

June 12, 2015

Mr. Steve Schoff Minnesota Pollution Control Agency 520 Lafayette Road North St. Paul, MN 55155

Re: Additional Soil Characterization, Operable Unit 5 Joslyn Manufacturing & Supply Co. Site – Brooklyn Center, Minnesota

Dear Mr. Schoff:

On behalf of Joslyn Manufacturing Company (Joslyn), this letter summarizes the implementation and results of a soil quality investigation conducted within Operable Unit 5 (OU5) at the above-referenced site in February 2015. The investigation fulfilled the Minnesota Pollution Control Agency's (MPCA) request that Joslyn further define the vertical extent and magnitude of concentrations of polychlorinated dibenzo-p-dioxins and furans (dioxins) in soils below the depths proposed for excavation as part of the recommended remedy for OU5.

The objectives and scope of this soil investigation were originally proposed to the MPCA in a May 27, 2014 work plan letter prepared by Barr Engineering Co. (Barr) and approved by you on July 24, 2014. An attempt to implement the investigation was made in fall 2014 using sediment core sampling techniques since saturated soil conditions at the site would not allow for access with a direct-push drilling rig. The sediment cores were unable to penetrate through the wood and other organic material present near the surface, therefore the work was suspended until winter.

Investigation Activities

A total of six soil borings were advanced to 10 feet below existing ground surface (bgs) at the locations shown on Figure 1. Field activities were conducted in accordance with the May 2014 work plan letter and included the following activities:

- Six soil borings were advanced to the depth of 10 feet bgs.
- Four composite samples were prepared from soils collected from each boring. Soil from each designated sample interval was thoroughly mixed prior to containerization. A deviation from the work plan resulted in the collection of six composite samples from location B-1.
- The uppermost composite sample from each boring was submitted for immediate laboratory analysis for dioxins (expressed as TCDD-TEQ) and total organic carbon (TOC).
- The composite samples collected from the deeper intervals of each boring were held at the laboratory pending review of the data reported.

• Soil quality data for each interval analyzed were reviewed and discussed verbally with MPCA staff before decisions were made whether to analyze additional sample intervals at specific boring locations. Ultimately, all sample intervals collected were analyzed with the exception of B-1(3.5-5), B-1(5-6.5), B-3(9-10), and D-1(9-10). At boring B-1, the decision was made to skip the middle intervals and analyze the deepest interval. The relatively low concentrations reported for the third intervals analyzed at borings B-3 and D-1 precluded the need to analyze the final, deepest sample at those locations.

Summary of Results

Soil borings

Soils observed in the soil borings were consistent with previous investigations. In general, black, fibrous peat overlies gray organic clay (Figure 2). Silty sand and silt was observed in the upland area (B-1 and D-1). The water table was present between 4-5 feet bgs at the upland area borings and also at E-4, which is located on the berm of the former railroad spur. The water table was present at the ground surface at the other borings, which are located within the wetland portion of OU5.

Soils were screened for odor, discoloration and sheen in the field. No odor, discoloration or sheen was observed in the soils retrieved from borings B-3, C-3, D-1, and F-3. At boring location B-1, no odor, discoloration, or sheen was observed in the upper 6.5 feet. In the saturated silty sand layer that extended from 6.5 to 10 feet bgs, however, the soil was discolored and presented a weathered petroleum odor. At boring location E-4, no odor, discoloration, or sheen was observed in the upper 8 feet of the soil profile, but a light weathered petroleum odor and discoloration was observed from 8 to 10 feet bgs. Boring logs are included as Attachment A.

Analytical Results

Soil samples were sent to ALS Environmental laboratory in Kelso, Washington and analyzed for dioxins (expressed as TCDD-TEQ) and total organic carbon (TOC). Analytical results are summarized in Tables 1 and 2 and laboratory reports are included in Attachment B.

TCDD-TEQ concentrations from the composite samples decreased with increasing depth. In the uppermost intervals sampled at each boring, TCDD-TEQ concentrations ranged from 834 to 17,800 ng/kg (parts per trillion). TCDD-TEQ concentrations from the deepest analyzed composite sample interval at each location ranged between 1.62 and 427 ng/kg. The exception was boring E-4, where the TCDD-TEQ concentration did not decline with depth. At location E-4, the dioxin concentrations reported for the upper three composite samples (3.5'-5', 5'-6.5', and 6.5'-9') ranged between 509 and 1,070 ng/kg, while the dioxin concentration reported for the deepest interval (9'-10'), where field screening results indicated the presence of contamination, was 3,450 ng/kg.

Conclusions

Soil samples were collected from six locations in February 2015 to further define the vertical extent and magnitude of the concentration of dioxins in soils below the depths proposed for excavation as part of the recommended remedy for OU5. With the exception of location E-4, dioxin concentrations decreased by several orders of magnitude from the planned excavation depth to ten feet bgs in all borings. At three of the six locations (B-3, C-3 and F-3), TCDD-TEQ concentrations in the deepest interval analyzed fell below the Minnesota Tier 2 Industrial Soil Reference Value of 35 ng/kg.

The results of the additional soil characterization meet the MPCA's objective of refining our understanding of the vertical extent and magnitude of dioxin concentrations in OU5 soils. The remedial action objective for OU5 is the elimination of direct soil contact exposure pathways for both human and ecological receptors. All of the soil sampled in this investigation will be isolated by the remedy, eliminating both the human-health and ecological-risk pathways. Based upon the field and analytical data generated by this investigation, Joslyn concludes that no additional soil characterization activities are needed for OU5, and that the MPCA should continue moving forward with remedial action planning based upon the previously recommended remedial alternative (Remedial Alternative 8b, *Focused Feasibility Study – Revision 2, Operable Unit 5, West Area Soils, July 2013*).

We would appreciate an opportunity to review these latest findings with you and discuss your tentative schedule for moving forward with finalizing the Proposed Plan for the OU5 remedy and scheduling a public meeting for the same. If you have any questions regarding this investigation summary, please contact me or John Hunt.

Sincerely,

Dale Wo Timungaan

Dale W. Finnesgaard, P.E. Vice President

Enclosure

cc: Carl Grabinski, Joslyn Carlos Stern Jim Payne

Table 1 – Soil Boring Matrix with TCDD-TEQ and TOC Results Table 2 – Soil Analytical Data Summary Figure 1 – Soil Sampling Locations Figure 2 – Geologic Cross Section Attachment A – Soil Boring Logs Attachment B – Laboratory Analytical Reports

Tables

Table 1 Soil Boring Matrix with TCDD-TEQ and TOC Results Additional Soil Characterization, Operable Unit 5 Joslyn Manufacturing Supply Co. Brooklyn Center, Minnesota

					0.5 - 2 13,800 3.81 K1501105 2/18/201 2 - 3.5 3,950 2.47 K1501100 3/18/201 6.5 - 9 2,260 0.553 K1501100 3/18/201 9 - 10 427 0.124 K1501100 3/18/201 3.5 - 5 4,360 43.7 K1501100 3/18/201 5 - 6.5 2,000 42.2 K1501105 2/18/201 5 - 6.5 2,000 42.2 K1501105 2/18/201 5 - 6.5 2,000 42.2 K1501105 2/18/201 5 - 6.5 7,940 39.4 K1501105 2/20/201 5 - 6.5 15,000 40.2 K1501100 3/31/201 6.5 - 9 1,790 32.2 K1501100 3/31/201 6.5 - 9 1,790 32.2 K1503395 4/11/201 9 - 10 8.74 7.33 K1504931 5/19/201 0.5 - 2 17,800 1.33 K1501100 3/31/201 2 - 3.5 1,540 1												
Boring Location	Sample Date	Planned Excavation Depth	Boring Depth (feet, bgs)	•		TOC (%)	ALS Lab Report #	Date Analyzed									
				0.5 - 2	13,800	3.81	K1501105	2/18/2015									
B-1	2/2/2015	0*	10	2 - 3.5	3,950	2.47	K1501100	3/18/2015									
D-1	2/2/2013	0	10	6.5 - 9	2,260	0.553	K1501100	3/18/2015									
				9 - 10	427	0.124	K1501100	3/18/2015									
				3.5 - 5	4,360	43.7	K1501105	2/18/2015									
B-3	2/2/2015	3.5	10 5 - 6.5 2,000 42.2 K150			K1501100	3/18/2015										
				6.5 - 9	1.62	11.3	K1503395	4/11/2015									
				3.5 - 5	7,940	39.4	K1501105	2/20/2015									
C-3	2/2/2015	3.5	10	5 - 6.5	15,000	40.2	K1501100	3/31/2015									
0-3	2/2/2013	5.5	10	6.5 - 9	1,790	32.2											
				9 - 10	8.74	7.33	K1504931	5/19/2015									
				0.5 - 2	17,800	1.33	K1501105	2/18/2015									
D-1	2/2/2015	0*	10	2 - 3.5	1,540	1.37	K1501100	3/31/2015									
				3.5 - 9	51	14.3	K1503395	4/11/2015									
				3.5 - 5	834	44.3	K1501105	2/18/2015									
E-4	2/2/2015	3.5	10	5 - 6.5	1,070	31.9	K1501100	3/31/2015									
L-4	2/2/2013	5.5	10	6.5 - 9	509	8.01	K1501100	3/31/2015									
				9 - 10	3,450	3.91	K1501100	3/31/2015									
				2.5 - 4	2,840	11	K1501105	2/18/2015									
F-3	2/2/2015	2.5	10	4 - 5.5	1,950	17.9	K1501100	3/31/2015									
1-5	21212013						4/11/2015										
				9 - 10	3.14	11.8	K1504931	5/19/2015									

* locations B-1 and D-1 will be covered as part of the recommended alternative

** TCDD Equivalent, reporting limit at 0, TEF 2005 (estimated maximum possible concentration @ 1)

Table 2 Soil Analytical Data Summary Additional Soil Characterization, Operable Unit 5 Joslyn Manufacturing Supply Co.

Brooklyn Center, Minnesota

Location B-1 B-1 B-1 B-3 B-3 C-3 C-3 C-3 C-3 C-3														
			Location	B-1	B-1	B-1	B-1	B-3	B-3	B-3	C-3	C-3	C-3	C-3
			Date	2/02/2015	2/02/2015	2/02/2015	2/02/2015	2/02/2015	2/02/2015	2/02/2015	2/02/2015	2/02/2015	2/02/2015	2/02/2015
			Depth	0.5 - 2 ft	2 - 3.5 ft	6.5 - 9 ft	9 - 10 ft	3.5 - 5 ft	5 - 6.5 ft	6.5 - 9 ft	3.5 - 5 ft	5 - 6.5 ft	6.5 - 9 ft	9 - 10 ft
			-											
	1	I	Sample Type	Ν	N	N	N	N	N	N	N	N	N	N
		Proposed Minnesota	Minnesota Tier 2											
Devenuetor	Analysis Location	Tier 2 Commercial/ Industrial SRVs	Industrial Soil Reference Values											
Parameter Effective Date	Location	10/01/2014	06/22/2009											
Enective Date Exceedance Kev		Bold	Underline											
General Parameters		DOIO	Undenine											
Carbon, total organic	Lab			3.81 %	2.47 h %	0.553 h %	0.124 h %	43.7 %	42.2 h %	11.3 h %	39.4 %	40.2 h %	32.2 h %	7.33 h %
Solids, total	Lab			80.5 %	74.0 %	82.3 %	83.6 %	22.1 %	42.2 11 %	27.6 %	22.1 %	17.5 %	18.7 %	35.5 %
Chlorinated Dioxins / Furans	Lau			00.5 %	74.0 /0	02.3 /0	05.0 78	22.1 /0	19.0 /0	21.0 /0	22.1 /0	17.5 /0	10.7 /0	55.5 /0
2.3.7.8-Dioxin. tetra	Lab	30 DI ng/kg	35 DI na/ka	5.88 ng/kg	0.575 EMPC na/ka	0.247 EMPC ng/kg	< 0.307 ng/kg	< 0.572 ng/kg	4.59 ng/kg	< 0.592 ng/kg	< 0.156 ng/kg	2.04 EMPC ng/kg	< 2.50 ng/kg	351 ng/kg
1,2,3,7,8-Dioxin, penta	Lab	50 Di lig/kg	<u>35 Di lig/kg</u>	149 ng/kg	17.9 ng/kg	5.77 ng/kg	< 0.773 ng/kg	14.5 ng/kg	41.4 ng/kg	< 0.755 ng/kg	11.8 ng/kg	104 ng/kg	29.4 ng/kg	1.11 EMPC ng/kg
1.2.3.4.7.8-Dioxin, hexa	Lab			522 ng/kg	96.4 ng/kg	74.2 ng/kg	6.51 ng/kg	160 ng/kg	194 ng/kg	< 0.454 ng/kg	79.0 ng/kg	501 ng/kg	111 ng/kg	8.76 ng/kg
1,2,3,4,7,8-Dioxin, hexa	Lab			11900 ng/kg	4510 EMPC ng/kg	4620 ng/kg	329 ng/kg	3430 ng/kg	1530 ng/kg	2.37 EMPC ng/kg	6270 ng/kg	18500 ng/kg	1280 ng/kg	1.78 j ng/kg
1,2,3,7,8,9-Dioxin, hexa	Lab			1070 ng/kg	292 ng/kg	497 ng/kg	101 ng/kg	306 ng/kg	336 ng/kg	< 0.435 ng/kg	385 ng/kg	1100 ng/kg	284 ng/kg	0.268 EMPC ng/kg
1,2,3,4,6,7,8-Dioxin, hepta	Lab			453000 ng/kg	122000 * ng/kg	99200 * ng/kg	27700 * ng/kg	192000 ng/kg	94900 * ng/kg	72.3 ng/kg	290000 ng/kg	382000 * ng/kg	73200 ng/kg	< 0.224 ng/kg
Dioxin, octa	Lab			15000000 e ng/kg	3050000 * ng/kg	762000 * ng/kg	289000 * ng/kg	3730000 ng/kg	00	828 ng/kg	5390000 ng/kg	4450000 * ng/kg	725000 ng/kg	3750 ng/kg
2,3,7,8-Dibenzofuran, tetra	Lab			49.8 ng/kg	41.3 ng/kg	0.529 j ng/kg	< 0.280 ng/kg	< 0.622 ng/kg	< 0.910 ng/kg	< 1.64 ng/kg	61.3 ng/kg	327 ng/kg	17.3 EMPC ng/kg	< 0.291 ng/kg
1,2,3,7,8-Dibenzofuran, penta	Lab			316 ng/kg	322 ng/kg	2.39 EMPC ng/kg	< 1.07 ng/kg	3.22 j ng/kg	6.09 EMPC ng/kg	< 0.379 ng/kg	411 ng/kg	2350 ng/kg	85.6 ng/kg	0.700 j ng/kg
2,3,4,7,8-Dibenzofuran, penta	Lab			702 ng/kg	697 ng/kg	10.9 ng/kg	< 1.07 ng/kg	2.51 j ng/kg	16.4 EMPC ng/kg	< 0.368 ng/kg	3.39 j ng/kg	4770 ng/kg	200 ng/kg	1.22 j ng/kg
1,2,3,4,7,8-Dibenzofuran, hexa	Lab			4820 ng/kg	2230 EMPC ng/kg	1040 * ng/kg	16.8 ng/kg	443 * ng/kg	299 * ng/kg	1.09 EMPC ng/kg	3630 ng/kg	20500 ng/kg	890 ng/kg	4.90 j ng/kg
1,2,3,6,7,8-Dibenzofuran, hexa	Lab			724 ng/kg	643 ng/kg	96.8 ng/kg	< 1.31 ng/kg	< 3.74 ng/kg	< 4.57 ng/kg	< 0.354 ng/kg	741 ng/kg	4370 ng/kg	205 ng/kg	1.45 j ng/kg
1.2.3.7.8.9-Dibenzofuran, hexa	Lab			957 ng/kg	1080 ng/kg	98.4 ng/kg	< 1.44 ng/kg	< 4.35 ng/kg	< 5.28 ng/kg	< 0.471 ng/kg	1400 ng/kg	7660 ng/kg	288 ng/kg	1.71 j ng/kg
2,3,4,6,7,8-Dibenzofuran, hexa	Lab			1390 ng/kg	1210 ng/kg	383 ng/kg	9.31 ng/kg	197 ng/kg	133 ng/kg	< 0.372 ng/kg	1230 ng/kg	6410 ng/kg	344 ng/kg	2.34 j ng/kg
1,2,3,4,6,7,8-Dibenzofuran, hepta	Lab			120000 ng/kg	39600 ng/kg	24100 ng/kg	1330 ng/kg	57800 ng/kg	23700 ng/kg	25.7 EMPC ng/kg	141000 ng/kg	171000 ng/kg	35600 ng/kg	101 ng/kg
1,2,3,4,7,8,9-Dibenzofuran, hepta	Lab			8990 ng/kg	3080 ng/kg	1260 EMPC ng/kg	63.0 ng/kg	1800 ng/kg	911 ng/kg	< 0.812 ng/kg	5500 ng/kg	16900 ng/kg	1060 ng/kg	5.89 j ng/kg
Dibenzofuran, octa	Lab			3160000 ng/kg	479000 * ng/kg	308000 * ng/kg	9780 * ng/kg	856000 ng/kg	264000 * ng/kg	153 ng/kg	1850000 ng/kg	1290000 * ng/kg	147000 ng/kg	571 ng/kg
TCDD Equivalent, reporting limit at 0,	Barr			00			0 0							
TEF 2005 (EMPC @ 1)	Calc	30 DI ng/kg	35 DI ng/kg	<u>13800 ng/kg</u>	<u>3950 a ng/kg</u>	2260 a ng/kg	427 a ng/kg	4360 a ng/kg	2000 a ng/kg	1.62 a ng/kg	<u>7940 a ng/kg</u>	15000 a ng/kg	1790 a ng/kg	8.74 a ng/kg
TCDD Equivalent, reporting limit at 0,	Barr													
TEF 2005 (EMPC @ 1/2)	Calc	30 DI ng/kg	35 DI ng/kg	<u>13800 ng/kg</u>	3620 a ng/kg	2250 a ng/kg	427 a ng/kg	4360 a ng/kg	2000 a ng/kg	1.32 a ng/kg	7940 a ng/kg	15000 a ng/kg	1790 a ng/kg	8.55 a ng/kg
TCDD Equivalent, reporting limit at 1,	Barr													
TEF 2005 (EMPC @ 1)	Calc	30 DI ng/kg	35 DI ng/kg	<u>13800 ng/kg</u>	3950 a ng/kg	2260 a ng/kg	429 a ng/kg	4360 a ng/kg	2000 a ng/kg	3.47 a ng/kg	7940 a ng/kg	15000 a ng/kg	1800 a ng/kg	8.99 a ng/kg
TCDD Equivalent, reporting limit at 1,	Barr													
TEF 2005 (EMPC @ 1/2)	Calc	30 DI ng/kg	35 DI ng/kg	<u>13800 ng/kg</u>	3620 a ng/kg	2250 a ng/kg	429 a ng/kg	4360 a ng/kg	2000 a ng/kg	3.17 a ng/kg	7940 a ng/kg	15000 a ng/kg	1800 a ng/kg	8.8 a ng/kg
TCDD Equivalent, reporting limit at 1/2,	Barr													
TEF 2005 (EMPC @ 1)	Calc	30 DI ng/kg	<u>35 DI ng/kg</u>	<u>13800 ng/kg</u>	<u>3950 a ng/kg</u>	2260 a ng/kg	<u>428 a ng/kg</u>	4360 a ng/kg	2000 a ng/kg	2.55 a ng/kg	<u>7940 a ng/kg</u>	<u>15000 a ng/kg</u>	1800 a ng/kg	8.86 a ng/kg
TCDD Equivalent, reporting limit at 1/2,	Barr													
TEF 2005 (EMPC@1/2)	Calc	30 DI ng/kg	<u>35 DI ng/kg</u>	<u>13800 ng/kg</u>	<u>3620 a ng/kg</u>	2250 a ng/kg	<u>428 a ng/kg</u>	4360 a ng/kg	2000 a ng/kg	2.24 a ng/kg	<u>7940 a ng/kg</u>	<u>15000 a ng/kg</u>	<u>1790 a ng/kg</u>	8.67 a ng/kg
Dioxin tetra, total	Lab			86.0 ng/kg	17.6 ng/kg	8.98 ng/kg	2.15 ng/kg	128 ng/kg	120 ng/kg	< 0.592 ng/kg	249 ng/kg	291 ng/kg	44.2 ng/kg	< 0.224 ng/kg
Dioxin penta, total	Lab			573 ng/kg	143 ng/kg	45.0 ng/kg	< 0.773 ng/kg	1560 ng/kg	930 ng/kg	< 0.755 ng/kg	2940 ng/kg	2850 ng/kg	349 ng/kg	< 0.146 ng/kg
Dioxin, hexa, total	Lab			22000 ng/kg	11700 ng/kg	16900 ng/kg	1900 ng/kg	21500 ng/kg	9830 ng/kg	5.66 j ng/kg	29100 ng/kg	48200 ng/kg	6230 ng/kg	78.8 ng/kg
Dioxin, hepta, total	Lab			223000 ng/kg	182000 ng/kg	220000 ng/kg	48900 ng/kg	245000 ng/kg	104000 ng/kg	72.3 ng/kg	322000 ng/kg	651000 ng/kg	80000 ng/kg	934 ng/kg
Dibenzofuran, tetra, total	Lab			238 ng/kg	122 ng/kg	47.4 ng/kg	1.06 ng/kg	76.2 ng/kg	48.3 ng/kg	< 1.64 ng/kg	436 ng/kg	1590 ng/kg	60.6 ng/kg	< 0.291 ng/kg
Dibenzofuran, penta, total	Lab			4740 ng/kg	3850 ng/kg	192 ng/kg	13.0 ng/kg	857 ng/kg	492 ng/kg	< 0.652 ng/kg	6350 ng/kg	27900 ng/kg	1500 ng/kg	7.88 ng/kg
Dibenzofuran, hexa, total	Lab			53900 ng/kg	59700 ng/kg	6760 ng/kg	1020 ng/kg	28600 ng/kg	14500 ng/kg	22.3 ng/kg	94700 ng/kg	116000 ng/kg	20800 ng/kg	117 ng/kg
Dibenzofuran, hepta, total	Lab			141000 ng/kg	144000 ng/kg	167000 ng/kg	7430 ng/kg	200000 ng/kg	92900 ng/kg	96.7 ng/kg	292000 ng/kg	212000 ng/kg	94700 ng/kg	552 ng/kg

