTAL OUTFLOW	586.5	67.0%	8.03E+03		0.15	59.8	205.1
***RETENTION	288.9	33.0%	7.78E+03		0.31		
Overflow Rate (m/yr)	3.4		Nutrient Res	id. Time (yrs)	0.1172	
Hydraulic Resid. Time (yrs)	0.1749		Turnover Rat	io		8.5	
Reservoir Conc (mg/m3)	60		Retention Co	oef.		0.330	

Hollerberg Lake Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Ove	Overall Water Balance Averaging Period =			1.00	years			
				Area	Flow	Variance	CV	Runoff
<u>Trb</u>	<u>Type</u>	Seg	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u> </u>	<u>m/yr</u>
1	1	1	SSTS		0.0	0.00E+00	0.00	
2	2	1	Hollerberg Lake Shed		1.4	0.00E+00	0.00	
PRE(CIPITAT	TION		1.0	0.6	0.00E+00	0.00	0.54
TRIB	UTARY	INFLO	WC		0.0	0.00E+00	0.00	
NON	IPOINT	INFL	OW		1.4	0.00E+00	0.00	
***T	OTAL I	NFLO	W	1.0	2.0	0.00E+00	0.00	1.89
ADV	ECTIVE	OUTI	FLOW	1.0	1.0	0.00E+00	0.00	0.93
***T	OTAL (OUTFL	.OW	1.0	1.0	0.00E+00	0.00	0.93
***E	VAPOF	RATIO	N		1.0	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load	L	oad Varian	се		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	<u>%Total</u>	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	0.4	0.1%	0.00E+00		0.00	44.1	
2 2 1 Hollerberg Lake Shed	445.5	93.3%	0.00E+00		0.00	316.7	
PRECIPITATION	31.5	6.6%	2.48E+02	100.0%	0.50	56.0	30.0
TRIBUTARY INFLOW	0.4	0.1%	0.00E+00		0.00	44.1	
NONPOINT INFLOW	445.5	93.3%	0.00E+00		0.00	316.7	
***TOTAL INFLOW	477.5	100.0%	2.48E+02	100.0%	0.03	241.2	454.7
ADVECTIVE OUTFLOW	86.9	18.2%	9.77E+02		0.36	88.8	82.7
***TOTAL OUTFLOW	86.9	18.2%	9.77E+02		0.36	88.8	82.7
***RETENTION	390.6	81.8%	1.18E+03		0.09		
Overflow Rate (m/yr)	0.9	1	Nutrient Res	id. Time (y	rs)	0.1952	
Hydraulic Resid. Time (yrs)	1.0728	3 ,					
Reservoir Conc (mg/m3)	89	F	Retention Co	oef.		0.818	
_							

Hollerberg Lake Bathtub Model Output – Modeled to Phosphorus Standard Overall Water & Nutrient Balances

Ove	rall Wa	ater E	Balance	Averaging Period :			1.00	years
				Area	Flow	Variance	CV	Runoff
<u>Trb</u>	<u>Type</u>	<u>Seg</u>	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1	1	1	SSTS		0.0	0.00E+00	0.00	
2	2	1	Hollerberg Lake Shed		1.4	0.00E+00	0.00	
PRE	CIPITAT	ΓΙΟN		1.0	0.6	0.00E+00	0.00	0.54
TRIE	BUTARY	INFL	OW		0.0	0.00E+00	0.00	
NON	NPOINT	INFL	OW		1.4	0.00E+00	0.00	
***	TOTAL I	NFLO	W	1.0	2.0	0.00E+00	0.00	1.89
ADV	'ECTIVE	OUT	FLOW	1.0	1.0	0.00E+00	0.00	0.93
***	TOTAL (OUTFI	LOW	1.0	1.0	0.00E+00	0.00	0.93
***[VAPO	RATIC	N		1.0	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load	Load Load Variance				Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
2 2 1 Hollerberg Lake Shed	198.1	86.3%	0.00E+00		0.00	140.8	
PRECIPITATION	31.5	13.7%	2.48E+02	100.0%	0.50	56.0	30.0
NONPOINT INFLOW	198.1	86.3%	0.00E+00		0.00	140.8	
***TOTAL INFLOW	229.6	100.0%	2.48E+02	100.0%	0.07	116.0	218.7
ADVECTIVE OUTFLOW	58.6	25.5%	3.74E+02		0.33	59.8	55.8
***TOTAL OUTFLOW	58.6	25.5%	3.74E+02		0.33	59.8	55.8
***RETENTION	171.0	74.5%	5.51E+02		0.14		
Overflow Rate (m/yr)	0.9		Nutrient Res	id. Time (yrs)	0.2736	
Hydraulic Resid. Time (yrs)	1.0728		Turnover Rat	io		3.7	
Reservoir Conc (mg/m3)	60		Retention Co	oef.		0.745	

Irgens Lake Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Overall Water Balance		Averagin	1.00	years	
	Area	Flow	Variance	CV	Runoff
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	<u>(hm3/yr)²</u>	_	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Irgens Lake Shed		5.1	0.00E+00	0.00	
PRECIPITATION	0.8	0.5	0.00E+00	0.00	0.58
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		5.1	0.00E+00	0.00	
***TOTAL INFLOW	0.8	5.6	0.00E+00	0.00	7.03
ADVECTIVE OUTFLOW	0.8	4.8	0.00E+00	0.00	5.96
***TOTAL OUTFLOW	0.8	4.8	0.00E+00	0.00	5.96
***EVAPORATION		0.9	0.00E+00	0.00	

Overall Mass Balance Based Upon Component:	Predicted TOTAL P	Outflow & Reservoir Concentrations					
	Load	ı	₋oad Varian	ce		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	1.5	0.1%	0.00E+00		0.00	153.3	
2 2 1 Irgens Lake Shed	1798.1	98.6%	0.00E+00		0.00	350.4	
PRECIPITATION	23.9	1.3%	1.43E+02	100.0%	0.50	51.8	30.0
TRIBUTARY INFLOW	1.5	0.1%	0.00E+00		0.00	153.3	
NONPOINT INFLOW	1798.1	98.6%	0.00E+00		0.00	350.4	
***TOTAL INFLOW	1823.6	100.0%	1.43E+02	100.0%	0.01	325.5	2288.1
ADVECTIVE OUTFLOW	940.3	51.6%	4.08E+04		0.21	197.9	1179.7
***TOTAL OUTFLOW	940.3	51.6%	4.08E+04		0.21	197.9	1179.7
***RETENTION	883.3	48.4%	4.09E+04		0.23		
Overflow Rate (m/yr)	6.0	1	Nutrient Res	id. Time (y	rs)	0.0865	
Hydraulic Resid. Time (yrs)	0.1678	7	Turnover Rat	tio		11.6	
Reservoir Conc (mg/m3)	198	F	Retention Co	oef.		0.484	

Irgens Lake Bathtub Model Output – Modeled to Phosphorus Standard Overall Water & Nutrient Balances

Overall Water Balance	ance Averaging Period =			1.00	years
	Area	Flow	Variance	CV	Runoff
Trb Type Seg Name	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Irgens Lake Shed		5.1	0.00E+00	0.00	
PRECIPITATION	0.8	0.5	0.00E+00	0.00	0.58
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		5.1	0.00E+00	0.00	
***TOTAL INFLOW	0.8	5.6	0.00E+00	0.00	7.03
ADVECTIVE OUTFLOW	0.8	4.8	0.00E+00	0.00	5.96
***TOTAL OUTFLOW	0.8	4.8	0.00E+00	0.00	5.96
***EVAPORATION		0.9	0.00E+00	0.00	

Predicted		Concent	rations			
TOTAL P						
Load		Load Varian	ce		Conc	Export
<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
400.8	94.4%	0.00E+00		0.00	78.1	
23.9	5.6%	1.43E+02	100.0%	0.50	51.8	30.0
400.8	94.4%	0.00E+00		0.00	78.1	
424.7	100.0%	1.43E+02	100.0%	0.03	75.8	532.8
286.6	67.5%	1.77E+03		0.15	60.3	359.6
286.6	67.5%	1.77E+03		0.15	60.3	359.6
138.1	32.5%	1.75E+03		0.30		
6.0		Nutrient Res	sid. Time (y	/rs)	0.1132	
0.1678		Turnover Rat	tio		8.8	
60		Retention Co	oef.		0.325	
	TOTAL P Load kg/yr 400.8 23.9 400.8 424.7 286.6 286.6 138.1 6.0 0.1678	TOTAL P Load kg/yr %Total 400.8 94.4% 23.9 5.6% 400.8 94.4% 424.7 100.0% 286.6 67.5% 286.6 67.5% 138.1 32.5% 6.0 0.1678	Kg/yr %Total (kg/yr)² 400.8 94.4% 0.00E+00 23.9 5.6% 1.43E+02 400.8 94.4% 0.00E+00 424.7 100.0% 1.43E+02 286.6 67.5% 1.77E+03 286.6 67.5% 1.77E+03 138.1 32.5% 1.75E+03 6.0 Nutrient Res 0.1678 Turnover Rat	TOTAL P kg/yr %Total (kg/yr)² %Total 400.8 94.4% 0.00E+00 23.9 5.6% 1.43E+02 100.0% 400.8 94.4% 0.00E+00 424.7 100.0% 1.43E+02 100.0% 286.6 67.5% 1.77E+03 286.6 67.5% 1.77E+03 138.1 32.5% 1.75E+03 Nutrient Resid. Time (your proper than 100.0%)	TOTAL P kg/yr %Total (kg/yr)² %Total CV 400.8 94.4% 0.00E+00 0.00 23.9 5.6% 1.43E+02 100.0% 0.50 400.8 94.4% 0.00E+00 0.00 424.7 100.0% 1.43E+02 100.0% 0.03 286.6 67.5% 1.77E+03 0.15 286.6 67.5% 1.77E+03 0.15 138.1 32.5% 1.75E+03 0.30 6.0 Nutrient Resid. Time (yrs) 0.1678 Turnover Ratio	TOTAL P Load Load Variance Conc kg/yr %Total (kg/yr)² %Total CV mg/m³ 400.8 94.4% 0.00E+00 0.00 78.1 23.9 5.6% 1.43E+02 100.0% 0.50 51.8 400.8 94.4% 0.00E+00 0.00 78.1 424.7 100.0% 1.43E+02 100.0% 0.03 75.8 286.6 67.5% 1.77E+03 0.15 60.3 286.6 67.5% 1.77E+03 0.15 60.3 138.1 32.5% 1.75E+03 0.30 6.0 Nutrient Resid. Time (yrs) 0.1132 0.1678 Turnover Ratio 8.8

Jennie Lake Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Overall Water Balance		Averagir	1.00	years	
	Area	Flow	Variance	CV	Runoff
<u>Trb Type Seg Name</u>	<u>km²</u>	<u>hm³/yr</u>	<u>(hm3/yr)²</u>	_=	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Jennie Lake	Shed	0.7	0.00E+00	0.00	
PRECIPITATION	1.3	0.7	0.00E+00	0.00	0.56
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		0.7	0.00E+00	0.00	
***TOTAL INFLOW	1.3	1.4	0.00E+00	0.00	1.13
ADVECTIVE OUTFLOW	1.3	0.1	0.00E+00	0.00	0.09
***TOTAL OUTFLOW	1.3	0.1	0.00E+00	0.00	0.09
***EVAPORATION		1.3	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load	L	oad Varian	се		Conc	Export
<u>Trb Type</u> <u>Seg Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	0.2	0.1%	0.00E+00		0.00	24.5	
2 2 1 Jennie Lake Shed	275.8	87.7%	0.00E+00		0.00	389.3	
PRECIPITATION	38.4	12.2%	3.69E+02	100.0%	0.50	53.2	30.0
TRIBUTARY INFLOW	0.2	0.1%	0.00E+00		0.00	24.5	
NONPOINT INFLOW	275.8	87.7%	0.00E+00		0.00	389.3	
***TOTAL INFLOW	314.4	100.0%	3.69E+02	100.0%	0.06	218.3	245.7
ADVECTIVE OUTFLOW	16.6	5.3%	4.79E+01		0.42	152.3	13.0
***TOTAL OUTFLOW	16.6	5.3%	4.79E+01		0.42	152.3	13.0
***RETENTION	297.8	94.7%	3.94E+02		0.07		
Overflow Rate (m/yr)	0.1	1	Nutrient Res	id. Time (y	rs)	0.3720	
Hydraulic Resid. Time (yrs)	7.0313	Т	urnover Rat	tio		2.7	
Reservoir Conc (mg/m3)	152	F	Retention Co	oef.		0.947	

Jennie Lake Bathtub Model Output – Modeled to Phosphorus Standard

Overall Water E	Balance	Averaging Period			1.00	years
		Area	Flow	Variance	CV	Runoff
<u>Trb Type Seg</u>	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	m/yr
1 1 1	SSTS		0.0	0.00E+00	0.00	
2 2 1	Jennie Lake Shed		0.7	0.00E+00	0.00	
PRECIPITATION		1.3	0.7	0.00E+00	0.00	0.56
TRIBUTARY INFL	OW		0.0	0.00E+00	0.00	
NONPOINT INFL	.OW		0.7	0.00E+00	0.00	
***TOTAL INFLO)W	1.3	1.4	0.00E+00	0.00	1.13
ADVECTIVE OUT	FLOW	1.3	0.1	0.00E+00	0.00	0.09
***TOTAL OUTF	LOW	1.3	0.1	0.00E+00	0.00	0.09
***EVAPORATIO	ON		1.3	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load	Load Load Variance				Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
2 2 1 Jennie Lake Shed	23.3	37.8%	0.00E+00		0.00	32.9	
PRECIPITATION	38.4	62.2%	3.69E+02	100.0%	0.50	53.2	30.0
NONPOINT INFLOW	23.3	37.8%	0.00E+00		0.00	32.9	
***TOTAL INFLOW	61.7	100.0%	3.69E+02	100.0%	0.31	42.8	48.2
ADVECTIVE OUTFLOW	6.5	10.5%	7.91E+00		0.43	59.5	5.1
***TOTAL OUTFLOW	6.5	10.5%	7.91E+00		0.43	59.5	5.1
***RETENTION	55.2	89.5%	3.31E+02		0.33		
Overflow Rate (m/yr)	0.1		Nutrient Res	id. Time (y	yrs)	0.7408	
Hydraulic Resid. Time (yrs)	7.0313		Turnover Rat	io		1.3	
Reservoir Conc (mg/m3)	60		Retention Co	oef.		0.895	

Johanna Lake Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Overall Water Balan	ce	Averagiı	ng Period =	1.00	years
	Are	ea Flow	Variance	CV	Runoff
<u>Trb Type Seg Nan</u>	<u>ne</u> <u>k</u> ı	m² hm³/yr	<u>(hm3/yr)²</u>	_	<u>m/yr</u>
1 1 1 SSTS	S	0.0	0.00E+00	0.00	
2 2 1 Joha	anna Lake Shed	3.8	0.00E+00	0.00	
PRECIPITATION	į	5.8 3.6	0.00E+00	0.00	0.63
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		3.8	0.00E+00	0.00	
***TOTAL INFLOW	į	5.8 7.4	0.00E+00	0.00	1.29
ADVECTIVE OUTFLOW	V	5.8 1.0	0.00E+00	0.00	0.18
***TOTAL OUTFLOW	į	5.8 1.0	0.00E+00	0.00	0.18
***EVAPORATION		6.4	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	ed Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load	L		Conc	Export		
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	1.0	0.1%	0.00E+00		0.00	95.3	
2 2 1 Johanna Lake Shed	1190.3	87.2%	0.00E+00		0.00	312.9	
PRECIPITATION	173.1	12.7%	7.49E+03	100.0%	0.50	47.8	30.0
TRIBUTARY INFLOW	1.0	0.1%	0.00E+00		0.00	95.3	
NONPOINT INFLOW	87.2%	0.00E+00		0.00	312.9		
***TOTAL INFLOW	1364.4	100.0%	7.49E+03	100.0%	0.06	183.6	236.5
ADVECTIVE OUTFLOW	80.1	5.9%	1.10E+03		0.41	78.1	13.9
***TOTAL OUTFLOW	80.1	5.9%	1.10E+03		0.41	78.1	13.9
***RETENTION	1284.2	94.1%	8.19E+03		0.07		
Overflow Rate (m/yr)	0.2	1	lutrient Res	id. Time (y	rs)	0.3301	
Hydraulic Resid. Time (yrs)	5.6195	Т	urnover Rat	io		3.0	
Reservoir Conc (mg/m3)	78	F	Retention Co	oef.		0.941	

Johanna Lake Bathtub Model Output – Modeled to Phosphorus Standard Overall Water & Nutrient Balances

Overall Water Balance		Averagin	g Period =	1.00	years
	Area	Flow	Variance	CV	Runoff
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Johanna Lake Shed		3.8	0.00E+00	0.00	
PRECIPITATION	5.8	3.6	0.00E+00	0.00	0.63
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		3.8	0.00E+00	0.00	
***TOTAL INFLOW	5.8	7.4	0.00E+00	0.00	1.29
ADVECTIVE OUTFLOW	5.8	1.0	0.00E+00	0.00	0.18
***TOTAL OUTFLOW	5.8	1.0	0.00E+00	0.00	0.18
***EVAPORATION		6.4	0.00E+00	0.00	

Predicted		Outflow & I	Concentrations			
TOTAL P						
Load	I	Load Varian	ce		Conc	Export
<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
587.8	77.3%	0.00E+00		0.00	154.5	
173.1	22.7%	7.49E+03	100.0%	0.50	47.8	30.0
587.8	77.3%	0.00E+00		0.00	154.5	
760.9	100.0%	7.49E+03	100.0%	0.11	102.4	131.9
61.6	8.1%	6.24E+02		0.41	60.0	10.7
61.6	8.1%	6.24E+02		0.41	60.0	10.7
699.3	91.9%	7.56E+03		0.12		
0.2	١	Nutrient Res	sid. Time (y	ırs)	0.4547	
5.6195	Turnover Ratio				2.2	
60	F	Retention Co	oef.		0.919	
	TOTAL P Load kg/yr 587.8 173.1 587.8 760.9 61.6 61.6 699.3	TOTAL P Load kg/yr 587.8 77.3% 173.1 22.7% 587.8 760.9 100.0% 61.6 8.1% 61.6 8.1% 699.3 91.9%	TOTAL P Load kg/yr 587.8 77.3% 0.00E+00 173.1 22.7% 7.49E+03 587.8 77.3% 0.00E+00 760.9 100.0% 7.49E+03 61.6 8.1% 6.24E+02 61.6 8.1% 6.24E+02 699.3 91.9% 7.56E+03 Nutrient Residuely States of	TOTAL P Load kg/yr %Total (kg/yr)² %Total 587.8 77.3% 0.00E+00 173.1 22.7% 7.49E+03 100.0% 587.8 77.3% 0.00E+00 760.9 100.0% 7.49E+03 100.0% 61.6 8.1% 6.24E+02 61.6 8.1% 6.24E+02 699.3 91.9% 7.56E+03 Nutrient Resid. Time (y Turnover Ratio	TOTAL P kg/yr %Total (kg/yr)² %Total CV 587.8 77.3% 0.00E+00 0.00 173.1 22.7% 7.49E+03 100.0% 0.50 587.8 77.3% 0.00E+00 0.00 760.9 100.0% 7.49E+03 100.0% 0.11 61.6 8.1% 6.24E+02 0.41 61.6 8.1% 6.24E+02 0.41 699.3 91.9% 7.56E+03 0.12 Nutrient Resid. Time (yrs) 5.6195 Turnover Ratio	TOTAL P Load Load Varian= Conc kg/yr %Total (kg/yr)² %Total CV mg/m³ 587.8 77.3% $0.00E+00$ 0.00 0.00 0.50 </td

John Lake Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Ove	rall Wa	iter B	alance		Averagin	g Period =	1.00	years
				Area	Flow	Variance	CV	Runoff
<u>Trb</u>	<u>Type</u>	Seg	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	_=	<u>m/yr</u>
1	1	1	SSTS		0.0	0.00E+00	0.00	
2	2	1	John Lake Shed		2.8	0.00E+00	0.00	
PRE(CIPITAT	ION		0.5	0.3	0.00E+00	0.00	0.62
TRIB	UTARY	INFL	WC		0.0	0.00E+00	0.00	
NON	IPOINT	INFL	OW		2.8	0.00E+00	0.00	
***]	OTAL I	NFLO	W	0.5	3.1	0.00E+00	0.00	6.52
ADV	ECTIVE	OUT	FLOW	0.5	2.5	0.00E+00	0.00	5.38
***1	OTAL (DUTFL	LOW .	0.5	2.5	0.00E+00	0.00	5.38
***E	VAPOF	RATIC	N		0.5	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load	L	₋oad Varian	се		Conc	Export
<u>Trb Type</u> <u>Seg Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	0.8	0.1%	0.00E+00		0.00	81.2	
2 2 1 John Lake Shed	955.9	98.5%	0.00E+00		0.00	346.7	
PRECIPITATION	14.1	1.4%	4.95E+01	100.0%	0.50	48.4	30.0
TRIBUTARY INFLOW	0.8	0.1%	0.00E+00		0.00	81.2	
NONPOINT INFLOW	955.9	98.5%	0.00E+00		0.00	346.7	
***TOTAL INFLOW	970.8	100.0%	4.95E+01	100.0%	0.01	317.5	2069.8
ADVECTIVE OUTFLOW	356.6	36.7%	9.93E+03		0.28	141.4	760.4
***TOTAL OUTFLOW	356.6	36.7%	9.93E+03		0.28	141.4	760.4
***RETENTION	614.1	63.3%	9.96E+03		0.16		
Overflow Rate (m/yr)	5.4	ľ	Nutrient Res	id. Time (y	rs)	0.0820	
Hydraulic Resid. Time (yrs)	0.2231	Turnover Ratio 12.2				12.2	
Reservoir Conc (mg/m3)	141	F	Retention Co	oef.		0.633	

John Lake Bathtub Model Output – Modeled to Phosphorus Standard Overall Water & Nutrient Balances

Ove	rall Wa	ater B	alance		Averagin	g Period =	1.00	years
				Area	Flow	Variance	CV	Runoff
<u>Trb</u>	<u>Type</u>	Seg	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1	1	1	SSTS		0.0	0.00E+00	0.00	
2	2	1	John Lake Shed		2.8	0.00E+00	0.00	
PRE(CIPITAT	ΓΙΟN		0.5	0.3	0.00E+00	0.00	0.62
TRIB	UTARY	INFL	WC		0.0	0.00E+00	0.00	
NON	IPOINT	INFL	OW		2.8	0.00E+00	0.00	
***T	OTALI	NFLO	W	0.5	3.1	0.00E+00	0.00	6.52
ADV	ECTIVE	OUT	FLOW	0.5	2.5	0.00E+00	0.00	5.38
***T	OTAL (OUTFL	.OW	0.5	2.5	0.00E+00	0.00	5.38
***E	VAPO	RATIC	N		0.5	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted		Outflow & I	Concent	rations		
Component:	TOTAL P						
	Load		Load Varian	ce		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
2 2 1 John Lake Shed	273.3	95.1%	0.00E+00		0.00	99.1	
PRECIPITATION	14.1	4.9%	4.95E+01	100.0%	0.50	48.4	30.0
NONPOINT INFLOW	273.3	95.1%	0.00E+00		0.00	99.1	
***TOTAL INFLOW	287.4	100.0%	4.95E+01	100.0%	0.02	94.0	612.7
ADVECTIVE OUTFLOW	152.6	53.1%	1.02E+03		0.21	60.5	325.5
***TOTAL OUTFLOW	152.6	53.1%	1.02E+03		0.21	60.5	325.5
***RETENTION	134.7	46.9%	1.03E+03		0.24		
Overflow Rate (m/yr)	5.4		Nutrient Res	id. Time (y	rs)	0.1185	
Hydraulic Resid. Time (yrs)	0.2231	Turnover Ratio				8.4	
Reservoir Conc (mg/m3)	60		Retention Co	oef.		0.469	

Jorgenson Lake Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Overall Water Balance	Averaging Period			1.00	years
	Area	Flow	Variance	CV	Runoff
<u>Trb Type Seg Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Jorgenson Lake Shed		0.4	0.00E+00	0.00	
PRECIPITATION	0.5	0.3	0.00E+00	0.00	0.57
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		0.4	0.00E+00	0.00	
***TOTAL INFLOW	0.5	0.7	0.00E+00	0.00	1.49
ADVECTIVE OUTFLOW	0.5	0.2	0.00E+00	0.00	0.45
***TOTAL OUTFLOW	0.5	0.2	0.00E+00	0.00	0.45
***EVAPORATION		0.5	0.00E+00	0.00	

Overall Mass Balance Based Upon Component:	Predicted TOTAL P						
	Load	L	oad Varian	се		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	0.1	0.0%	0.00E+00		0.00	13.8	
2 2 1 Jorgenson Lake Shed	159.8	41.5%	0.00E+00		0.00	368.5	
PRECIPITATION	14.4	3.7%	5.18E+01	100.0%	0.50	52.6	30.0
INTERNAL LOAD	210.4	54.7%	0.00E+00		0.00		
TRIBUTARY INFLOW	0.1	0.0%	0.00E+00		0.00	13.8	
NONPOINT INFLOW	159.8	41.5%	0.00E+00		0.00	368.5	
***TOTAL INFLOW	384.7	100.0%	5.18E+01	100.0%	0.02	536.4	801.4
ADVECTIVE OUTFLOW	44.6	11.6%	2.99E+02		0.39	204.6	92.9
***TOTAL OUTFLOW	44.6	11.6%	2.99E+02		0.39	204.6	92.9
***RETENTION	340.1	88.4%	3.44E+02		0.05		
Overflow Rate (m/yr)	0.5	Nutrient Resid. Time (yrs)			ırs)	0.2553	
Hydraulic Resid. Time (yrs)	2.2019	Turnover Ratio				3.9	
Reservoir Conc (mg/m3)	205	F	Retention Co	oef.		0.884	

Jorgenson Lake Bathtub Model Output – Modeled to Phosphorus Standard Overall Water & Nutrient Balances

Ove	rall Wa	ater B	alance		Averaging Period =			years
				Area	Flow	Variance	CV	Runoff
<u>Trb</u>	<u>Type</u>	<u>Seg</u>	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1	1	1	SSTS		0.0	0.00E+00	0.00	
2	2	1	Jorgenson Lake Shed		0.4	0.00E+00	0.00	
PRE(CIPITAT	ΓΙΟN		0.5	0.3	0.00E+00	0.00	0.57
TRIB	UTARY	'INFL	WC		0.0	0.00E+00	0.00	
NON	IPOINT	INFL	OW		0.4	0.00E+00	0.00	
***T	OTALI	NFLO	W	0.5	0.7	0.00E+00	0.00	1.49
ADV	ECTIVE	OUT	FLOW	0.5	0.2	0.00E+00	0.00	0.45
***T	OTAL (OUTFL	LOW	0.5	0.2	0.00E+00	0.00	0.45
***E	VAPO	RATIC	N		0.5	0.00E+00	0.00	

Overall Mass Balance Based Upon Component:	Predicted TOTAL P		Outflow & I	utflow & Reservoir Concentrations					
	Load	l	oad Variance			Conc	Export		
<u>Trb Type Seg Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m ³	kg/km²/yr		
2 2 1 Jorgenson Lake Shed	38.8	72.9%	0.00E+00		0.00	89.5			
PRECIPITATION	14.4	27.1%	5.18E+01	100.0%	0.50	52.6	30.0		
NONPOINT INFLOW	38.8	72.9%	0.00E+00		0.00	89.5			
***TOTAL INFLOW	53.2	100.0%	5.18E+01	100.0%	0.14	74.2	110.9		
ADVECTIVE OUTFLOW	13.0	24.5%	2.01E+01		0.34	59.8	27.2		
***TOTAL OUTFLOW	13.0	24.5%	2.01E+01		0.34	59.8	27.2		
***RETENTION	40.2	75.5%	5.53E+01		0.19				
Overflow Rate (m/yr)	0.5	1	Nutrient Res	sid. Time (y	ırs)	0.5394			
Hydraulic Resid. Time (yrs)	2.2019	Turnover Ratio 1.9				1.9			
Reservoir Conc (mg/m3)	60	F	Retention Co	oef.		0.755			

Long Lake (Douglas County) Bathtub Model Output - Modeled to Observed In-Lake Phosphorus

Overall Water Balance				Averagin	g Period =	1.00	years	
				Area	Flow	Variance	CV	Runoff
<u>Trb</u>	<u>Type</u>	<u>Seg</u>	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	_	<u>m/yr</u>
1	1	1	SSTS		0.0	0.00E+00	0.00	
2	2	1	Long Lake Shed		8.7	0.00E+00	0.00	
3	1	1	Stowe Lake Outflow	291.0	28.5	0.00E+00	0.00	0.10
4	1	1	Point source		0.1	0.00E+00	0.00	
PREC	CIPITAT	ION		0.8	0.6	0.00E+00	0.00	0.67
TRIB	UTARY	INFLO	WC	291.0	28.6	0.00E+00	0.00	0.10
NON	IPOINT	INFL	WC		8.7	0.00E+00	0.00	
***T	OTAL I	NFLO'	W	291.8	37.8	0.00E+00	0.00	0.13
ADV	ECTIVE	OUT	LOW	291.8	37.0	0.00E+00	0.00	0.13
***T	OTAL (OUTFL	OW	291.8	37.0	0.00E+00	0.00	0.13
***E	VAPOF	RATIO	N		0.8	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load	L	oad Varian	ce		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m ³	kg/km²/yr
1 1 1 SSTS	1.3	0.0%	0.00E+00		0.00	128.0	
2 2 1 Long Lake Shed	4074.0	56.0%	0.00E+00		0.00	470.3	
3 1 1 Stowe Lake Outflow	3014.2	41.5%	0.00E+00		0.00	105.8	10.4
4 1 1 Point source	156.5	2.2%	0.00E+00		0.00	1630.7	
PRECIPITATION	24.9	0.3%	1.55E+02	100.0%	0.50	44.8	30.0
TRIBUTARY INFLOW	3172.0	43.6%	0.00E+00		0.00	110.9	10.9
NONPOINT INFLOW	4074.0	56.0%	0.00E+00		0.00	470.3	
***TOTAL INFLOW	7270.9	100.0%	1.55E+02	100.0%	0.00	192.2	24.9
ADVECTIVE OUTFLOW	4320.6	59.4%	6.08E+05		0.18	116.6	14.8
***TOTAL OUTFLOW	4320.6	59.4%	6.08E+05		0.18	116.6	14.8
***RETENTION	2950.3	40.6%	6.08E+05		0.26		
Overflow Rate (m/yr)	44.6	ľ	Nutrient Res	id. Time (y	rs)	0.0240	
Hydraulic Resid. Time (yrs)	0.0403	Turnover Ratio 41.7				41.7	
Reservoir Conc (mg/m3)	117	F	Retention Co	oef.		0.406	