DI - Value represents a criteria for 2,3,7,8-TCDD or 2,3,7,8-TCDD equivalents.

EMPC - Estimated maximum possible concentration.

N - Sample Type: Normal

a - Estimated value, calculated using some or all values that are estimates.

e - Estimated value, exceeded the instrument calibration range.

j - Estimated detected value. The reported value is less than the stated laboratory quantitation limit but greater the laboratory method detection limit.

* - Estimated value, QA/QC criteria not met.

Table 2 Soil Analytical Data Summary Additional Soil Characterization, Operable Unit 5 Joslyn Manufacturing Supply Co.

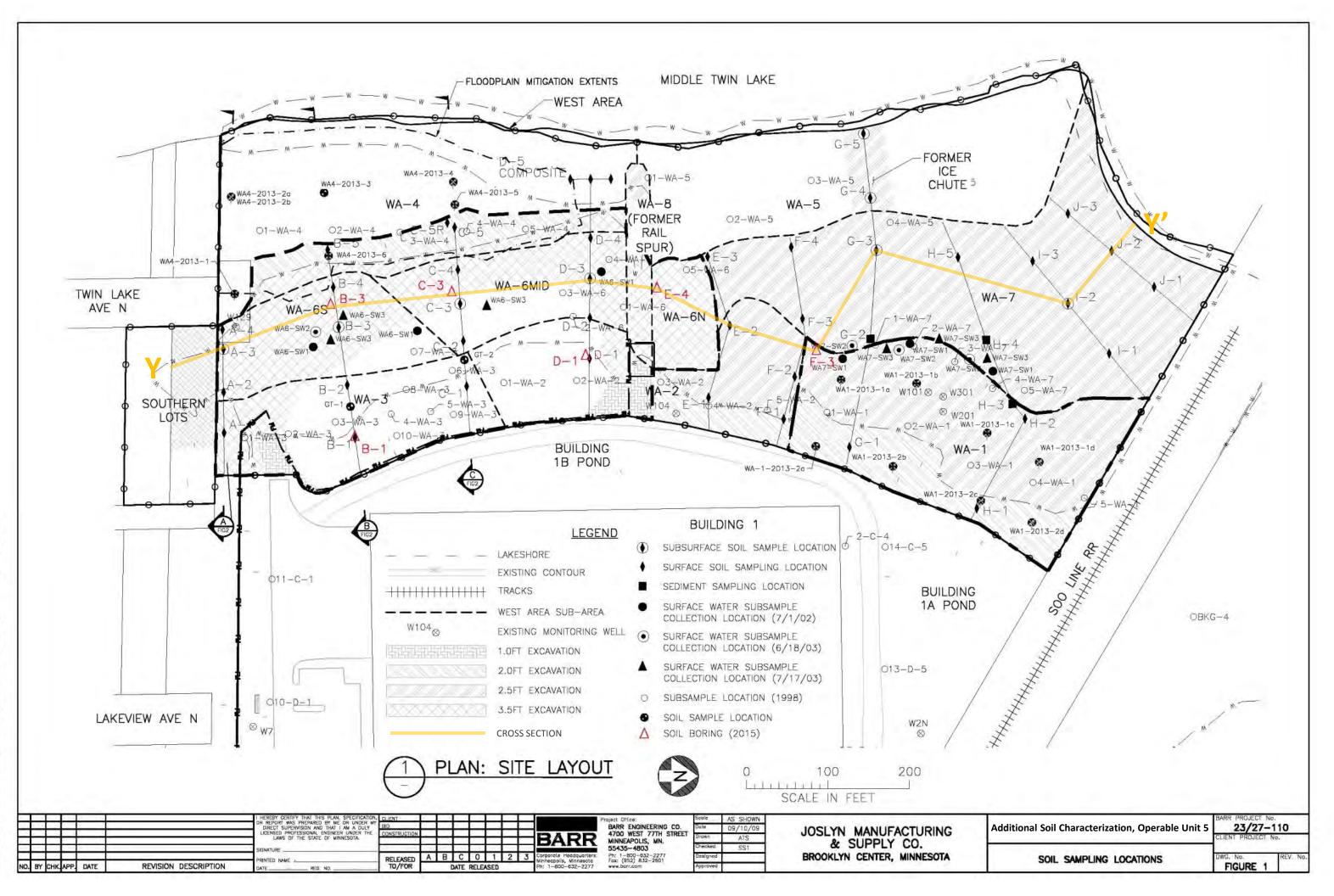
Brooklyn Center, Minnesota

						BIOOKIYII CEIILE	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
			Location	D-1	D-1	D-1	E-4	E-4	E-4	E-4	F-3	F-3	F-3	F-3
			Date	2/02/2015	2/02/2015	2/02/2015	2/02/2015	2/02/2015	2/02/2015	2/02/2015	2/02/2015	2/02/2015	2/02/2015	2/02/2015
			Depth	0.5 - 2 ft	2 - 3.5 ft	3.5 - 9 ft	3.5 - 5 ft	5 - 6.5 ft	6.5 - 9 ft	9 - 10 ft	2.5 - 4 ft	4 - 5.5 ft	5.5 - 9 ft	
			•								2.5 - 4 11			9 - 10 ft
		•	Sample Type	N	N	N	N	Ν	N	N	N	N	N	N
		Proposed Minnesota	Minnesota Tier 2											
Descenter	Analysis	Tier 2 Commercial/	Industrial Soil											
Parameter	Location	Industrial SRVs 10/01/2014	Reference Values 06/22/2009											
Effective Date														
Exceedance Key General Parameters		Bold	<u>Underline</u>											
Carbon, total organic	Lab			1.33 %	1.37 h %	14.3 h %	44.3 %	31.9 h %	8.01 h %	3.91 h %	11.0 %	17.9 h %	38.4 h %	11.8 h %
Solids, total	Lab			87.8 %	84.2 %	39.9 %	22.0 %	16.5 %	32.9 %	40.8 %	31.3 %	25.8 %	13.4 %	30.6 %
Chlorinated Dioxins / Furans	Lap			07.0 70	04.2 %	39.9 %	22.0 %	10.5 %	32.9 %	40.0 %	31.3 %	25.0 %	13.4 %	30.0 %
2,3,7,8-Dioxin, tetra	Lab	30 DI ng/kg	<u>35 DI ng/kg</u>	24.1 ng/kg	1.88 EMPC ng/kg	< 0.824 ng/kg	6.54 ng/kg	3.80 EMPC ng/kg	47.2 ng/kg	< 1.47 ng/kg	21.6 ng/kg	26.5 ng/kg	17.7 ng/kg	62.7 ng/kg
1,2,3,7,8-Dioxin, penta	Lab	SU DI lig/kg	<u>35 DI lig/kg</u>	521 ng/kg	32.0 ng/kg	1.72 EMPC ng/kg	66.4 ng/kg	55.3 ng/kg	124 ng/kg	35.9 EMPC ng/kg	119 ng/kg	190 ng/kg	98.3 ng/kg	0.826 EMPC ng/kg
1,2,3,4,7,8-Dioxin, hexa	Lab			1700 ng/kg	171 ng/kg	7.17 ng/kg	164 ng/kg	275 ng/kg	31.6 ng/kg	184 ng/kg	538 ng/kg	547 ng/kg	265 ng/kg	2.63 EMPC ng/kg
1,2,3,6,7,8-Dioxin, hexa	Lab			21400 ng/kg	2180 ng/kg	52.3 ng/kg	634 ng/kg	1050 ng/kg	279 ng/kg	2050 ng/kg	2560 ng/kg	2440 ng/kg	480 ng/kg	1.37 j ng/kg
1,2,3,7,8,9-Dioxin, hexa	Lab			4160 ng/kg	359 ng/kg	13.5 EMPC ng/kg	487 ng/kg	407 ng/kg	54.1 ng/kg	168 ng/kg	995 ng/kg	800 ng/kg	301 ng/kg	0.850 j ng/kg
1,2,3,4,6,7,8-Dioxin, hepta	Lab			650000 ng/kg	52000 * ng/kg	1860 ng/kg	40500 ng/kg	55100 * ng/kg	22500 * ng/kg	232000 * ng/kg	122000 ng/kg	72000 * ng/kg	11500 ng/kg	< 0.298 ng/kg
Dioxin, octa	Lab			5200000 ng/kg	684000 * ng/kg	25300 e ng/kg	366000 ng/kg	397000 * ng/kg	134000 * ng/kg	2220000 * ng/kg	1450000 ng/kg	602000 * ng/kg	145000 ng/kg	685 ng/kg
2,3,7,8-Dibenzofuran, tetra	Lab			201 ng/kg	5.36 ng/kg	< 0.863 ng/kg	6.36 ng/kg	< 2.91 ng/kg	40.7 ng/kg	< 1.17 ng/kg	27.0 ng/kg	28.9 EMPC ng/kg		< 0.312 ng/kg
1,2,3,7,8-Dibenzofuran, penta	Lab			950 ng/kg	25.7 ng/kg	3.03 EMPC ng/kg	34.2 ng/kg	34.1 ng/kg	123 ng/kg	1.66 EMPC ng/kg	75.4 ng/kg	88.3 ng/kg	61.2 ng/kg	1.01 EMPC ng/kg
2,3,4,7,8-Dibenzofuran, penta	Lab			3090 ng/kg	138 ng/kg	5.14 j ng/kg	25.8 ng/kg	75.2 ng/kg	2.66 j ng/kg	< 3.02 ng/kg	179 ng/kg	237 ng/kg	136 ng/kg	0.732 j ng/kg
1,2,3,4,7,8-Dibenzofuran, hexa	Lab			16800 ng/kg	1000 ng/kg	41.6 ng/kg	260 ng/kg	316 ng/kg	21.7 ng/kg	170 * ng/kg	720 * ng/kg	847 ng/kg	379 ng/kg	1.53 j ng/kg
1,2,3,6,7,8-Dibenzofuran, hexa	Lab			3170 ng/kg	195 ng/kg	9.58 EMPC ng/kg	72.5 ng/kg	81.5 ng/kg	72.7 ng/kg	30.3 * ng/kg	330 ng/kg	290 ng/kg	106 ng/kg	0.844 EMPC ng/kg
1.2.3.7.8.9-Dibenzofuran, hexa	Lab			4190 ng/kg	101 ng/kg	10.5 ng/kg	144 ng/kg	85.2 * ng/kg	< 4.22 * ng/kg	< 31.5 ng/kg	358 ng/kg	258 * ng/kg	164 ng/kg	1.57 j ng/kg
2,3,4,6,7,8-Dibenzofuran, hexa	Lab			5320 ng/kg	328 ng/kg	13.5 ng/kg	112 ng/kg	141 ng/kg	9.92 ng/kg	64.8 ng/kg	473 ng/kg	186 EMPC ng/kg	162 ng/kg	1.08 j ng/kg
1,2,3,4,6,7,8-Dibenzofuran, hepta	Lab			151000 ng/kg	22700 ng/kg	547 ng/kg	3730 ng/kg	7290 ng/kg	1350 ng/kg	12400 j* ng/kg	30700 ng/kg	17800 ng/kg	3150 ng/kg	16.7 ng/kg
1,2,3,4,7,8,9-Dibenzofuran, hepta	Lab			15400 ng/kg	2020 ng/kg	38.0 ng/kg	279 ng/kg	422 ng/kg	67.9 ng/kg	533 * ng/kg	1220 ng/kg	1270 ng/kg	298 ng/kg	2.02 j ng/kg
Dibenzofuran, octa	Lab			2800000 ng/kg	180000 * ng/kg	2750 ng/kg	29900 ng/kg	29300 EMPC* ng/kg		91700 * ng/kg	228000 ng/kg	91300 * ng/kg	7960 ng/kg	106 ng/kg
TCDD Equivalent, reporting limit at 0,	Barr													
TEF 2005 (EMPC @ 1)	Calc	30 DI ng/kg	35 DI ng/kg	<u>17800 ng/kg</u>	<u>1540 a ng/kg</u>	51 a ng/kg	<u>834 ng/kg</u>	<u>1070 a ng/kg</u>	<u>509 a ng/kg</u>	3450 a ng/kg	<u>2840 a ng/kg</u>	<u>1950 a ng/kg</u>	<u>542 a ng/kg</u>	3.14 a ng/kg
TCDD Equivalent, reporting limit at 0,	Barr			<u></u>	<u></u>	<u></u>		<u></u>			<u></u>			
TEF 2005 (EMPC @ 1/2)	Calc	30 DI ng/kg	35 DI ng/kg	17800 ng/kg	1540 a ng/kg	49 a ng/kg	834 ng/kg	1070 a ng/kg	509 a ng/kg	3430 a ng/kg	2840 a ng/kg	1940 a ng/kg	541 a ng/kg	2.91 a ng/kg
TCDD Equivalent, reporting limit at 1,	Barr							0						
TEF 2005 (EMPC @ 1)	Calc	30 DI ng/kg	35 DI ng/kg	17800 ng/kg	1540 a ng/kg	51.9 a ng/kg	834 ng/kg	1070 a ng/kg	509 a ng/kg	3450 a ng/kg	2840 a ng/kg	1950 a ng/kg	542 a ng/kg	3.47 a ng/kg
TCDD Equivalent, reporting limit at 1,	Barr							0						
TEF 2005 (EMPC @ 1/2)	Calc	30 DI ng/kg	35 DI ng/kg	17800 ng/kg	1540 a ng/kg	49.9 a ng/kg	834 ng/kg	1070 a ng/kg	509 a ng/kg	3430 a ng/kg	2840 a ng/kg	1940 a ng/kg	541 a ng/kg	3.24 a ng/kg
TCDD Equivalent, reporting limit at 1/2,	Barr													
TEF 2005 (EMPC @ 1)	Calc	30 DI ng/kg	<u>35 DI ng/kg</u>	<u>17800 ng/kg</u>	1540 a ng/kg	51.5 a ng/kg	834 ng/kg	1070 a ng/kg	509 a ng/kg	3450 a ng/kg	2840 a ng/kg	1950 a ng/kg	542 a ng/kg	3.3 a ng/kg
TCDD Equivalent, reporting limit at 1/2,	Barr													
TEF 2005 (EMPC@1/2)	Calc	30 DI ng/kg	<u>35 DI ng/kg</u>	<u>17800 ng/kg</u>	1540 a ng/kg	49.4 a ng/kg	834 ng/kg	1070 a ng/kg	509 a ng/kg	3430 a ng/kg	<u>2840 a ng/kg</u>	1940 a ng/kg	541 a ng/kg	3.07 a ng/kg
Dioxin tetra, total	Lab			214 ng/kg	43.2 ng/kg	< 0.824 ng/kg	128 ng/kg	66.7 ng/kg	47.2 ng/kg	< 1.47 ng/kg	1310 ng/kg	1290 ng/kg	690 ng/kg	< 0.298 ng/kg
Dioxin penta, total	Lab			1500 ng/kg	228 ng/kg	2.41 j ng/kg	794 ng/kg	1050 ng/kg	198 ng/kg	470 ng/kg	5720 ng/kg	5160 ng/kg	2090 ng/kg	0.850 j ng/kg
Dioxin, hexa, total	Lab			47600 ng/kg	8650 ng/kg	206 ng/kg	14200 ng/kg	26200 ng/kg	6940 ng/kg	164000 ng/kg	28400 ng/kg	31000 ng/kg	7220 ng/kg	4.27 j ng/kg
Dioxin, hepta, total	Lab			162000 ng/kg	116000 ng/kg	3610 ng/kg	116000 ng/kg	253000 ng/kg	88200 ng/kg	810000 ng/kg	174000 ng/kg	186000 ng/kg	28800 ng/kg	120 ng/kg
Dibenzofuran, tetra, total	Lab			826 ng/kg	57.6 ng/kg	< 0.863 ng/kg	59.8 ng/kg	33.9 ng/kg	41.1 ng/kg	2.29 ng/kg	524 ng/kg	579 ng/kg	151 ng/kg	< 0.312 ng/kg
Dibenzofuran, penta, total	Lab			16600 ng/kg	835 ng/kg	49.2 ng/kg	830 ng/kg	520 ng/kg	131 ng/kg	21.8 ng/kg	3360 ng/kg	3780 ng/kg	835 ng/kg	0.732 j ng/kg
Dibenzofuran, hexa, total	Lab			61500 ng/kg	6370 ng/kg	612 ng/kg	5150 ng/kg	8790 ng/kg	1320 ng/kg	10400 ng/kg	26800 ng/kg	33100 ng/kg	6130 ng/kg	19.5 ng/kg
Dibenzofuran, hepta, total	Lab			148000 ng/kg	32800 ng/kg	2680 ng/kg	19500 ng/kg	34200 ng/kg	7500 ng/kg	59000 ng/kg	104000 ng/kg	94600 ng/kg	13900 ng/kg	97.6 ng/kg

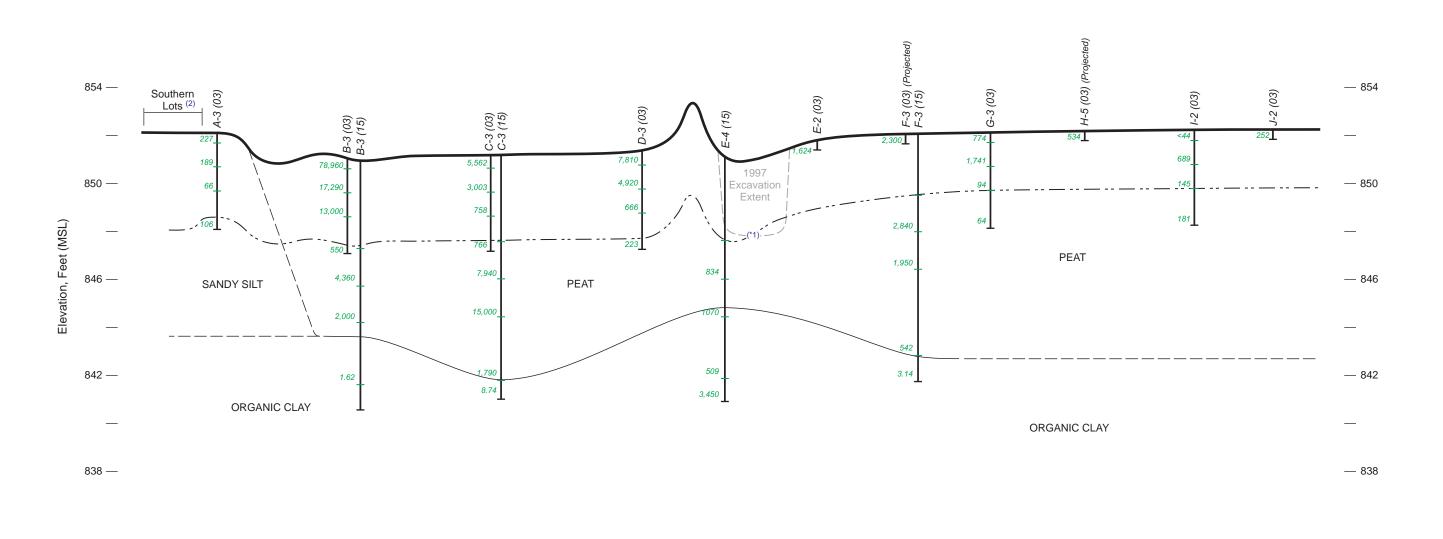
DI - Value represents a criteria for 2,3,7,8-TCDD or 2,3,7,8-TCDD equivalents.

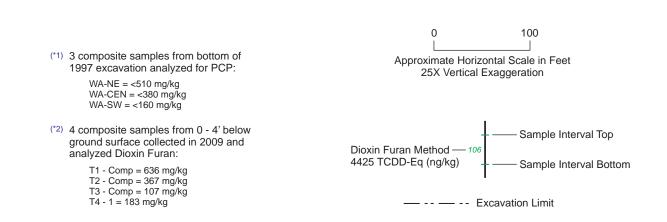
EMPC - Estimated maximum possible concentration.

N - Sample Type: Normal


a - Estimated value, calculated using some or all values that are estimates.

e - Estimated value, exceeded the instrument calibration range.


j - Estimated detected value. The reported value is less than the stated laboratory quantitation limit


* - Estimated value, QA/QC criteria not met.

Figures

Y' NORTH

Figure 2

GEOLOGIC CROSS SECTION Y-Y'

Attachment A

Soil Boring Logs

		Ва 47	arr En 700 W	ginee 'est 7	ing Company th St. Suite 200		LOG OF BORING B	5-1									
B	AR	R Te	innea elepho	oolis, ne: 9	/N 55435 52-832-2600		SHEET 1 OF 1										
Proje Loca	ect:OU ect No. ation:Bi rdinate: im:	:23/27 rooklyr	-0110)		Surface Elevation: Drilling Method:Geoprobe Sampling Method: Completion Depth:10.0 ft											
Depth, feet	Sample Type & Recovery	Sample No.	U S C S	Graphic Log		LITHOLOGIC DESCRIPTION		Elevation, feet									
0	-	1	PT		0-3': PEAT (PT): black; frozen from 0-1.5'.												
5 -	-		ML		3-6.5': SILT (ML): gray; organic; interbedded w	vith peat; moist to wet, wet at 4' bgs.											
	-	2	SM		6.5-10': SILTY SAND (SM): gray; wet; petroleu	Y: SILTY SAND (SM): gray; wet; petroleum odor and some product staining observed.											
10-10-10-10-10-10-10-10-10-10-10-10-10-1	-				End of boring at 10' bgs, target depth reached.												
15 ⁻	-																
20-	-																
	-																
Date Date Logg	Boring Boring Jed By: ng Cor	g Com	pleted	 _	2/2/15 Rei 2/2/15 ARP2 Matrix	marks:											
Drill					Addi	litional data may have been collected in the field which is not included on this log. eather:											

Barr Engineering Company 4700 West 77th St. Suite 200	LOG	OF BORING B-3
BARR Minneapolis, MN 55435 Telephone: 952-832-2600		SHEET 1 OF 1
Project:OU5 Soil Characterization Project No.:23/27-0110 Location:Brooklyn Center, MN Coordinates: Datum:	Surface Elevation: Drilling Method:Geoprobe Sampling Method: Completion Depth:10.0 ft	
Depth, feet Sample Type & Recovery ∞ ∩ ∞ ∩ Graphic Log	LITHOLOGIC DESCRIPTION	Elevation, feet
0-7': PEAT (PT): black; wet.		
2 2 CL 10 - - - - - - - - - - - - -		
25- 2/2/15 Date Boring Started: 2/2/15 Date Boring Completed: 2/2/15 Logged By: ARP2 Drilling Contractor: Matrix Drill Rig: Contractor:	Remarks: Additional data may have been collected in the field which is not included on this log. Weather:	I

Barr Engineering Compa 4700 West 77th St. Suite	LOG OF BORING C-3	3
BARR Minneapolis, MN 55435 Telephone: 952-832-260	0 SHEET 1 OF 1	
Project:OU5 Soil Characterization Project No.:23/27-0110 Location:Brooklyn Center, MN Coordinates: Datum:	Surface Elevation: Drilling Method:Geoprobe Sampling Method: Completion Depth:10.0 ft	
Depth, feet Sample Type & Recovery Sample No. $\omega \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	LITHOLOGIC DESCRIPTION	Elevation, feet
0-0-9': PEAT 0-0.5': mo 0-0.5': mo 0-0.5': mo 0-0.5': mo 0-0.5': mo 0-0.5': mo 0-0.5': mo	(PT): black; wet. ty wood. V CLAY (CL): light gray; organic; soft; wet. Ing at 10' bgs, target depth reached.	
25 Date Boring Started: 2/2/15 Date Boring Completed: 2/2/15 Logged By: ARP2 Drilling Contractor: Matrix	Remarks:	
	Additional data may have been collected in the field which is not included on this log. Weather:	

Barr Engineering 0 4700 West 77th S	LOG OF BORING D-1	I
BARR Minneapolis, MN 5 Telephone: 952-8		
Project:OU5 Soil Characterization Project No.:23/27-0110 Location:Brooklyn Center, MN Coordinates: Datum:	Surface Elevation: Drilling Method:Geoprobe Sampling Method: Completion Depth:10.0 ft	
Depth, feet Sample Type & Recovery Sample No. ∞ ∩ ∞ ⊂ Graphic Log	LITHOLOGIC DESCRIPTION	Elevation, feet
- 1 SM 1 SM 	LTY SAND (SM): tan/orange/gray; mostly fine-grained sand; moist. PEAT (PT): black: fibrous; wet. : LEAN CLAY (CL): light gray; organic; soft; wet. boring at 10' bgs, target depth reached.	
25 Date Boring Started: 2/2/ Date Boring Completed: 2/2/ Logged By: ARF Drilling Contractor: Mate	Remarks:	
	Additional data may have been collected in the field which is not included on this log. Weather:	

		Ba 47	arr Eng 700 W	ginee est 7	ring Company 7th St. Suite 200		LOG OF BORING E	-4							
BA	R				MN 55435 52-832-2600		SHEET 1 OF 1								
Projec Projec	ct:OU ct No. ion:Br linates	5 Soil (:23/27 rooklyr	Chara -0110	icteriz	ation	Surface Elevation: Drilling Method:Geoprobe Sampling Method: Completion Depth:10.0 ft									
Depth, feet	Sample Type & Recovery	Sample No.	U S C S	Graphic Log		LITHOLOGIC DESCRIPTION		Elevation, feet							
-0		1	CL		0-2.5': SANDY CLAY (CL): gray; frozen 2.5-6': PEAT (PT): black; fibrous; moist										
- - 5 -			PT			rto wel, wel al 5 bgs.									
-		2	CL		6-10': LEAN CLAY (CL): light gray; orga 8-10': slight petroleum odor and stainin										
10					End of boring at 10' bgs, target depth re	eached.									
15— - -															
20-															
25 Date E Date E Logge	Boring ed By:	g Comp	pleted	:	2/2/15 2/2/15 ARP2 Matrix	Remarks:									
	rilling Contractor: Matrix rill Rig:					Additional data may have been collected in the field which is not included on this log. Weather:									

		Ва 47	arr En 700 W	ginee 'est 7	ring Company 7th St. Suite 200		LOG OF BORING F	-3
B/	١R				MN 55435 952-832-2600		SHEET 1 OF 1	
		5 Soil			ation	Surface Elevation:		
		:23/27 :ooklyr			N	Drilling Method:Geoprobe		
Coord	dinates			,		Sampling Method:		
Datur						Completion Depth:10.0 ft		
feet	ype & ery	No.	U	Log				, feet
Depth, feet	Sample Type & Recovery	Sample No.	U S C S	Graphic Log		LITHOLOGIC DESCRIPTION		Elevation, feet
-0					0-9': PEAT (PT): black; fibrous; wet. 0-2': mostly wood and debris.			
-								
-	-	1						
-	-		PT					
5 -								
-								
		2						
	-				9-10': LEAN CLAY (CL): gray; organic; s	soft; wet.		
≝ ¥ 10-			CL		End of boring at 10' bgs, target depth rea			
15-								
	-							
20-								
- 10/2020								
Date				:	2/2/15 2/2/15	Remarks:		
Logge					ARP2			
5		tracto	r:		Matrix	Additional data may have been collected in the field which is not included on this loa.		
Drill F	Rig:					Additional data may have been collected in the field which is not included on this log. Weather:		

Attachment B

Laboratory Analytical Reports

ALS Environmental ALS Group USA, Corp. 1317 South 13th Avenue Kelso, WA 98626 T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

March 3, 2015

Terri Olson Barr Engineering 4700 West 77th Street Minneapolis, MN 55435

RE: Joslyn OU5 2015 Soil/23270110

Dear Terri:

Enclosed is the revised report for the samples submitted to our laboratory on February 04, 2015. For your reference, these analyses have been assigned our service request number K1501105.