Long Lake (Douglas County) Bathtub Model Output – Modeled to Phosphorus Standard

Overall Water Balance				Averagin	g Period =	1.00	years	
				Area	Flow	Variance	CV	Runoff
<u>Trb</u>	<u>Type</u>	<u>Seg</u>	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>=</u>	<u>m/yr</u>
1	1	1	SSTS		0.0	0.00E+00	0.00	
2	2	1	Long Lake Shed		8.7	0.00E+00	0.00	
3	1	1	Stowe Lake Outflow	291.0	28.5	0.00E+00	0.00	0.10
4	1	1	Point source		0.1	0.00E+00	0.00	
PRE(CIPITAT	ION		0.8	0.6	0.00E+00	0.00	0.67
TRIB	UTARY	INFLO	WC	291.0	28.6	0.00E+00	0.00	0.10
NON	IPOINT	INFL	WC		8.7	0.00E+00	0.00	
***T	OTALI	NFLO'	W	291.8	37.8	0.00E+00	0.00	0.13
ADV	ECTIVE	OUTI	LOW	291.8	37.0	0.00E+00	0.00	0.13
***T	OTAL (OUTFL	OW	291.8	37.0	0.00E+00	0.00	0.13
***E	VAPOF	RATIO	N		0.8	0.00E+00	0.00	

Overall Mass Balance Based Upon Component:	Predicted TOTAL P	Outflow & Reservoir Concentrations					
	Load	L	.oad Varian	ce		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
2 2 1 Long Lake Shed	486.3	15.5%	0.00E+00		0.00	56.1	
3 1 1 Stowe Lake Outflow	2479.5	78.8%	0.00E+00		0.00	87.0	8.5
4 1 1 Point source	156.5	5.0%	0.00E+00		0.00	1630.7	
PRECIPITATION	24.9	0.8%	1.55E+02	100.0%	0.50	44.8	30.0
TRIBUTARY INFLOW	2636.0	83.8%	0.00E+00		0.00	92.2	9.1
NONPOINT INFLOW	486.3	15.5%	0.00E+00		0.00	56.1	
***TOTAL INFLOW	3147.3	100.0%	1.55E+02	100.0%	0.00	83.2	10.8
ADVECTIVE OUTFLOW	2221.1	70.6%	8.51E+04		0.13	60.0	7.6
***TOTAL OUTFLOW	2221.1	70.6%	8.51E+04		0.13	60.0	7.6
***RETENTION	926.2	29.4%	8.50E+04		0.31		
Overflow Rate (m/yr)	44.6	Ŋ	lutrient Res	id. Time (y	rs)	0.0285	
Hydraulic Resid. Time (yrs)	0.0403	Turnover Ratio				35.1	
Reservoir Conc (mg/m3)	60	F	Retention Co	oef.		0.294	

Long Lake (Stevens County) Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Overall Water Balance		Averagin	g Period =	1.00	years
	Area	Flow	Variance	CV	Runoff
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Long_S Lake Shed		1.3	0.00E+00	0.00	
PRECIPITATION	2.4	1.5	0.00E+00	0.00	0.63
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		1.3	0.00E+00	0.00	
***TOTAL INFLOW	2.4	2.8	0.00E+00	0.00	1.18
ADVECTIVE OUTFLOW	2.4	0.1	0.00E+00	0.00	0.03
***TOTAL OUTFLOW	2.4	0.1	0.00E+00	0.00	0.03
***EVAPORATION		2.7	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load	L	oad Varian	ce		Conc	Export
<u>Trb Type Seg Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	0.4	0.0%	0.00E+00		0.00	44.8	
2 2 1 Long_S Lake Shed	502.0	38.2%	0.00E+00		0.00	383.2	
PRECIPITATION	71.4	5.4%	1.27E+03	100.0%	0.50	47.9	30.0
INTERNAL LOAD	738.9	56.3%	0.00E+00		0.00		
TRIBUTARY INFLOW	0.4	0.0%	0.00E+00		0.00	44.8	
NONPOINT INFLOW	502.0	38.2%	0.00E+00		0.00	383.2	
***TOTAL INFLOW	1312.7	100.0%	1.27E+03	100.0%	0.03	467.2	551.6
ADVECTIVE OUTFLOW	11.0	0.8%	2.26E+01		0.43	150.4	4.6
***TOTAL OUTFLOW	11.0	0.8%	2.26E+01		0.43	150.4	4.6
***RETENTION	1301.8	99.2%	1.29E+03		0.03		
Overflow Rate (m/yr)	0.0	Nutrient Resid. Time (yrs)			rs)	0.4091	
Hydraulic Resid. Time (yrs)	49.0324	Turnover Ratio 2.				2.4	
Reservoir Conc (mg/m3)	150	F	Retention Co	oef.		0.992	

Long Lake (Stevens County) Bathtub Model Output - Modeled to Phosphorus Standard

Overall Water Balance		Averagin	g Period =	1.00 years	
	Area	Flow	Variance	CV	Runoff
Trb Type Seg Name	<u>km²</u>	<u>hm³/yr</u>	<u>(hm3/yr)²</u>	_=	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Long_S Lake Shed		1.3	0.00E+00	0.00	
PRECIPITATION	2.4	1.5	0.00E+00	0.00	0.63
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		1.3	0.00E+00	0.00	
***TOTAL INFLOW	2.4	2.8	0.00E+00	0.00	1.18
ADVECTIVE OUTFLOW	2.4	0.1	0.00E+00	0.00	0.03
***TOTAL OUTFLOW	2.4	0.1	0.00E+00	0.00	0.03
***EVAPORATION		2.7	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load	Load Load Variance				Conc	Export
<u>Trb Type Seg Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
2 2 1 Long_S Lake Shed	189.1	36.7%	0.00E+00		0.00	144.3	
PRECIPITATION	71.4	13.9%	1.27E+03	100.0%	0.50	47.9	30.0
INTERNAL LOAD	255.1	49.5%	0.00E+00		0.00		
NONPOINT INFLOW	189.1	36.7%	0.00E+00		0.00	144.3	
***TOTAL INFLOW	515.5	100.0%	1.27E+03	100.0%	0.07	183.5	216.6
ADVECTIVE OUTFLOW	6.6	1.3%	8.10E+00		0.43	90.2	2.8
***TOTAL OUTFLOW	6.6	1.3%	8.10E+00		0.43	90.2	2.8
***RETENTION	508.9	98.7%	1.26E+03		0.07		
Overflow Rate (m/yr)	0.0	N	Nutrient Res	id Time (v	ırs)	0.6249	
Hydraulic Resid. Time (yrs)	49.0324		urnover Rat	.5	,	1.6	
Reservoir Conc (mg/m3)	90		Retention Co			0.987	

Mary Lake Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Overall Water Balance		Averagin	g Period =	1.00 years	
	Area	Flow	Variance	CV	Runoff
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	_	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Mary Lake Shed		0.6	0.00E+00	0.00	
PRECIPITATION	0.4	0.2	0.00E+00	0.00	0.41
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		0.6	0.00E+00	0.00	
***TOTAL INFLOW	0.4	0.8	0.00E+00	0.00	2.03
ADVECTIVE OUTFLOW	0.4	0.5	0.00E+00	0.00	1.31
***TOTAL OUTFLOW	0.4	0.5	0.00E+00	0.00	1.31
***EVAPORATION		0.3	0.00E+00	0.00	

Outflow & Reservoir Concentrations				
d Variance	Conc Export			
(kg/yr) ² %Total CV	mg/m ³ kg/km ² /yr			
.00E+00 0.00	18.0			
.00E+00 0.00	168.7			
.69E+01 100.0% 0.50	73.2 30.0			
.00E+00 0.00				
.00E+00 0.00	18.0			
.00E+00 0.00	168.7			
.69E+01 100.0% 0.03	255.4 519.1			
.47E+02 0.32	110.0 144.3			
.47E+02 0.32	110.0 144.3			
.70E+02 0.13				
rient Resid. Time (yrs)	0.2967			
nover Ratio	3.4			
ention Coef.	0.722			
•	d Variance (kg/yr)² %Total CV .00E+00 0.00 .00E+00 0.50 .69E+01 100.0% 0.50 .00E+00 0.00 .00E+00 0.00 .00E+00 0.00 .69E+01 100.0% 0.03 .47E+02 0.32 .47E+02 0.32 .70E+02 0.13 rient Resid. Time (yrs) nover Ratio			

Mary Lake Bathtub Model Output - Modeled to Phosphorus Standard

Overall Water Balance		Averagin	g Period =	1.00 years	
	Area	Flow	Variance	CV	Runoff
Trb Type Seg Name	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>=</u>	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Mary Lake Shed		0.6	0.00E+00	0.00	
PRECIPITATION	0.4	0.2	0.00E+00	0.00	0.41
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		0.6	0.00E+00	0.00	
***TOTAL INFLOW	0.4	0.8	0.00E+00	0.00	2.03
ADVECTIVE OUTFLOW	0.4	0.5	0.00E+00	0.00	1.31
***TOTAL OUTFLOW	0.4	0.5	0.00E+00	0.00	1.31
***EVAPORATION		0.3	0.00E+00	0.00	

Overall Mass Balance Based Upon Component:	Predicted TOTAL P	Outflow & Reservoir Concentrations					
	Load	1	Load Varian	ce		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
2 2 1 Mary Lake Shed	74.8	86.0%	0.00E+00		0.00	115.6	
PRECIPITATION	12.1	14.0%	3.69E+01	100.0%	0.50	73.2	30.0
NONPOINT INFLOW	74.8	86.0%	0.00E+00		0.00	115.6	
***TOTAL INFLOW	87.0	100.0%	3.69E+01	100.0%	0.07	105.7	214.7
ADVECTIVE OUTFLOW	31.8	36.6%	8.19E+01		0.28	59.9	78.6
***TOTAL OUTFLOW	31.8	36.6%	8.19E+01		0.28	59.9	78.6
***RETENTION	55.1	63.4%	9.96E+01		0.18		
Overflow Rate (m/yr)	1.3		Nutrient Res	sid. Time (y	ırs)	0.3904	
Hydraulic Resid. Time (yrs)	1.0670	-	Turnover Rat	tio		2.6	
Reservoir Conc (mg/m3)	60	!	Retention Co	oef.		0.634	

McIver Lake Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Ove	rall Wa	iter B	alance		Averagin	g Period =	1.00	years
				Area	Flow	Variance	CV	Runoff
<u>Trb</u>	<u>Type</u>	<u>Seg</u>	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	_=	<u>m/yr</u>
1	1	1	SSTS		0.0	0.00E+00	0.00	
2	2	1	McIver Lake Shed		1.0	0.00E+00	0.00	
PRE(CIPITAT	ION		0.6	0.3	0.00E+00	0.00	0.57
TRIB	UTARY	INFLO	WC		0.0	0.00E+00	0.00	
NON	IPOINT	INFL	OW		1.0	0.00E+00	0.00	
***T	OTAL I	NFLO	W	0.6	1.4	0.00E+00	0.00	2.38
ADV	ECTIVE	OUTI	FLOW	0.6	0.8	0.00E+00	0.00	1.32
***T	OTAL (OUTFL	WO.	0.6	0.8	0.00E+00	0.00	1.32
***E	VAPOF	RATIO	N		0.6	0.00E+00	0.00	

Overall Mass Balance Based Upon Component:	Predicted TOTAL P	Outflow & Reservoir Concentrations					
	Load	L	oad Varian	се		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	0.4	0.1%	0.00E+00		0.00	35.8	
2 2 1 McIver Lake Shed	395.2	63.5%	0.00E+00		0.00	385.9	
PRECIPITATION	17.2	2.8%	7.41E+01	100.0%	0.50	52.3	30.0
INTERNAL LOAD	209.7	33.7%	0.00E+00		0.00		
TRIBUTARY INFLOW	0.4	0.1%	0.00E+00		0.00	35.8	
NONPOINT INFLOW	395.2	63.5%	0.00E+00		0.00	385.9	
***TOTAL INFLOW	622.5	100.0%	7.41E+01	100.0%	0.01	456.4	1084.4
ADVECTIVE OUTFLOW	130.6	21.0%	2.06E+03		0.35	172.9	227.5
***TOTAL OUTFLOW	130.6	21.0%	2.06E+03		0.35	172.9	227.5
***RETENTION	491.9	79.0%	2.11E+03		0.09		
Overflow Rate (m/yr)	1.3	Nutrient Resid. Time (yrs)			rs)	0.2392	
Hydraulic Resid. Time (yrs)	1.1399	•				4.2	
Reservoir Conc (mg/m3)	173	F	Retention Co	oef.		0.790	

McIver Lake Bathtub Model Output – Modeled to Phosphorus Standard Overall Water & Nutrient Balances

Overall Water Balance		1.00	years		
	Area	Flow	Variance	CV	Runoff
<u>Trb Type Seg Name</u>	<u>km²</u>	hm³/yr	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 McIver Lake Shed		1.0	0.00E+00	0.00	
PRECIPITATION	0.6	0.3	0.00E+00	0.00	0.57
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		1.0	0.00E+00	0.00	
***TOTAL INFLOW	0.6	1.4	0.00E+00	0.00	2.38
ADVECTIVE OUTFLOW	0.6	0.8	0.00E+00	0.00	1.32
***TOTAL OUTFLOW	0.6	0.8	0.00E+00	0.00	1.32
***EVAPORATION		0.6	0.00E+00	0.00	

Predicted	Outflow & Reservoir Concentrations					
TOTAL P						
Load Load Var			ariance			Export
<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
111.3	86.6%	0.00E+00		0.00	108.6	
17.2	13.4%	7.41E+01	100.0%	0.50	52.3	30.0
111.3	86.6%	0.00E+00		0.00	108.6	
128.5	100.0%	7.41E+01	100.0%	0.07	94.2	223.8
45.4	35.4%	1.73E+02		0.29	60.1	79.1
45.4	35.4%	1.73E+02		0.29	60.1	79.1
83.1	64.6%	2.10E+02		0.17		
1.3		Nutrient Res	id. Time (y	/rs)	0.4031	
1.1399	Turnover Ratio				2.5	
60		Retention Co	oef.		0.646	
	TOTAL P Load kg/yr 111.3 17.2 111.3 128.5 45.4 45.4 83.1 1.3 1.1399	TOTAL P Load kg/yr %Total 111.3 86.6% 17.2 13.4% 111.3 86.6% 128.5 100.0% 45.4 35.4% 45.4 35.4% 83.1 64.6% 1.3 1.1399	TOTAL P Load kg/yr %Total (kg/yr)² 111.3 86.6% 0.00E+00 17.2 13.4% 7.41E+01 111.3 86.6% 0.00E+00 128.5 100.0% 7.41E+01 45.4 35.4% 1.73E+02 45.4 35.4% 1.73E+02 83.1 64.6% 2.10E+02 Nutrient Res 1.1399 Turnover Rat	TOTAL P Load kg/yr %Total (kg/yr)² %Total 111.3 86.6% 0.00E+00 17.2 13.4% 7.41E+01 100.0% 111.3 86.6% 0.00E+00 128.5 100.0% 7.41E+01 100.0% 45.4 35.4% 1.73E+02 45.4 35.4% 1.73E+02 83.1 64.6% 2.10E+02 Nutrient Resid. Time (yang)	TOTAL P kg/yr %Total (kg/yr)² %Total CV 111.3 86.6% 0.00E+00 0.00 17.2 13.4% 7.41E+01 100.0% 0.50 111.3 86.6% 0.00E+00 0.00 128.5 100.0% 7.41E+01 100.0% 0.07 45.4 35.4% 1.73E+02 0.29 45.4 35.4% 1.73E+02 0.29 83.1 64.6% 2.10E+02 0.17 Nutrient Resid. Time (yrs) 1.1399 Turnover Ratio	TOTAL P Load Load Varian → Family Conc kg/yr %Total (kg/yr)² %Total CV mg/m³ 111.3 86.6% 0.00E+00 0.00 108.6 17.2 13.4% 7.41E+01 100.0% 0.50 52.3 111.3 86.6% 0.00E+00 0.00 108.6 128.5 100.0% 7.41E+01 100.0% 0.07 94.2 45.4 35.4% 1.73E+02 0.29 60.1 45.4 35.4% 1.73E+02 0.29 60.1 83.1 64.6% 2.10E+02 0.17 1.3 Nutrient Resid. Time (yrs) 0.4031 1.1399 Turnover Ratio 2.5

Monson Lake Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Overall Water Balance		Averagin	g Period =	1.00	years
	Area	Flow	Variance	CV	Runoff
<u>Trb Type Seg Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	m/yr
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Monson Lake Shed		0.4	0.00E+00	0.00	
PRECIPITATION	0.8	0.5	0.00E+00	0.00	0.64
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		0.4	0.00E+00	0.00	
***TOTAL INFLOW	0.8	1.0	0.00E+00	0.00	1.16
ADVECTIVE OUTFLOW	0.8	0.0	0.00E+00	0.00	0.03
***TOTAL OUTFLOW	0.8	0.0	0.00E+00	0.00	0.03
***EVAPORATION		1.0	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load	L	oad Varian	ice		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	kg/yr	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	0.1	0.1%	0.00E+00		0.00	11.8	
2 2 1 Monson Lake Shed	145.9	85.2%	0.00E+00		0.00	342.5	
PRECIPITATION	PRECIPITATION 25.3 14.8% 1.60E+02 100.0% 0.50						
TRIBUTARY INFLOW	0.1	0.1%	0.00E+00		0.00	11.8	
NONPOINT INFLOW	145.9	85.2%	0.00E+00		0.00	342.5	
***TOTAL INFLOW	171.2	100.0%	1.60E+02	100.0%	0.07	175.8	203.4
ADVECTIVE OUTFLOW	1.7	1.0%	5.34E-01		0.43	74.8	2.0
***TOTAL OUTFLOW	1.7	1.0%	5.34E-01		0.43	74.8	2.0
***RETENTION	169.5	99.0%	1.58E+02		0.07		
Overflow Rate (m/yr)	0.0	Nutrient Resid. Time (yrs)				0.7360	
Hydraulic Resid. Time (yrs)	74.9378	8 Turnover Ratio					
Reservoir Conc (mg/m3)	75	F	Retention Co	oef.		0.990	

Monson Lake Bathtub Model Output – Modeled to Phosphorus Standard

Overall Water Balance		Averagin	1.00	years	
	Area	Flow	Variance	CV	Runoff
Trb Type Seg Name	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Monson Lake Shed		0.4	0.00E+00	0.00	
PRECIPITATION	0.8	0.5	0.00E+00	0.00	0.64
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		0.4	0.00E+00	0.00	
***TOTAL INFLOW	0.8	1.0	0.00E+00	0.00	1.16
ADVECTIVE OUTFLOW	0.8	0.0	0.00E+00	0.00	0.03
***TOTAL OUTFLOW	0.8	0.0	0.00E+00	0.00	0.03
***EVAPORATION		1.0	0.00E+00	0.00	

Overall Mass Balance Based Upon Component:	Predicted TOTAL P	Outflow & Reservoir Concentrations					
	Load	l	∟oad Varian		Conc	Export	
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	kg/yr	%Total	(kg/yr) ²	%Total	CV	mg/m ³	kg/km²/yr
2 2 1 Monson Lake Shed	87.4	77.6%	0.00E+00		0.00	205.1	
PRECIPITATION	25.3	22.4%	1.60E+02	100.0%	0.50	46.9	30.0
NONPOINT INFLOW	87.4	77.6%	0.00E+00		0.00	205.1	
***TOTAL INFLOW	112.6	100.0%	1.60E+02	100.0%	0.11	115.6	133.8
ADVECTIVE OUTFLOW	1.3	1.2%	3.40E-01		0.44	59.5	1.6
***TOTAL OUTFLOW	1.3	1.2%	3.40E-01		0.44	59.5	1.6
***RETENTION	111.3	98.8%	1.58E+02		0.11		
Overflow Rate (m/yr)	0.0	1	Nutrient Res	sid. Time (y	/rs)	0.8899	
Hydraulic Resid. Time (yrs)	74.9378	Turnover Ratio 1.1					
Reservoir Conc (mg/m3)	60	F	Retention Co	oef.		0.988	

Norway Lake Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Overall Water Balance					Averagin	1.00	years	
				Area	Flow	Variance	CV	Runoff
<u>Trb</u>	<u>Type</u>	<u>Seg</u>	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	_	<u>m/yr</u>
1	1	1	SSTS		0.0	0.00E+00	0.00	
2	1	1	West Norway basin		8.3	0.00E+00	0.00	
3	2	1	South Norway drainage area		0.9	0.00E+00	0.00	
PREC	CIPITAT	ION		4.8	3.2	0.00E+00	0.00	0.67
TRIB	UTARY	INFLO	OW		8.3	0.00E+00	0.00	
NON	IPOINT	INFL	WC		0.9	0.00E+00	0.00	
***T	OTAL I	NFLO'	W	4.8	12.5	0.00E+00	0.00	2.60
ADV	ECTIVE	OUT	LOW	4.8	6.7	0.00E+00	0.00	1.40
***T	OTAL C	OUTFL	OW	4.8	6.7	0.00E+00	0.00	1.40
***E	VAPOF	RATIO	N		5.8	0.00E+00	0.00	

Ove	rall Ma	ss Ba	lance Based Upon	Predicted	Outflow & Reservoir Concentrations					
Com	ponen	t:		TOTAL P						
				Load	L	₋oad Varian	се		Conc	Export
<u>Trb</u>	<u>Type</u>	<u>Seg</u>	<u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	<u>%Total</u>	CV	mg/m³	kg/km²/yr
1	1	1	SSTS	2.6	0.2%	0.00E+00		0.00	263.5	
2	1	1	West Norway basin	706.1	62.3%	0.00E+00		0.00	85.1	
3	2	1	South Norway drainage a	aı 281.0	24.8%	0.00E+00		0.00	298.6	
PRE(CIPITAT	ION		144.0	12.7%	5.18E+03	100.0%	0.50	44.8	30.0
TRIBUTARY INFLOW			WC	708.7	62.5%	0.00E+00		0.00	85.3	
NONPOINT INFLOW			281.0	24.8%	0.00E+00		0.00	298.6		
***T	TOTAL I	NFLO	W	1133.8	100.0%	5.18E+03	100.0%	0.06	90.9	236.2
ADV	'ECTIVE	OUTI	FLOW	329.0	29.0%	1.08E+04		0.32	49.1	68.5
***T	TOTAL (OUTFL	.OW	329.0	29.0%	1.08E+04		0.32	49.1	68.5
***F	RETENT	ION		804.7	71.0%	1.39E+04		0.15		
	Overfl	ow R	ate (m/yr)	1.4	ſ	Nutrient Res	id. Time (v	yrs)	0.5690	
			esid. Time (yrs)	1.9609	Turnover Ratio				1.8	
	Reserv	voir C	onc (mg/m3)	49	F	Retention Co	oef.		0.710	

Norway Lake Bathtub Model Output – Modeled to Phosphorus Standard

Ove	rall Wa	ater E	Balance		Averagin	g Period =	1.00	years
				Area	Flow	Variance	CV	Runoff
<u>Trb</u>	<u>Type</u>	Seg	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1	1	1	SSTS		0.0	0.00E+00	0.00	
2	1	1	West Norway basin		8.3	0.00E+00	0.00	
3	2	1	South Norway drainage area		0.9	0.00E+00	0.00	
PRE(CIPITA	TION		4.8	3.2	0.00E+00	0.00	0.67
TRIB	UTARY	'INFL	OW		8.3	0.00E+00	0.00	
NON	IPOIN1	ΓINFL	OW		0.9	0.00E+00	0.00	
***]	OTALI	NFLO	W	4.8	12.5	0.00E+00	0.00	2.60
ADV	ECTIVE	OUT	FLOW	4.8	6.7	0.00E+00	0.00	1.40
***]	OTAL (OUTFI	LOW	4.8	6.7	0.00E+00	0.00	1.40
***E	VAPO	RATIC	N		5.8	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load		Load Varian	ce		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m ³	kg/km²/yr
2 1 1 West Norway basin	497.7	60.0%	0.00E+00		0.00	60.0	
3 2 1 South Norway drainage	e a 187.3	22.6%	0.00E+00		0.00	199.0	
PRECIPITATION	144.0	17.4%	5.18E+03	100.0%	0.50	44.8	30.0
TRIBUTARY INFLOW	497.7	60.0%	0.00E+00		0.00	59.9	
NONPOINT INFLOW	187.3	22.6%	0.00E+00		0.00	199.0	
***TOTAL INFLOW	829.0	100.0%	5.18E+03	100.0%	0.09	66.5	172.7
ADVECTIVE OUTFLOW	265.8	32.1%	6.59E+03		0.31	39.6	55.4
***TOTAL OUTFLOW	265.8	32.1%	6.59E+03		0.31	39.6	55.4
***RETENTION	563.2	67.9%	9.49E+03		0.17		
Overflow Rate (m/yr)	1.4		Nutrient Res	sid. Time (yrs)	0.6287	
Hydraulic Resid. Time (yrs)	1.9609	Turnover Ratio					
Reservoir Conc (mg/m3)	40		Retention Co	oef.		0.679	

Rasmuson Lake Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Overall Water Balance		Averagin	g Period =	1.00	years
	Area	Flow	Variance	CV	Runoff
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Rasmuson Lake Shed		0.5	0.00E+00	0.00	
PRECIPITATION	0.5	0.3	0.00E+00	0.00	0.66
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		0.5	0.00E+00	0.00	
***TOTAL INFLOW	0.5	0.8	0.00E+00	0.00	1.54
ADVECTIVE OUTFLOW	0.5	0.2	0.00E+00	0.00	0.39
***TOTAL OUTFLOW	0.5	0.2	0.00E+00	0.00	0.39
***EVAPORATION		0.6	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	ed Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load	L	.oad Varian	ce		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	0.1	0.0%	0.00E+00		0.00	11.8	
2 2 1 Rasmuson Lake Shed	75.4	19.9%	0.00E+00		0.00	164.8	
PRECIPITATION	15.8	4.2%	6.23E+01	100.0%	0.50	45.7	30.0
INTERNAL LOAD	288.2	76.0%	0.00E+00		0.00		
TRIBUTARY INFLOW	0.1	0.0%	0.00E+00		0.00	11.8	
NONPOINT INFLOW	ONPOINT INFLOW 75.4 19.9% 0.00E+00 0.1				0.00	164.8	
***TOTAL INFLOW	379.4	100.0%	6.22E+01	100.0%	0.02	467.2	721.4
ADVECTIVE OUTFLOW	29.7	7.8%	1.44E+02		0.40	146.5	56.4
***TOTAL OUTFLOW	29.7	7.8%	1.44E+02		0.40	146.5	56.4
***RETENTION	349.8	92.2%	2.00E+02		0.04		
Overflow Rate (m/yr)	0.4	N	Nutrient Res	id. Time (y	ırs)	0.3656	
Hydraulic Resid. Time (yrs)	4.6742	Turnover Ratio 2.7					
Reservoir Conc (mg/m3)	147	Retention Coef. 0.922					

Rasmuson Lake Bathtub Model Output – Modeled to Phosphorus Standard Overall Water & Nutrient Balances

Overall Water Balance		Averagin	1.00	years	
	Area	Flow	Variance	CV	Runoff
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Rasmuson Lake Shed		0.5	0.00E+00	0.00	
PRECIPITATION	0.5	0.3	0.00E+00	0.00	0.66
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		0.5	0.00E+00	0.00	
***TOTAL INFLOW	0.5	0.8	0.00E+00	0.00	1.54
ADVECTIVE OUTFLOW	0.5	0.2	0.00E+00	0.00	0.39
***TOTAL OUTFLOW	0.5	0.2	0.00E+00	0.00	0.39
***EVAPORATION		0.6	0.00E+00	0.00	

Predicted	d Outflow & Reservoir Concentrations					
TOTAL P						
Load	L	₋oad Varian	ce		Conc	Export
<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
62.8	75.1%	0.00E+00		0.00	137.4	
15.8	18.9%	6.23E+01	100.0%	0.50	45.7	30.0
5.1	6.1%	0.00E+00		0.00		
62.8	75.1%	0.00E+00		0.00	137.4	
83.7	100.0%	6.23E+01	100.0%	0.09	103.0	159.1
12.1	14.5%	2.12E+01		0.38	59.9	23.1
12.1	14.5%	2.12E+01		0.38	59.9	23.1
71.5	85.5%	7.25E+01		0.12		
0.4	1	Nutrient Res	id. Time (y	/rs)	0.6777	
yrs) 4.6742 Turnove					1.5	
60	F	Retention Co	oef.		0.855	
	TOTAL P Load kg/yr 62.8 15.8 5.1 62.8 83.7 12.1 12.1 71.5	TOTAL P Load kg/yr 62.8 75.1% 15.8 18.9% 5.1 62.8 75.1% 83.7 100.0% 12.1 14.5% 12.1 14.5% 71.5 85.5%	TOTAL P Load Load Varian kg/yr %Total (kg/yr)² 62.8 75.1% 0.00E+00 15.8 18.9% 6.23E+01 5.1 6.1% 0.00E+00 62.8 75.1% 0.00E+00 83.7 100.0% 6.23E+01 12.1 14.5% 2.12E+01 12.1 14.5% 2.12E+01 71.5 85.5% 7.25E+01 0.4 Nutrient Res 4.6742 Turnover Rat	TOTAL P Load Load Variance kg/yr %Total (kg/yr)² %Total 62.8 75.1% 0.00E+00 15.8 18.9% 6.23E+01 100.0% 5.1 6.1% 0.00E+00 62.8 75.1% 0.00E+00 83.7 100.0% 6.23E+01 100.0% 12.1 14.5% 2.12E+01 12.1 14.5% 2.12E+01 71.5 85.5% 7.25E+01 0.4 Nutrient Resid. Time (yarrower Ratio	TOTAL P kg/yr %Total (kg/yr)² %Total CV 62.8 75.1% 0.00E+00 0.00 15.8 18.9% 6.23E+01 100.0% 0.50 5.1 6.1% 0.00E+00 0.00 62.8 75.1% 0.00E+00 0.00 83.7 100.0% 6.23E+01 100.0% 0.09 12.1 14.5% 2.12E+01 0.38 12.1 14.5% 2.12E+01 0.38 71.5 85.5% 7.25E+01 0.12 0.4 Nutrient Resid. Time (yrs) 4.6742 Turnover Ratio	TOTAL P Load Load Variance Conc kg/yr %Total (kg/yr)² %Total CV mg/m³ 62.8 75.1% 0.00E+00 0.00 137.4 15.8 18.9% 6.23E+01 100.0% 0.50 45.7 5.1 6.1% 0.00E+00 0.00 137.4 83.7 100.0% 6.23E+01 100.0% 0.09 103.0 12.1 14.5% 2.12E+01 0.38 59.9 12.1 14.5% 2.12E+01 0.38 59.9 71.5 85.5% 7.25E+01 0.12 0.4 Nutrient Resid. Time (yrs) 0.6777 4.6742 Turnover Ratio 1.5