Analytical Report for Service Request No: K1501105

Revised Service Request No: K1501105.01

Report revised to include the updated ALS-Houston's certification page.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at <u>www.alsglobal.com</u>. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

We apologize for any inconvenience this may have created.

Please call if you have any questions. My extension is 3363. You may also contact me via Email at Lisa.Domenighini@alsglobal.com.

Respectfully submitted,

ALS Group USA Corp. dba ALS Environmental

Jusa & Jomenig

Lisa Domenighini Project Manager

LD/aj

Page 1 of 62

RIGHT SOLUTIONS | RIGHT PARTNER

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
ТРН	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site								
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040							
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339							
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637							
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795							
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51							
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412							
Hawaii DOH	Not available	-							
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx	-							
ISO 17025	http://www.pjlabs.com/	L14-50							
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPer mitSupport/LouisianaLaboratoryAccreditationProgram.aspx	03016							
Maine DHS	Not available	WA01276							
Michigan DEQ	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949							
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457							
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047							
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276							
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005							
North Carolina DWQ	http://www.dwqlab.org/	605							
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801							
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010							
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002							
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427							
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544							
Wisconsin DNR	http://dnr.wi.gov/	998386840							
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	-							
Kelso Laboratory Website	www.alsglobal.com	NA							

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

ALS ENVIRONMENTAL

Client:Barr Engineering CompanyProject:Joslyn OU5 2015 Soil/ 23270110Sample Matrix:Soil

Service Request No.: Date Received:

K1501105 02/04/15

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Envi ronmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), and Matrix/Duplicate Matrix Spike (MS/DMS).

Sample Receipt

Six soil samples were received for analysis at ALS Environmental on 02/04/15. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry Parameters

No anomalies associated with the analysis of these samples were observed.

Dioxins and Furans by EPA Method 8290

The analysis for Dioxins and Furans was performed at ALS Houston, Texas Laboratory. The data for this analysis is included in the corresponding section of this report.

Approved by Jisa & Jomenighin

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

	Chain of Custody												Number of Containers/Preservative											10	<u> </u>	
		ody												·	f Cont	ainer	s/Pi			ve		—	coc	of		
BARR 4700 West 77th Minneapolis, Mi (952) 832-2600	Street V 5543.	5-4803											Vate	r		+			Soil			+				
										_													Project Manager: <u>J</u>	shn	Hunt	_
Project Number: 23270	110													(e r s				
Project Name: Joslyn	005	20	215	Soil							#2	(6))#3	Organics (HCI SO4) #4		#	1# (H)	ved)	#2	npres.)		Number Of Containers	Project QC Contact:	Terr	: Olson	
Sample Origination State \underline{M} \underline{N}	mple Origination State \underline{M} \underline{N} (use two letter postal state abbreviation)											(°ONI	(unpreserved)) rganic () 4) #4		eOH) ;	d McO	preser rved)	erved)	vial, u		of C		. .	0 1	
COC Number:	DC Number: Nº 4379											als (F		(H ₂ S(red M	X (tare	ed un nnrese	upres	plastic		mber	Sampled by:	Ale	(Ketz	L
Location	Start Depth	Stop Depth	Depth Unit (m./ft. or in.)	Date		Collection Time (hh:mm)	Mater Soil	x	799 Type duoj	VOCs (H	SVOCs (unpreserved) #2 Dissolved Metals (HNO.)	Total Metals (HNO ₃)	General (Diesel Range Organic Nutrients (H ₂ SO ₄) #4		VOCs (ta	GRO, BTEX (tared McOH)#I	DRO (tared unpreserved) Metals (unpreserved)	SVOCs (L	% Solids (plastic vial, unpres.)	TAC	Total Nu	Laboratory:	ALS	>	
^{1.} β-1	0.5	2	ťt	02/02/	/2015	10:25	X		X													2				
^{2.} B-3	3.5	5				14:10	X		X													2				
^{3.} C-3	3.5	5				13:35	X		X													2				
^{4.} D-1	0.5	2				10:55	X		χ													2				
^{5.} E - 4	3.5	5				12:55	X		X													2				
^{6.} F - 3	2.5	Ч	Ŷ	V		12:20	X		X													2				
7.																						1				
8.												-										1				6
9.																						1				
10.																										
ommon Parameter/Container - Preservation Key									Date ./02/			Гіте , : 1 9		Receiv		:	\mathcal{Q}	 ĺ. +	<u>I</u>			Dat		Time		
#2 - Semivolatile Organics = PAHs, F Full List, Herbicide/Pesticide/PCI	Volatile Organics = BTEX. GRO. TPH. 8260 Full List Semivolatile Organics = PAHs, PCP. Dioxins, 8270 Full List, Herbicide/Pesticide/PCBs						ce?	Date		-	Fime	·	<u>Jeve</u> Receive		:	R		Ser.			02/02 Dat 2/4/1	1:21	16:15 Time 0940			
TDS, TS, Sulfate #4 - Nutrients = COD, TOC, Phenols	neral = pH, Chloride, Fluoride, Alkalinity, TSS, S, TS, Sulfate arrients = COD, TOC, Phenols, Ammonia						ederal I	Expre	ss [ampl		Air Bill Number:													
Nitrogen, TKN			D	istribution: V	White-C	Driginal Accor		Shi	ipment 1	to L	ıb; Y	ellov	N -	Field	Copy;	Pink	- I	.ab C	Coor	dinat	or					J [:]

	ALS	PC Lisa
	Cooler Receipt and Preservation For	m
'li	lient / Project: Barr , Service Request	K15 U1105
		ded: 2/4/5 By: The
	Samples were received via? Mail Fed Ex UPS DHL PDX Court	rier Hand Delivered
	Samples were received in: (circle) Cooler Box Envelope Other	NA
	. Were <u>custody seals</u> on coolers? NA $(Y \ N$ If yes, how many and Y	where? Oll +www.

If present, were custody seals intact?			(Y) N	If present, were the	ted?	Y	N		
Raw Cooler Temp	Corrected. Cooler Jemp	Raw Temp Blank	Corrected Temp Blank	Corr. Factor	Thermometer ID	Cooler/COC ID	TUCE Tr	acking Number	NA	Filed
Sit	5.8	Sil	5.0	+0,1	347	437994	6275 1	644 747	2	
	,									

•	Packing material: Inserts Baggies Bubble Wrap? Gel Packs (Wet Ice) Dry Ice Sleeves	<u></u>		
•	Were custody papers properly filled out (ink, signed, etc.)?	NA	Ì	N
•	Did all bottles arrive in good condition (unbroken)? Indicate in the table below.	NA	()	Ν
	Were all sample labels complete (i.e analysis, preservation, etc.)?	NA	$Q^{\mathbf{Y}_{1}}$	Ν
	Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2.	NA	\widetilde{Y}	Ν
	Were appropriate bottles/containers and volumes received for the tests indicated?	NA	(Ý)	Ν
0.	Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below	NA	Y	N
1.	Were VOA vials received without headspace? Indicate in the table below.	NA	Y	Ν
2.	Was C12/Res negative?	NAL	Y	Ν

Sample ID on Bottle	Sample ID on COC	Identified by:	

Sample ID	Bottle Count Bottle Type	Out of Temp	Head- space	Broke	рH	Reagent	Volume added	Reagent Lot Number	Initials	Time

Votes, Discrepancies, & Resolutions:____

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Analytical Report

Client:	Barr Engineering Company
Project:	Joslyn OU5 2015 Soil/23270110
Sample Matrix:	Soil
Analysis Method: Prep Method:	160.3 Modified None

 Service Request:
 K1501105

 Date Collected:
 02/2/15

 Date Received:
 02/4/15

Units: Percent Basis: As Received

Solids, Total

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
B-1 0.5-2'	K1501105-001	80.5	_	1	02/10/15 13:02	
B-3 3.5-5'	K1501105-002	22.1	-	1	02/10/15 13:02	
C-3 3.5-5'	K1501105-003	22.1	-	1	02/10/15 13:02	
D-1 0.5-2'	K1501105-004	87.8	-	1	02/10/15 13:02	
E-4 3.5-5'	K1501105-005	22.0	-	1	02/10/15 13:02	
F-3 2.5-4'	K1501105-006	31.3	-	1	02/10/15 13:02	

QA/QC Report

Client:	Barr Engineering Compar	nv			Service Request	: K150	1105					
Project	Joslyn OU5 2015 Soil/232	-			Date Collected							
Sample Matrix:	Soil				Date Received	: 02/04/	/15					
_					Date Analyzed	: 02/10/	/15					
	Replicate Sample Summary											
	General Chemistry Parameters											
Sample Name:	B-1 0.5-2'				Unit	s: Perce	ent					
Lab Code:	K1501105-001				Basi	s: As R	eceived					
			Sample	Duplicate Sample K1501105- 001DUP								
Analyte Name	Analysis Method	MRL	Result	Result	Average	RPD	RPD Limit					
Solids, Total	160.3 Modified	-	80.5	81.8	81.2	2	20					

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Report

Client:	Barr Engineering Company
Project:	Joslyn OU5 2015 Soil/23270110
Sample Matrix:	Soil
Analysis Method: Prep Method:	ASTM D4129-05 Modified ALS SOP

 Service Request:
 K1501105

 Date Collected:
 02/2/15

 Date Received:
 02/4/15

Units: Percent Basis: Dry, per Method

Carbon, Total Organic (TOC)

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
B-1 0.5-2'	K1501105-001	3.81	0.050	1	02/17/15 14:30	2/17/15	
B-3 3.5-5'	K1501105-002	43.7	0.050	1	02/17/15 14:30	2/17/15	
C-3 3.5-5'	K1501105-003	39.4	0.050	1	02/17/15 14:30	2/17/15	
D-1 0.5-2'	K1501105-004	1.33	0.050	1	02/17/15 14:30	2/17/15	
E-4 3.5-5'	K1501105-005	44.3	0.050	1	02/17/15 14:30	2/17/15	
F-3 2.5-4'	K1501105-006	11.0	0.050	1	02/17/15 14:30	2/17/15	
Method Blank	K1501105-MB	ND U	0.050	1	02/17/15 14:30	2/17/15	

QA/QC Report

Client:	Barr Enginee	ring Company			Serv	vice Request:	K150110)5			
Project	e	2015 Soil/23270110				te Collected:					
Sample Matrix:	Soil				Da	te Received:	02/04/15				
					Da	te Analyzed:	02/17/15				
	Replicate Sample Summary										
		General Ch	emistry Pa	rameters							
Sample Name:	B-1 0.5-2'					Units:	Percent				
Lab Code:	K1501105-0	01				Basis:	Dry, per	Method			
				Sample	Duplicate Sample K1501105- 001DUP						
Analyte Name		Analysis Method	MRL	Result	Result	Average	RPD	RPD Limit			
Carbon, Total Organic (T	TOC)	ASTM D4129-05 Modified	0.050	3.81	3.89	3.85	2	20			

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Project: Sample Matrix:	Barr Engineering Com Joslyn OU5 2015 Soil Soil	1 5	5			Service Request: Date Collected: Date Received:			K1501105 02/02/15 02/04/15		
						Date An	•	02/17			
		_				Date Ex	tracted:	02/17	/15		
Duplicate Matrix Spike Summary Carbon, Total Organic (TOC)											
Sample Name:	Sample Name: B-1 0.5-2'			Giguine	(100)		Units:	Perce	ent		
Lab Code:	•			Basis:					Dry, per Method		
Analysis Method:	ASTM D4129-05 Mod	dified									
Prep Method:	ALS SOP										
			Matrix Spike K1501105-001MS		-	l icate Matri 501105-001	-				
Analyte Name	Sample Result	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit	
Carbon, Total Organi		7.55	3.61	104	7.18	3.41	99	70-122	5	20	

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 2/23/2015 3:04:46 PM

QA/QC Report

Client: Project: Sample Matrix:	Barr Engineering Company Joslyn OU5 2015 Soil/23270110 Soil		Service Rec Date Analy Date Extra	zed:	K1501105 02/17/15 02/17/15
		ontrol Sample Summary n, Total Organic (TOC)			
Analysis Method: Prep Method:	ASTM D4129-05 Modified ALS SOP		Units: Basis: Analysis Lo	ot:	Percent Dry, per Method 433394
Sample Name Lab Control Sample	Lab Code K1501105-LCS	Result 0.524	Spike Amount 0.543	% Rec 96	% Rec Limits 72-122

Subcontract Lab Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

10450 Stancliff Rd., Suite 210 Houston, TX 77099 T: +1 713 266 1599 F: +1 713 266 1599 www.alsglobal.com

February 25, 2015

Service Request No: K1501105

Lisa Domenighini. ALS Environmental 1317 South 13th Avenue Kelso, WA 98626

Laboratory Result for: Barr Engineering.

Dear Lisa:

Enclosed are the results of the sample(s) submitted to our laboratory on February 06, 2015. For Your reference, these analyses have been assigned our service request number: **K1501105.**

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current TNI standards, where applicable, and considered in their entirety, and ALS Environmental is not responsible for use of less than the final complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the TNI 2009 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My direct line is 281-575-2279. You may also contact me via email at Arthi.Kodur@alsglobal.com

Respectfully submitted,

ALS Group USA Corp., dba ALS Environmental

Arthi Kodur Project Manager

For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com.

RIDAT SUMPLYING | RIDHT CANTARS

Certificate of Analysis

ALS Environmental - Houston HRMS 10450 Stancliff Rd, Suite 210, Houston TX 77099 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

ALS ENVIRONMENTAL

Client:Barr Engineering CompanyProject:Joslyn OU5 2015 Soil/23270110Sample Matrix:Soil

 Service Request No.:
 K1501105

 Date Received:
 2/6/15

ALS ENVIRONMENTAL NARRATIVE

All analyses were performed in adherence to the quality assurance program of ALS Envi ronmental. This report contains analytical results for samples designated for Tier II. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Six soil samples were received for analysis at ALS Environmental on 2/6/15.

Please note the reporting forms are currently referencing the date ALS Environmental-Kelso received the samples (2/4/15) and not the date ALS Environmental-Houston received the samples (2/6/15).

The samples were received at 0°C in good condition and are consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Data Validation Notes and Discussion

B flags – Method Blanks

The Method Blank EQ1500104-01 contained low levels of various analytes below the Method Reporting Limit (MRL).

MS/MSD

EQ1500104: Laboratory Control Spike (LCS) sample was analyzed and reported in addition to an MS/MSD for this extraction batch. OCDD was outside the percent recovery for EQ1500104-02 (LCS). The batch precision (MS/DMS) measurements were determined on another order in the extraction batch. The MS/DMS results are not included in this report.

2378-TCDF

Samples analyzed on the DB-5MSUI column were analyzed under conditions were sufficient separation between 2,3,7,8-TCDF and its closest eluter was achieved. Confirmation of this result was not required.

Y flags – Labeled Standards

Quantification of the native 2,3,7,8-substituted analytes is based on isotopic dilution, which automatically corrects for variation in extraction efficiency and provides accurate values even with poor recovery. Samples that had recoveries of labeled standards outside the acceptance limits are qualified with 'Y' flags on the Labeled Compound summary pages. In all cases, the signal-to-noise ratios are greater than 10:1 and detection limit were below the Method Reporting Limit.