Red Rock Lake Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Overall Water Balance		Averagin	g Period =	1.00	years
	Area	Flow	Variance	CV	Runoff
<u>Trb Type Seg Name</u>	<u>km²</u>	<u>hm³/yr</u>	<u>(hm3/yr)²</u>	<u> </u>	m/yr
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Red Rock Lake Shed		2.1	0.00E+00	0.00	
PRECIPITATION	3.2	2.2	0.00E+00	0.00	0.69
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		2.1	0.00E+00	0.00	
***TOTAL INFLOW	3.2	4.3	0.00E+00	0.00	1.37
ADVECTIVE OUTFLOW	3.2	0.3	0.00E+00	0.00	0.10
***TOTAL OUTFLOW	3.2	0.3	0.00E+00	0.00	0.10
***EVAPORATION		4.0	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	ed Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load	L	₋oad Varian	ce		Conc	Export
<u>Trb Type Seg Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	0.6	0.0%	0.00E+00		0.00	62.6	
2 2 1 Red Rock Lake Shed	731.7	23.3%	0.00E+00		0.00	342.3	
PRECIPITATION	94.8	3.0%	2.25E+03	100.0%	0.50	43.7	30.0
INTERNAL LOAD	2308.4	73.6%	0.00E+00		0.00		
TRIBUTARY INFLOW	0.6	0.0%	0.00E+00		0.00	62.6	
NONPOINT INFLOW	FLOW 731.7 23.3% 0.00E+00				0.00	342.3	
***TOTAL INFLOW	3135.5	100.0%	2.25E+03	100.0%	0.02	726.6	992.3
ADVECTIVE OUTFLOW	41.8	1.3%	3.25E+02		0.43	130.0	13.2
***TOTAL OUTFLOW	41.8	1.3%	3.25E+02		0.43	130.0	13.2
***RETENTION	3093.8	98.7%	2.54E+03		0.02		
Overflow Rate (m/yr)	0.1	١	Nutrient Res	id. Time (y	rs)	0.4586	
Hydraulic Resid. Time (yrs)	34.4196	3 ,					
Reservoir Conc (mg/m3)	130	F	Retention Co	oef.		0.987	

Red Rock Lake Bathtub Model Output – Modeled to Phosphorus Standard Overall Water & Nutrient Balances

Ove	rall Wa	ater E	Balance	ance Averaging Period =			1.00	years
				Area	Flow	Variance	CV	Runoff
<u>Trb</u>	<u>Type</u>	<u>Seg</u>	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1	1	1	SSTS		0.0	0.00E+00	0.00	
2	2	1	Red Rock Lake Shed		2.1	0.00E+00	0.00	
PRE(CIPITAT	ΓΙΟN		3.2	2.2	0.00E+00	0.00	0.69
TRIB	UTARY	INFL	OW		0.0	0.00E+00	0.00	
NON	IPOINT	INFL	OW		2.1	0.00E+00	0.00	
***1	OTALI	NFLO	W	3.2	4.3	0.00E+00	0.00	1.37
ADV	ECTIVE	OUT	FLOW	3.2	0.3	0.00E+00	0.00	0.10
***T	OTAL (OUTFI	LOW	3.2	0.3	0.00E+00	0.00	0.10
***E	VAPOF	RATIC	N		4.0	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	cted Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load	I	Load Varian	ce		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
2 2 1 Red Rock Lake Shed	272.3	74.2%	0.00E+00		0.00	127.4	
PRECIPITATION	94.8	25.8%	2.25E+03	100.0%	0.50	43.7	30.0
NONPOINT INFLOW	272.3	74.2%	0.00E+00		0.00	127.4	
***TOTAL INFLOW	367.1	100.0%	2.25E+03	100.0%	0.13	85.1	116.2
ADVECTIVE OUTFLOW	12.8	3.5%	2.99E+01		0.43	39.8	4.0
***TOTAL OUTFLOW	12.8	3.5%	2.99E+01		0.43	39.8	4.0
***RETENTION	354.3	96.5%	2.19E+03		0.13		
Overflow Rate (m/yr)	0.1	1	Nutrient Res	id. Time (y	yrs)	1.1980	
Hydraulic Resid. Time (yrs)	34.4196	196 Turnover Ratio					
Reservoir Conc (mg/m3)	40	F	Retention Co	oef.		0.965	

Simon Lake Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Overall Water Balance		Averagin	g Period =	1.00	years
	Area	Flow	Variance	CV	Runoff
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	<u>(hm3/yr)²</u>	<u> </u>	m/yr
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Simon Lake Shed		1.4	0.00E+00	0.00	
PRECIPITATION	2.3	1.4	0.00E+00	0.00	0.63
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		1.4	0.00E+00	0.00	
***TOTAL INFLOW	2.3	2.8	0.00E+00	0.00	1.23
ADVECTIVE OUTFLOW	2.3	0.3	0.00E+00	0.00	0.12
***TOTAL OUTFLOW	2.3	0.3	0.00E+00	0.00	0.12
***EVAPORATION		2.6	0.00E+00	0.00	

Overall Mass Balance Based Upon Component:	Predicted TOTAL P							
	Load	L	₋oad Varian	се		Conc	Export	
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr	
1 1 1 SSTS	0.2	0.0%	0.00E+00		0.00	21.8		
2 2 1 Simon Lake Shed	323.2	28.1%	0.00E+00		0.00	234.8		
PRECIPITATION	69.0	6.0%	1.19E+03	100.0%	0.50	48.0	30.0	
INTERNAL LOAD	756.1	65.8%	0.00E+00		0.00			
TRIBUTARY INFLOW	0.2	0.0%	0.00E+00		0.00	21.8		
NONPOINT INFLOW	323.2	28.1%	0.00E+00		0.00	234.8		
***TOTAL INFLOW	1148.5	100.0%	1.19E+03	100.0%	0.03	406.7	499.3	
ADVECTIVE OUTFLOW	33.2	2.9%	2.00E+02		0.42	122.8	14.5	
***TOTAL OUTFLOW	33.2	2.9%	2.00E+02		0.42	122.8	14.5	
***RETENTION	1115.2	97.1%	1.35E+03		0.03			
Overflow Rate (m/yr)	0.1	Nutrient Resid. Time (yrs)			0.4672			
Hydraulic Resid. Time (yrs)	16.1415	Turnover Ratio 2.				2.1		
Reservoir Conc (mg/m3)	123	F	Retention Co	oef.		0.971		

Simon Lake Bathtub Model Output – Modeled to Phosphorus Standard

Overall V	Vater E	Balance		Averaging Period			years
			Area	Flow	Variance	CV	Runoff
<u>Trb</u> Typ	e <u>Seg</u>	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1 1	1	SSTS		0.0	0.00E+00	0.00	
2 2	1	Simon Lake Shed		1.4	0.00E+00	0.00	
PRECIPITA	ATION		2.3	1.4	0.00E+00	0.00	0.63
TRIBUTAF	RY INFL	OW		0.0	0.00E+00	0.00	
NONPOI	NT INFL	OW		1.4	0.00E+00	0.00	
***TOTAI	_INFLO	W	2.3	2.8	0.00E+00	0.00	1.23
ADVECTIV	/E OUT	FLOW	2.3	0.3	0.00E+00	0.00	0.12
***TOTAI	OUTF	LOW	2.3	0.3	0.00E+00	0.00	0.12
***EVAP	ORATIO	N		2.6	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load		Load Varian	ce		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
2 2 1 Simon Lake Shed	252.1	78.5%	0.00E+00		0.00	183.2	
PRECIPITATION	69.0	21.5%	1.19E+03	100.0%	0.50	48.0	30.0
NONPOINT INFLOW	252.1	78.5%	0.00E+00		0.00	183.2	
***TOTAL INFLOW	321.1	100.0%	1.19E+03	100.0%	0.11	113.7	139.6
ADVECTIVE OUTFLOW	16.3	5.1%	4.67E+01		0.42	60.2	7.1
***TOTAL OUTFLOW	16.3	5.1%	4.67E+01		0.42	60.2	7.1
***RETENTION	304.8	94.9%	1.17E+03		0.11		
Overflow Rate (m/yr)	0.1		Nutrient Res	id. Time (y	yrs)	0.8188	
Hydraulic Resid. Time (yrs)	16.1415	15 Turnover Ratio 1.					
Reservoir Conc (mg/m3)	60		Retention Coef.				

Swenoda Lake Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Overall Water Balance		Averagin	g Period =	1.00	years
	Area	Flow	Variance	CV	Runoff
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	_	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Swenoda Lake Shed		0.8	0.00E+00	0.00	
PRECIPITATION	1.2	0.7	0.00E+00	0.00	0.61
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		0.8	0.00E+00	0.00	
***TOTAL INFLOW	1.2	1.5	0.00E+00	0.00	1.31
ADVECTIVE OUTFLOW	1.2	0.3	0.00E+00	0.00	0.23
***TOTAL OUTFLOW	1.2	0.3	0.00E+00	0.00	0.23
***EVAPORATION		1.3	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	Outflow & Reservoir Concentrations						
Component:	TOTAL P							
	Load	L	.oad Varian	ce		Conc	Export	
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr	
1 1 1 SSTS	0.2	0.1%	0.00E+00		0.00	18.8		
2 2 1 Swenoda Lake Shed	127.0	61.9%	0.00E+00		0.00	156.7		
PRECIPITATION	35.1	17.1%	3.08E+02	100.0%	0.50	49.0	30.0	
INTERNAL LOAD	42.7	20.8%	0.00E+00	0.00				
TRIBUTARY INFLOW	0.2	0.1% 0.00E+00 0.				18.8		
NONPOINT INFLOW	127.0	61.9% 0.00E+00 0				156.7		
***TOTAL INFLOW	205.0	100.0%	3.08E+02	100.0%	0.09	133.4	175.2	
ADVECTIVE OUTFLOW	24.4	11.9%	9.02E+01		0.39	89.4	20.8	
***TOTAL OUTFLOW	24.4	11.9%	9.02E+01		0.39	89.4	20.8	
***RETENTION	180.6	88.1%	3.55E+02		0.10			
Overflow Rate (m/yr)	0.2	Nutrient Resid. Time (yrs)			ırs)	0.5104		
Hydraulic Resid. Time (yrs)	4.2918	Turnover Ratio 2.0						
Reservoir Conc (mg/m3)	89	F	Retention Co	oef.		0.881		

Swenoda Lake Bathtub Model Output - Modeled to Phosphorus Standard

Overall Water Balance		Averagin	g Period =	1.00	years
	Area	Flow	Variance	CV	Runoff
<u>Trb Type Seg Name</u>	<u>km²</u>	<u>hm³/yr</u>	<u>(hm3/yr)²</u>	<u>-</u>	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Swenoda Lake Shed		0.8	0.00E+00	0.00	
PRECIPITATION	1.2	0.7	0.00E+00	0.00	0.61
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		0.8	0.00E+00	0.00	
***TOTAL INFLOW	1.2	1.5	0.00E+00	0.00	1.31
ADVECTIVE OUTFLOW	1.2	0.3	0.00E+00	0.00	0.23
***TOTAL OUTFLOW	1.2	0.3	0.00E+00	0.00	0.23
***EVAPORATION		1.3	0.00E+00	0.00	

Overall Mass Balance Based Upon Component:	Predicted TOTAL P	Outflow & Reservoir Concentrations					
	Load		Load Varian	ce		Conc	Export
Trb Type Seg Name	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
2 2 1 Swenoda Lake Shed	69.5	66.4%	0.00E+00		0.00	85.8	
PRECIPITATION	35.1	33.6%	3.08E+02	100.0%	0.50	49.0	30.0
NONPOINT INFLOW	69.5	66.4%	0.00E+00		0.00	85.8	
***TOTAL INFLOW	104.6	100.0%	3.08E+02	100.0%	0.17	68.1	89.4
ADVECTIVE OUTFLOW	16.2	15.5%	3.90E+01		0.38	59.6	13.9
***TOTAL OUTFLOW	16.2	15.5%	3.90E+01		0.38	59.6	13.9
***RETENTION	88.4	84.5%	2.89E+02		0.19		
Overflow Rate (m/yr)	0.2		Nutrient Res	id. Time (yrs)	0.6661	
Hydraulic Resid. Time (yrs)	4.2918	918 Turnover Ratio					
Reservoir Conc (mg/m3)	60		Retention Co		0.845		

Thompson Lake Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Overall Water Balance		Averagin	g Period =	1.00	years
	Area	Flow	Variance	CV	Runoff
<u>Trb Type Seg Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Swenoda Lake Shed		0.4	0.00E+00	0.00	
PRECIPITATION	0.6	0.4	0.00E+00	0.00	0.61
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		0.4	0.00E+00	0.00	
***TOTAL INFLOW	0.6	0.8	0.00E+00	0.00	1.29
ADVECTIVE OUTFLOW	0.6	0.1	0.00E+00	0.00	0.16
***TOTAL OUTFLOW	0.6	0.1	0.00E+00	0.00	0.16
***EVAPORATION		0.7	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load	L	oad Varian	ce		Conc	Export
<u>Trb Type Seg Name</u>	kg/yr	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	0.1	0.0%	0.00E+00		0.00	14.3	
2 2 1 Swenoda Lake Shed	159.1	21.9%	0.00E+00		0.00	396.8	
PRECIPITATION	18.1	2.5%	8.18E+01	100.0%	0.50	49.0	30.0
INTERNAL LOAD	550.6	75.6%	0.00E+00		0.00		
TRIBUTARY INFLOW	0.1	0.0% 0.00E+00				14.3	
NONPOINT INFLOW	159.1	21.9% 0.00E+00				396.8	
***TOTAL INFLOW	728.0	100.0%	8.18E+01	100.0%	0.01	933.2	1207.3
ADVECTIVE OUTFLOW	13.0	1.8%	3.13E+01		0.43	132.1	21.6
***TOTAL OUTFLOW	13.0	1.8%	3.13E+01		0.43	132.1	21.6
***RETENTION	715.0	98.2%	1.12E+02		0.01		
Overflow Rate (m/yr)	0.2	N	Nutrient Res	id. Time (y	rs)	0.4486	
Hydraulic Resid. Time (yrs)	25.0554	Turnover Ratio 2.2					
Reservoir Conc (mg/m3)	132	F	Retention Co	oef.		0.982	

Thompson Lake Bathtub Model Output – Modeled to Phosphorus Standard

Overall Water Balance		Averagin	g Period =	1.00	years
	Area	Flow	Variance	CV	Runoff
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Swenoda Lake Shed		0.4	0.00E+00	0.00	
PRECIPITATION	0.6	0.4	0.00E+00	0.00	0.61
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		0.4	0.00E+00	0.00	
***TOTAL INFLOW	0.6	0.8	0.00E+00	0.00	1.29
ADVECTIVE OUTFLOW	0.6	0.1	0.00E+00	0.00	0.16
***TOTAL OUTFLOW	0.6	0.1	0.00E+00	0.00	0.16
***EVAPORATION		0.7	0.00E+00	0.00	

Overall Mass Balance Based Upon Component:	Predicted TOTAL P	Outflow & Reservoir Concentrations					
	Load	L	₋oad Varian	ce		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
2 2 1 Swenoda Lake Shed	58.7	68.7%	0.00E+00		0.00	146.3	
PRECIPITATION	18.1	21.2%	8.18E+01	100.0%	0.50	49.0	30.0
INTERNAL LOAD	8.7	10.2%	0.00E+00		0.00		
NONPOINT INFLOW	58.7	68.7%	0.00E+00		0.00	146.3	
***TOTAL INFLOW	85.5	100.0%	8.18E+01	100.0%	0.11	109.5	141.7
ADVECTIVE OUTFLOW	4.0	4.6%	2.79E+00		0.42	40.2	6.6
***TOTAL OUTFLOW	4.0	4.6%	2.79E+00		0.42	40.2	6.6
***RETENTION	81.5	95.4%	8.03E+01		0.11		
Overflow Rate (m/yr)	0.2		Nutrient Resid. Time (yrs)			1.1619	
Hydraulic Resid. Time (yrs)	25.0554		Turnover Rat			0.9	
Reservoir Conc (mg/m3)	40	ŀ	Retention Co	рет.		0.954	

West Norway Lake Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Ove	rall Wa	iter B	alance	Averaging Period =			1.00	years
				Area	Flow	Variance	CV	Runoff
<u>Trb</u>	<u>Type</u>	<u>Seg</u>	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	_=	<u>m/yr</u>
1	1	1	SSTS		0.0	0.00E+00	0.00	
2	2	1	CD-27		5.7	0.00E+00	0.00	
3	2	1	CD-29		3.2	0.00E+00	0.00	
4	2	1	Huse Creek		1.0	0.00E+00	0.00	
5	2	1	Shoreland		0.9	0.00E+00	0.00	
PRE	CIPITAT	ION		4.7	3.1	0.00E+00	0.00	0.67
TRIE	UTARY	INFLO	WC		0.0	0.00E+00	0.00	
NON	IPOINT	INFLO	WC		10.8	0.00E+00	0.00	
***]	OTAL I	NFLO'	W	4.7	13.9	0.00E+00	0.00	2.98
ADV	ECTIVE	OUTF	LOW	4.7	8.3	0.00E+00	0.00	1.78
***]	OTAL (OUTFL	OW	4.7	8.3	0.00E+00	0.00	1.78
***E	VAPOF	RATIO	N		5.6	0.00E+00	0.00	

Overall Mass Balance Based Up	on Predicted	Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load		Load Varian	ice		Conc	Export
<u>Trb Type Seg Name</u>	kg/yr	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	2.6	0.1%	0.00E+00		0.00	263.5	
2 2 1 CD-27	1876.8	55.1%	0.00E+00		0.00	327.9	
3 2 1 CD-29	939.8	27.6%	0.00E+00		0.00	296.7	
4 2 1 Huse Creek	182.0	5.3%	0.00E+00		0.00	183.8	
5 2 1 Shoreland	264.5	7.8%	0.00E+00		0.00	293.2	
PRECIPITATION	140.4	4.1%	4.93E+03	100.0%	0.50	44.8	30.0
TRIBUTARY INFLOW	2.6	0.1%	0.00E+00		0.00	263.5	
NONPOINT INFLOW	3263.1	95.8%	0.00E+00		0.00	302.6	
***TOTAL INFLOW	3406.2	100.0%	4.93E+03	100.0%	0.02	244.5	727.8
ADVECTIVE OUTFLOW	706.1	20.7%	6.06E+04		0.35	84.9	150.9
***TOTAL OUTFLOW	706.1	20.7%	6.06E+04		0.35	84.9	150.9
***RETENTION	2700.0	79.3%	6.44E+04		0.09		
Overflow Rate (m/yr)	1.8		Nutrient Res	sid. Time (y	rs)	0.1926	
Hydraulic Resid. Time (yrs)	0.9288		Turnover Rat	tio		5.2	
Reservoir Conc (mg/m3)	85		Retention Co	oef.		0.793	

West Norway Lake Bathtub Model Output - Modeled to Phosphorus Standard

Ove	Overall Water Balance Averaging Period =				Averagin	g Period =	1.00	years
				Area	Flow	Variance	CV	Runoff
<u>Trb</u>	<u>Type</u>	<u>Seg</u>	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	<u>(hm3/yr)²</u>	<u>=</u>	<u>m/yr</u>
1	1	1	SSTS		0.0	0.00E+00	0.00	
2	2	1	CD-27		5.7	0.00E+00	0.00	
3	2	1	CD-29		3.2	0.00E+00	0.00	
4	2	1	Huse Creek		1.0	0.00E+00	0.00	
5	2	1	Shoreland		0.9	0.00E+00	0.00	
PRE(CIPITAT	ION		4.7	3.1	0.00E+00	0.00	0.67
TRIB	UTARY	INFLO	WC		0.0	0.00E+00	0.00	
NON	IPOINT	INFLO	WC		10.8	0.00E+00	0.00	
***T	OTALI	NFLO'	W	4.7	13.9	0.00E+00	0.00	2.98
ADV	ECTIVE	OUTF	FLOW	4.7	8.3	0.00E+00	0.00	1.78
***T	OTAL (OUTFL	OW	4.7	8.3	0.00E+00	0.00	1.78
***E	VAPOF	RATIO	N		5.6	0.00E+00	0.00	

Overall Mass Balance Based Upon Component:	Predicted TOTAL P		Outflow & I	Reservoir (Concent	rations	
	Load	L	oad Varian	се		Conc	Export
<u>Trb Type Seg Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
2 2 1 CD-27	924.2	51.1%	0.00E+00		0.00	161.5	
3 2 1 CD-29	485.9	26.9%	0.00E+00		0.00	153.4	
4 2 1 Huse Creek	117.5	6.5%	0.00E+00		0.00	118.7	
5 2 1 Shoreland	140.2	7.8%	0.00E+00		0.00	155.4	
PRECIPITATION	140.4	7.8%	4.93E+03	100.0%	0.50	44.8	30.0
NONPOINT INFLOW	1667.9	92.2% 0.00E+00 0.0			0.00	154.7	
***TOTAL INFLOW	1808.3	100.0%	4.93E+03	100.0%	0.04	129.8	386.4
ADVECTIVE OUTFLOW	497.7	27.5%	2.54E+04		0.32	59.9	106.3
***TOTAL OUTFLOW	497.7	27.5%	2.54E+04		0.32	59.9	106.3
***RETENTION	1310.6	72.5%	2.87E+04		0.13		
Overflow Rate (m/yr)	1.8	N	Nutrient Res	sid. Time (y	rs)	0.2556	
Hydraulic Resid. Time (yrs)	0.9288	3 ,				3.9	
Reservoir Conc (mg/m3)	60	F	Retention Co	oef.		0.725	

Wicklund Lake Bathtub Model Output – Modeled to Observed In-Lake Phosphorus

Overall Water & Nutrient Balances

Overall Water Balance		Averaging Period =		1.00	years
	Area	Flow	Variance	CV	Runoff
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	m/yr
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Wicklund Lake Shed		2.7	0.00E+00	0.00	
PRECIPITATION	0.6	0.3	0.00E+00	0.00	0.57
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		2.7	0.00E+00	0.00	
***TOTAL INFLOW	0.6	3.0	0.00E+00	0.00	5.07
ADVECTIVE OUTFLOW	0.6	2.4	0.00E+00	0.00	4.02
***TOTAL OUTFLOW	0.6	2.4	0.00E+00	0.00	4.02
***EVAPORATION		0.6	0.00E+00	0.00	

Overall Mass Balance Based Upon Component:	Predicted TOTAL P	Outflow & Reservoir Concentrations					
	Load	ı	₋oad Varian	ce		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	0.8	0.1%	0.00E+00		0.00	82.1	
2 2 1 Wicklund Lake Shed	907.4	98.0%	0.00E+00		0.00	337.8	
PRECIPITATION	18.0	1.9%	8.07E+01	100.0%	0.50	52.4	30.0
TRIBUTARY INFLOW	0.8	0.1%	0.00E+00		0.00	82.1	
NONPOINT INFLOW	907.4	98.0%	0.00E+00		0.00	337.8	
***TOTAL INFLOW	926.2	100.0%	8.07E+01	100.0%	0.01	304.8	1546.2
ADVECTIVE OUTFLOW	428.2	46.2%	1.04E+04		0.24	177.7	714.8
***TOTAL OUTFLOW	428.2	46.2%	1.04E+04		0.24	177.7	714.8
***RETENTION	498.0	53.8%	1.04E+04		0.21		
Overflow Rate (m/yr)	4.0	ľ	Nutrient Res	id. Time (y	rs)	0.1149	
Hydraulic Resid. Time (yrs)	0.2486	7	Turnover Rat	tio		8.7	
Reservoir Conc (mg/m3)	178	F	Retention Co	oef.		0.538	

Wicklund Lake Bathtub Model Output – Modeled to Phosphorus Standard

Overall Water & Nutrient Balances

Overall Water Balance		Averaging Period =		1.00	years
	Area	Flow	Variance	CV	Runoff
<u>Trb Type Seg Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Wicklund Lake Shed		2.7	0.00E+00	0.00	
PRECIPITATION	0.6	0.3	0.00E+00	0.00	0.57
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		2.7	0.00E+00	0.00	
***TOTAL INFLOW	0.6	3.0	0.00E+00	0.00	5.07
ADVECTIVE OUTFLOW	0.6	2.4	0.00E+00	0.00	4.02
***TOTAL OUTFLOW	0.6	2.4	0.00E+00	0.00	4.02
***EVAPORATION		0.6	0.00E+00	0.00	

Overall Mass Balance Based Upon Component:	Predicted TOTAL P		Outflow & I	Reservoir	Concent	rations	
	Load	l	∟oad Varian	ce		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	kg/yr	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
2 2 1 Wicklund Lake Shed	215.8	92.3%	0.00E+00		0.00	80.3	
PRECIPITATION	18.0	7.7%	8.07E+01	100.0%	0.50	52.4	30.0
NONPOINT INFLOW	215.8	92.3%	0.00E+00		0.00	80.3	
***TOTAL INFLOW	233.8	100.0%	8.07E+01	100.0%	0.04	76.9	390.2
ADVECTIVE OUTFLOW	144.4	61.8%	6.24E+02		0.17	59.9	241.0
***TOTAL OUTFLOW	144.4	61.8%	6.24E+02		0.17	59.9	241.0
***RETENTION	89.4	38.2%	6.23E+02		0.28		
Overflow Rate (m/yr)	4.0	1	Nutrient Res	sid. Time (\	rs)	0.1535	
Hydraulic Resid. Time (yrs)	0.2486	1	Turnover Rat	tio		6.5	
Reservoir Conc (mg/m3)	60	F	Retention Co	oef.		0.382	

Appendix C: HSPF Calibration and Validation

Hydrologic Calibration and Validation for the Chippewa River HSPF Model

1 Chippewa River near Milan, Calibration

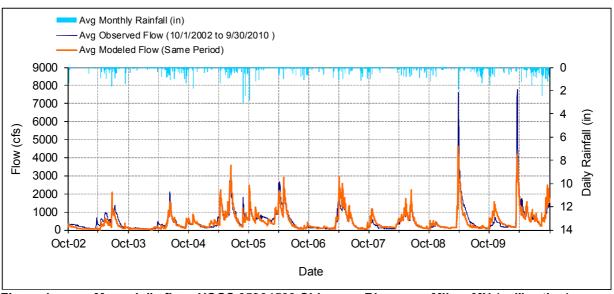


Figure 1. Mean daily flow: USGS 05304500 Chippewa River near Milan, MN (calibration)

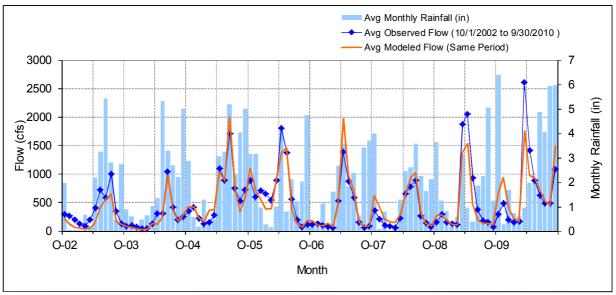


Figure 2. Mean monthly flow: USGS 05304500 Chippewa River near Milan, MN (calibration)

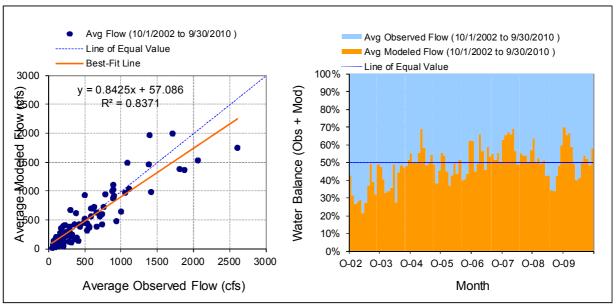


Figure 3. Monthly flow regression and temporal variation: USGS 05304500 Chippewa River near Milan, MN (calibration)

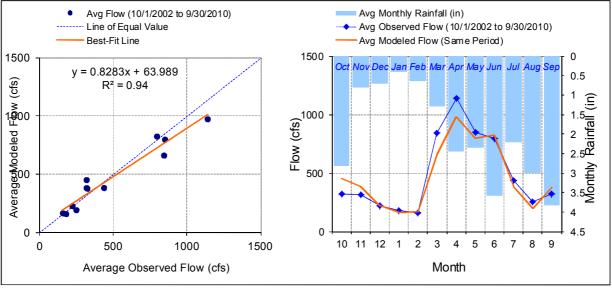


Figure 4. Seasonal regression and temporal aggregate: USGS 05304500 Chippewa River near Milan, MN (calibration)

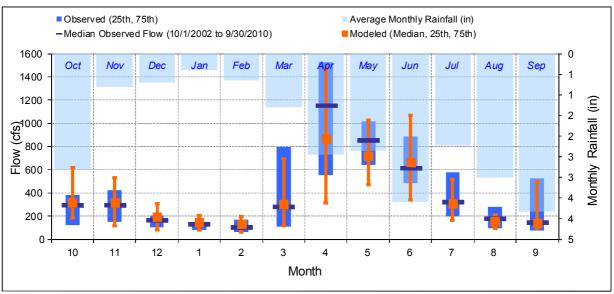


Figure 5. Seasonal medians and ranges: USGS 05304500 Chippewa River near Milan, MN (calibration)

Table 1. Seasonal summary: USGS 05304500 Chippewa River near Milan, MN (calibration)

MONTH	<u>OB</u>	SERVED	FLOW (CF	<u>-S)</u>	MODELED FLOW (CFS)				
WONT	MEAN	MEDIAN	25TH	75TH	MEAN	MEDIAN	25TH	75TH	
Oct	319.92	287.50	121.00	378.00	449.88	314.99	184.17	618.82	
Nov	317.23	286.00	152.75	421.50	383.56	316.84	113.67	531.36	
Dec	222.21	161.00	100.00	202.00	224.21	192.32	79.36	305.22	
Jan	177.44	123.00	82.50	151.00	161.23	148.82	82.02	206.42	
Feb	155.68	100.50	62.25	173.00	166.07	131.98	59.63	199.51	
Mar	841.70	273.50	110.75	794.00	663.87	304.26	114.38	691.85	
Apr	1140.21	1145.00	551.75	1522.50	977.36	866.15	314.15	1471.56	
May	849.43	849.50	636.75	1012.50	797.39	716.01	466.80	1030.13	
Jun	797.05	612.00	484.50	887.25	822.44	662.01	340.42	1068.60	
Jul	437.43	318.50	194.50	578.25	380.29	306.84	162.94	520.81	
Aug	250.60	177.00	92.00	281.00	195.70	155.10	97.30	213.04	
Sep	322.33	137.50	75.50	525.50	376.01	140.79	95.96	494.50	

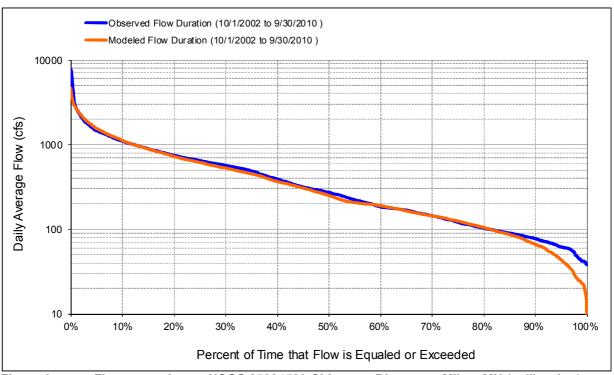


Figure 6. Flow exceedence: USGS 05304500 Chippewa River near Milan, MN (calibration)

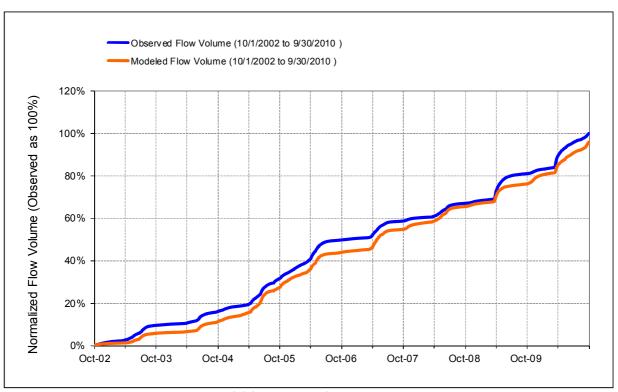


Figure 7. Flow accumulation: USGS 05304500 Chippewa River near Milan, MN (calibration)

TE TETRATECH, INC.

Table 2. Summary statistics: USGS 05304500 Chippewa River near Milan, MN (calibration)

HSPF Simulated Flow		Observed Flow Gage				
REACH OUTFLOW FROM DSN 105		USGS 05304500 CHIPPEWA RIVER NEAR MILAN, MIN				
8-Year Analysis Period: 10/1/2002 - 9/30/2010 Flow volumes are (inches/year) for upstream drainag	Hydrologic Unit Code: 7020005 Latitude: 45.108292 Longitude: -95.7989224 Drainage Area (sq-mi): 1880					
Total Simulated In-stream Flow:	3.37	Total Observed In-stream Flo	ow:	3.52		
Total of simulated highest 10% flows:	1.29	Total of Observed highest 10)% flows:	1.34		
Total of Simulated lowest 50% flows:	0.45	Total of Observed Lowest 50	% flows:	0.48		
Simulated Summer Flow Volume (months 7-9):	0.58	Observed Summer Flow Vol	0.61			
Simulated Fall Flow Volume (months 10-12):	0.64	Observed Fall Flow Volume	0.52			
Simulated Winter Flow Volume (months 1-3):	0.60	Observed Winter Flow Volum	0.71			
Simulated Spring Flow Volume (months 4-6):	1.56	Observed Spring Flow Volun	1.67			
Total Simulated Storm Volume:	0.80	Total Observed Storm Volum	ne:	0.72		
Simulated Summer Storm Volume (7-9):	0.12	Observed Summer Storm Vo	Observed Summer Storm Volume (7-9):			
Errors (Simulated-Observed)	Error Statistics	Recommended Criteria	Run (n-1)	Run (n-2)		
Error in total volume:	-4.07	10	-1.81	-1.75		
Error in 50% lowest flows:	-5.16	10	0.81	1.17		
Error in 10% highest flows:	-4.08	15	-3.20	-2.90		
Seasonal volume error - Summer:	-6.01	30	-2.73	-3.05		
Seasonal volume error - Fall:	23.10 >	> 30	26.44	Clear 26.69		
Seasonal volume error - Winter:	-15.90	30	-13.92	-13.33		
Seasonal volume error - Spring:	-6.79	30	-5.12	-5.21		
Error in storm volumes:	11.14	20	10.76	12.77		
Error in summer storm volumes:	16.15	50	15.51	17.84		
Nash-Sutcliffe Coefficient of Efficiency, E:	0.792	Model accuracy increases 0.794		0.778		
Baseline adjusted coefficient (Garrick), E':	0.604	as E or E' approaches 1.0	0.603	0.597		
Monthly NSE	0.878					

2 Chippewa River near Milan, Validation

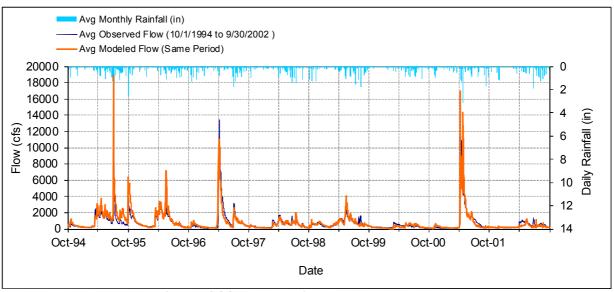


Figure 8. Mean daily flow: USGS 05304500 Chippewa River near Milan, MN (validation)

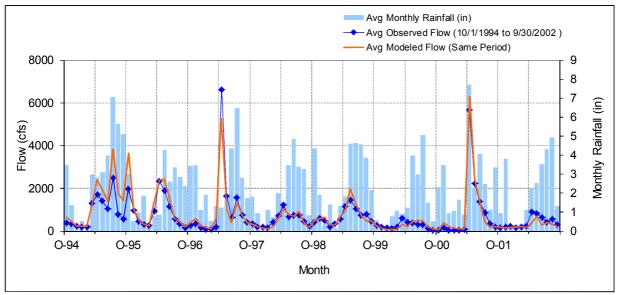


Figure 9. Mean monthly flow: USGS 05304500 Chippewa River near Milan, MN (validation)

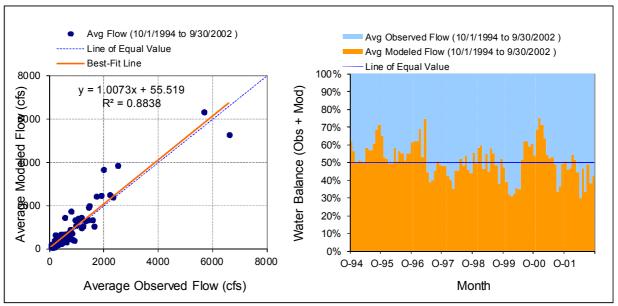


Figure 10. Monthly flow regression and temporal variation: USGS 05304500 Chippewa River near Milan, MN (validation)

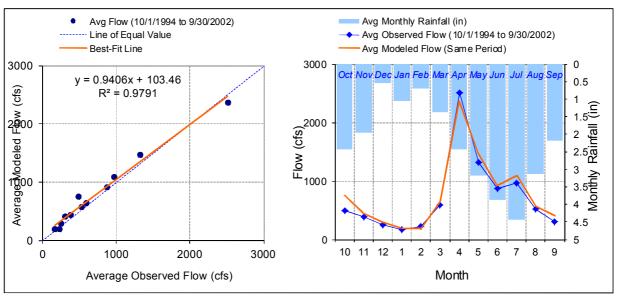


Figure 11. Seasonal regression and temporal aggregate: USGS 05304500 Chippewa River near Milan, MN (validation)

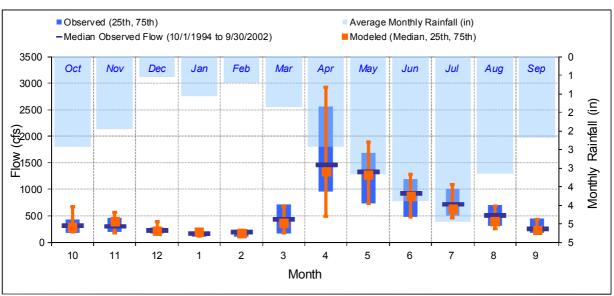


Figure 12. Seasonal medians and ranges: USGS 05304500 Chippewa River near Milan, MN (validation)

Table 3. Seasonal summary: USGS 05304500 Chippewa River near Milan, MN (validation)

MONTH	OB	SERVED	FLOW (CF	-S)	MODELED FLOW (CFS)				
WONT	MEAN	MEDIAN	25TH	75TH	MEAN	MEDIAN	25TH	75TH	
Oct	491.85	303.00	184.75	436.50	757.10	283.12	187.02	674.45	
Nov	383.84	293.00	188.75	457.00	447.16	393.11	181.24	572.16	
Dec	255.92	215.00	170.00	287.25	293.29	218.42	169.99	387.18	
Jan	168.24	161.00	99.50	200.00	192.57	198.81	125.54	234.38	
Feb	226.54	192.00	107.00	243.00	192.43	175.27	105.12	224.92	
Mar	589.49	431.00	162.75	717.75	645.86	358.11	184.59	685.98	
Apr	2511.04	1445.00	957.75	2562.50	2366.54	1336.75	496.63	2919.97	
May	1320.76	1315.00	730.00	1680.00	1469.67	1276.68	724.90	1898.61	
Jun	873.25	920.50	469.75	1190.00	921.08	870.63	469.64	1285.22	
Jul	971.77	707.00	500.75	1012.50	1089.04	634.97	468.38	1093.16	
Aug	525.92	499.00	310.50	704.00	570.87	388.61	246.51	684.65	
Sep	307.37	240.50	182.50	441.75	409.55	228.53	186.92	439.07	

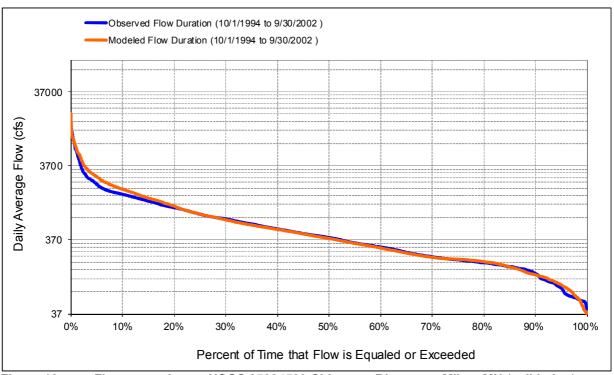


Figure 13. Flow exceedence: USGS 05304500 Chippewa River near Milan, MN (validation)

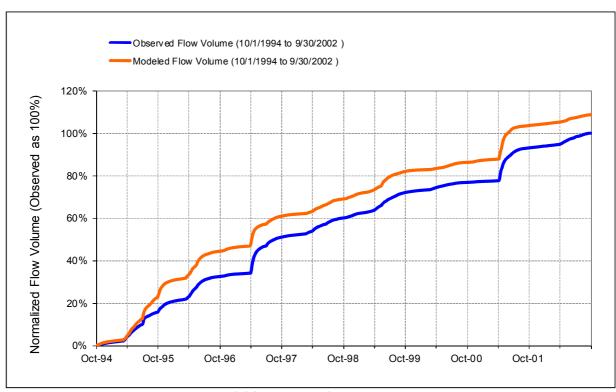


Figure 14. Flow accumulation: USGS 05304500 Chippewa River near Milan, MN (validation)

Table 4. Summary statistics: USGS 05304500 Chippewa River near Milan, MN (validation)

HSPF Simulated Flow		T	Observed Flow Gage					
REACH OUTFLOW FROM DSN 105			USGS 05304500 CHIPPEWA RIVER NEAR MILAN, MIN					
8-Year Analysis Period: 10/1/1994 - 9/30/2002		ı	Hydrologic Unit Code: 7020005					
Flow volumes are (inches/year) for upstream drainage area			Latitude: 45.108292					
		П	Longitude: -95.7989224 Drainage Area (sq-mi): 1880					
		П	Drainage / trea (54 mi). 1000					
Total Simulated In-stream Flow:	5.64	Ţ	Total Observed In-stream Flo	w:		5.20		
Total of simulated highest 10% flows:	2.55	+	Total of Observed highest 10	% flows:		2.18		
Total of Simulated lowest 50% flows:	0.74	1	Total of Observed Lowest 50		0.75			
Simulated Summer Flow Volume (months 7-9):	1.26	+	Observed Summer Flow Volu	ıme (7-9):	_	1.10		
Simulated Fall Flow Volume (months 10-12):	0.91	+	Observed Fall Flow Volume	-	0.69			
Simulated Winter Flow Volume (months 1-3):	0.62	Ť	Observed Winter Flow Volum	\dashv	0.59			
Simulated Spring Flow Volume (months 4-6):	2.85	1	Observed Spring Flow Volum		2.82			
Total Simulated Storm Volume:	1.45	+	Total Observed Storm Volum	ne.	-	1.14		
Simulated Summer Storm Volume (7-9):	0.35	t	Observed Summer Storm Vo		-	0.27		
Errors (Simulated-Observed)	Error Statistics	Ť	Recommended Criteria	Run (n-1)		Run (n-2)		
Error in total volume:	8.61	Ť	10	10.31		8.55		
Error in 50% lowest flows:	-0.75	T	10	3.20		2.05		
Error in 10% highest flows:	16.93		15	17.59		15.67		
Seasonal volume error - Summer:	14.55		30	16.59		14.82		
Seasonal volume error - Fall:		>>			Clea			
Seasonal volume error - Winter:	5.15	T	30	7.02		5.16		
Seasonal volume error - Spring:	1.20		30	2.47		1.51		
Error in storm volumes:	27.27		20	26.38		26.08		
Error in summer storm volumes:	27.92		50	26.76		26.61		
Nash-Sutcliffe Coefficient of Efficiency, E:	0.700		Model accuracy increases	0.692		0.705		
Baseline adjusted coefficient (Garrick), E':	0.571		as E or E' approaches 1.0	0.566		0.583		
Monthly NSE	0.883							

3 Chippewa River near Cyrus

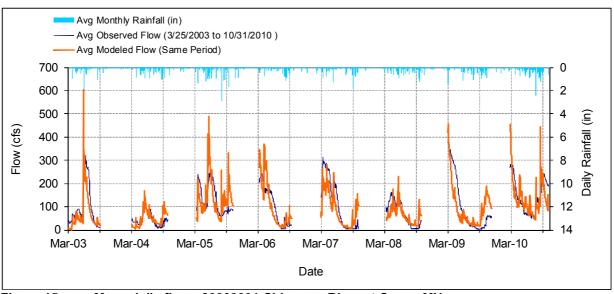


Figure 15. Mean daily flow: 26003001 Chippewa River at Cyrus, MN

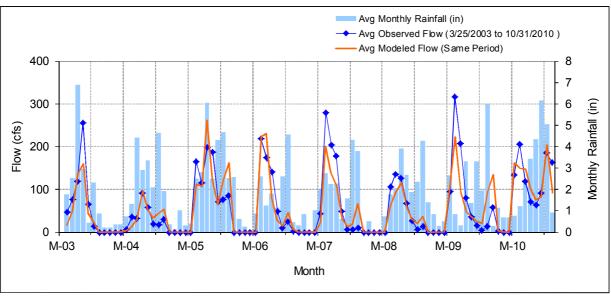


Figure 16. Mean monthly flow: 26003001 Chippewa River at Cyrus, MN

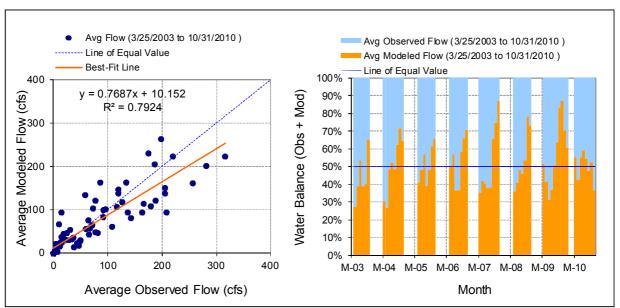


Figure 17. Monthly flow regression and temporal variation: 26003001 Chippewa River at Cyrus, MN

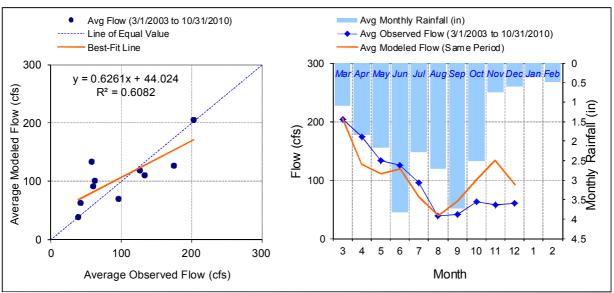


Figure 18. Seasonal regression and temporal aggregate: 26003001 Chippewa River at Cyrus, MN

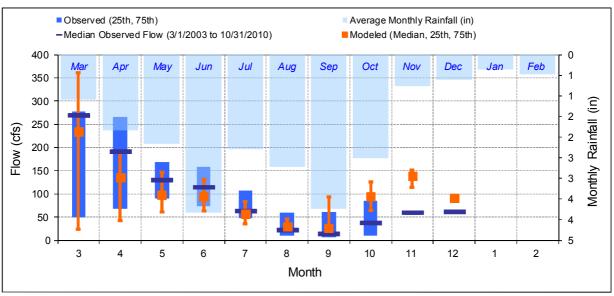


Figure 19. Seasonal medians and ranges: 26003001 Chippewa River at Cyrus, MN

Table 5. Seasonal summary: 26003001 Chippewa River at Cyrus, MN

MONTH	<u>OB</u>	SERVED	FLOW (CF	<u>-S)</u>	MODELED FLOW (CFS)				
WOITH	MEAN		25TH	75TH	MEAN	MEDIAN	25TH	75TH	
Mar	202.91	268.00	49.32	278.25	205.72	234.23	23.13	360.28	
Apr	174.02	189.77	68.53	265.94	126.65	135.11	41.89	189.19	
May	133.13	129.00	90.99	167.91	111.03	98.30	61.01	146.77	
Jun	125.59	113.99	73.00	158.71	119.08	94.89	63.17	130.90	
Jul	95.58	62.98	47.90	106.65	70.45	56.37	35.70	83.75	
Aug	38.30	22.01	9.77	60.42	38.69	29.98	19.77	45.97	
Sep	41.84	12.93	6.04	60.80	62.89	25.93	20.02	94.42	
Oct	62.35	36.87	10.04	85.76	100.57	94.19	64.95	125.65	
Nov	57.37	58.50	55.00	61.00	134.04	138.87	113.63	151.00	
Dec	60.00	60.00	60.00	60.00	91.65	91.65	91.65	91.65	
Jan	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Feb	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

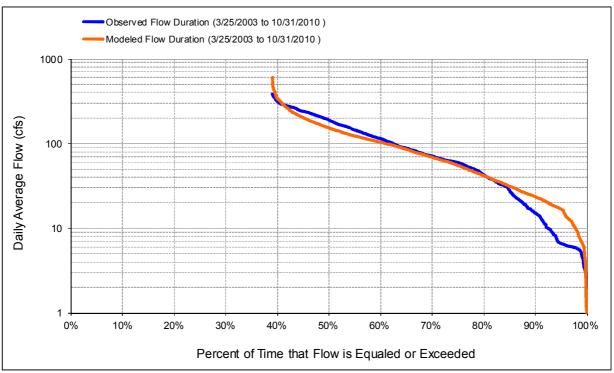


Figure 20. Flow exceedence: 26003001 Chippewa River at Cyrus, MN

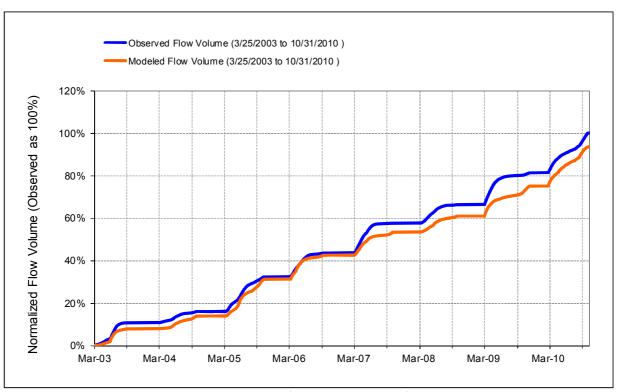


Figure 21. Flow accumulation: 26003001 Chippewa River at Cyrus, MN

Table 6. Summary statistics: 26003001 Chippewa River at Cyrus, MN

HSPF Simulated Flow		Observed Flow Gage		
REACH OUTFLOW FROM DSN 101		CHIPPEWA RIVER AT CYRUS		
7.61-Year Analysis Period: 3/1/2003 - 10/31/2010 Flow volumes are (inches/year) for upstream drainag	o aroa	Manually Entered Data		
Flow Volumes are (inches/year) for upstream drainag	e ai ea	Ivanually Entered Data		
		Drainage Area (sq-mi): 342		
Total Simulated In-stream Flow:	2.25	Total Observed In-stream Flo	w:	2.40
Total of simulated highest 10% flows:	0.68	Total of Observed highest 10	% flows:	0.68
Total of Simulated lowest 50% flows:	0.42	Total of Observed Lowest 50	0.39	
Simulated Summer Flow Volume (months 7-9):		Observed Summer Flow Volu	0.62	
Simulated Fall Flow Volume (months 10-12):	0.29	Observed Fall Flow Volume (0.17	
Simulated Winter Flow Volume (months 1-3):	0.13	Observed Winter Flow Volum	0.13	
Simulated Spring Flow Volume (months 4-6):	1.23	Observed Spring Flow Volum	1.49	
Total Simulated Storm Volume:	0.40	Total Observed Storm Volum	e:	0.23
Simulated Summer Storm Volume (7-9):	0.10	Observed Summer Storm Vo	lume (7-9):	0.08
Errors (Simulated-Observed)	Error Statistics	Recommended Criteria	Run (n-1)	Run (n-2)
Error in total volume:	-6.47	10	-6.64	-6.52
Error in 50% lowest flows:	8.30	10	7.42	4.21
Error in 10% highest flows:	-1.22	15	-1.14	0.76
Seasonal volume error - Summer:	-2.56	30	-2.92	-6.90
Seasonal volume error - Fall:	71.97 >	> 30	72.28	Clear 71.27
Seasonal volume error - Winter:	1.39	30	1.39	7.42
Seasonal volume error - Spring:	-17.50	30	-17.66	-16.22
Error in storm volumes:	75.26	20	78.11	79.86
Error in summer storm volumes:	30.95	50	34.95	30.89
Nash-Sutcliffe Coefficient of Efficiency, E:	0.574	Model accuracy increases	0.569	0.577
Baseline adjusted coefficient (Garrick), E':	0.424	as E or E' approaches 1.0	0.420	0.431
Monthly NSE	0.916			

4 Dry Weather Creek near Watson

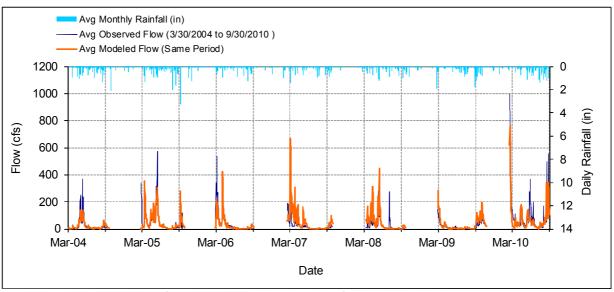


Figure 22. Mean daily flow: 26078001 Dry Weather Creek near Watson, MN

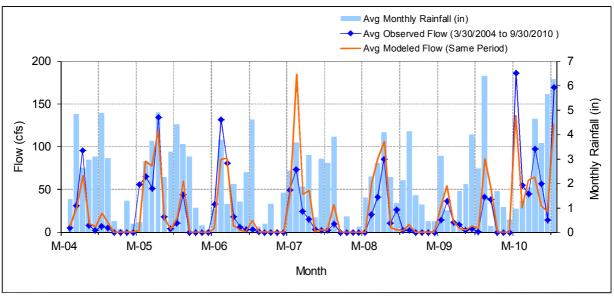


Figure 23. Mean monthly flow: 26078001 Dry Weather Creek near Watson, MN

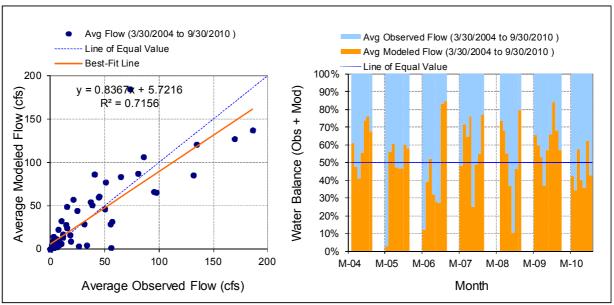


Figure 24. Monthly flow regression and temporal variation: 26078001 Dry Weather Creek near Watson, MN

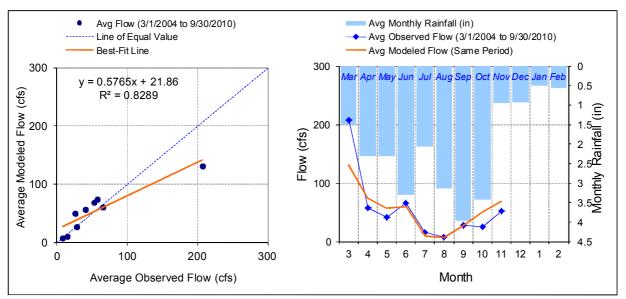


Figure 25. Seasonal regression and temporal aggregate: 26078001 Dry Weather Creek near Watson, MN

Figure 26. Seasonal medians and ranges: 26078001 Dry Weather Creek near Watson, MN

Table 7. Seasonal summary: 26078001 Dry Weather Creek near Watson, MN

MONTH	<u>OB</u>	SERVED	FLOW (CF	<u>-S)</u>	MODELED FLOW (CFS)				
WOITH	MEAN	MEDIAN	25TH	75TH	MEAN	MEDIAN	25TH	75TH	
Mar	206.86	138.00	84.50	240.94	131.24	81.64	13.06	146.79	
Apr	57.12	31.00	19.00	61.00	73.80	42.85	17.02	98.08	
May	40.55	29.00	15.00	53.88	56.62	33.63	12.47	76.77	
Jun	64.92	24.03	15.87	74.75	59.92	35.08	9.95	83.10	
Jul	14.88	6.40	3.70	14.00	9.88	4.97	1.91	13.06	
Aug	8.07	3.14	2.40	6.90	6.84	3.76	1.00	7.73	
Sep	27.96	2.80	2.19	9.18	27.06	6.86	1.57	24.47	
Oct	25.36	11.12	6.10	29.00	49.48	30.49	14.73	71.27	
Nov	52.64	40.50	29.50	59.00	69.21	52.27	38.06	84.86	
Dec	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Jan	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Feb	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

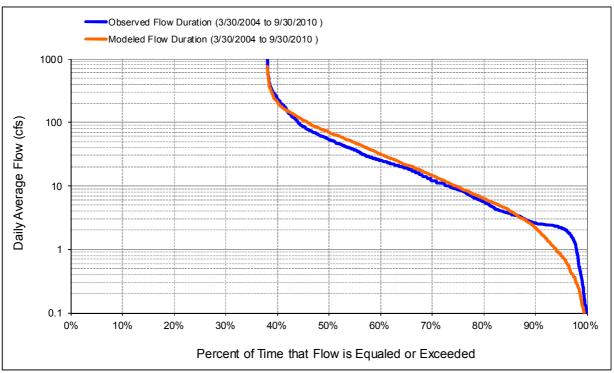


Figure 27. Flow exceedence: 26078001 Dry Weather Creek near Watson, MN

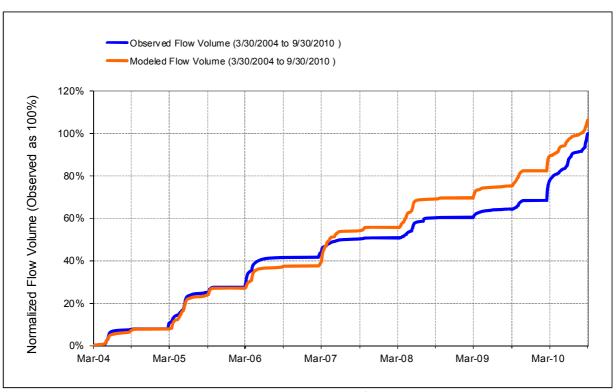


Figure 28. Flow accumulation: 26078001 Dry Weather Creek near Watson, MN

Table 8. Summary statistics: 26078001 Dry Weather Creek near Watson, MN

HSPF Simulated Flow		Observed Flow Gage				
REACH OUTFLOW FROM DSN 104		DRY WEATHER CREEK NEAR WA	TSON			
6.51-Year Analysis Period: 3/1/2004 - 9/30/2010						
Flow volumes are (inches/year) for upstream drainag	Manually Entered Data					
		Drainage Area (sq-mi): 105				
		Brainage / trea (eq mi). Tee				
Total Simulated In-stream Flow:	3.46	Total Observed In-stream Flo	w:	3.25		
Total of simulated highest 10% flows:	1.69	Total of Observed highest 10	% flows:	1.82		
Total of Simulated lowest 50% flows:	0.21	Total of Observed Lowest 50	Total of Observed Lowest 50% flows:			
Simulated Summer Flow Volume (months 7-9):	0.51	Observed Summer Flow Volu	0.59			
Simulated Fall Flow Volume (months 10-12):	0.42	Observed Fall Flow Volume	0.24			
Simulated Winter Flow Volume (months 1-3):	0.36	Observed Winter Flow Volum	0.57			
Simulated Spring Flow Volume (months 4-6):	2.17	Observed Spring Flow Volum	1.85			
Total Simulated Storm Volume:	1.27	Total Observed Storm Volum	e.	1.18		
Simulated Summer Storm Volume (7-9):	0.18	Observed Summer Storm Vo	· - ·	0.26		
Errors (Simulated-Observed)	Error Statistics	Recommended Criteria	Run (n-1)	Run (n-2)		
Error in total volume:	6.37	10	6.37	-2.95		
Error in 50% lowest flows:	5.44	10	5.44	-2.19		
Error in 10% highest flows:	-7.42	15	-7.41	-16.08		
Seasonal volume error - Summer:	-14.19	30	-14.19	-19.20		
Seasonal volume error - Fall:	78.07	>> 30	78.07	Clear 53.81		
Seasonal volume error - Winter:	-36.56	30	-36.56	-43.69		
Seasonal volume error - Spring:	17.11	30	17.11	7.64		
Error in storm volumes:	7.62	20	7.64	0.99		
Error in summer storm volumes:	-28.63	50	-28.62	-33.90		
Nash-Sutcliffe Coefficient of Efficiency, E:	0.618	Model accuracy increases	0.618	0.618		
Baseline adjusted coefficient (Garrick), E':	0.445	as E or E' approaches 1.0	0.445	0.454		
Monthly NSE	0.907					