Dilutions

All samples in service request K1501105 had elevated levels of target analytes and required a dilution. The undiluted and diluted results were combined into one Total TEQ summary report for each sample. This reports a 'Total' result that includes the most appropriate concentration found for the associated target analyte.

<u>K flags</u>

EMPC - When the ion abundance ratios associated with a particular compound are outside the QC limits, samples are flagged with a 'K' flag. A 'K' flag indicates an estimated maximum possible concentration for the associated compound.

Detection Limits

Detection limits are calculated for each analyte in each sample by measuring the height of the noise level for each quantitation ion for the associated labeled standard. The concentration equivalent to 2.5 times the height of the noise is then calculated using the appropriate response factor and the weight of the sample. The calculated concentration equals the detection limit.

The TEQ Summary results for each sample have been calculated by ALS ENVIRONMENTAL/Houston to include:

- WHO-2005 TEFs, The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds (M. Van den Berg et al., Toxicological Sciences 93(2):223-241, 2006)
- > Non-detected compounds are not included in the 'Total'
- > The 1:1 and associated dilution have been combined into one TEQ Summary report

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS group USA Corp dba ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
K1501105-001	B-1 0.5-2'	2/2/2015	1025
K1501105-002	B-3 3.5-5'	2/2/2015	1410
K1501105-003	C-3 3.5-5'	2/2/2015	1335
K1501105-004	D-1 0.5-2'	2/2/2015	1055
K1501105-005	E-4 3.5-5'	2/2/2015	1255
K1501105-006	F-3 2.5-4'	2/2/2015	1220

Service Request Summary

Folder #:	K1501105	Project Chemist:	Lisa Domenighini
Client Name:	Barr Engineering Company	Originating Lab:	KELSO
Project Name:	Joslyn OU5 2015 Soil	Logged By:	SWOLF
Project Number:	23270110	Date Received:	02/04/15
Bonort To.	Terri Olson	Internal Due Date:	2/20/2015
Report To:		QAP:	LAB QAP
	Barr Engineering 4700 West 77th Street	Qualifier Set:	Lab Standard
	Minneapolis, MN 55435	Formset:	Lab Standard
	USA	Merged?:	Y
Phone Number:	952-842-3578	Report to MDL?:	N, Y
Cell Number:		P.O. Number:	
Fax Number:		EDD:	BARR - EQUIS
E-mail:	tolson@barr.com		

 12
 4 oz-Glass Jar WM CLEAR Teflon Liner Unpreserved

 Location:
 K-Delilah-28, EHRMS-WIC 6E

 Pressure Gas:
 K-Delilah-28, EHRMS-WIC 6E

NPDES

				KEI	SO	HOUST ON
				TOC/ASTM D4129-05 Modified	TS/160.3 Modified	PCDD PCDF/8290
Lab Samp No.	Client Samp No	Matrix	Collected	'		
K1501105-001	B-1 0.5-2'	Soil	02/02/15 1025	II	II	П
K1501105-002	B-3 3.5-5'	Soil	02/02/15 1410	II	II	II
K1501105-003	C-3 3.5-5'	Soil	02/02/15 1335	II	II	II
K1501105-004	D-1 0.5-2'	Soil	02/02/15 1055	II	II	II
K1501105-005	E-4 3.5-5'	Soil	02/02/15 1255	II	II	II
K1501105-006	F-3 2.5-4'	Soil	02/02/15 1220	II	II	II

Folder Comments:

Tier II except when requested otherwise. Firm 3 week TAT

Service Request Summary

Folder #:	K1501105	Project Chemist:	Lisa Domenighini
Client Name: Project Name:	Barr Engineering Company Joslyn OU5 2015 Soil	Originating Lab: Logged By:	KELSO SWOLF
Project Number:	,	Date Received:	02/04/15
Floject Nullibel.	23270110	Internal Due Date:	2/20/2015
Report To:	Terri Olson	QAP:	LAB QAP
	Barr Engineering	QAP. Qualifier Set:	LAB QAP
	4700 West 77th Street		Lab Standard
	Minneapolis, MN 55435		Y
	USA	8	
Phone Number:	952-842-3578	Report to MDL?:	Ν, Υ
Cell Number:		P.O. Number:	
Fax Number:		EDD:	BARR - EQUIS
E-mail:	tolson@barr.com		

12

12 4 oz-Glass Jar WM CLEAR Teflon Liner Unpreserved Location: K-Delilah-28, EHRMS-WIC 6E Pressure Gas: NPDES

Test Comments:

Group	Test/Method
Semivoa GCMS	PCDD PCDF/8290

Samples Comments Firm 3 week tat!due 2/25/15 full list

Data Qualifiers

HRMS Qualifier Set

- B Indicates the associated analyte was found in the method blank at >1/10th the reported value.
- E Estimated value. The reported concentration is above the calibration range of the instrument.
- H Sample extracted and/or analyzed out of suggested holding time.
- J Estimated value. The reported concentration is below the MRL.
- K The ion abundance ratio between the primary and secondary ions were outside of theoretical acceptance limits. Reported concentration is a conservative estimate, however EMPC correction was not applied.
- P Chlorodiphenyl ether interference was present at the retention time of the target analyte. Reported result should be considered an estimate.
- Q Monitored lock-mass indicates matrix-interference. Reported result is estimated.
- S Signal saturated detector. Result reported from dilution.
- U Compound was analyzed for, but was not detected (ND).
- X See Case Narrative.
- Y Isotopically Labeled Standard recovery outside of acceptance limits. In all cases, the signal-to-nois ratios are greater than 10:1, making the recoveries acceptable.
- i The MDL/MRL have been elevated due to a matrix interference.

ALS Laboratory Group

Acronyms

Cal	Calibration
Conc	CONCentration
Dioxin(s)	Polychlorinated dibenzo-p-dioxin(s)
EDL	Estimated Detection Limit
EMPC	Estimated Maximum Possible Concentration
Flags	Data qualifiers
Furan(s)	Polychlorinated dibenzofuran(s)
g	Grams
ICAL	Initial CALibration
ID	IDentifier
Ions	Masses monitored for the analyte during data acquisition
L	Liter (s)
LCS	Laboratory Control Sample
DLCS	Duplicate Laboratory Control Sample
MB	Method Blank
MCL	Method Calibration Limit
MDL	Method Detection Limit
mL	Milliliters
MS	Matrix Spiked sample
DMS	Duplicate Matrix Spiked sample
NO	Number of peaks meeting all identification criteria
PCDD(s)	Polychlorinated dibenzo-p-dioxin(s)
PCDF(s)	Polychlorinated dibenzofuran(s)
ppb	Parts per billion
ppm	Parts per million
ppq	Parts per quadrillion
ppt	Parts per trillion
QA	Quality Assurance
QC	Quality Control
Ratio	Ratio of areas from monitored ions for an analyte
% Rec.	Percent recovery
RPD	Relative Percent Difference
RRF	Relative Response Factor
RT	Retention Time
SDG	Sample Delivery Group
S/N	Signal-to-noise ratio
TEF	Toxicity Equivalence Factor
TEQ	Toxicity Equivalence Quotient

State Certifications, Accreditations, and Licenses

Agency	Number	Expire Date
American Association for Laboratory Accreditation	2897.01	11/30/2015
Arizona Department of Health Services	AZ0793	5/27/2015
Arkansas Department of Environmental Quality	14-038-0	6/16/2015
California Department of Health Services	2452	2/28/2015
Florida Department of Health	E87611	6/30/2015
Hawaii Department of Health	TX02694	6/30/2015
Illinois Environmental Protection Agency	200057	10/6/2015
Louisiana Department of Health and Hospitals	TX2694	6/30/2015
Maine Center for Disease Control and Prevention	2014019	6/5/2016
Maryland Department of the Environment	343	6/30/2015
Michigan Depratment of Environmental Quality	9971	6/30/2015
Minnesota Department of Health	TX02694	12/31/2015
Nebraska Department of Health and Human Services	NE-OS-25-13	6/30/2015
Nevada Department of Concervation and Natural Resources	TX014112013-2	7/31/2015
New Jersey Department of Environmental Protection	NLC140001	6/30/2015
New Mexico Environment Department	TX02694	6/30/2015
New York Department of Health	11707	4/1/2015
Oklahoma Department of Environmental Quality	2014-124	8/31/2015
Oregon Environmental Laboratory Accreditation Program	TX200002	3/24/2015
Pennsylvania Department of Environmental Protection	68-03441	6/30/2015
Tennessee Department of Environment and Concervation	04016	6/30/2015
Texas Commision on Environmental Quality	TX104704216-14-5	6/30/2015
United States Department of Agriculture	P330-14-00067	2/21/2017
Utah Department of Health Environmental Laboratory Certification	TX02694	7/31/2015
Washington Department of Health	c819	11/14/2015
West Virginia Department of Environmental Protection	347	6/30/2015

Data I		ONMENTAL – Houston oduction and Peer Review	Signatures
SR# Unique ID 🔀	1501105	DB-5 (DB-5MSUI) DB-2	225 SPB-Octyl
		- to be filled by person genera	ting the forms
Date:	Analyst:	Samples:	
02/20/15	TC -00	1,-002,-004,-005	-006
Seco	ond Level - Data Review	I – to be filled by person doing it	oeer review
Date:	Analyst:	Samples:	
02/23/15		001,002,004,005,000	0
P	V		

ć

SR# Unique ID K		DB-5 (DB-5MSUI) DB-225 SPB-Octyl
Date:	evel – Data Proces Analyst:	sing - to be filled by person generating the forms Samples:
02/24/15		003, -001p1_,-002DL, -003DL,-004DL,-005D
Seci	where the second sec	eview – to be filled by person doing peer review
Date:	Analyst:	Samples:
02/24/15	LKC	003, 0010L, 0020L, 0030L, 0040L, 0050L, 0060L

Chain of Custody

ALS Environmental - Houston HRMS 10450 Stancliff Rd, Suite 210, Houston TX 77099 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Intra-Network Chain of Custody 1317 South 13th Avenue • Kelso, WA 98626 • 1-360-577-7222 • FAX 1-360-636-1068

Project Name:	Joslyn OU5 2015 Soil
Project Number:	23270110
Project Manager:	Terri Olson
Company:	Barr Engineering

Project Manager: Company:	Terri Olson Barr Engineering							PCDD PCDF 8290
Lab Code	Client Sample ID	# of Cont.	Matrix	Sam Date	ple Time	Date Received	Send To	£.
K1501105-001	B-1 0.5-2'	1	Soil	2/2/15	1025	2/4/15	HOUSTON	П
K1501105-002	B-3 3.5-5'	1	Soil	2/2/15	1410	2/4/15	HOUSTON	II
K1501105-003	C-3 3.5-5'	1	Soil	2/2/15	1335	2/4/15	HOUSTON	п
K1501105-004	D-1 0.5-2'	1	Soil	2/2/15	1055	2/4/15	HOUSTON	п
K1501105-005	E-4 3.5-5'	1	Soil	2/2/15	1255	2/4/15	HOUSTON	п
K1501105-006	F-3 2.5-4'	1	Soil	2/2/15	1220	2/4/15	HOUSTON	п

Folder Comments:

Tier II except when requested otherwise. Firm 3 week TAT

Special Instructions/Comments Please provide the electronic (PDF and EDD) report to the following e-mail address: ALKLS.Data@alsglobal.com.	Turnaround RequirementsRUSH (Surcharges Apply)	Report Requirements I. Results Only II. Results + QC Summaries	Invoice Information
	PLEASE CIRCLE WORK DAYS 1 2 3 4 5 STANDARD	III. Results + QC and Calibration Summaries	PO# K1501105
pH Checked	Requested FAX Date:	PQL/MDL/J <u>N</u> EDD <u>Y</u>	Bill to
Relinquished By: Sm 2/5/16 Received B	3y: Cla ha _ 2/6/15	Airbill Number:	

Cooler Receipt Form Project Chemist

Client/Project Thermometer ID 5MO						
Date/Time Received: 2/6/15	Initi	Initials: AL Date/Time Logged in: 2/6/15 Initials A				als AC
	Fed Ex	C UPS		Courier 🦳 Cli	ent	
2. Samples received in: Cooler Box Envelope Other 3. Were custody seals on coolers? Tes No If yes, how many and where? Were they intact? Yes No N/A Were they signed and dated? Yes No N/A 4. Packing Material: Inserts Baggies Bubble Wrap Gel Packs Wet Ice Sleeves Other						
5. Foreign or Regulated Soil? CYes	(No	Location of S	ampling:			
Cooler Tracking Number	COC ID	Date Opened	Time Opened	Opened By	Temp. ℃	Temp Blank?
5478 9741 3409		26/15	927	AL	00	Г
		•			•	Г
						Г

Notes, Discrepancies, & Resolutions:

# of containers on COC:		# of containers received:	
•	Service request Label:	K1501105 5	
Effective 10/04/2013	ALS Environmental - Houston HRMS	Barr Engineering Joslyn OU5 2015 Soli	

4

10450 Stancliff Rd., Suite 210 Houston, TX 77099 T: +1 713 266 1599 F: +1 713 266 1599 www.alsglobal.com

SAMPLE ACCEPTANCE POLICY

This policy outlines the criteria samples must meet to be accepted by ALS Environmental - Houston HRMS.

Cooler Custody Seals (desirable, mandatory if specified in SAP):

 \checkmark Intact on outside of cooler, signed and dated

Chain-of-Custody (COC) documentation (mandatory):

The following is required on each COC:

- ✓ Sample ID, the location, date and time of collection, collector's name, preservation type, sample type, and any other special remarks concerning the sampleThe COC must be completed in ink.
- ✓ Signature and date of relinquishing party.

In the absence of a COC at sample receipt, the COC will be requested from the client.

Sample Integrity (mandatory):

Samples are inspected upon arrival to ensure that sample integrity was not compromised during transfer to the laboratory.

- ✓ Sample containers must arrive in good condition (not broken or leaking).
- ✓ Samples must be labeled appropriately, including Sample IDs, and requested test using durable labels and indelible ink.
- \checkmark The correct type of sample bottle must be used for the method requested.
- ✓ An appropriate sample volume, or weight, must be received.
- \checkmark Sample IDs and number of containers must reconcile with the COC.
- \checkmark Samples must be received within the method defined holding time.