5 Shakopee Creek near Benson

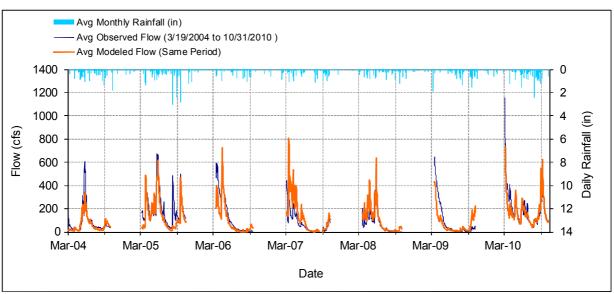


Figure 29. Mean daily flow: 26038001 Shakopee Creek near Benson, MN

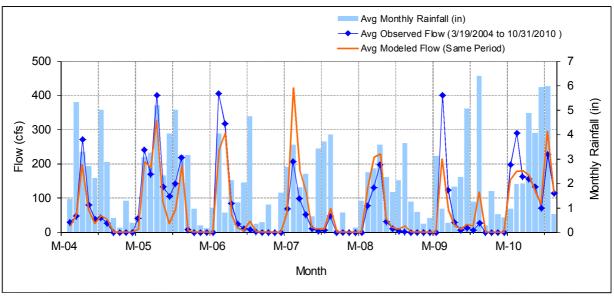


Figure 30. Mean monthly flow: 26038001 Shakopee Creek near Benson, MN

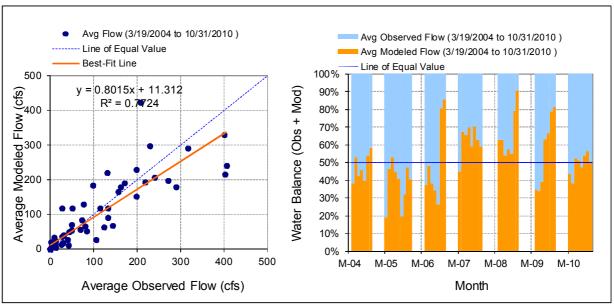


Figure 31. Monthly flow regression and temporal variation: 26038001 Shakopee Creek near Benson, MN

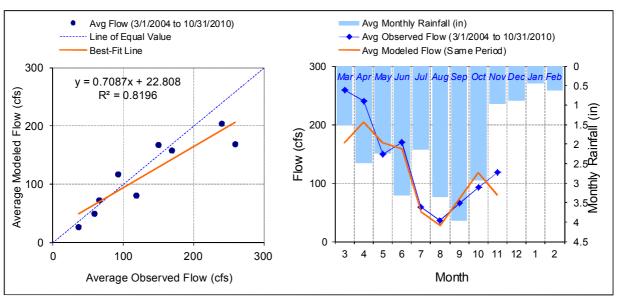


Figure 32. Seasonal regression and temporal aggregate: 26038001 Shakopee Creek near Benson, MN

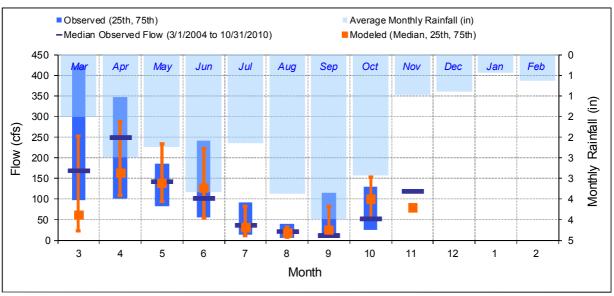


Figure 33. Seasonal medians and ranges: 26038001 Shakopee Creek near Benson, MN

Table 9. Seasonal summary: 26038001 Shakopee Creek near Benson, MN

MONTH	<u>OB</u>	SERVED	FLOW (CF	<u>-S)</u>	MODELED FLOW (CFS)			
WOITH	MEAN	MEDIAN	25TH	75TH	MEAN	MEDIAN	25TH	75TH
Mar	258.96	166.61	98.36	424.00	169.54	62.89	22.55	253.00
Apr	239.57	248.29	100.92	345.75	204.64	164.40	109.21	287.53
May	149.38	140.29	82.32	185.00	168.31	138.88	94.01	233.34
Jun	169.24	100.20	55.55	242.00	157.73	126.53	54.19	222.83
Jul	58.88	35.00	12.46	91.77	49.95	31.63	11.35	82.21
Aug	36.20	21.00	6.20	40.89	26.38	17.52	6.71	31.61
Sep	65.59	10.88	4.93	115.53	73.04	25.72	13.92	81.89
Oct	91.90	51.45	25.50	129.88	117.07	101.44	51.31	153.04
Nov	118.06	118.06	117.03	119.09	80.38	80.38	79.47	81.30
Dec	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Jan	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Feb	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

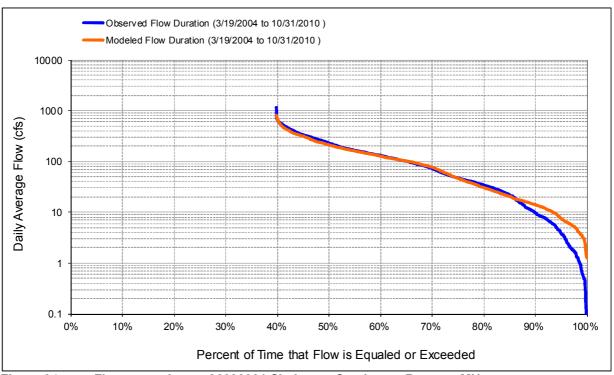


Figure 34. Flow exceedence: 26038001 Shakopee Creek near Benson, MN

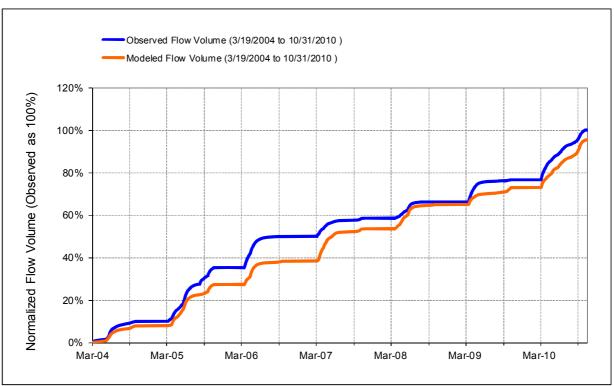


Figure 35. Flow accumulation: 26038001 Shakopee Creek near Benson, MN

Table 10. Summary statistics: 26038001 Shakopee Creek near Benson, MN

HSPF Simulated Flow		Observed Flow Gage				
REACH OUTFLOW FROM DSN 103		SHAKOPEE CREEK NEAR BENSON				
6.62-Year Analysis Period: 3/1/2004 - 10/31/2010 Flow volumes are (inches/year) for upstream drainage	Manually Entered Data Drainage Area (sq-mi): 259					
Total Simulated In-stream Flow:	3.63	Total Observed In-stream Flo	w:	3.80		
Total of simulated highest 10% flows:	1.31	Total of Observed highest 10	% flows:	1.41		
Total of Simulated lowest 50% flows:	0.42	Total of Observed Lowest 50		0.40		
o: 1/10 F W1 / # 70			7.0			
Simulated Summer Flow Volume (months 7-9):		Observed Summer Flow Volu	0.73			
Simulated Fall Flow Volume (months 10-12):	0.38	Observed Fall Flow Volume (0.30		
Simulated Winter Flow Volume (months 1-3):	0.15	Observed Winter Flow Volum	0.23			
Simulated Spring Flow Volume (months 4-6):	2.42	Observed Spring Flow Volum	2.54			
Total Simulated Storm Volume:	0.94	Total Observed Storm Volum	ie:	0.81		
Simulated Summer Storm Volume (7-9):	0.16	Observed Summer Storm Vo	0.16			
Errors (Simulated-Observed)	Error Statistics	Recommended Criteria	Run (n-1)	Run (n-2)		
Error in total volume:	-4.64	10	-4.64			
Error in 50% lowest flows:	4.27	10	4.27			
Error in 10% highest flows:	-7.39	15	-7.39			
Seasonal volume error - Summer:	-7.71	30	-7.71			
Seasonal volume error - Fall:	26.37 >	> 30	26.37	Clear		
Seasonal volume error - Winter:	-34.53	30	-34.53			
Seasonal volume error - Spring:	-4.69	30	-4.69			
Error in storm volumes:	15.55	20	15.55			
Error in summer storm volumes:	-3.42	50	-3.42			
Nash-Sutcliffe Coefficient of Efficiency, E:	0.667	Model accuracy increases	0.667			
Baseline adjusted coefficient (Garrick), E':	0.518	as E or E' approaches 1.0 0.518				
Monthly NSE	0.900					

6 Chippewa River at Benson

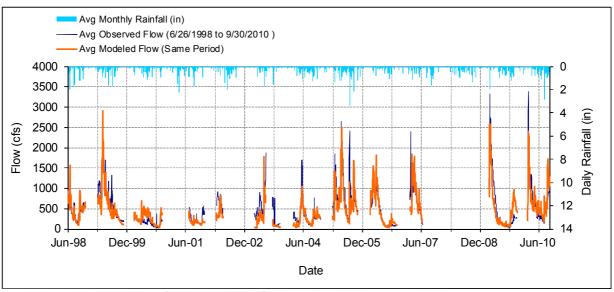


Figure 36. Mean daily flow: 26037001 Chippewa River at Benson, MN

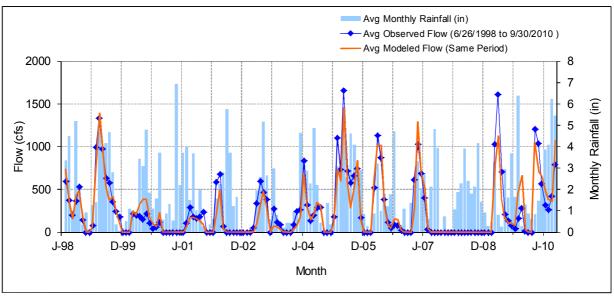


Figure 37. Mean monthly flow: 26037001 Chippewa River at Benson, MN

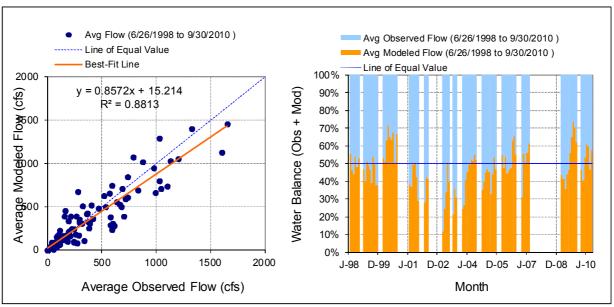


Figure 38. Monthly flow regression and temporal variation: 26037001 Chippewa River at Benson, MN

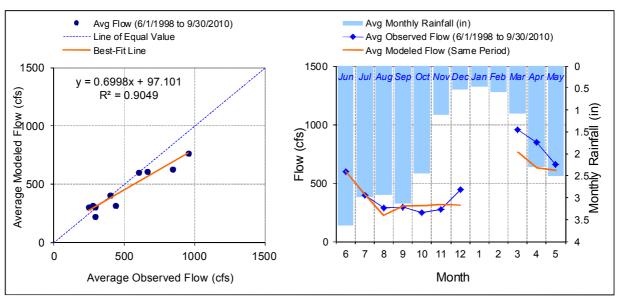


Figure 39. Seasonal regression and temporal aggregate: 26037001 Chippewa River at Benson, MN

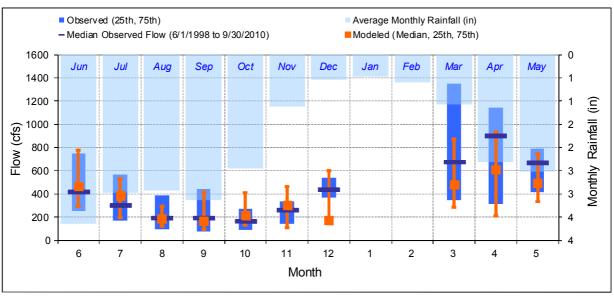


Figure 40. Seasonal medians and ranges: 26037001 Chippewa River at Benson, MN

Table 11. Seasonal summary: 26037001 Chippewa River at Benson, MN

MONTH	OB	SERVED	FLOW (CF	<u>-S)</u>	MODELED FLOW (CFS)			
WIGHTIII	MEAN	MEDIAN	25TH	75TH	MEAN	MEDIAN	25TH	75TH
Jun	600.81	409.93	253.67	745.90	601.95	468.05	295.16	773.28
Jul	398.54	297.36	168.27	562.61	403.39	381.67	195.92	529.85
Aug	290.13	184.80	93.53	385.97	221.47	183.88	121.10	294.46
Sep	292.75	185.77	77.58	443.39	303.90	169.88	94.27	413.01
Oct	245.64	159.65	89.72	272.55	304.61	214.54	126.61	407.16
Nov	273.29	253.92	140.78	331.76	317.25	306.31	110.16	463.36
Dec	439.66	432.31	367.87	538.49	314.14	174.54	164.03	597.12
Jan	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Feb	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mar	956.09	667.41	348.77	1350.00	766.79	482.37	287.77	870.99
Apr	844.66	898.71	312.96	1141.37	631.19	610.58	211.02	934.55
May	661.79	664.59	415.74	790.57	607.48	490.25	330.95	743.94

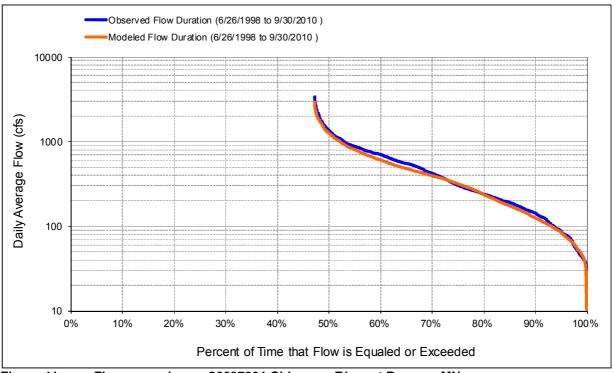


Figure 41. Flow exceedence: 26037001 Chippewa River at Benson, MN

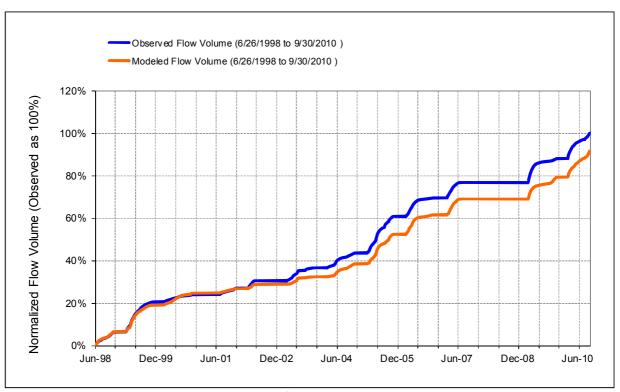


Figure 42. Flow accumulation: 26037001 Chippewa River at Benson, MN

TE TETRATECH, INC. -

Table 12. Summary statistics: 26037001 Chippewa River at Benson, MN

HSPF Simulated Flow	T	Observed Flow Gage					
REACH OUTFLOW FROM DSN 102		CHIPPEWA RIVER AT BENSON, M N					
12.27-Year Analysis Period: 6/1/1998 - 9/30/2010 Flow volumes are (inches/year) for upstream drainage area			Manually Entered Data Drainage Area (sq-mi): 1270				
Total Simulated In-stream Flow:	2.53	†	Total Observed In-stream Flo	w:		2.76	
Total of simulated highest 10% flows:	0.79	+	Total of Observed highest 10	% flows:		0.87	
Total of Simulated lowest 50% flows:	0.47	1	Total of Observed Lowest 50	% flows:		0.49	
Simulated Summer Flow Volume (months 7-9):	0.62	+	Observed Summer Flow Volu	ıme (7-9):		0.65	
Simulated Fall Flow Volume (months 10-12):	0.38	1	Observed Fall Flow Volume			0.33	
Simulated Winter Flow Volume (months 1-3):	0.24	1	Observed Winter Flow Volume (1-3):			0.29	
Simulated Spring Flow Volume (months 4-6):	1.29	1	Observed Spring Flow Volume (4-6):			1.48	
Total Simulated Storm Volume:	0.54	+	Total Observed Storm Volum	ne:		0.51	
Simulated Summer Storm Volume (7-9):	0.11	1	Observed Summer Storm Volume (7-9):			0.11	
Errors (Simulated-Observed)	Error Statistics	Ť	Recommended Criteria	Run (n-1)		Run (n-2)	
Error in total volume:	-8.33	T	10	-5.97		-6.20	
Error in 50% lowest flows:	-2.76		10	2.65		2.51	
Error in 10% highest flows:	-8.74		15	-7.65		-7.25	
Seasonal volume error - Summer:	-5.32		30	-1.85		-2.47	
Seasonal volume error - Fall:	16.04	>>	30	19.49	Clea	ır 19.33	
Seasonal volume error - Winter:	-19.80		30	-19.09		-18.72	
Seasonal volume error - Spring:	- Spring: -12.73		30 -10.78			-10.98	
Error in storm volumes:	n storm volumes: 6.12		20 5.04			6.73	
Error in summer storm volumes:	4.49		50	2.10		4.02	
Nash-Sutcliffe Coefficient of Efficiency, E:	0.724	Ť	Model accuracy increases	0.730		0.702	
Baseline adjusted coefficient (Garrick), E':	0.536		as E or E' approaches 1.0 0.541			0.532	
Monthly NSE	0.892	T					

Water Quality Calibration and Validation for the Chippewa River Watershed HSPF Model

1 Chippewa River at Cyrus (S002-190)

Table 1. Summary Statistics, TSS, Chippewa River at Cyrus (S002-190)

	Calibration (1999-2005)	Validation (2006-2010)
Count	105	99
Concentration Average Error	24.48%	-13.55%
Concentration Median Error	7.00%	-0.50%
Paired Load Average Error	85.84%	-2.59%
Paired Load Median Error	1.29%	-0.36%
Paired t Test on Concentration Means (p value)	0.34	0.82
Paired t Test on Load Means (p value)	0.00	0.94
Difference in Slope, Load vs. Flow	105.62%	62.24%

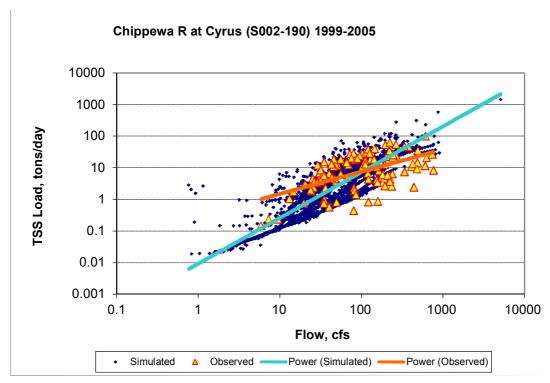


Figure 1. TSS Load Power Plot, Calibration Period, Chippewa River at Cyrus (S002-190)

B-3

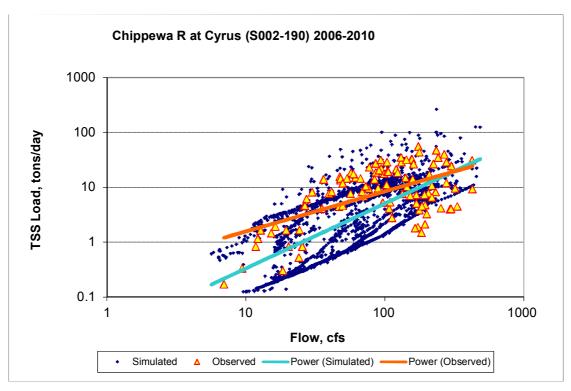


Figure 2. TSS Load Power Plot, Validation Period, Chippewa River at Cyrus (S002-190)

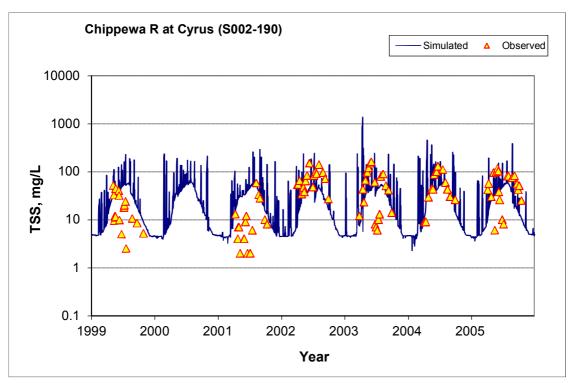


Figure 3. TSS Concentration Time Series, Calibration Period, Chippewa River at Cyrus (S002-190)

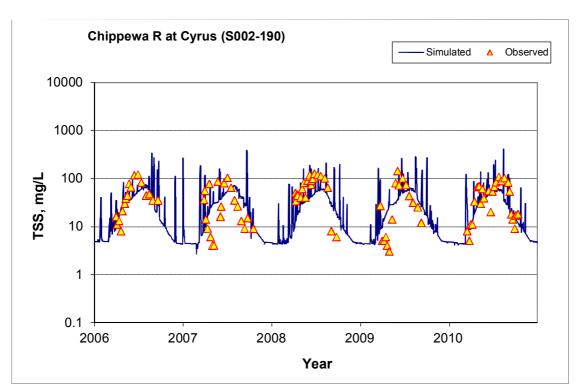


Figure 4. TSS Concentration Time Series, Validation Period, Chippewa River at Cyrus (S002-190)

Table 2. Summary Statistics, Ortho P, Chippewa River at Cyrus (S002-190)

	Calibration (1999-2005)	Validation (2006-2010)
Count	102	70
Concentration Average Error	10.46%	24.28%
Concentration Median Error	10.72%	23.98%
Paired Load Average Error	-12.34%	-37.37%
Paired Load Median Error	2.30%	6.10%
Paired t Test on Concentration Means (p value)	0.74	0.42
Paired t Test on Load Means (p value)	0.64	0.26
Difference in Slope, Load vs. Flow	-49.65%	-25.61%

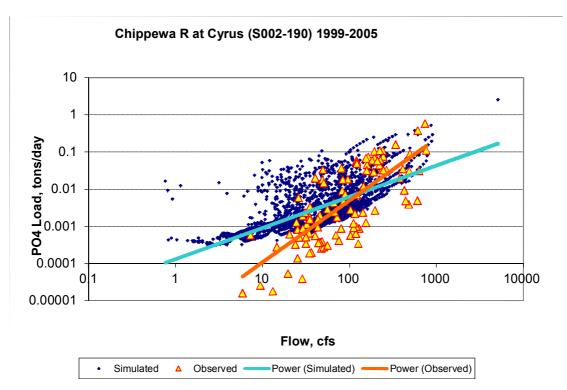


Figure 5. Ortho P Load Power Plot, Calibration Period, Chippewa River at Cyrus (S002-190)



Figure 6. Ortho P Load Power Plot, Validation Period, Chippewa River at Cyrus (S002-190)

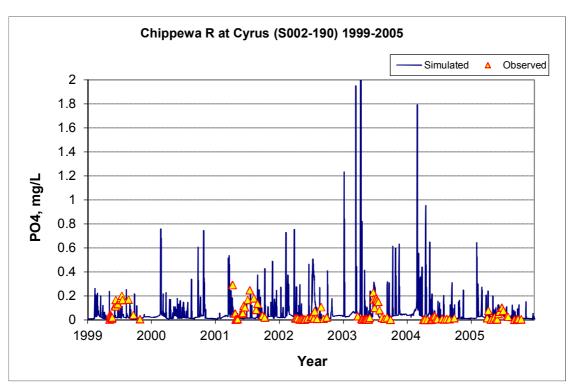


Figure 7. Ortho P Concentration Time Series, Calibration Period, Chippewa River at Cyrus (S002-190)

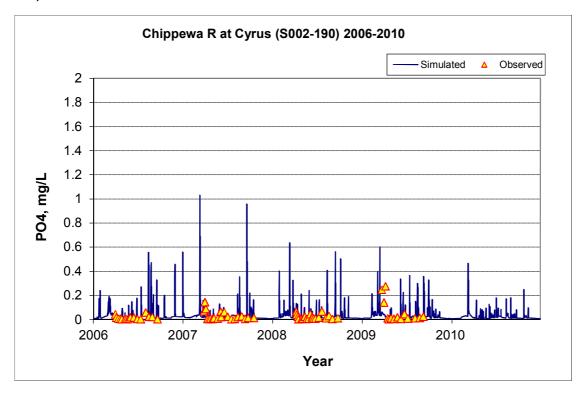


Figure 8. Ortho P Concentration Time Series, Validation Period, Chippewa River at Cyrus (S002-190)

Table 3. Summary Statistics, Total P, Chippewa River at Cyrus (S002-190)

	Calibration (1999-2005)	Validation (2006-2010)
Count	85	99
Concentration Average Error	-8.56%	-7.51%
Concentration Median Error	-3.24%	-6.30%
Paired Load Average Error	-4.82%	-18.80%
Paired Load Median Error	-1.03%	-4.12%
Paired t Test on Concentration Means (p value)	0.95	1.00
Paired t Test on Load Means (p value)	0.83	0.54
Difference in Slope, Load vs. Flow	-9.73%	-24.22%

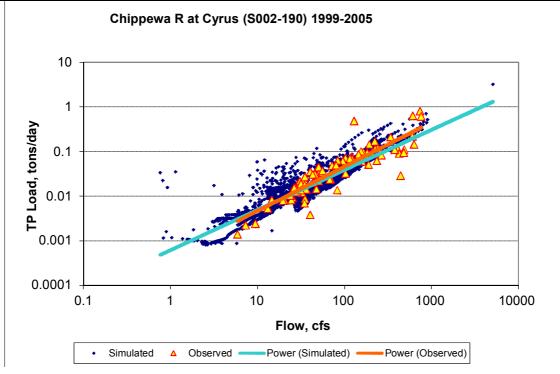


Figure 9. Total P Load Power Plot, Calibration Period, Chippewa River at Cyrus (S002-190)

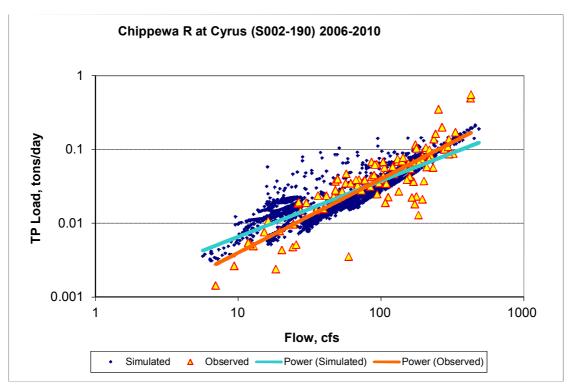


Figure 10. Total P Load Power Plot, Validation Period, Chippewa River at Cyrus (S002-190)



Figure 11. Total P Concentration Time Series, Calibration Period, Chippewa River at Cyrus (S002-190)

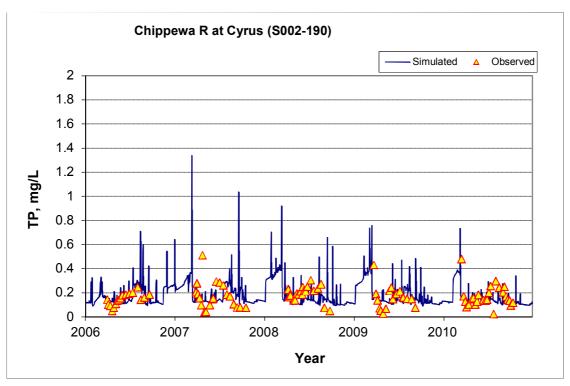


Figure 12. Total P Concentration Time Series, Validation Period, Chippewa River at Cyrus (S002-190)

Table 4. Summary Statistics, NOx-N, Chippewa River at Cyrus (S002-190)

	Calibration (1999-2005)	Validation (2006-2010)
Count	105	99
Concentration Average Error	94.50%	-22.89%
Concentration Median Error	55.96%	2.74%
Paired Load Average Error	132.26%	-41.07%
Paired Load Median Error	13.00%	1.27%
Paired t Test on Concentration Means (p value)	0.01	0.40
Paired t Test on Load Means (p value)	0.05	0.12
Difference in Slope, Load vs. Flow	-30.54%	-42.66%

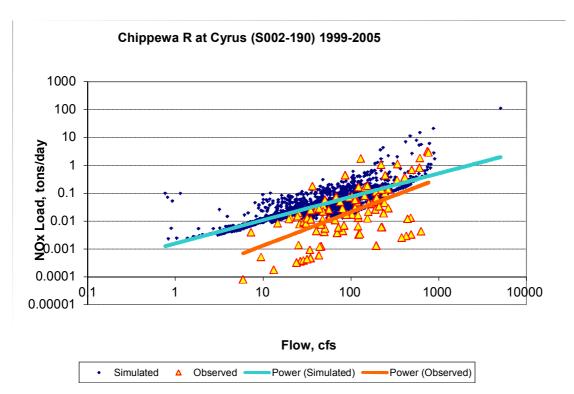


Figure 13. NOx-N Load Power Plot, Calibration Period, Chippewa River at Cyrus (S002-190)

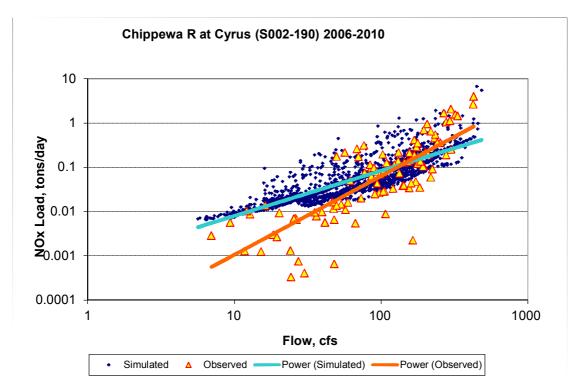


Figure 14. NOx-N Load Power Plot, Validation Period, Chippewa River at Cyrus (S002-190)

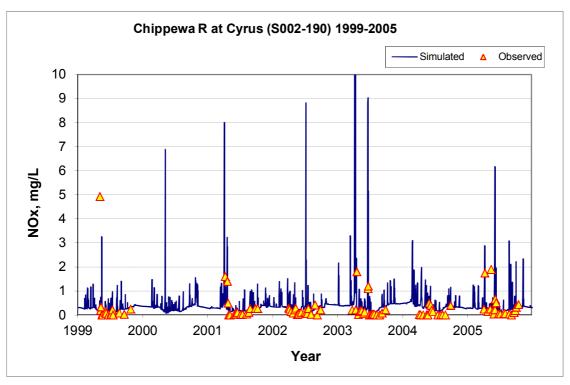


Figure 15. NOx-N Concentration Time Series, Calibration Period, Chippewa River at Cyrus (S002-190)

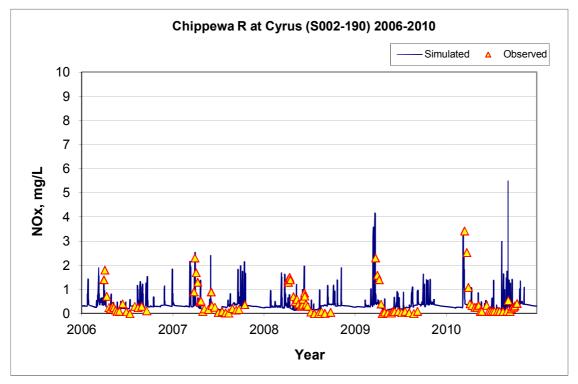


Figure 16. NOx-N Concentration Time Series, Validation Period, Chippewa River at Cyrus (S002-190)

Table 5. Summary Statistics, Total N, Chippewa River at Cyrus (S002-190)

	Calibration (1999-2005)	Validation (2006-2010)
Count	84	6
Concentration Average Error	17.03%	-10.09%
Concentration Median Error	12.67%	-8.42%
Paired Load Average Error	59.10%	-13.27%
Paired Load Median Error	6.29%	-10.70%
Paired t Test on Concentration Means (p value)	0.66	0.89
Paired t Test on Load Means (p value)	0.10	0.58
Difference in Slope, Load vs. Flow	-7.01%	-10.21%

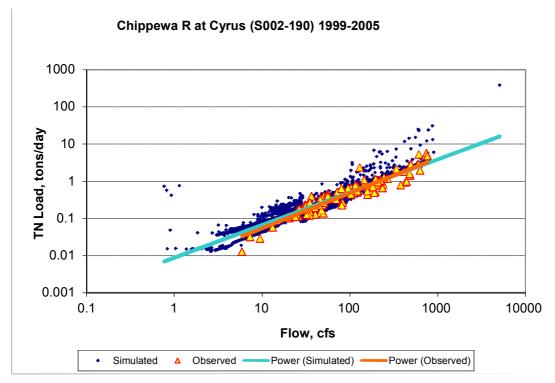


Figure 17. Total N Load Power Plot, Calibration Period, Chippewa River at Cyrus (S002-190)

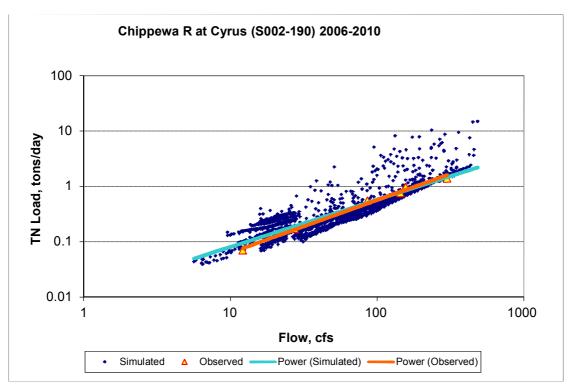


Figure 18. Total N Load Power Plot, Validation Period, Chippewa River at Cyrus (S002-190)

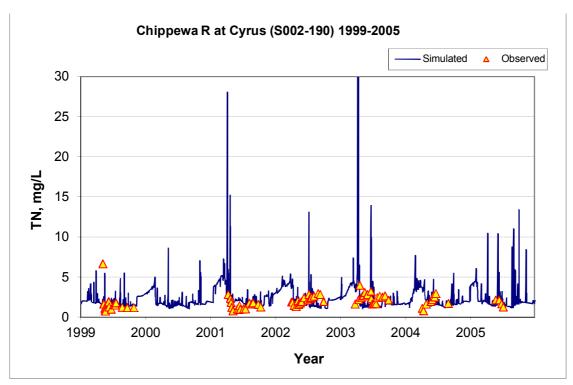


Figure 19. Total N Concentration Time Series, Calibration Period, Chippewa River at Cyrus (S002-190)

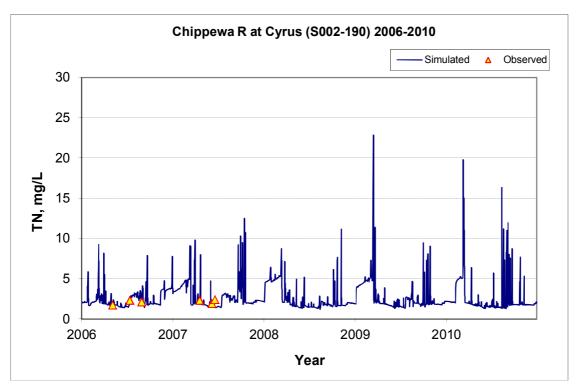


Figure 20. Total N Concentration Time Series, Validation Period, Chippewa River at Cyrus (S002-190)

2 East Branch Chippewa River (S005-364)

Table 6. Summary Statistics, TSS, East Branch Chippewa River (S005-364)

	Calibration (1999-2005)	Validation (2006-2010)
Count	131	115
Concentration Average Error	-3.98%	19.87%
Concentration Median Error	2.58%	18.19%
Paired Load Average Error	4.63%	1.82%
Paired Load Median Error	0.59%	5.12%
Paired t Test on Concentration Means (p value)	0.97	0.51
Paired t Test on Load Means (p value)	0.84	0.84
Difference in Slope, Load vs. Flow	41.88%	18.31%

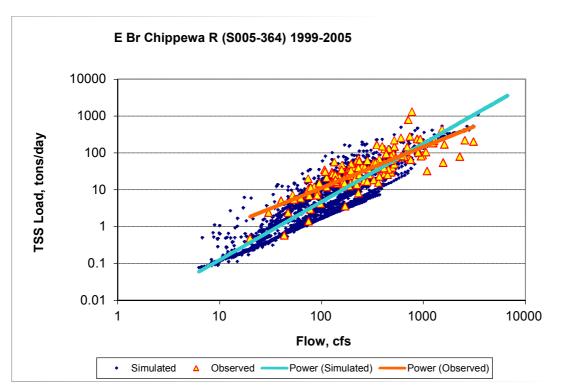


Figure 21. TSS Load Power Plot, Calibration Period, East Branch Chippewa River (S005-364)

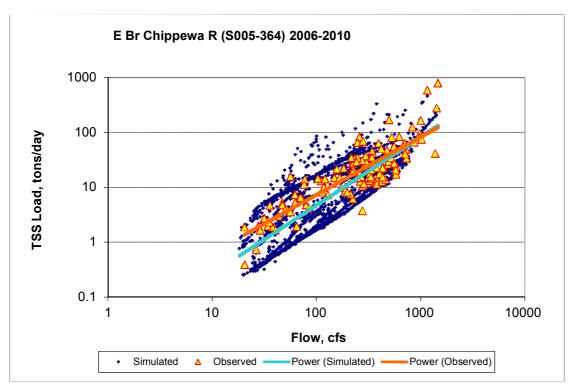


Figure 22. TSS Load Power Plot, Validation Period, East Branch Chippewa River (S005-364)

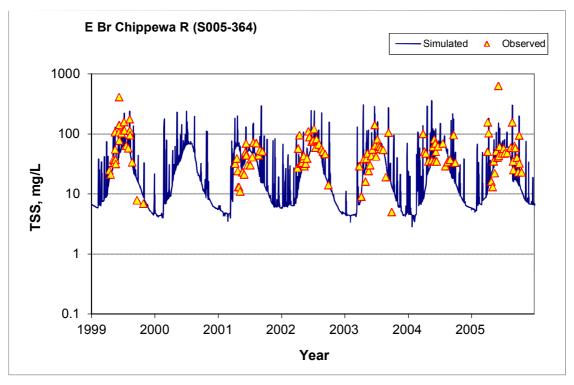


Figure 23. TSS Concentration Time Series, Calibration Period, East Branch Chippewa River (S005-364)

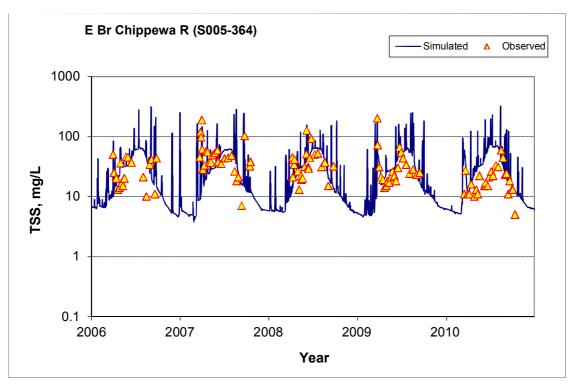


Figure 24. TSS Concentration Time Series, Validation Period, East Branch Chippewa River (S005-364)

Table 7. Summary Statistics, Ortho P, East Branch Chippewa River (S005-364)

	Calibration (1999-2005)	Validation (2006-2010)
Count	128	90
Concentration Average Error	5.10%	10.55%
Concentration Median Error	8.03%	5.48%
Paired Load Average Error	-5.20%	9.05%
Paired Load Median Error	1.64%	1.86%
Paired t Test on Concentration Means (p value)	0.99	0.84
Paired t Test on Load Means (p value)	0.81	0.68
Difference in Slope, Load vs. Flow	-20.56%	0.05%

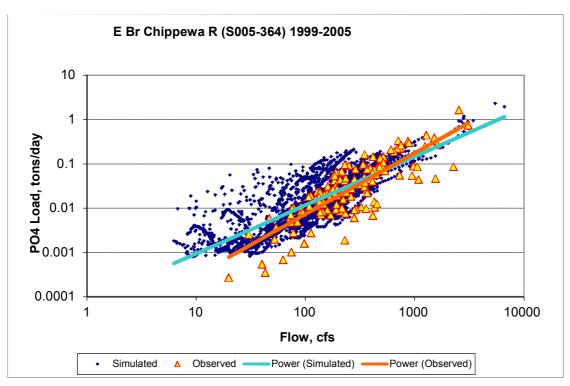


Figure 25. Ortho P Load Power Plot, Calibration Period, East Branch Chippewa River (S005-364)

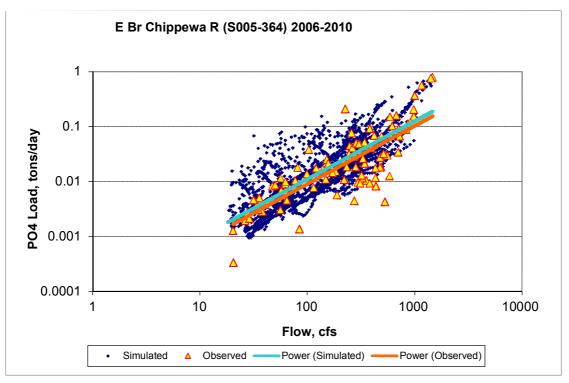


Figure 26. Ortho P Load Power Plot, Validation Period, East Branch Chippewa River (S005-364)

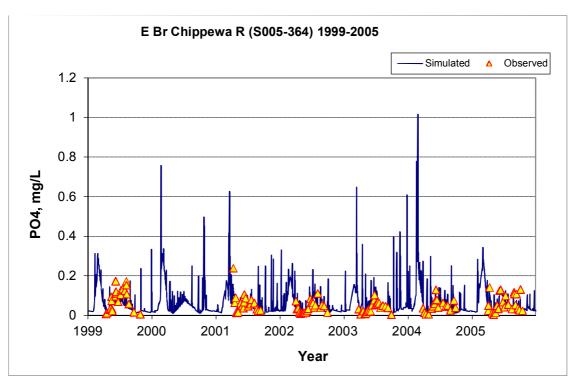


Figure 27. Ortho P Concentration Time Series, Calibration Period, East Branch Chippewa River (S005-364)

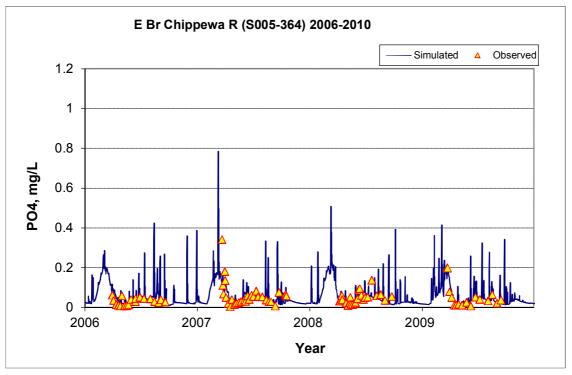


Figure 28. Ortho P Concentration Time Series, Validation Period, East Branch Chippewa River (S005-364)

Table 8. Summary Statistics, Total P, East Branch Chippewa River (S005-364)

	Calibration (1999-2005)	Validation (2006-2010)
Count	103	126
Concentration Average Error	3.18%	14.18%
Concentration Median Error	11.18%	24.96%
Paired Load Average Error	-9.19%	-12.55%
Paired Load Median Error	3.21%	7.56%
Paired t Test on Concentration Means (p value)	1.00	0.86
Paired t Test on Load Means (p value)	0.75	0.67
Difference in Slope, Load vs. Flow	-14.71%	-10.52%

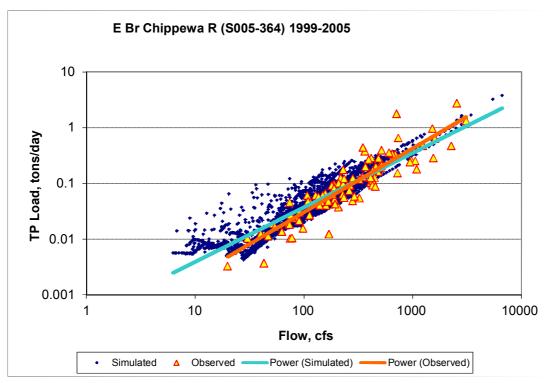


Figure 29. Total P Load Power Plot, Calibration Period, East Branch Chippewa River (S005-364)



Figure 30. Total P Load Power Plot, Validation Period, East Branch Chippewa River (S005-364)

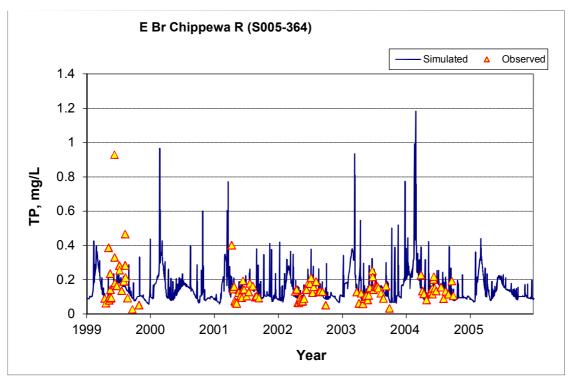


Figure 31. Total P Concentration Time Series, Calibration Period, East Branch Chippewa River (S005-364)

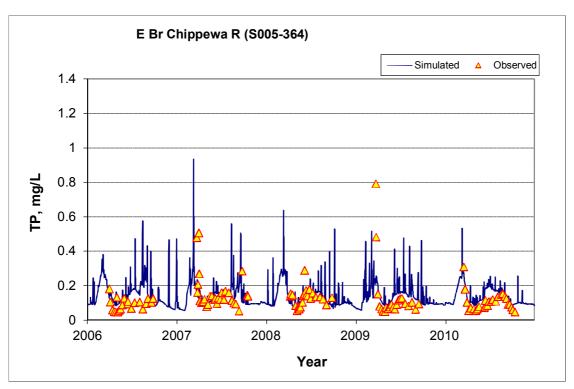


Figure 32. Total P Concentration Time Series, Validation Period, East Branch Chippewa River (S005-364)

Table 9. Summary Statistics, NOx-N, East Branch Chippewa River (S005-364)

	Calibration (1999-2005)	Validation (2006-2010)
Count	131	125
Concentration Average Error	-0.52%	-3.91%
Concentration Median Error	-3.17%	3.65%
Paired Load Average Error	31.68%	-20.65%
Paired Load Median Error	-0.50%	0.39%
Paired t Test on Concentration Means (p value)	0.98	0.97
Paired t Test on Load Means (p value)	0.29	0.48
Difference in Slope, Load vs. Flow	-32.17%	-28.03%

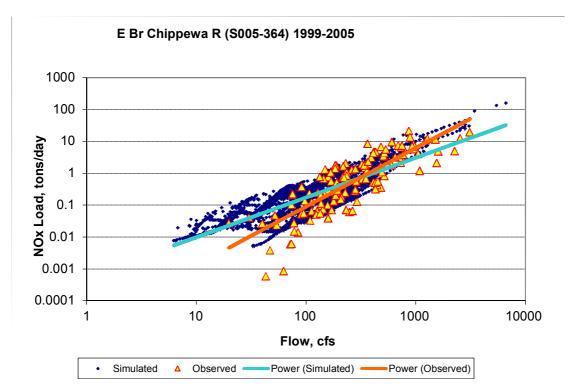


Figure 33. NOx-N Load Power Plot, Calibration Period, East Branch Chippewa River (S005-364)

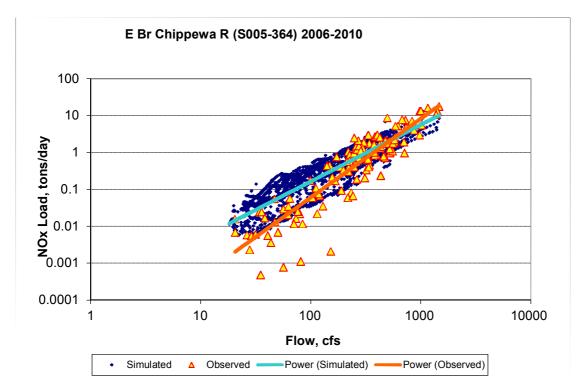


Figure 34. NOx-N Load Power Plot, Validation Period, East Branch Chippewa River (S005-364)

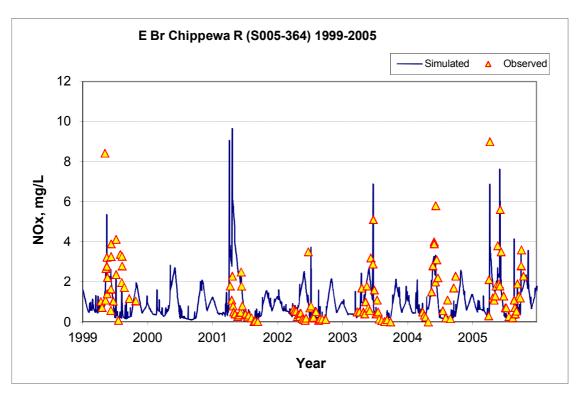


Figure 35. NOx-N Concentration Time Series, Calibration Period, East Branch Chippewa River (S005-364)

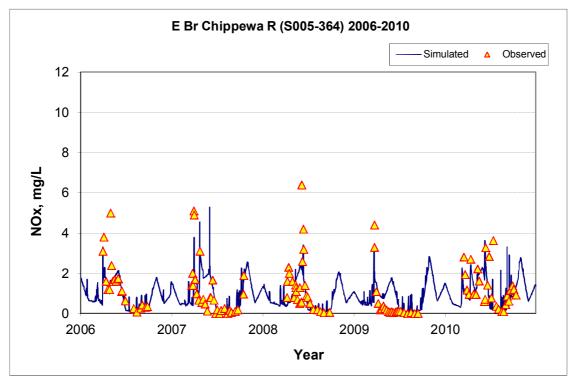


Figure 36. NOx-N Concentration Time Series, Validation Period, East Branch Chippewa River (S005-364)

Table 10. Summary Statistics, Total N, East Branch Chippewa River (S005-364)

	Calibration (1999-2005)	Validation (2006-2010)
Count	107	17
Concentration Average Error	-1.64%	57.17%
Concentration Median Error	6.54%	59.15%
Paired Load Average Error	20.42%	10.02%
Paired Load Median Error	1.48%	12.31%
Paired t Test on Concentration Means (p value)	1.00	0.00
Paired t Test on Load Means (p value)	0.49	0.61
Difference in Slope, Load vs. Flow	-22.24%	-18.80%

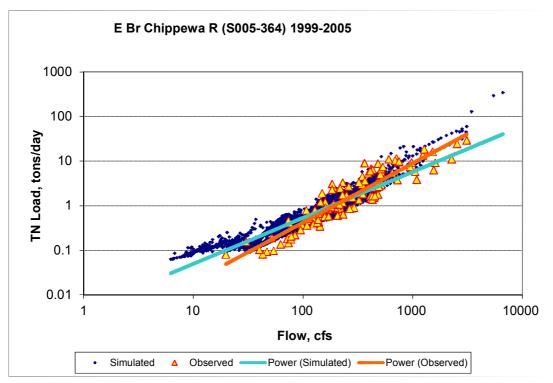


Figure 37. Total N Load Power Plot, Calibration Period, East Branch Chippewa River (S005-364)

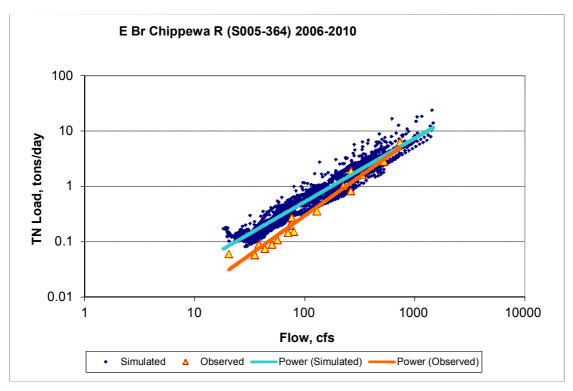


Figure 38. Total N Load Power Plot, Validation Period, East Branch Chippewa River (S005-364)

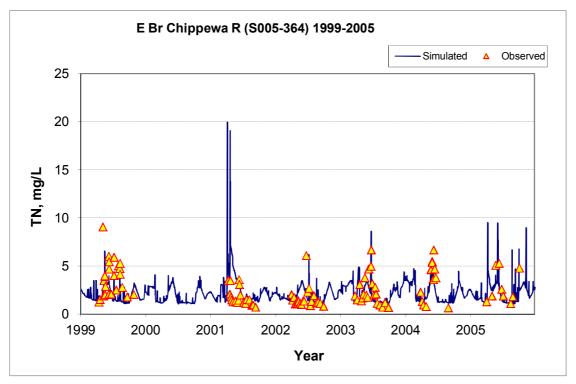


Figure 39. Total N Concentration Time Series, Calibration Period, East Branch Chippewa River (S005-364)

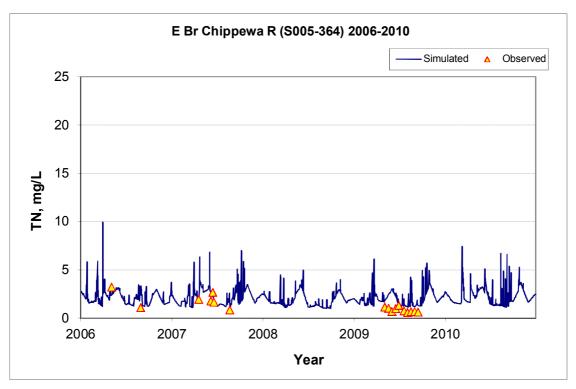


Figure 40. Total N Concentration Time Series, Validation Period, East Branch Chippewa River (S005-364)

3 Shakopee Creek near Benson (S002-201)

Table 11. Summary Statistics, TSS, Shakopee Crk near Benson (S002-201)

	Calibration (1999-2005)	Validation (2006-2010)
Count	133	118
Concentration Average Error	-21.50%	-1.82%
Concentration Median Error	0.78%	14.71%
Paired Load Average Error	6.07%	18.20%
Paired Load Median Error	0.16%	7.18%
Paired t Test on Concentration Means (p value)	0.40	1.00
Paired t Test on Load Means (p value)	0.86	0.55
Difference in Slope, Load vs. Flow	26.33%	33.91%

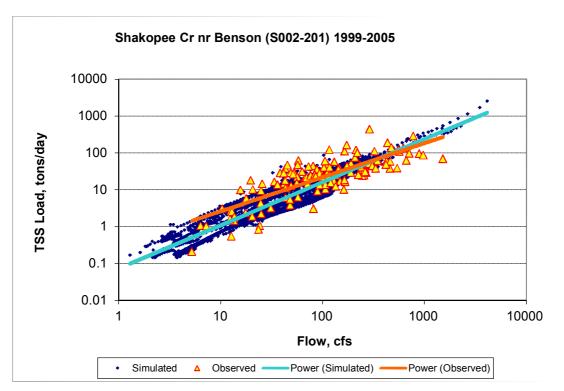


Figure 41. TSS Load Power Plot, Calibration Period, Shakopee Crk near Benson (S002-201)

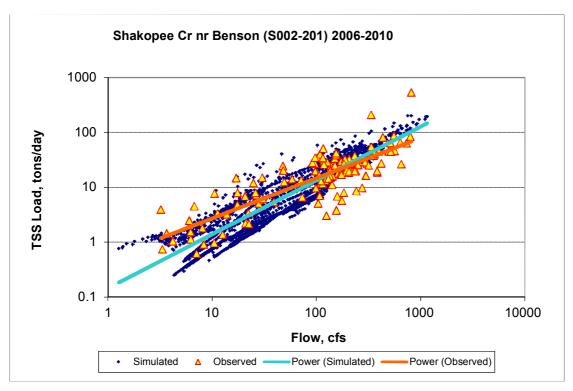


Figure 42. TSS Load Power Plot, Validation Period, Shakopee Crk near Benson (S002-201)

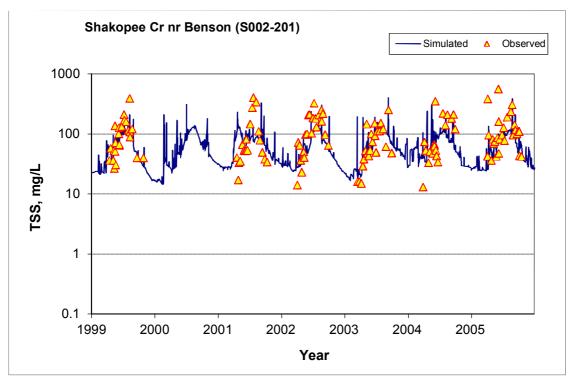


Figure 43. TSS Concentration Time Series, Calibration Period, Shakopee Crk near Benson (S002-201)

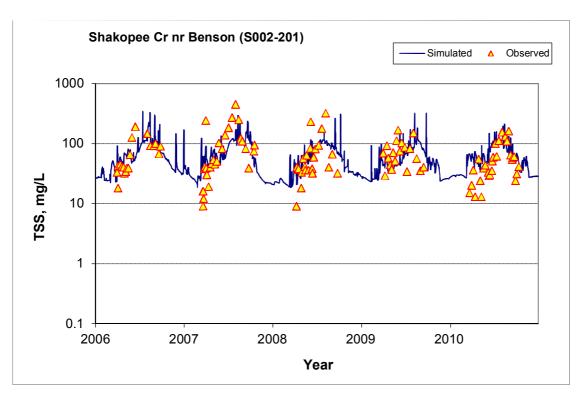


Figure 44. TSS Concentration Time Series, Validation Period, Shakopee Crk near Benson (S002-201)

Table 12. Summary Statistics, Ortho P, Shakopee Crk near Benson (S002-201)

	Calibration (1999-2005)	Validation (2006-2010)
Count	130	90
Concentration Average Error	10.62%	-24.61%
Concentration Median Error	33.21%	14.67%
Paired Load Average Error	-20.52%	-20.25%
Paired Load Median Error	4.23%	3.82%
Paired t Test on Concentration Means (p value)	0.86	0.35
Paired t Test on Load Means (p value)	0.49	0.50
Difference in Slope, Load vs. Flow	-3.97%	53.44%

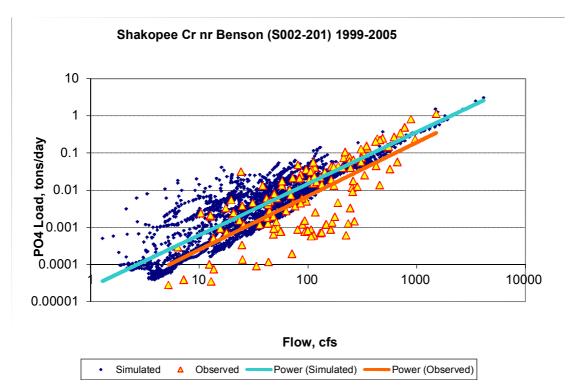


Figure 45. Ortho P Load Power Plot, Calibration Period, Shakopee Crk near Benson (S002-201)

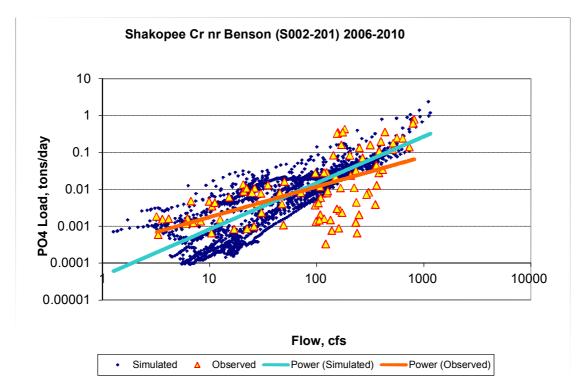


Figure 46. Ortho P Load Power Plot, Validation Period, Shakopee Crk near Benson (S002-201)