Temperature Requirement (varies by sample matrix):

- \checkmark Aqueous and Non-aqueous samples must be shipped and stored cold, at 0 to 6°C.
- \checkmark Tissue samples must be shipped and stored frozen, at -20 to -10°C.
- \checkmark Air samples are shipped and stored cold, at 0 to 6°C
- \checkmark The sample temperature must be recorded on the COC

All cooler inspections are documented on the Cooler Receipt Form (CRF). A separate CRF is completed for each service request. Any samples not meeting the above criteria are noted on the CRF and the Project Manager notified. The Project Manager must resolve any sample integrity issues with the client prior to proceeding with the analysis. Such resolutions are documented in writing and filed with the project folder. Data associated with samples received outside of this acceptance policy will be qualified on the case narrative of the final report

Preparation Information Benchsheets

ALS Environmental - Houston HRMS 10450 Stancliff Rd., Suite 210, Houston, TX 77099 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Preparation Information Benchsheet

Prep Run#:228939Team:Semivoa GCMS/WMCDONOUGH

Prep WorkFlow: OrgExtDioxS(30)
 Prep Method: Method

Status: Prepped Prep Date/Time: 2/10/15 07:45 AM

#	Lab Code	Client ID	B#	Method /Test	pН	Matrix	Amt. Ext.	Sample Description
1	E1500124-001	010MBDA-TP33	.01	8290/PCDD PCDF		Soil	10.069g	Damp, Brown Soil (w/ rocks)
2	E1500124-002	010MBDA-TP34	.01	8290/PCDD PCDF		Soil	10.344g	Damp, Brown Soil (w/ rocks)
3	E1500124-003	010MBDA-TP35	.01	8290/PCDD PCDF		Soil	10.408g	Damp, Brown Soil (w/ rocks)
4	E1500124-004	010MBDA-TP37	.01	8290/PCDD PCDF		Soil	10.071g	Damp, Brown Soil (w/ rocks)
5	E1500124-005	010MBDA-TP38	.01	8290/PCDD PCDF		Soil	10.295g	Wet, Brown Mud (w/ rocks)
6	E1500124-006	010MBDA-TP39	.01	8290/PCDD PCDF		Soil	10.315g	Damp, Brown Soil (w/ rocks)
7	E1500124-007	010MBDA-TP41	.01	8290/PCDD PCDF		Soil	10.534g	Damp, Brown Soil (w/ rocks)
8	E1500124-008	010MBDA-TP42	.01	8290/PCDD PCDF		Soil	10.304g	Damp, Brown Soil (w/ rocks)
9	E1500124-009	010MBDA-TP43	.01	8290/PCDD PCDF		Soil	10.091g	Damp, Brown Soil (w/ rocks)
10	EQ1500104-01	MB		8290/PCDD PCDF		Solid	10.239g	
11	EQ1500104-02	LCS		8290/PCDD PCDF		Solid	10.517g	
12	EQ1500104-03	010MBDA-TP33 MS	.01	8290/PCDD PCDF		Solid	10.163g	
13	EQ1500104-04	010MBDA-TP33 DMS	.01	8290/PCDD PCDF		Solid	10.048g	
14	K1501105-001	B-1 0.5-2'	.02	8290/PCDD PCDF		Soil	10.295g	Damp, Dark Brown Soil
15	K1501105-002	B-3 3.5-5'	.02	8290/PCDD PCDF		Soil	10.089g	Damp, Dark Brown Soil
16	K1501105-003	C-3 3.5-5'	.02	8290/PCDD PCDF		Soil	10.127g	Damp, Dark Brown Soil
17	K1501105-004	D-1 0.5-2'	.02	8290/PCDD PCDF		Soil	10.233g	Damp, Dark Brown Soil
18	K1501105-005	E-4 3.5-5'	.02	8290/PCDD PCDF		Soil	10.318g	Damp, Dark Brown Soil
19	K1501105-006	F-3 2.5-4'	.02	8290/PCDD PCDF		Soil	10.171g	Damp, Dark Brown Soil

Preparation Information Benchsheet

Prep Run#:228939Team:Semivoa GCMS/WMCDONOUGH

Prep WorkFlow: OrgExtDioxS(30)
 Prep Method: Method

Status: Prepped Prep Date/Time: 2/10/15 07:45 AM

Spiking Solutions

Name: 1613B Matrix Working Standard	Inventory ID 78598	Logbook Ref:	2-20 ng/ml 78598	WM 2/6/15	Expires On: 02/06/2016
EQ1500104-02 100.00μL EQ1500104-03	100.00μL EQ1500104-04 100.0	.00µL			
Name: 1613B Labeled Working Standard	Inventory ID 78659	Logbook Ref:	2-4 ng/ml 78659 V	VM 2/10/15	Expires On: 02/10/2016
	1,000.00µL E1500124-009 1,000	0.00μL E1500124-004 00.00μL EQ1500104-0 00.00μL K1501105-003	1 1,000.00µL	E1500124-005 1,000.00μL EQ1500104-02 1,000.00μL K1501105-004 1,000.00μL	E1500124-006 1,000.00μL EQ1500104-03 1,000.00μL K1501105-005 1,000.00μL
Name: 8290/1613B Cleanup Working Standard	Inventory ID 78669	Logbook Ref:	78669 LM 2/10/15	5 8ng/mL	Expires On: 02/10/2016
E1500124-007 100.00μL E1500124-008	100.00µL E1500124-009 100.0	.00μL E1500124-004 .00μL EQ1500104-0 .00μL K1501105-003	1 100.00μL	E1500124-005 100.00μL EQ1500104-02 100.00μL K1501105-004 100.00μL	E1500124-006 100.00μL EQ1500104-03 100.00μL K1501105-005 100.00μL
Preparation Materials					
Carbon, High Purity AL 01/14/15 (78050)	Ethyl Acetate 99.9% Min EtOAc	nimum LM 09/23/14 (75019	9)	Glass Wool	AL 10/22/14 (75977)
Sulfuric Acid Reagent Grade LM 10/27/14 (76083) H2SO4	Hexanes 95%	LM 2/9/15 (78641)		Dichloromethane (Methylene Chloride) 99.9% MeCl2	LM12/15/14 (77367)
Sodium Chloride Reagent Grade C2-65-5 (38670) NaCl	Sodium Hydroxide Reage Grade NaOH	ent LM 09/02/14 (74232	2)	Sodium Sulfate Anhydrous Reagent Grade Na2SO4	LM 11/25/14 (76864)
Tridecane (n-Tridecane)LM 2/2/15 (78444)Preparation Steps	Silica Gel Reagent Grade	e LM 2/2/15 (78445)		Toluene 99.9% Minimum	AL 01/30/15 (78396)
1 1	1		Step: Final V		
			Started: 2/17/15 Finished: 2/17/15		
			By: CDIAZ		
Comments Comments	Comments		Comments		

Comments:

Reviewed By: rp

Date: 2-21-20015

Preparation Information Benchsheet

Prep Run#:228939Team:Semivoa GCMS/WMCDONOUGH

Prep WorkFlow: OrgExtDioxS(30)
Prep Method: Method

Status: Prepped Prep Date/Time: 2/10/15 07:45 AM

Chain of Custody

 Relinquished By:
 Date:
 Extracts Examined

 Received By:
 Date:
 Yes

Printed 2/21/15 14:49

Analytical Results

ALS Environmental - Houston HRMS 10450 Stancliff Rd., Suite 210, Houston, TX 77099 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Analytical Report

	Analy	tical Report				
Client:	Barr Engineering Company	Service Request:	K1501105			
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 10:25			
Sample Matrix:	Soil	Date Received:	02/04/15 09:40			
Sample Name:	B-1 0.5-2'	Units:	ng/Kg			
Lab Code:	K1501105-001	Basis:	Dry			
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS						
Analysis Method:	8290	Date Analyzed:	02/18/15 17:55			
Prep Method:	Method	Date Extracted:	2/10/15			
Sample Amount:	10.295g	Instrument Name:	E-HRMS-03			
		GC Column:	DB-5MSUI			
Data File Name:	P176385	Blank File Name:	P176384			

ICAL Date: 10/18/14

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	5.88	0.0558	0.603	0.68	1.001	1
1,2,3,7,8-PeCDD	149	0.0931	3.02	1.56	1.000	1
1,2,3,4,7,8-HxCDD	522	1.42	3.02	1.24	1.001	1
1,2,3,6,7,8-HxCDD	11900	46.2	302	1.29	1.000	100
1,2,3,7,8,9-HxCDD	1070	1.33	3.02	1.25	1.007	1
1,2,3,4,6,7,8-HpCDD	453000	432	432	1.05	1.000	100
OCDD	15000000 E	445	603	0.89	1.000	100
2,3,7,8-TCDF	49.8	0.0551	0.603	0.76	1.001	1
1,2,3,7,8-PeCDF	316	0.228	3.02	1.57	1.001	1
2,3,4,7,8-PeCDF	702	0.222	3.02	1.58	1.001	1
1,2,3,4,7,8-HxCDF	4820	399	399	1.21	1.000	100
1,2,3,6,7,8-HxCDF	724	51.8	51.8	1.25	1.000	1
1,2,3,7,8,9-HxCDF	957	49.3	49.3	1.25	1.000	1
2,3,4,6,7,8-HxCDF	1390	52.2	52.2	1.25	1.000	1
1,2,3,4,6,7,8-HpCDF	120000	369	369	1.04	1.000	100
1,2,3,4,7,8,9-HpCDF	8990	497	497	1.02	1.000	100
OCDF	3160000	337	603	0.89	1.005	100
Total Tetra-Dioxins	86.0	0.0558	0.603	0.81		1
Total Penta-Dioxins	573	0.0931	3.02	1.59		1
Total Hexa-Dioxins	22000	1.39	3.02	1.25		1
Total Hepta-Dioxins	223000	0.838	3.02	1.02		1
Total Tetra-Furans	238	0.0551	0.603	0.79		1
Total Penta-Furans	4740	0.0233	3.02	1.57		1
Total Hexa-Furans	53900	51.4	51.4	1.25		1
Total Hepta-Furans	141000	109	109	1.03		1

Analytical Report

	Analytical	Cepoir			
Client:	Barr Engineering Company	Service Request:	K1501105		
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 10:25		
Sample Matrix:	Soil	Date Received:	02/04/15 09:40		
Sample Name:	B-1 0.5-2'	Units:	Percent		
Lab Code:	K1501105-001	Basis:	Dry		
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS					
Analysis Method:	8290	Date Analyzed:	02/18/15 17:55		
Prep Method:	Method	Date Extracted:	2/10/15		
Sample Amount:	10.295g	Instrument Name:	E-HRMS-03		
		GC Column:	DB-5MSUI		
Data File Name:	P176385	Blank File Name:	P176384		

Labeled Standard Results

	Spike	Conc.		_	Control	Ion	
Labeled Compounds	Conc.(pg)	Found (pg)	% Rec	Q	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1676.071	84		40-135	0.80	1.018
13C-1,2,3,7,8-PeCDD	2000	1779.064	89		40-135	1.59	1.168
13C-1,2,3,4,7,8-HxCDD	2000	1353.660	68		40-135	1.26	0.991
13C-1,2,3,6,7,8-HxCDD	2000	1255.947	63		40-135	1.27	0.993
13C-1,2,3,4,6,7,8-HpCDD	2000	728.024	36	Y	40-135	1.10	1.065
13C-OCDD	4000	345.184	9	K	40-135	1.17	1.142
13C-2,3,7,8-TCDF	2000	1694.943	85		40-135	0.78	0.993
13C-1,2,3,7,8-PeCDF	2000	1748.991	87		40-135	1.59	1.129
13C-2,3,4,7,8-PeCDF	2000	1785.046	89		40-135	1.60	1.159
13C-1,2,3,4,7,8-HxCDF	2000	1386.532	69		40-135	0.53	0.972
13C-1,2,3,6,7,8-HxCDF	2000	1281.245	64		40-135	0.53	0.975
13C-1,2,3,7,8,9-HxCDF	2000	1521.775	76		40-135	0.53	1.008
13C-2,3,4,6,7,8-HxCDF	2000	1385.013	69		40-135	0.53	0.988
13C-1,2,3,4,6,7,8-HpCDF	2000	721.469	36	Y	40-135	0.48	1.040
13C-1,2,3,4,7,8,9-HpCDF	2000	1115.065	56		40-135	0.44	1.078
37Cl-2,3,7,8-TCDD	800	754.783	94		40-135	NA	1.019

ICAL Date:

10/18/14

Analytical Report

Client:	Barr Engineering Company	Service Request: K1501105		
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected: 02/02/15 10:25		
Sample Matrix:	Soil	Date Received: 02/04/15 09:40		
Sample Name:	B-1 0.5-2'	Units: ng/Kg		
Lab Code:	K1501105-001	Basis: Dry		
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS				

oiy(olyc bу

Analysis Method: Prep Method:

8290 Method

Toxicity Equivalency Quotient

Analyte Name	Result	DL	MRL	Dilution Factor	TEF	TEF - Adjusted Concentration
2,3,7,8-TCDD	<u>5.88</u>	0.0558	0.603	1	1	5.88
1,2,3,7,8-PeCDD	149	0.0931	3.02	1	1	149
1,2,3,4,7,8-HxCDD	522	1.42	3.02	1	0.1	52.2
1,2,3,6,7,8-HxCDD	11900	46.2	302	100	0.1	1190
1,2,3,7,8,9-HxCDD	1070	1.33	3.02	1	0.1	107
1,2,3,4,6,7,8-HpCDD	453000	432	432	100	0.01	4530
OCDD	15000000	445	603	100	0.0003	4500
2,3,7,8-TCDF	49.8	0.0551	0.603	1	0.1	4.98
1,2,3,7,8-PeCDF	316	0.228	3.02	1	0.03	9.48
2,3,4,7,8-PeCDF	702	0.222	3.02	1	0.3	211
1,2,3,4,7,8-HxCDF	4820	399	399	100	0.1	482
1,2,3,6,7,8-HxCDF	724	51.8	51.8	1	0.1	72.4
1,2,3,7,8,9-HxCDF	957	49.3	49.3	1	0.1	95.7
2,3,4,6,7,8-HxCDF	1390	52.2	52.2	1	0.1	139
1,2,3,4,6,7,8-HpCDF	120000	369	369	100	0.01	1200
1,2,3,4,7,8,9-HpCDF	8990	497	497	100	0.01	89.9
OCDF	3160000	337	603	100	0.0003	948
	Te	otal TEQ				13800

2005 WHO TEFs, ND = 0

Analytical Report

	Analytical Report					
Client:	Barr Engineering Company	Service Request:	K1501105			
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 14:10			
Sample Matrix:	Soil	Date Received:	02/04/15 09:40			
Sample Name:	B-3 3.5-5'	Units:	ng/Kg			
Lab Code:	K1501105-002	Basis:	Dry			
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS						
Analysis Method:	8290	Date Analyzed:	02/18/15 18:42			
Prep Method:	Method	Date Extracted:	2/10/15			
Sample Amount:	10.089g	Instrument Name:	E-HRMS-03			
		GC Column:	DD 5MGUI			
		GC Column:	DB-SWISUI			

Native Analyte Results

					Ion		Dilution
Analyte Name		Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD		U	0.572	2.24			1
1,2,3,7,8-PeCDD	14.5		2.74	11.2	1.47	1.000	1
1,2,3,4,7,8-HxCDD	160		6.57	11.2	1.24	1.000	1
1,2,3,6,7,8-HxCDD	3430		6.77	11.2	1.26	1.000	1
1,2,3,7,8,9-HxCDD	306		6.21	11.2	1.32	1.006	1
1,2,3,4,6,7,8-HpCDD	192000		673	1120	1.04	1.001	100
OCDD	3730000		901	2240	0.89	1.000	100
2,3,7,8-TCDF	ND	U	0.622	2.24			1
1,2,3,7,8-PeCDF	3.22 J		1.17	11.2	1.52	1.001	1
2,3,4,7,8-PeCDF	2.51 J		1.11	11.2	1.43	1.000	1
1,2,3,4,7,8-HxCDF	443 P		3.73	11.2	1.29	1.000	1
1,2,3,6,7,8-HxCDF	ND	U	3.74	11.2			1
1,2,3,7,8,9-HxCDF	ND	U	4.35	11.2			1
2,3,4,6,7,8-HxCDF	197		3.95	11.2	1.23	1.000	1
1,2,3,4,6,7,8-HpCDF	57800		1230	1230	1.03	1.000	100
1,2,3,4,7,8,9-HpCDF	1800		74.7	74.7	1.04	1.000	1
OCDF	856000		655	2240	0.90	1.005	100
Total Tetra-Dioxins	128		0.572	2.24	0.77		1
Total Penta-Dioxins	1560		2.74	11.2	1.56		1
Total Hexa-Dioxins	21500		6.51	11.2	1.25		1
Total Hepta-Dioxins	245000		84.1	84.1	1.04		1
Total Tetra-Furans	76.2		0.622	2.24	0.76		1
Total Penta-Furans	857		0.510	11.2	1.56		1
Total Hexa-Furans	28600		3.93	11.2	1.24		1
Total Hepta-Furans	200000		76.5	76.5	1.04		1

Data File Name:

ICAL Date:

P176386

10/18/14

Blank File Name: P176384

Analytical Report

	Analytic	a Report			
Client:	Barr Engineering Company	Service Request:	K1501105		
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 14:10		
Sample Matrix:	Soil	Date Received:	02/04/15 09:40		
Sample Name:	B-3 3.5-5'	Units:	Percent		
Lab Code:	K1501105-002	Basis:	Dry		
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS					
Analysis Method:	8290	Date Analyzed:	02/18/15 18:42		
Prep Method:	Method	Date Extracted:	2/10/15		
Sample Amount:	10.089g	Instrument Name:	E-HRMS-03		
		GC Column:	DB-5MSUI		
Data File Name:	P176386	Blank File Name:	P176384		
ICAL Date:	10/18/14	Cal Ver. File Name:	P176382		
	Labeled Stan	dard Results			