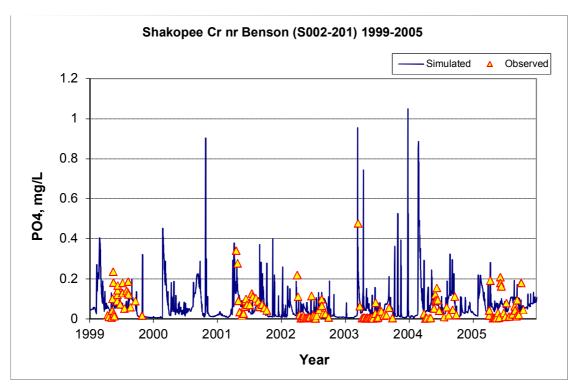


Figure 47. Ortho P Concentration Time Series, Calibration Period, Shakopee Crk near Benson (S002-201)

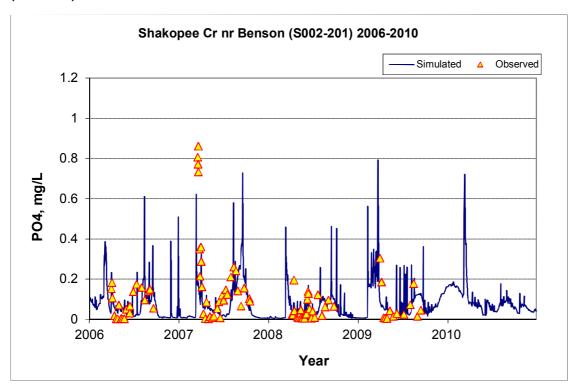


Figure 48. Ortho P Concentration Time Series, Validation Period, Shakopee Crk near Benson (S002-201)

Table 13. Summary Statistics, Total P, Shakopee Crk near Benson (S002-201)

	Calibration (1999-2005)	Validation (2006-2010)
Count	107	128
Concentration Average Error	8.25%	-0.65%
Concentration Median Error	11.83%	16.54%
Paired Load Average Error	12.26%	0.63%
Paired Load Median Error	3.15%	9.14%
Paired t Test on Concentration Means (p value)	1.00	1.00
Paired t Test on Load Means (p value)	0.68	0.94
Difference in Slope, Load vs. Flow	18.01%	23.92%

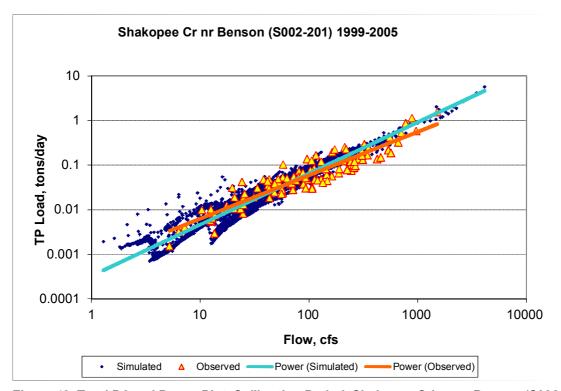


Figure 49. Total P Load Power Plot, Calibration Period, Shakopee Crk near Benson (S002-201)

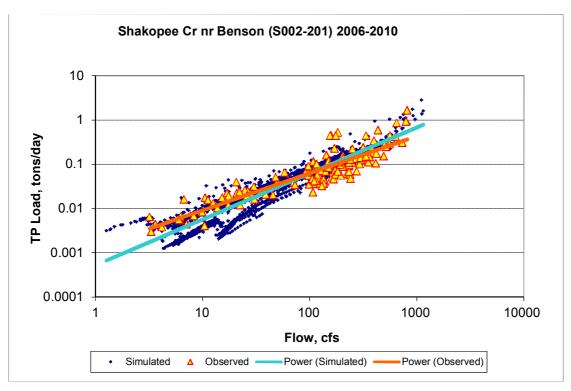


Figure 50. Total P Load Power Plot, Validation Period, Shakopee Crk near Benson (S002-201)

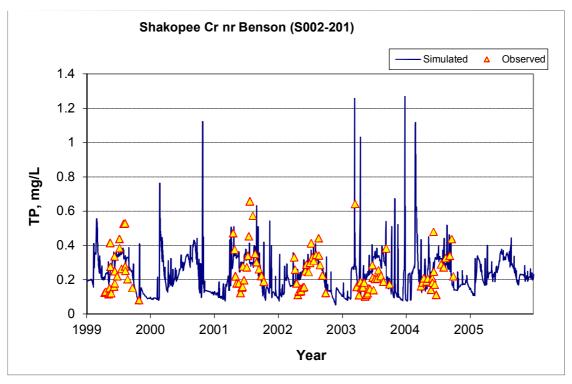


Figure 51. Total P Concentration Time Series, Calibration Period, Shakopee Crk near Benson (S002-201)

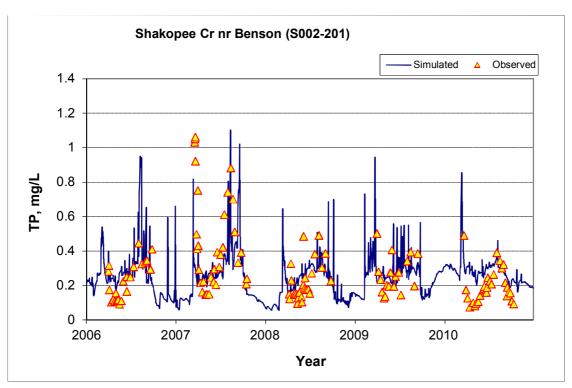


Figure 52. Total P Concentration Time Series, Validation Period, Shakopee Crk near Benson (S002-201)

Table 14. Summary Statistics, NOx-N, Shakopee Crk near Benson (S002-201)

	Calibration (1999-2005)	Validation (2006-2010)
Count	134	127
Concentration Average Error	-12.33%	-27.53%
Concentration Median Error	-1.04%	-4.41%
Paired Load Average Error	-21.87%	-23.18%
Paired Load Median Error	-0.08%	-0.56%
Paired t Test on Concentration Means (p value)	0.83	0.15
Paired t Test on Load Means (p value)	0.45	0.41
Difference in Slope, Load vs. Flow	-70.20%	-48.48%

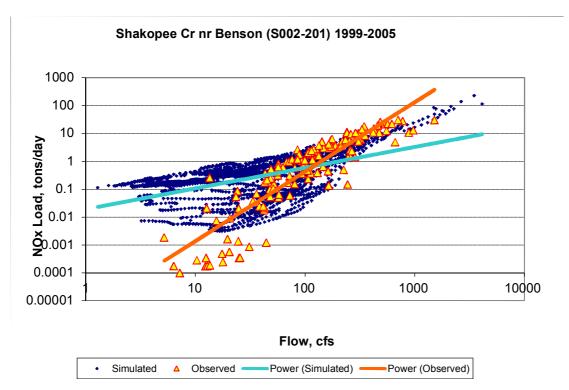


Figure 53. NOx-N Load Power Plot, Calibration Period, Shakopee Crk near Benson (S002-201)

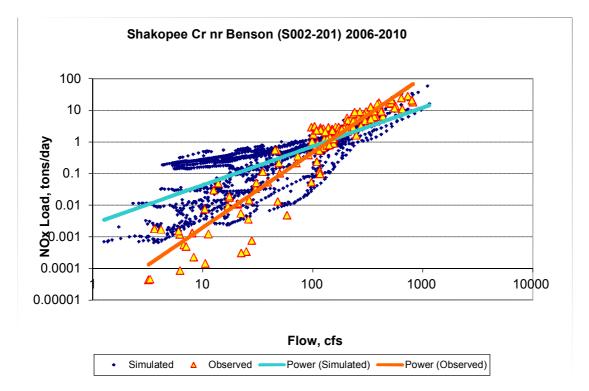


Figure 54. NOx-N Load Power Plot, Validation Period, Shakopee Crk near Benson (S002-201)

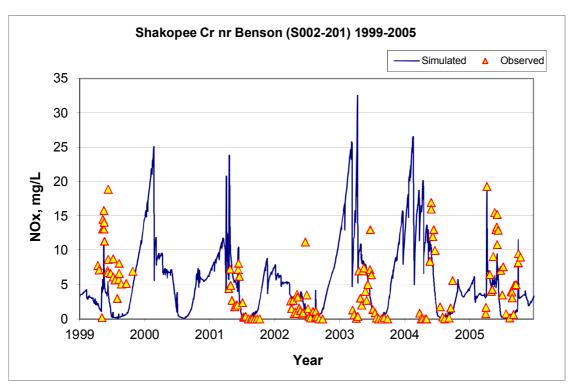


Figure 55. NOx-N Concentration Time Series, Calibration Period, Shakopee Crk near Benson (S002-201)

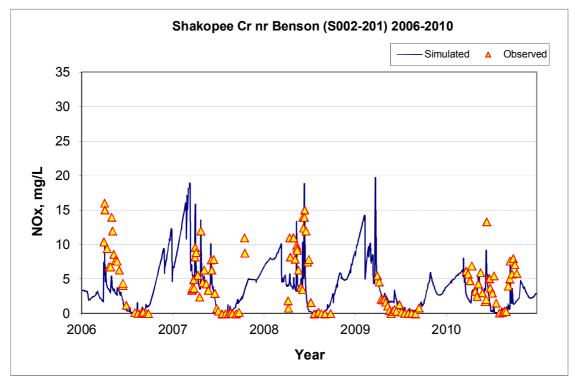


Figure 56. NOx-N Concentration Time Series, Validation Period, Shakopee Crk near Benson (S002-201)

Table 15. Summary Statistics, Total N, Shakopee Crk near Benson (S002-201)

	Calibration (1999-2005)	Validation (2006-2010)
Count	110	20
Concentration Average Error	7.98%	10.63%
Concentration Median Error	9.81%	19.73%
Paired Load Average Error	-8.59%	-14.53%
Paired Load Median Error	1.13%	2.19%
Paired t Test on Concentration Means (p value)	0.96	0.77
Paired t Test on Load Means (p value)	0.77	0.56
Difference in Slope, Load vs. Flow	-46.87%	-26.54%

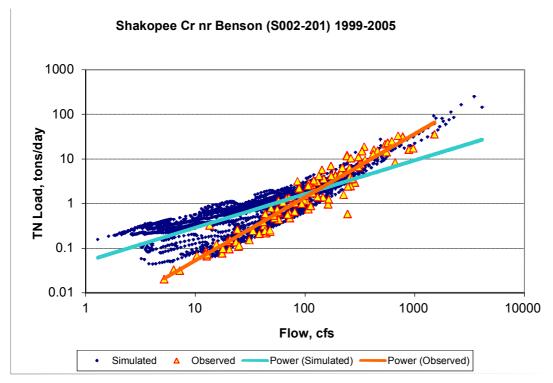


Figure 57. Total N Load Power Plot, Calibration Period, Shakopee Crk near Benson (S002-201)

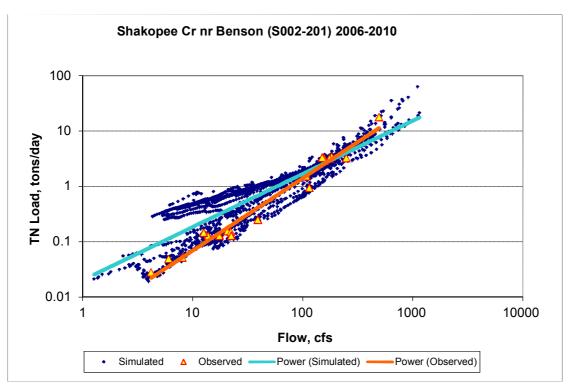


Figure 58. Total N Load Power Plot, Validation Period, Shakopee Crk near Benson (S002-201)

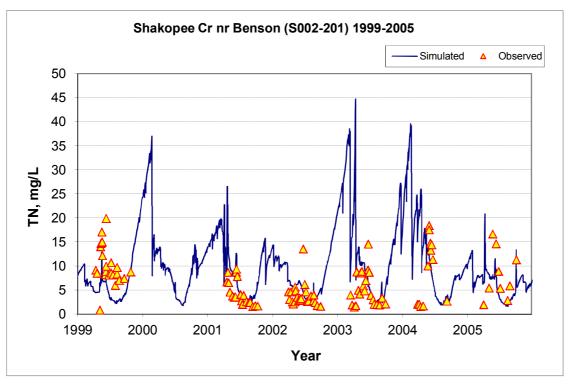


Figure 59. Total N Concentration Time Series, Calibration Period, Shakopee Crk near Benson (S002-201)

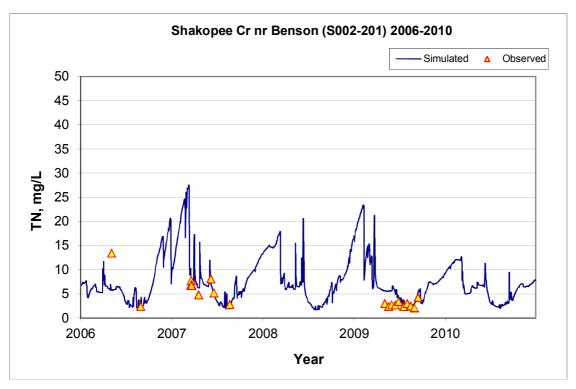


Figure 60. Total N Concentration Time Series, Validation Period, Shakopee Crk near Benson (S002-201)

4 Chippewa River at Milan (S002-203)

Table 16Summary Statistics, TSS, Chippewa River at Milan (S002-203)

	Calibration (1998-2005)	Validation (2006-2010)
Count	157	147
Concentration Average Error	-12.43%	11.36%
Concentration Median Error	-12.27%	17.57%
Paired Load Average Error	1.82%	-17.06%
Paired Load Median Error	-2.96%	4.20%
Paired t Test on Concentration Means (p value)	0.91	0.87
Paired t Test on Load Means (p value)	0.95	0.57
Difference in Slope, Load vs. Flow	21.87%	-7.42%

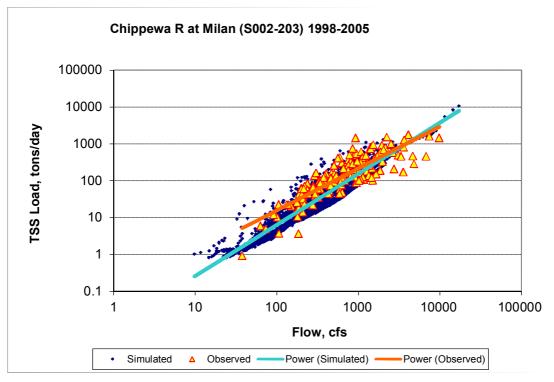


Figure 61. TSS Load Power Plot, Calibration Period, Chippewa River at Milan (S002-203)

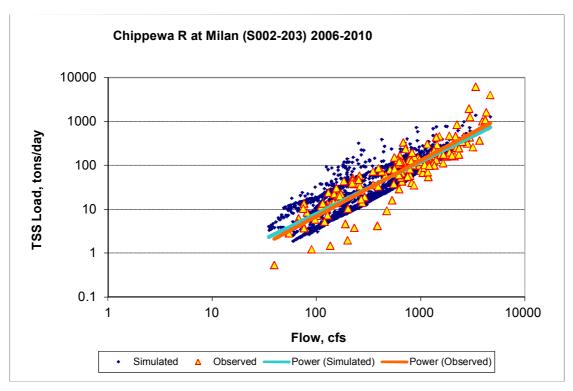


Figure 62. TSS Load Power Plot, Validation Period, Chippewa River at Milan (S002-203)

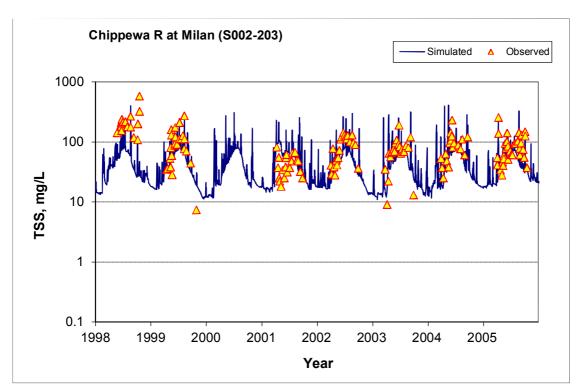


Figure 63. TSS Concentration Time Series, Calibration Period, Chippewa River at Milan (S002-203)

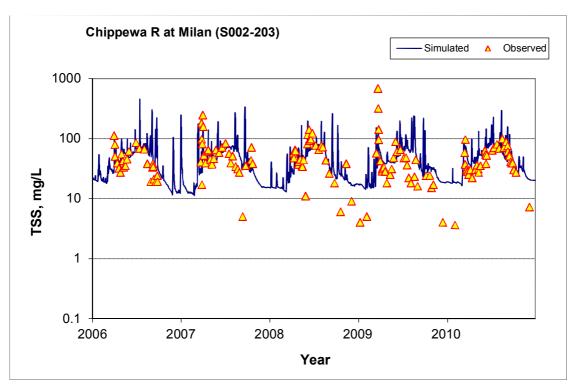


Figure 64. TSS Concentration Time Series, Validation Period, Chippewa River at Milan (S002-203)

Table 17. Summary Statistics, Ortho P, Chippewa River at Milan (S002-203)

Calibration (1998-2005) Validation (2006-2010) 152 124 Count 10.04% 18.88% **Concentration Average Error** 16.61% 21.19% **Concentration Median Error** -6.98% 6.23% Paired Load Average Error 3.62% 2.79% Paired Load Median Error Paired t Test on Concentration 0.93 0.54 Means (p value) Paired t Test on Load Means 0.75 0.73 (p value) Difference in Slope, Load vs. Flow -36.82% -33.50%

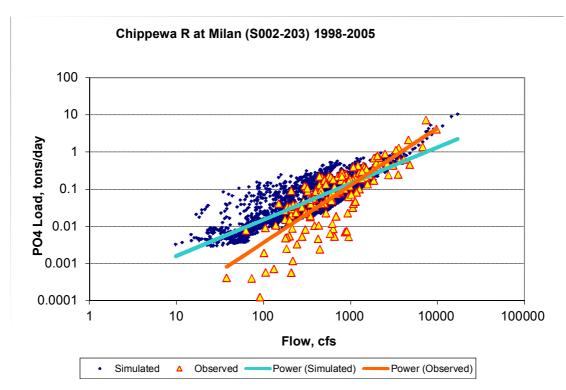


Figure 65. Ortho P Load Power Plot, Calibration Period, Chippewa River at Milan (S002-203)

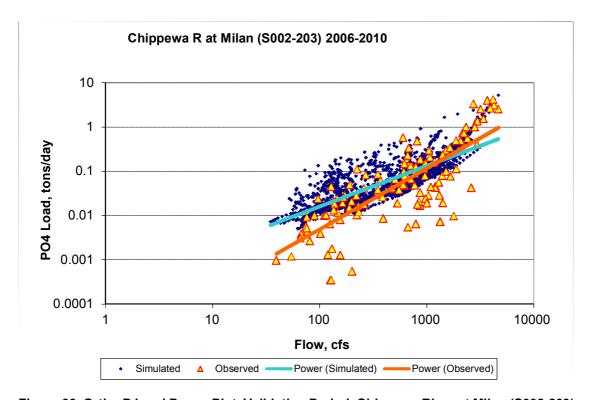


Figure 66. Ortho P Load Power Plot, Validation Period, Chippewa River at Milan (S002-203)

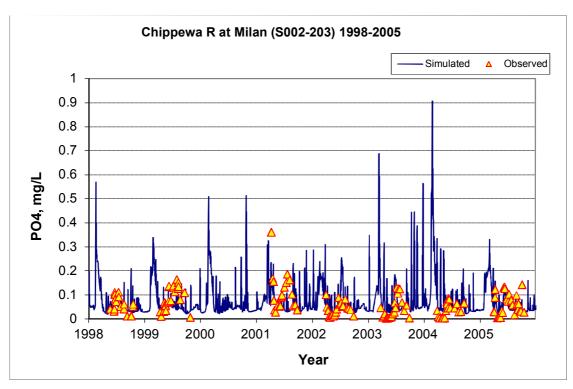


Figure 67. Ortho P Concentration Time Series, Calibration Period, Chippewa River at Milan (S002-203)

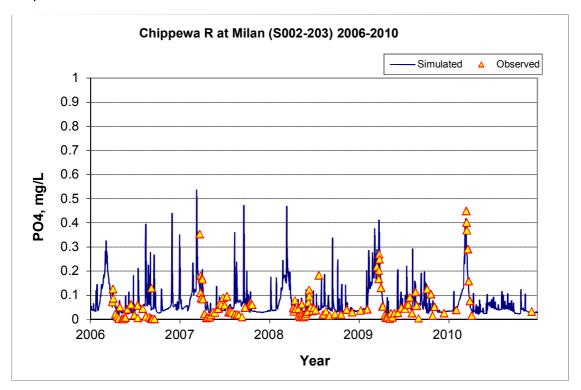


Figure 68. Ortho P Concentration Time Series, Validation Period, Chippewa River at Milan (S002-203)

Table 18. Summary Statistics, Total P, Chippewa River at Milan (S002-203)

	Calibration (1998-2005)	Validation (2006-2010)
Count	124	158
Concentration Average Error	-18.59%	-0.79%
Concentration Median Error	-12.10%	4.60%
Paired Load Average Error	-22.70%	-20.63%
Paired Load Median Error	-2.52%	1.47%
Paired t Test on Concentration Means (p value)	0.64	1.00
Paired t Test on Load Means (p value)	0.43	0.48
Difference in Slope, Load vs. Flow	-14.98%	-25.72%

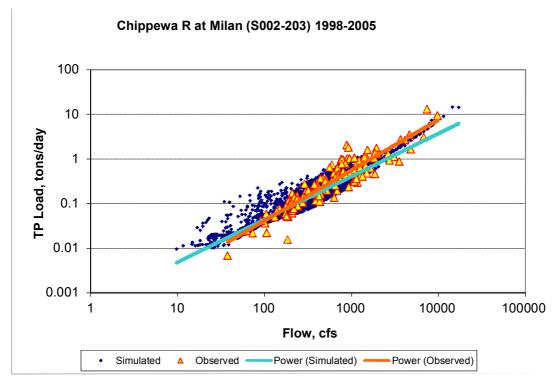


Figure 69. Total P Load Power Plot, Calibration Period, Chippewa River at Milan (S002-203)

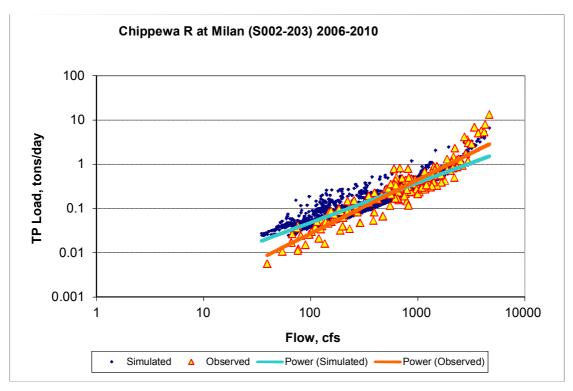


Figure 70. Total P Load Power Plot, Validation Period, Chippewa River at Milan (S002-203)

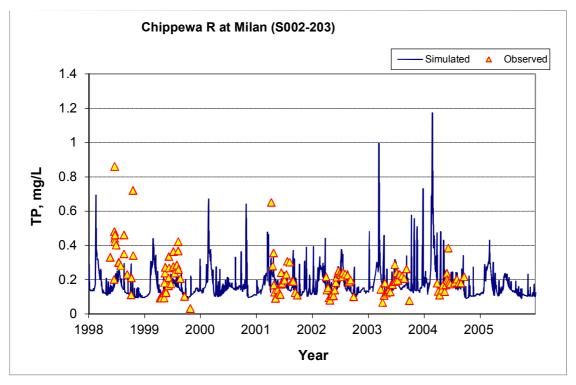


Figure 71. Total P Concentration Time Series, Calibration Period, Chippewa River at Milan (S002-203)

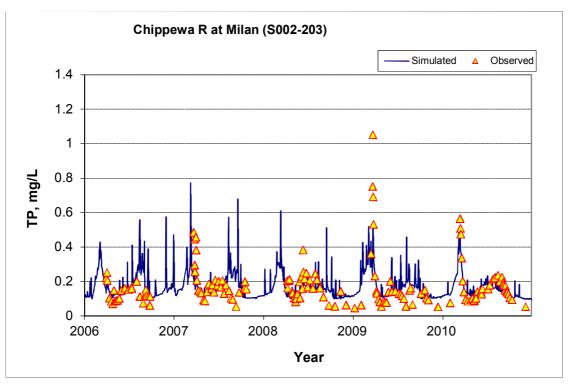


Figure 72. Total P Concentration Time Series, Validation Period, Chippewa River at Milan (S002-203)

Table 19. Summary Statistics, NOx-N, Chippewa River at Milan (S002-203)

	Calibration (1998-2005)	Validation (2006-2010)
Count	157	158
Concentration Average Error	16.53%	3.19%
Concentration Median Error	2.17%	2.61%
Paired Load Average Error	51.67%	12.73%
Paired Load Median Error	0.49%	0.29%
Paired t Test on Concentration Means (p value)	0.66	0.99
Paired t Test on Load Means (p value)	0.12	0.69
Difference in Slope, Load vs. Flow	-47.50%	-26.25%

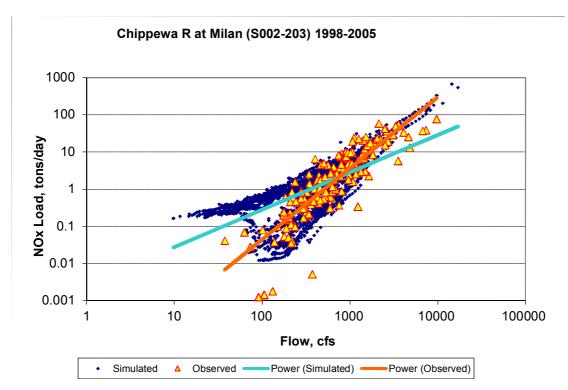


Figure 73. NOx-N Load Power Plot, Calibration Period, Chippewa River at Milan (S002-203)

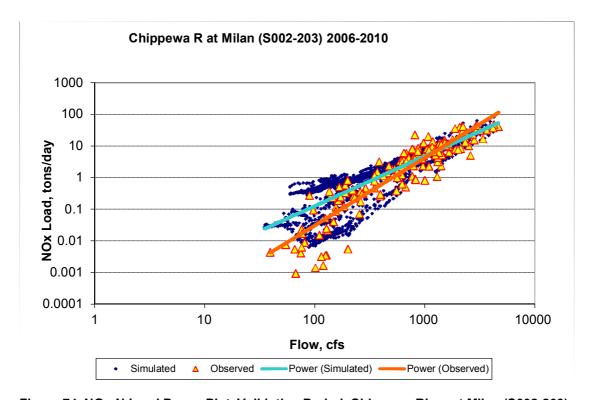


Figure 74. NOx-N Load Power Plot, Validation Period, Chippewa River at Milan (S002-203)

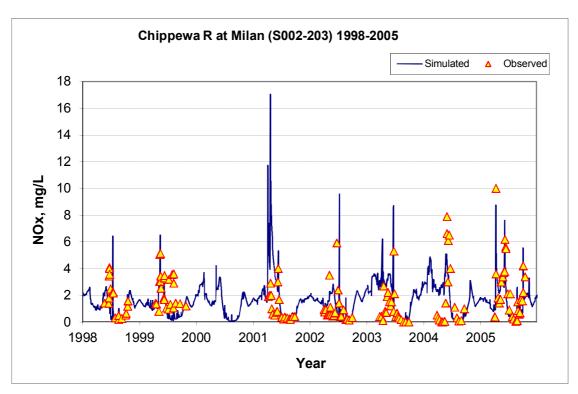


Figure 75. NOx-N Concentration Time Series, Calibration Period, Chippewa River at Milan (S002-203)

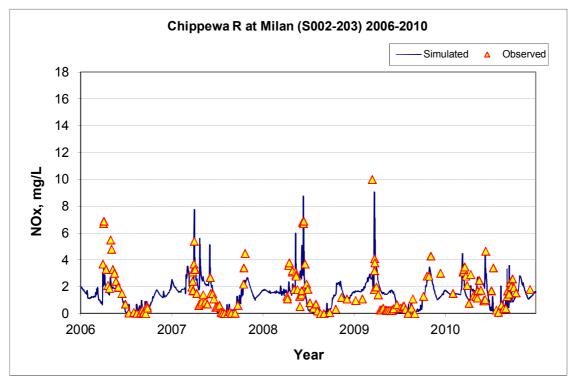


Figure 76. NOx-N Concentration Time Series, Validation Period, Chippewa River at Milan (S002-203)

Table 20. Summary Statistics, Total N, Chippewa River at Milan (S002-203)

	Calibration (1998-2005)	Validation (2006-2010)
Count	129	79
Concentration Average Error	4.04%	11.63%
Concentration Median Error	-0.10%	21.06%
Paired Load Average Error	37.00%	12.12%
Paired Load Median Error	-0.04%	3.40%
Paired t Test on Concentration Means (p value)	1.00	0.88
Paired t Test on Load Means (p value)	0.25	0.66
Difference in Slope, Load vs. Flow	-28.01%	-16.25%

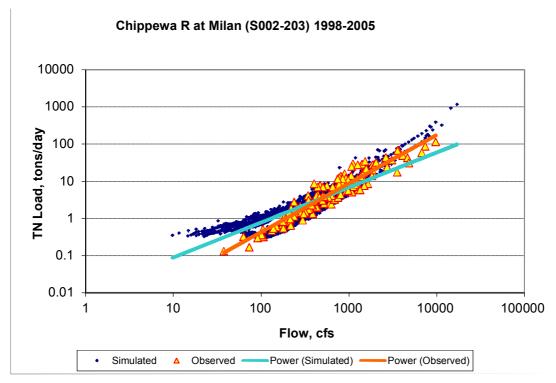


Figure 77. Total N Load Power Plot, Calibration Period, Chippewa River at Milan (S002-203)

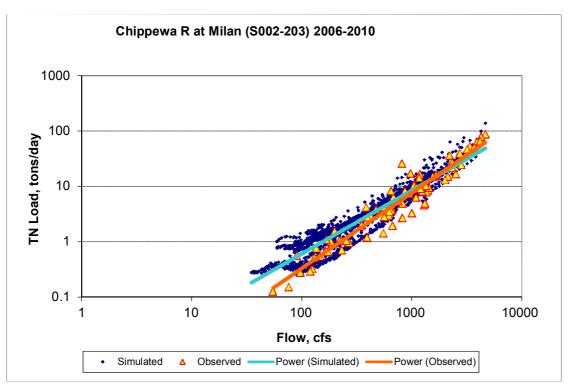


Figure 78. Total N Load Power Plot, Validation Period, Chippewa River at Milan (S002-203)

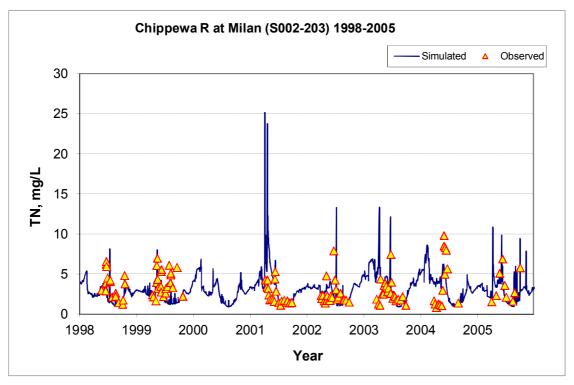


Figure 79. Total N Concentration Time Series, Calibration Period, Chippewa River at Milan (S002-203)

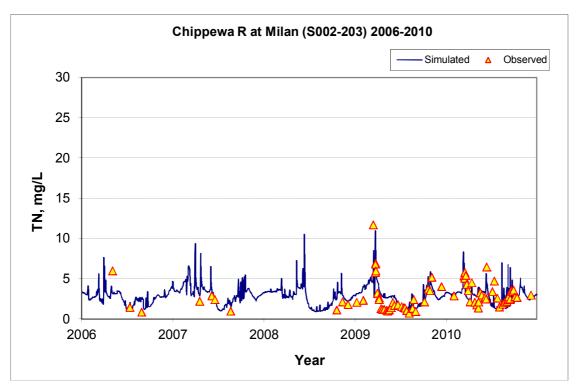


Figure 80. Total N Concentration Time Series, Validation Period, Chippewa River at Milan (S002-203)

5 Dry Weather Creek (S002-204)

Table 21. Summary Statistics, TSS, Dry Weather Creek (S002-204)

	Calibration (1999-2005)	Validation (2006-2010)
Count	143	124
Concentration Average Error	-7.59%	27.34%
Concentration Median Error	7.11%	17.27%
Paired Load Average Error	-21.71%	-5.60%
Paired Load Median Error	0.25%	0.75%
Paired t Test on Concentration Means (p value)	0.76	0.32
Paired t Test on Load Means (p value)	0.47	0.70
Difference in Slope, Load vs. Flow	10.86%	19.83%

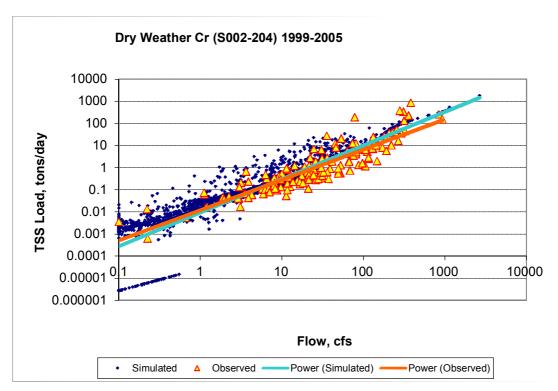


Figure 81. TSS Load Power Plot, Calibration Period, Dry Weather Creek (S002-204)

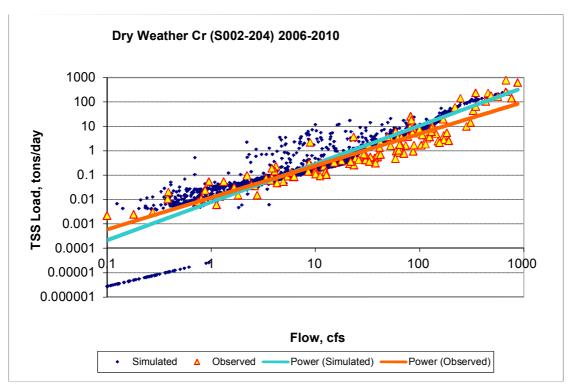


Figure 82. TSS Load Power Plot, Validation Period, Dry Weather Creek (S002-204)

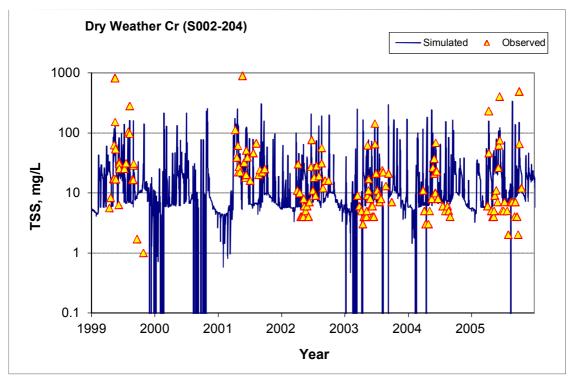


Figure 83. TSS Concentration Time Series, Calibration Period, Dry Weather Creek (S002-204)

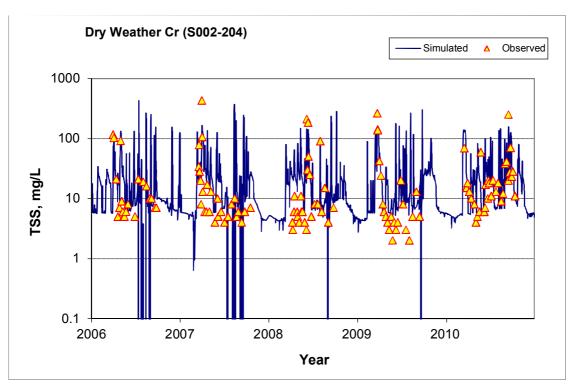


Figure 84. TSS Concentration Time Series, Validation Period, Dry Weather Creek (S002-204)

Table 22. Summary Statistics, Ortho P, Dry Weather Creek (S002-204)

	Calibration (1999-2005)	Validation (2006-2010)
Count	132	82
Concentration Average Error	-12.10%	-6.73%
Concentration Median Error	-0.49%	1.76%
Paired Load Average Error	-24.13%	47.15%
Paired Load Median Error	0.02%	0.02%
Paired t Test on Concentration Means (p value)	0.78	0.80
Paired t Test on Load Means (p value)	0.44	0.27
Difference in Slope, Load vs. Flow	11.99%	29.63%

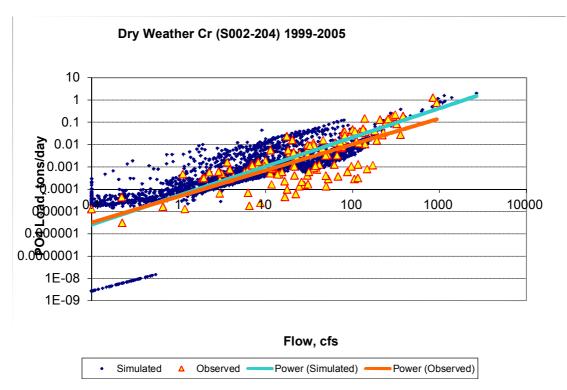


Figure 85. Ortho P Load Power Plot, Calibration Period, Dry Weather Creek (S002-204)

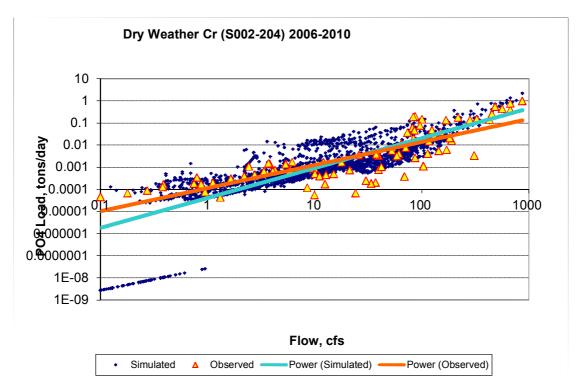


Figure 86. Ortho P Load Power Plot, Validation Period, Dry Weather Creek (S002-204)

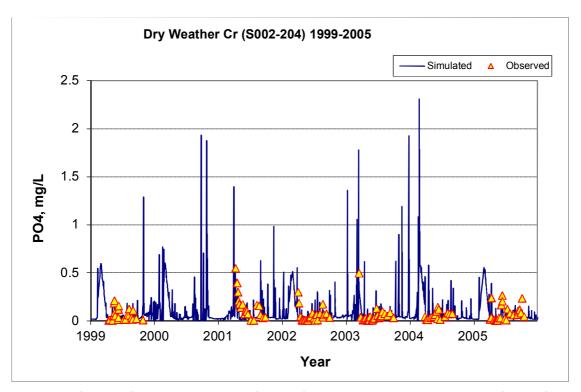


Figure 87. Ortho P Concentration Time Series, Calibration Period, Dry Weather Creek (S002-204)

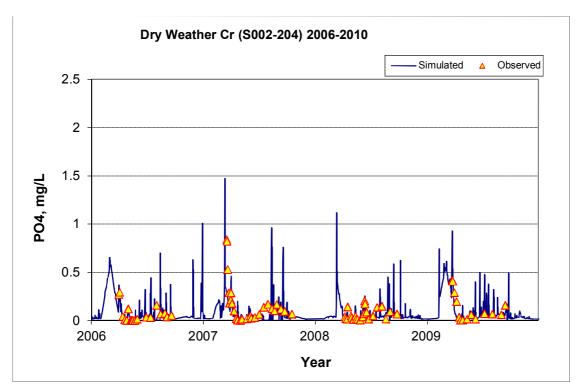


Figure 88. Ortho P Concentration Time Series, Validation Period, Dry Weather Creek (S002-204)

Table 23. Summary Statistics, Total P, Dry Weather Creek (S002-204)

	Calibration (1999-2005)	Validation (2006-2010)
Count	108	123
Concentration Average Error	0.15%	7.88%
Concentration Median Error	15.91%	19.25%
Paired Load Average Error	-38.55%	-7.30%
Paired Load Median Error	0.98%	0.83%
Paired t Test on Concentration Means (p value)	0.98	0.90
Paired t Test on Load Means (p value)	0.25	0.68
Difference in Slope, Load vs. Flow	-8.20%	-8.06%

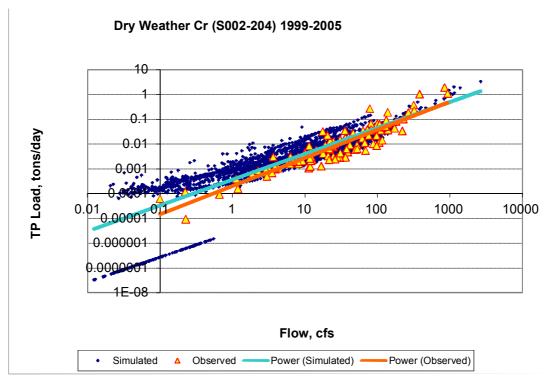


Figure 89. Total P Load Power Plot, Calibration Period, Dry Weather Creek (S002-204)

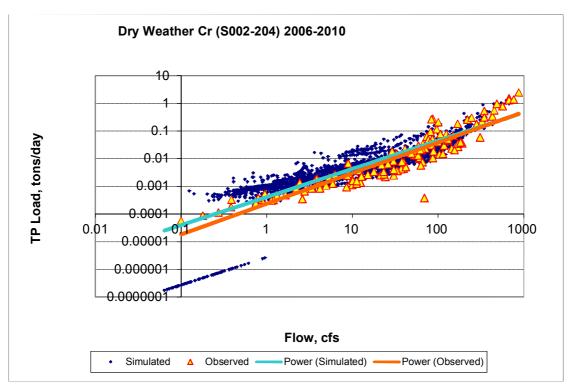


Figure 90. Total P Load Power Plot, Validation Period, Dry Weather Creek (S002-204)

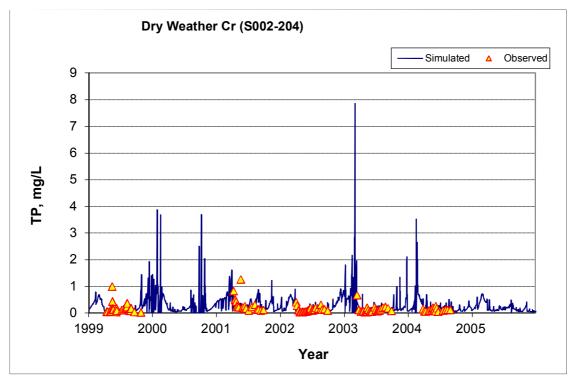


Figure 91. Total P Concentration Time Series, Calibration Period, Dry Weather Creek (S002-204)

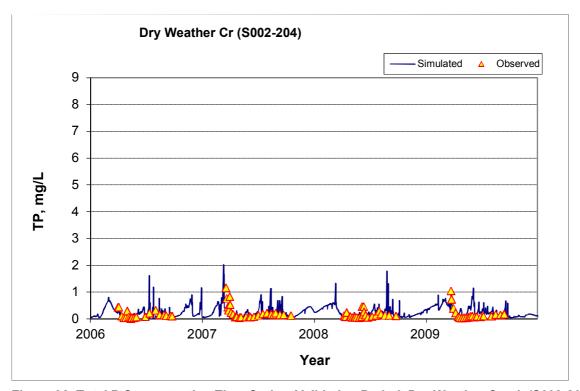


Figure 92. Total P Concentration Time Series, Validation Period, Dry Weather Creek (S002-204)

Table 24. Summary Statistics, NOx-N, Dry Weather Creek (S002-204)

	Calibration (1999-2005)	Validation (2006-2010)
Count	136	124
Concentration Average Error	-5.50%	-11.88%
Concentration Median Error	0.18%	-4.18%
Paired Load Average Error	43.40%	38.46%
Paired Load Median Error	0.01%	-0.14%
Paired t Test on Concentration Means (p value)	0.96	0.85
Paired t Test on Load Means (p value)	0.21	0.23
Difference in Slope, Load vs. Flow	-25.12%	-14.86%

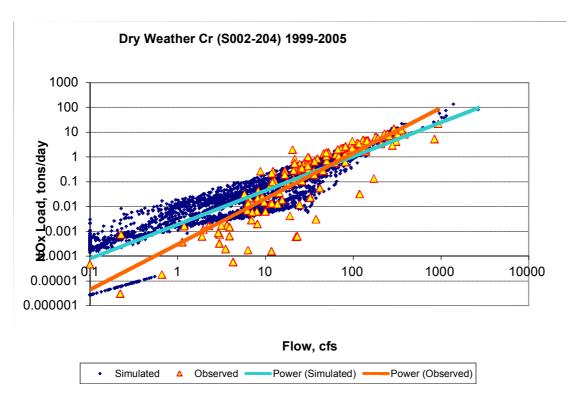


Figure 93. NOx-N Load Power Plot, Calibration Period, Dry Weather Creek (S002-204)

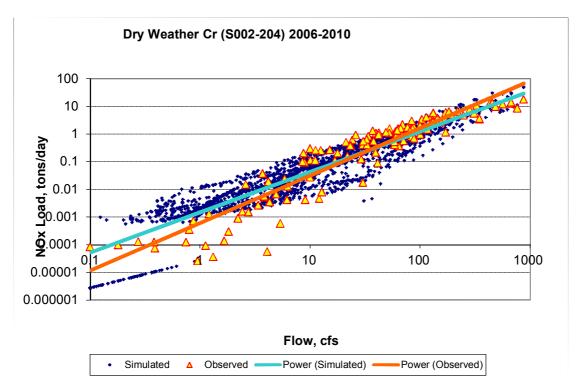


Figure 94. NOx-N Load Power Plot, Validation Period, Dry Weather Creek (S002-204)

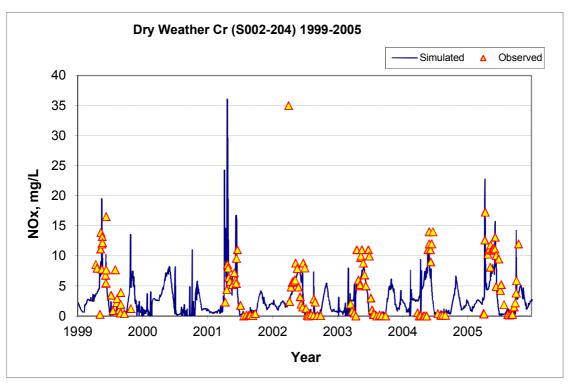


Figure 95. NOx-N Concentration Time Series, Calibration Period, Dry Weather Creek (S002-204)

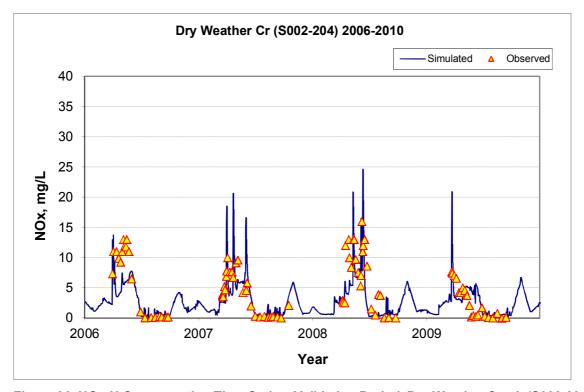


Figure 96. NOx-N Concentration Time Series, Validation Period, Dry Weather Creek (S002-204)

Table 25. Summary Statistics, Total N, Dry Weather Creek (S002-204)

	Calibration (1999-2005)	Validation (2006-2010)
Count	113	20
Concentration Average Error	-2.13%	22.69%
Concentration Median Error	-3.13%	24.28%
Paired Load Average Error	36.62%	-40.91%
Paired Load Median Error	-0.49%	1.09%
Paired t Test on Concentration Means (p value)	0.99	0.45
Paired t Test on Load Means (p value)	0.30	0.28
Difference in Slope, Load vs. Flow	-18.30%	-19.43%

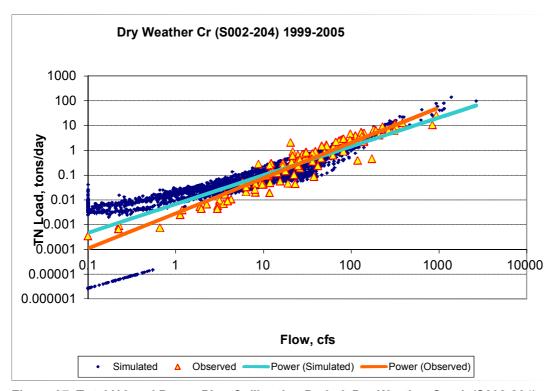


Figure 97. Total N Load Power Plot, Calibration Period, Dry Weather Creek (S002-204)

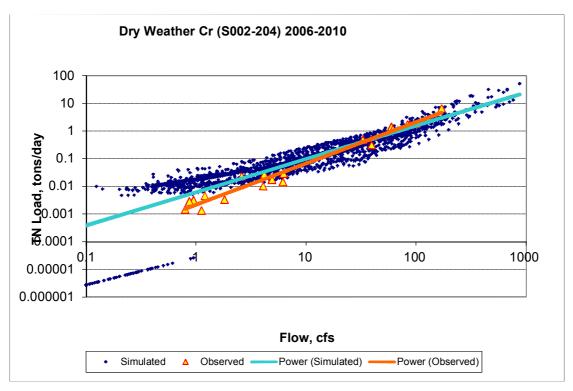


Figure 98. Total N Load Power Plot, Validation Period, Dry Weather Creek (S002-204)

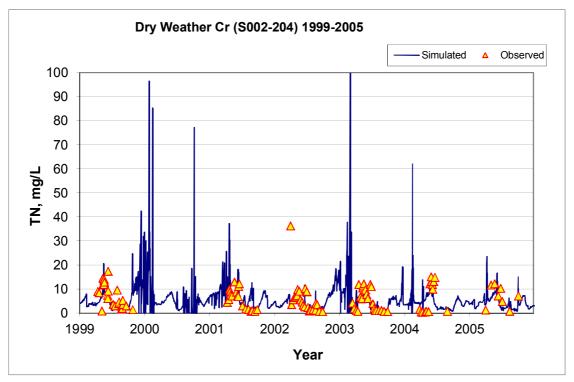


Figure 99. Total N Concentration Time Series, Calibration Period, Dry Weather Creek (S002-204)

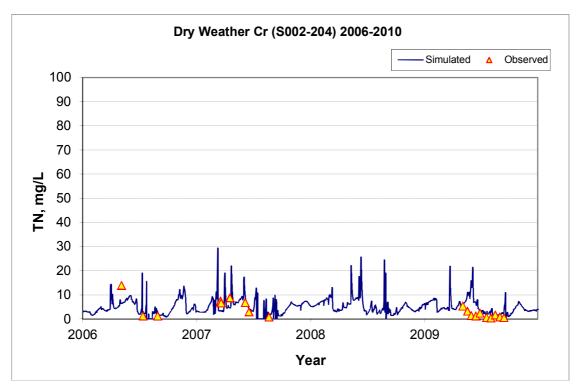


Figure 100. Total N Concentration Time Series, Validation Period, Dry Weather Creek (S002-204)

6 Chippewa River at Montevideo (S002-175)

Table 26. Summary Statistics, TSS, Chippewa River at Montevideo (S002-175)

	Calibration (1993-2005)	Validation (2006-2010)
Count	22	ND
Concentration Average Error	-19.07%	ND
Concentration Median Error	-3.83%	ND
Paired Load Average Error	6.76%	ND
Paired Load Median Error	-3.49%	ND
Paired t Test on Concentration Means (p value)	0.53	ND
Paired t Test on Load Means (p value)	0.71	ND
Difference in Slope, Load vs. Flow	-13.47%	ND

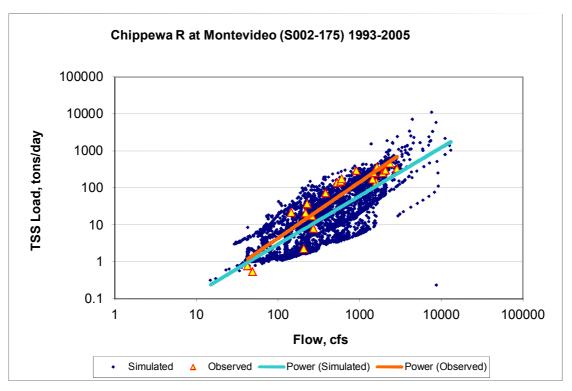


Figure 101. TSS Load Power Plot, Calibration Period, Chippewa River at Montevideo (S002-175)

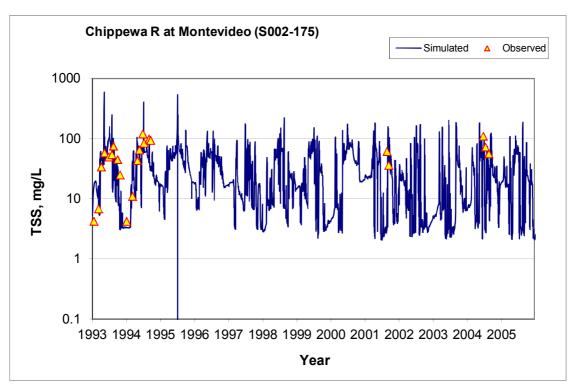


Figure 102. TSS Concentration Time Series, Calibration Period, Chippewa River at Montevideo (S002-175)

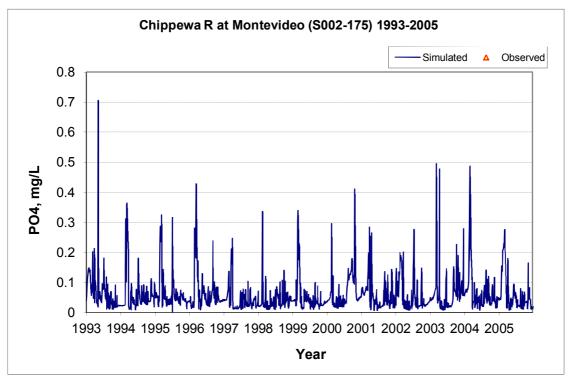


Figure 103. Ortho P Concentration Time Series, Calibration Period, Chippewa River at Montevideo (S002-175)

Table 27. Summary Statistics, Total P, Chippewa River at Montevideo (S002-175)

	Calibration (1993-2005)	Validation (2006-2010)
Count	22	ND
Concentration Average Error	50.33%	ND
Concentration Median Error	16.33%	ND
Paired Load Average Error	26.82%	ND
Paired Load Median Error	9.10%	ND
Paired t Test on Concentration Means (p value)	0.04	ND
Paired t Test on Load Means (p value)	0.34	ND
Difference in Slope, Load vs. Flow	9.61%	ND

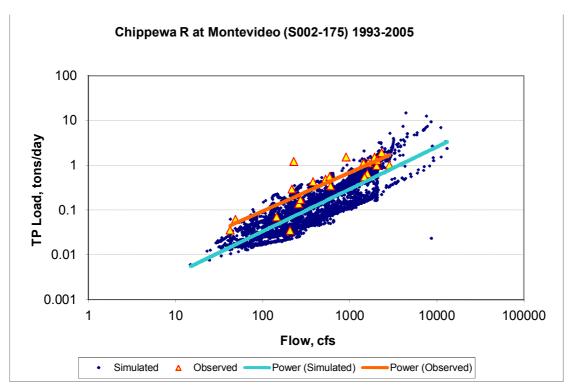


Figure 104. Total P Load Power Plot, Calibration Period, Chippewa River at Montevideo (S002-175)

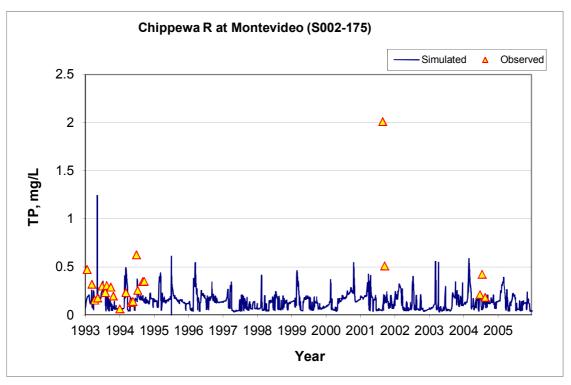


Figure 105. Total P Concentration Time Series, Calibration Period, Chippewa River at Montevideo (S002-175)

Table 28. Summary Statistics, NOx-N, Chippewa River at Montevideo (S002-175)

	Calibration (1993-2005)	Validation (2006-2010)
Count	23	ND
Concentration Average Error	3.69%	ND
Concentration Median Error	1.37%	ND
Paired Load Average Error	-30.50%	ND
Paired Load Median Error	1.91%	ND
Paired t Test on Concentration Means (p value)	0.74	ND
Paired t Test on Load Means (p value)	0.40	ND
Difference in Slope, Load vs. Flow	-5.04%	ND

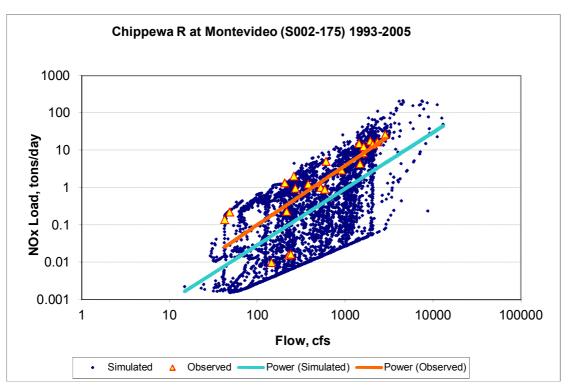


Figure 106. NOx-N Load Power Plot, Calibration Period, Chippewa River at Montevideo (S002-175)

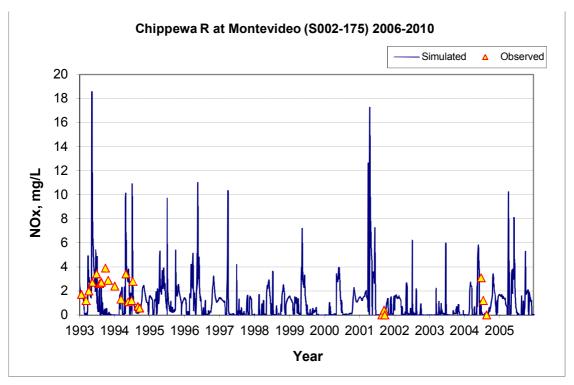


Figure 107. NOx-N Concentration Time Series, Calibration Period, Chippewa River at Montevideo (S002-175)

Table 29. Summary Statistics, Total N, Chippewa River at Montevideo (S002-175)

	Calibration (1993-2005)	Validation (2006-2010)
Count	18	ND
Concentration Average Error	13.49%	ND
Concentration Median Error	28.44%	ND
Paired Load Average Error	-16.07%	ND
Paired Load Median Error	2.68%	ND
Paired t Test on Concentration Means (p value)	0.67	ND
Paired t Test on Load Means (p value)	0.55	ND
Difference in Slope, Load vs. Flow	11.45%	ND

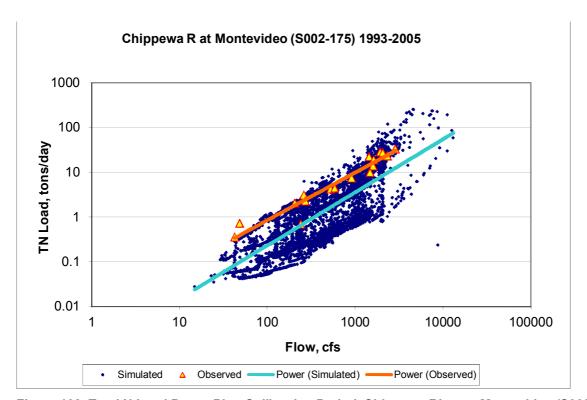


Figure 108. Total N Load Power Plot, Calibration Period, Chippewa River at Montevideo (S002-175)

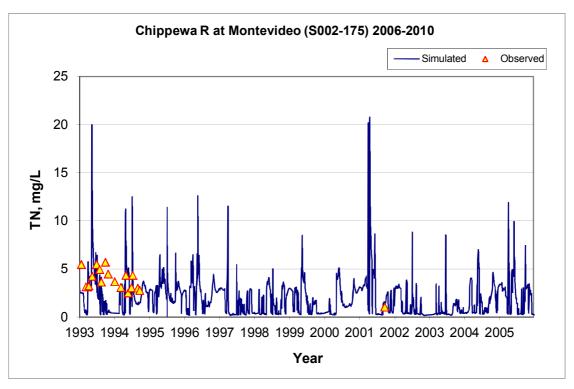


Figure 109. Total N Concentration Time Series, Calibration Period, Chippewa River at Montevideo (S002-175)