Spike Conc. Control Ion Found (pg) Ratio RRT Labeled Compounds Conc.(pg) % Rec Q Limits 2000 1343.224 40-135 13C-2,3,7,8-TCDD 0.78 1.018 67 2000 1491.451 40-135 13C-1,2,3,7,8-PeCDD 75 1.58 1.168 40-135 2000 1198.163 60 1.36 0.992 13C-1,2,3,4,7,8-HxCDD 2000 1076.861 40-135 54 13C-1,2,3,6,7,8-HxCDD 1.20 0.994 2000 767.980 38 Y 40-135 13C-1,2,3,4,6,7,8-HpCDD 1.06 1.066 4000 Y 13C-OCDD 616.023 15 40-135 0.94 1.143 2000 1326.508 66 40-135 0.79 0.993 13C-2,3,7,8-TCDF 2000 1417.286 40-135 13C-1,2,3,7,8-PeCDF 71 1.58 1.129 2000 1477.008 74 40-135 13C-2,3,4,7,8-PeCDF 1.58 1.159 2000 1199.429 60 40-135 13C-1,2,3,4,7,8-HxCDF 0.53 0.973 2000 1106.657 55 40-135 13C-1,2,3,6,7,8-HxCDF 0.53 0.976 2000 1253.470 63 40-135 13C-1,2,3,7,8,9-HxCDF 0.53 1.008 13C-2,3,4,6,7,8-HxCDF 2000 1162.422 58 40-135 0.52 0.988 29 13C-1,2,3,4,6,7,8-HpCDF 2000 579.892 Y 40-135 0.45 1.041 13C-1,2,3,4,7,8,9-HpCDF 2000 942.595 47 40-135 0.45 1.079 800 647.153 81 40-135 37Cl-2,3,7,8-TCDD NA 1.019

Analytical Report

Client:	Barr Engineering Company	Service Request:	K1501105	
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 14:10	
Sample Matrix:	Soil	Date Received:	02/04/15 09:40	
Sample Name:	B-3 3.5-5'	Units:	ng/Kg	
Lab Code:	K1501105-002	Basis:	Dry	
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS				

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analysis Method:	82
Prep Method:	M

8290 ethod

Toxicity Equivalency Quotient

Analyte Name	Result	DL	MRL	Dilution Factor	TEF	TEF - Adjusted Concentration
2,3,7,8-TCDD	ND	0.572	2.24	<u>1</u>	1	Concentration
1,2,3,7,8-PeCDD	14.5	2.74	11.2	1	1	14.5
1,2,3,4,7,8-HxCDD	160	6.57	11.2	1	0.1	16.0
1,2,3,6,7,8-HxCDD	3430	6.77	11.2	1	0.1	343
1,2,3,7,8,9-HxCDD	306	6.21	11.2	1	0.1	30.6
1,2,3,4,6,7,8-HpCDD	192000	673	1120	100	0.01	1920
OCDD	3730000	901	2240	100	0.0003	1120
2,3,7,8-TCDF	ND	0.622	2.24	1	0.1	
1,2,3,7,8-PeCDF	3.22	1.17	11.2	1	0.03	0.0966
2,3,4,7,8-PeCDF	2.51	1.11	11.2	1	0.3	0.753
1,2,3,4,7,8-HxCDF	443	3.73	11.2	1	0.1	44.3
1,2,3,6,7,8-HxCDF	ND	3.74	11.2	1	0.1	
1,2,3,7,8,9-HxCDF	ND	4.35	11.2	1	0.1	
2,3,4,6,7,8-HxCDF	197	3.95	11.2	1	0.1	19.7
1,2,3,4,6,7,8-HpCDF	57800	1230	1230	100	0.01	578
1,2,3,4,7,8,9-HpCDF	1800	74.7	74.7	1	0.01	18.0
OCDF	856000	655	2240	100	0.0003	257
	Te	otal TEQ				4360

2005 WHO TEFs, ND = 0

Analytical Report

	Analytical Repo	ort			
Client:	Barr Engineering Company	Service Request:	K1501105		
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 13:35		
Sample Matrix:	Soil	Date Received:	02/04/15 09:40		
Sample Name:	C-3 3.5-5'	Units:	ng/Kg		
Lab Code:	K1501105-003	Basis:	Dry		
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS					
Analysis Method:	8290	Date Analyzed:	02/20/15 21:45		
Prep Method:	Method	Date Extracted:	2/10/15		
Sample Amount:	10.127g	Instrument Name:	E-HRMS-03		
	8	instrument i (unie)			
		GC Column:	DB-5MSUI		

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	ND U	0.156	2.23			1
1,2,3,7,8-PeCDD	11.8	0.337	11.2	1.54	1.000	1
1,2,3,4,7,8-HxCDD	79.0	10.2	11.2	1.30	1.000	1
1,2,3,6,7,8-HxCDD	6270	10.7	11.2	1.24	1.000	1
1,2,3,7,8,9-HxCDD	385	9.68	11.2	1.25	1.006	1
1,2,3,4,6,7,8-HpCDD	290000	700	1120	1.04	1.000	100
OCDD	5390000	972	2230	0.90	1.000	100
2,3,7,8-TCDF	61.3	0.180	2.23	0.75	1.000	1
1,2,3,7,8-PeCDF	411	0.644	11.2	1.60	1.000	1
2,3,4,7,8-PeCDF	3.39 J	0.609	11.2	1.38	0.998	1
1,2,3,4,7,8-HxCDF	3630	47.4	47.4	1.25	1.000	1
1,2,3,6,7,8-HxCDF	741	46.1	46.1	1.16	1.000	1
1,2,3,7,8,9-HxCDF	1400	53.8	53.8	1.24	1.001	1
2,3,4,6,7,8-HxCDF	1230	47.3	47.3	1.25	1.001	1
1,2,3,4,6,7,8-HpCDF	141000	1230	1230	1.03	1.000	100
1,2,3,4,7,8,9-HpCDF	5500	123	123	1.05	1.000	1
OCDF	1850000	1840	2230	0.90	1.005	100
Total Tetra-Dioxins	249	0.156	2.23	0.75		1
Total Penta-Dioxins	2940	0.337	11.2	1.56		1
Total Hexa-Dioxins	29100	10.2	11.2	1.25		1
Total Hepta-Dioxins	322000	42.2	42.2	1.04		1
Total Tetra-Furans	436	0.180	2.23	0.73		1
Total Penta-Furans	6350	0.0983	11.2	1.54		1
Total Hexa-Furans	94700	48.5	48.5	1.25		1
Total Hepta-Furans	292000	130	130	1.05		1

ICAL Date:

10/18/14

Analytical Report

	Allal	yilear Report			
Client:	Barr Engineering Company	Service Request:	K1501105		
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 13:35		
Sample Matrix:	Soil	Date Received:	02/04/15 09:40		
Sample Name:	C-3 3.5-5'	Units:	Percent		
Lab Code:	K1501105-003	Basis:	Dry		
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS					
Analysis Method:	8290	Date Analyzed:	02/20/15 21:45		
Prep Method:	Method	Date Extracted:	2/10/15		
Sample Amount:	10.127g	Instrument Name:	E-HRMS-03		
		GC Column:	DB-5MSUI		
Data File Name:	P176444	Blank File Name:	P176384		
ICAL Date:	10/18/14	Cal Ver. File Name:	P176440		

	Spike	Conc.			Control	Ion	
Labeled Compounds	Conc.(pg)	Found (pg)	% Rec	Q	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1416.606	71		40-135	0.78	1.018
13C-1,2,3,7,8-PeCDD	2000	1516.605	76		40-135	1.58	1.168
13C-1,2,3,4,7,8-HxCDD	2000	1156.371	58		40-135	1.25	0.992
13C-1,2,3,6,7,8-HxCDD	2000	1048.200	52		40-135	1.24	0.994
13C-1,2,3,4,6,7,8-HpCDD	2000	755.810	38	Y	40-135	1.09	1.066
13C-OCDD	4000	469.100	12	Y	40-135	0.99	1.142
13C-2,3,7,8-TCDF	2000	1358.231	68		40-135	0.78	0.994
13C-1,2,3,7,8-PeCDF	2000	1428.797	71		40-135	1.57	1.130
13C-2,3,4,7,8-PeCDF	2000	1480.006	74		40-135	1.58	1.159
13C-1,2,3,4,7,8-HxCDF	2000	1126.974	56		40-135	0.52	0.972
13C-1,2,3,6,7,8-HxCDF	2000	1036.210	52		40-135	0.52	0.975
13C-1,2,3,7,8,9-HxCDF	2000	1202.198	60		40-135	0.52	1.008
13C-2,3,4,6,7,8-HxCDF	2000	1098.444	55		40-135	0.53	0.988
13C-1,2,3,4,6,7,8-HpCDF	2000	523.811	26	Y	40-135	0.47	1.040
13C-1,2,3,4,7,8,9-HpCDF	2000	895.408	45		40-135	0.44	1.079
37Cl-2,3,7,8-TCDD	800	646.424	81		40-135	NA	1.019

Labeled Standard Results

Analytical Report

Client:	Barr Engineering Company	Service Request:	K1501105
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 13:35
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	C-3 3.5-5'	Units:	ng/Kg
Lab Code:	K1501105-003	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlorina	ated Dibenzofurans by HRGC/HRMS	

Analysis Method:82Prep Method:Method:

8290 Method

Toxicity Equivalency Quotient

Analyte Name	Result	DL	MRL	Dilution Factor	TEF	TEF - Adjusted Concentration
2,3,7,8-TCDD	ND	0.156	2.23	1	1	
1,2,3,7,8-PeCDD	11.8	0.337	11.2	1	1	11.8
1,2,3,4,7,8-HxCDD	79.0	10.2	11.2	1	0.1	7.90
1,2,3,6,7,8-HxCDD	6270	10.7	11.2	1	0.1	627
1,2,3,7,8,9-HxCDD	385	9.68	11.2	1	0.1	38.5
1,2,3,4,6,7,8-HpCDD	290000	700	1120	100	0.01	2900
OCDD	5390000	972	2230	100	0.0003	1620
2,3,7,8-TCDF	61.3	0.180	2.23	1	0.1	6.13
1,2,3,7,8-PeCDF	411	0.644	11.2	1	0.03	12.3
2,3,4,7,8-PeCDF	3.39	0.609	11.2	1	0.3	1.02
1,2,3,4,7,8-HxCDF	3630	47.4	47.4	1	0.1	363
1,2,3,6,7,8-HxCDF	741	46.1	46.1	1	0.1	74.1
1,2,3,7,8,9-HxCDF	1400	53.8	53.8	1	0.1	140
2,3,4,6,7,8-HxCDF	1230	47.3	47.3	1	0.1	123
1,2,3,4,6,7,8-HpCDF	141000	1230	1230	100	0.01	1410
1,2,3,4,7,8,9-HpCDF	5500	123	123	1	0.01	55.0
OCDF	1850000	1840	2230	100	0.0003	555
	Te	otal TEQ				7940

2005 WHO TEFs, ND = 0

Analytical Report

	Analytic	al Report			
Client:	Barr Engineering Company	Service Request:	K1501105		
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 10:55		
Sample Matrix:	Soil	Date Received:	02/04/15 09:40		
Sample Name:	D-1 0.5-2'	Units:	ng/Kg		
Lab Code:	K1501105-004	Basis:	Dry		
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS					
Analysis Method:	8290	Date Analyzed:	02/18/15 20:18		
Prep Method:	Method	Date Extracted:	2/10/15		
Sample Amount:	10.233g	Instrument Name:	E-HRMS-03		
		GC Column:	DB-5MSUI		
Data File Name:	P176388	Blank File Name:	P176384		

ICAL Date: 10/18/14

Native Analyte Results

					Ion		Dilution
Analyte Name	Result	Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	24.1		0.0839	0.557	0.75	1.001	1
1,2,3,7,8-PeCDD	521		0.456	2.78	1.55	1.000	1
1,2,3,4,7,8-HxCDD	1700		1.49	2.78	1.24	1.000	1
1,2,3,6,7,8-HxCDD	21400		70.3	278	1.24	1.000	100
1,2,3,7,8,9-HxCDD	4160		61.8	278	1.23	1.007	100
1,2,3,4,6,7,8-HpCDD	650000		409	409	1.04	1.000	100
OCDD	5200000		469	557	0.89	1.000	100
2,3,7,8-TCDF	201		0.116	0.557	0.78	1.001	1
1,2,3,7,8-PeCDF	950		0.408	2.78	1.56	1.001	1
2,3,4,7,8-PeCDF	3090		24.2	278	1.53	1.001	100
1,2,3,4,7,8-HxCDF	16800		167	278	1.24	1.000	100
1,2,3,6,7,8-HxCDF	3170		149	278	1.21	1.000	100
1,2,3,7,8,9-HxCDF	4190		179	278	1.31	1.001	100
2,3,4,6,7,8-HxCDF	5320		147	278	1.16	1.000	100
1,2,3,4,6,7,8-HpCDF	151000		453	453	1.04	1.000	100
1,2,3,4,7,8,9-HpCDF	15400		603	603	1.10	1.000	100
OCDF	2800000		1160	1160	0.89	1.005	100
Total Tetra-Dioxins	214		0.0839	0.557	0.75		1
Total Penta-Dioxins	1500		0.456	2.78	1.55		1
Total Hexa-Dioxins	47600		1.36	2.78	1.25		1
Total Hepta-Dioxins	162000		91.2	91.2	1.01		1
Total Tetra-Furans	826		0.116	0.557	0.78		1
Total Penta-Furans	16600		0.145	2.78	1.56		1
Total Hexa-Furans	61500		39.9	39.9	1.25		1
Total Hepta-Furans	148000		110	110	1.02		1

Analytical Report

	Allalytica	report	
Client:	Barr Engineering Company	Service Request:	K1501105
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 10:55
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	D-1 0.5-2'	Units:	Percent
Lab Code:	K1501105-004	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polych	orinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	02/18/15 20:18
Prep Method:	Method	Date Extracted:	2/10/15
Sample Amount:	10.233g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5MSUI
Data File Name:	P176388	Blank File Name:	P176384

Cal Ver. File Name: P176382

Labeled Standard Results

	Spike	Conc.			Control	Ion	
Labeled Compounds	Conc.(pg)	Found (pg)	% Rec	Q	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1797.560	90		40-135	0.78	1.018
13C-1,2,3,7,8-PeCDD	2000	1977.423	99		40-135	1.57	1.167
13C-1,2,3,4,7,8-HxCDD	2000	1240.860	62		40-135	1.27	0.991
13C-1,2,3,6,7,8-HxCDD	2000	1261.341	63		40-135	1.26	0.993
13C-1,2,3,4,6,7,8-HpCDD	2000	610.585	31	Y	40-135	1.12	1.062
13C-OCDD	4000	287.621	7	K	40-135	1.43	1.139
13C-2,3,7,8-TCDF	2000	1820.001	91		40-135	0.78	0.994
13C-1,2,3,7,8-PeCDF	2000	1929.160	96		40-135	1.59	1.128
13C-2,3,4,7,8-PeCDF	2000	1886.098	94		40-135	1.60	1.158
13C-1,2,3,4,7,8-HxCDF	2000	1301.064	65		40-135	0.53	0.970
13C-1,2,3,6,7,8-HxCDF	2000	1313.997	66		40-135	0.53	0.973
13C-1,2,3,7,8,9-HxCDF	2000	860.230	43		40-135	0.54	1.007
13C-2,3,4,6,7,8-HxCDF	2000	1145.014	57		40-135	0.53	0.987
13C-1,2,3,4,6,7,8-HpCDF	2000	720.735	36	Y	40-135	0.50	1.037
13C-1,2,3,4,7,8,9-HpCDF	2000	1135.576	57		40-135	0.45	1.074
37Cl-2,3,7,8-TCDD	800	845.073	106		40-135	NA	1.019

ICAL Date:

10/18/14

Analytical Report

Client:	Barr Engineering Company	Service Request:	K1501105		
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 10:55		
Sample Matrix:	Soil	Date Received:	02/04/15 09:40		
Sample Name:	D-1 0.5-2'	Units:	ng/Kg		
Lab Code:	K1501105-004	Basis:	Dry		
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS					

Analysis Method:82Prep Method:Method:

8290 Method

Toxicity Equivalency Quotient

Analyte Name	Result	DL	MRL	Dilution Factor	TEF	TEF - Adjusted Concentration
2,3,7,8-TCDD	24.1	0.0839	0.557	1	1	24.1
1,2,3,7,8-PeCDD	521	0.456	2.78	1	1	521
1,2,3,4,7,8-HxCDD	1700	1.49	2.78	1	0.1	170
1,2,3,6,7,8-HxCDD	21400	70.3	278	100	0.1	2140
1,2,3,7,8,9-HxCDD	4160	61.8	278	100	0.1	416
1,2,3,4,6,7,8-HpCDD	650000	409	409	100	0.01	6500
OCDD	5200000	469	557	100	0.0003	1560
2,3,7,8-TCDF	201	0.116	0.557	1	0.1	20.1
1,2,3,7,8-PeCDF	950	0.408	2.78	1	0.03	28.5
2,3,4,7,8-PeCDF	3090	24.2	278	100	0.3	927
1,2,3,4,7,8-HxCDF	16800	167	278	100	0.1	1680
1,2,3,6,7,8-HxCDF	3170	149	278	100	0.1	317
1,2,3,7,8,9-HxCDF	4190	179	278	100	0.1	419
2,3,4,6,7,8-HxCDF	5320	147	278	100	0.1	532
1,2,3,4,6,7,8-HpCDF	151000	453	453	100	0.01	1510
1,2,3,4,7,8,9-HpCDF	15400	603	603	100	0.01	154
OCDF	2800000	1160	1160	100	0.0003	840
	Te	otal TEQ				17800

2005 WHO TEFs, ND = 0

Analytical Report

	Analytica	l Report	
Client:	Barr Engineering Company	Service Request:	K1501105
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 12:55
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	E-4 3.5-5'	Units:	ng/Kg
Lab Code:	K1501105-005	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polych	lorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	02/18/15 21:07
Prep Method:	Method	Date Extracted:	2/10/15
Sample Amount:	10.318g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5MSUI
Data File Name:	P176389	Blank File Name:	P176384

ICAL Date: 10/18/14

Native Analyte Results

	D	0			Ion	DDT	Dilution
Analyte Name	Result	Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	6.54		0.684	2.20	0.75	1.001	1
1,2,3,7,8-PeCDD	66.4		1.96	11.0	1.59	1.000	1
1,2,3,4,7,8-HxCDD	164		7.08	11.0	1.24	1.000	1
1,2,3,6,7,8-HxCDD	634		8.01	11.0	1.26	1.000	1
1,2,3,7,8,9-HxCDD	487		7.01	11.0	1.23	1.005	1
1,2,3,4,6,7,8-HpCDD	40500		105	110	1.05	1.000	10
OCDD	366000		20.7	220	0.89	1.000	10
2,3,7,8-TCDF	6.36		0.914	2.20	0.85	1.001	1
1,2,3,7,8-PeCDF	34.2		2.20	11.0	1.61	1.001	1
2,3,4,7,8-PeCDF	25.8		2.21	11.0	1.47	1.000	1
1,2,3,4,7,8-HxCDF	260		7.43	11.0	1.27	1.000	1
1,2,3,6,7,8-HxCDF	72.5		7.26	11.0	1.21	1.000	1
1,2,3,7,8,9-HxCDF	144		7.31	11.0	1.26	1.000	1
2,3,4,6,7,8-HxCDF	112		7.66	11.0	1.25	1.000	1
1,2,3,4,6,7,8-HpCDF	3730		15.6	15.6	1.04	1.000	1
1,2,3,4,7,8,9-HpCDF	279		15.2	15.2	1.03	1.000	1
OCDF	29900		40.0	220	0.89	1.005	10
Total Tetra-Dioxins	128		0.684	2.20	0.66		1
Total Penta-Dioxins	794		1.96	11.0	1.57		1
Total Hexa-Dioxins	14200		7.35	11.0	1.25		1
Total Hepta-Dioxins	116000		50.7	50.7	1.04		1
Total Tetra-Furans	59.8		0.914	2.20	0.70		1
Total Penta-Furans	830		1.10	11.0	1.56		1
Total Hexa-Furans	5150		7.42	11.0	1.19		1
Total Hepta-Furans	19500		15.3	15.3	1.04		1

Analytical Report

	7 Hidry tied	report	
Client:	Barr Engineering Company	Service Request:	K1501105
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 12:55
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	E-4 3.5-5'	Units:	Percent
Lab Code:	K1501105-005	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polych	orinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	02/18/15 21:07
Prep Method:	Method	Date Extracted:	2/10/15
Sample Amount:	10.318g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5MSUI
Data File Name:	P176389	Blank File Name:	P176384
ICAL Date:	10/18/14	Cal Ver. File Name:	P176382

	Spike	Conc.			Control	Ion	
Labeled Compounds	Conc.(pg)	Found (pg)	% Rec	Q	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1674.524	84		40-135	0.79	1.018
13C-1,2,3,7,8-PeCDD	2000	1732.418	87		40-135	1.57	1.168
13C-1,2,3,4,7,8-HxCDD	2000	1408.160	70		40-135	1.32	0.990
13C-1,2,3,6,7,8-HxCDD	2000	1168.232	58		40-135	1.20	0.993
13C-1,2,3,4,6,7,8-HpCDD	2000	1023.980	51		40-135	1.06	1.063
13C-OCDD	4000	1396.740	35	Y	40-135	0.92	1.139
13C-2,3,7,8-TCDF	2000	1617.154	81		40-135	0.78	0.993
13C-1,2,3,7,8-PeCDF	2000	1683.906	84		40-135	1.58	1.129
13C-2,3,4,7,8-PeCDF	2000	1701.088	85		40-135	1.60	1.159
13C-1,2,3,4,7,8-HxCDF	2000	1331.321	67		40-135	0.53	0.971
13C-1,2,3,6,7,8-HxCDF	2000	1235.106	62		40-135	0.53	0.974
13C-1,2,3,7,8,9-HxCDF	2000	1353.509	68		40-135	0.53	1.008
13C-2,3,4,6,7,8-HxCDF	2000	1323.166	66		40-135	0.53	0.987
13C-1,2,3,4,6,7,8-HpCDF	2000	698.958	35	Y	40-135	0.45	1.038
13C-1,2,3,4,7,8,9-HpCDF	2000	1033.131	52		40-135	0.45	1.076
37Cl-2,3,7,8-TCDD	800	762.687	95		40-135	NA	1.019

Labeled Standard Results

Analytical Report

Client:	Barr Engineering Company	Service Request:	K1501105		
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 12:55		
Sample Matrix:	Soil	Date Received:	02/04/15 09:40		
Sample Name:	E-4 3.5-5'	Units:	ng/Kg		
Lab Code:	K1501105-005	Basis:	Dry		
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS					

Analysis Method:	82
Prep Method:	M

8290 Method

Toxicity Equivalency Quotient

Analyte Name	Result	DL	MRL	Dilution Factor	TEF	TEF - Adjusted Concentration
2,3,7,8-TCDD	6.54	0.684	2.20	1	1	6.54
1,2,3,7,8-PeCDD	66.4	1.96	11.0	1	1	66.4
1,2,3,4,7,8-HxCDD	164	7.08	11.0	1	0.1	16.4
1,2,3,6,7,8-HxCDD	634	8.01	11.0	1	0.1	63.4
1,2,3,7,8,9-HxCDD	487	7.01	11.0	1	0.1	48.7
1,2,3,4,6,7,8-HpCDD	40500	105	110	10	0.01	405
OCDD	366000	20.7	220	10	0.0003	110
2,3,7,8-TCDF	6.36	0.914	2.20	1	0.1	0.636
1,2,3,7,8-PeCDF	34.2	2.20	11.0	1	0.03	1.03
2,3,4,7,8-PeCDF	25.8	2.21	11.0	1	0.3	7.74
1,2,3,4,7,8-HxCDF	260	7.43	11.0	1	0.1	26.0
1,2,3,6,7,8-HxCDF	72.5	7.26	11.0	1	0.1	7.25
1,2,3,7,8,9-HxCDF	144	7.31	11.0	1	0.1	14.4
2,3,4,6,7,8-HxCDF	112	7.66	11.0	1	0.1	11.2
1,2,3,4,6,7,8-HpCDF	3730	15.6	15.6	1	0.01	37.3
1,2,3,4,7,8,9-HpCDF	279	15.2	15.2	1	0.01	2.79
OCDF	29900	40.0	220	10	0.0003	8.97
	Te	otal TEQ				834

2005 WHO TEFs, ND = 0

Analytical Report

Analytical Report							
Client:	Barr Engineering Company	Service Request:	K1501105				
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 12:20				
Sample Matrix:	Soil	Date Received:	02/04/15 09:40				
Sample Name:	F-3 2.5-4'	Units:	ng/Kg				
Lab Code:	K1501105-006	Basis:	Dry				
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS							
Analysis Method:	8290	Date Analyzed:	02/18/15 21:55				
Prep Method:	Method	Date Extracted:	2/10/15				
Sample Amount:	10.171g	Instrument Name:	E-HRMS-03				
		GC Column:	DB-5MSUI				
Data File Name:	P176390	Blank File Name:	P176384				

10/18/14

ICAL Date:

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	21.6	0.424	1.57	0.77	1.001	1
1,2,3,7,8-PeCDD	119	5.15	7.85	1.50	1.000	1
1,2,3,4,7,8-HxCDD	538	7.98	7.98	1.36	1.000	1
1,2,3,6,7,8-HxCDD	2560	9.15	9.15	1.21	1.000	1
1,2,3,7,8,9-HxCDD	995	7.95	7.95	1.25	1.008	1
1,2,3,4,6,7,8-HpCDD	122000	208	785	1.05	1.000	100
OCDD	1450000	233	1570	0.88	1.000	100
2,3,7,8-TCDF	27.0	0.388	1.57	0.76	1.001	1
1,2,3,7,8-PeCDF	75.4	6.58	7.85	1.56	1.001	1
2,3,4,7,8-PeCDF	179	6.66	7.85	1.59	1.001	1
1,2,3,4,7,8-HxCDF	720 P	7.41	7.85	1.25	1.000	1
1,2,3,6,7,8-HxCDF	330	7.57	7.85	1.24	1.000	1
1,2,3,7,8,9-HxCDF	358	8.10	8.10	1.26	1.000	1
2,3,4,6,7,8-HxCDF	473	8.25	8.25	1.24	1.000	1
1,2,3,4,6,7,8-HpCDF	30700	311	785	1.03	1.000	100
1,2,3,4,7,8,9-HpCDF	1220	12.3	12.3	1.05	1.000	1
OCDF	228000	197	1570	0.90	1.005	100
Total Tetra-Dioxins	1310	0.424	1.57	0.77		1
Total Penta-Dioxins	5720	5.15	7.85	1.55		1
Total Hexa-Dioxins	28400	8.34	8.34	1.25		1
Total Hepta-Dioxins	174000	43.6	43.6	1.04		1
Total Tetra-Furans	524	0.388	1.57	0.73		1
Total Penta-Furans	3360	0.584	7.85	1.56		1
Total Hexa-Furans	26800	7.82	7.85	1.22		1
Total Hepta-Furans	104000	12.5	12.5	1.04		1

Analytical Report

	7 thury trout	Report	
Client:	Barr Engineering Company	Service Request:	K1501105
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 12:20
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	F-3 2.5-4'	Units:	Percent
Lab Code:	K1501105-006	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlorinated	orinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	02/18/15 21:55
Prep Method:	Method	Date Extracted:	2/10/15
Sample Amount:	10.171g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5MSUI
Data File Name:	P176390	Blank File Name:	P176384
ICAL Date:	10/18/14	Cal Ver. File Name:	P176382

	Spike	Conc.			Control	Ion	
Labeled Compounds	Conc.(pg)	Found (pg)	% Rec	0	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1643.515	82		40-135	0.78	1.018
13C-1,2,3,7,8-PeCDD	2000	1690.259	85		40-135	1.57	1.168
13C-1,2,3,4,7,8-HxCDD	2000	1363.474	68		40-135	1.24	0.990
13C-1,2,3,6,7,8-HxCDD	2000	1141.167	57		40-135	1.25	0.993
13C-1,2,3,4,6,7,8-HpCDD	2000	898.316	45		40-135	1.03	1.063
13C-OCDD	4000	1082.687	27	Y	40-135	0.95	1.139
13C-2,3,7,8-TCDF	2000	1640.436	82		40-135	0.79	0.993
13C-1,2,3,7,8-PeCDF	2000	1665.039	83		40-135	1.59	1.129
13C-2,3,4,7,8-PeCDF	2000	1652.941	83		40-135	1.59	1.159
13C-1,2,3,4,7,8-HxCDF	2000	1359.163	68		40-135	0.52	0.971
13C-1,2,3,6,7,8-HxCDF	2000	1230.484	62		40-135	0.53	0.973
13C-1,2,3,7,8,9-HxCDF	2000	1258.137	63		40-135	0.54	1.008
13C-2,3,4,6,7,8-HxCDF	2000	1315.966	66		40-135	0.52	0.987
13C-1,2,3,4,6,7,8-HpCDF	2000	705.563	35	Y	40-135	0.45	1.038
13C-1,2,3,4,7,8,9-HpCDF	2000	999.176	50		40-135	0.45	1.076
37Cl-2,3,7,8-TCDD	800	814.981	102		40-135	NA	1.019

Labeled Standard Results

Analytical Report

Client:	Barr Engineering Company	Service Request:	K1501105
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 12:20
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	F-3 2.5-4'	Units:	ng/Kg
Lab Code:	K1501105-006	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlorinated Dibenzo	furans by HRGC/HRMS	

Analysis Method: **Prep Method:**

8290 Method

Toxicity Equivalency Quotient

Analyte Name	Result	DL	MRL	Dilution Factor	TEF	TEF - Adjusted Concentration
2,3,7,8-TCDD	<u>21.6</u>	0.424	1.57	1	1	21.6
1,2,3,7,8-PeCDD	119	5.15	7.85	1	1	119
1,2,3,4,7,8-HxCDD	538	7.98	7.98	1	0.1	53.8
1,2,3,6,7,8-HxCDD	2560	9.15	9.15	1	0.1	256
1,2,3,7,8,9-HxCDD	995	7.95	7.95	1	0.1	99.5
1,2,3,4,6,7,8-HpCDD	122000	208	785	100	0.01	1220
OCDD	1450000	233	1570	100	0.0003	435
2,3,7,8-TCDF	27.0	0.388	1.57	1	0.1	2.70
1,2,3,7,8-PeCDF	75.4	6.58	7.85	1	0.03	2.26
2,3,4,7,8-PeCDF	179	6.66	7.85	1	0.3	53.7
1,2,3,4,7,8-HxCDF	720	7.41	7.85	1	0.1	72.0
1,2,3,6,7,8-HxCDF	330	7.57	7.85	1	0.1	33.0
1,2,3,7,8,9-HxCDF	358	8.10	8.10	1	0.1	35.8
2,3,4,6,7,8-HxCDF	473	8.25	8.25	1	0.1	47.3
1,2,3,4,6,7,8-HpCDF	30700	311	785	100	0.01	307
1,2,3,4,7,8,9-HpCDF	1220	12.3	12.3	1	0.01	12.2
OCDF	228000	197	1570	100	0.0003	68.4
	Te	otal TEQ				2840

2005 WHO TEFs, ND = 0

Analytical Report

7 Hurytreur R	eport	
Barr Engineering Company	Service Request:	K1501105
Joslyn OU5 2015 Soil/23270110	Date Collected:	NA
Soil	Date Received:	NA
Method Blank	Units:	ng/Kg
EQ1500104-01	Basis:	Dry
Polychlorinated Dibenzodioxins and Polychlor	inated Dibenzofurans by HRGC/HRMS	
8290	Date Analyzed:	02/18/15 17:07
Method	Date Extracted:	2/10/15
10.239g	Instrument Name:	E-HRMS-03
	GC Column:	DB-5MSUI
	Barr Engineering Company Joslyn OU5 2015 Soil/23270110 Soil Method Blank EQ1500104-01 Polychlorinated Dibenzodioxins and Polychlor 8290 Method	Joslyn OU5 2015 Soil/23270110Date Collected:SoilDate Received:Method BlankUnits:EQ1500104-01Basis:Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS8290Date Analyzed:MethodDate Extracted:10.239gInstrument Name:

Data File Name:	P176384
ICAL Date:	10/18/14

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	ND U	0.0411	0.488			1
1,2,3,7,8-PeCDD	ND U	0.0487	2.44			1
1,2,3,4,7,8-HxCDD	ND U	0.0329	2.44			1
1,2,3,6,7,8-HxCDD	0.0830 JK	0.0333	2.44	0.66	1.000	1
1,2,3,7,8,9-HxCDD	0.0900 JK	0.0308	2.44	2.82	1.006	1
1,2,3,4,6,7,8-HpCDD	0.213 J	0.0251	2.44	1.13	1.000	1
OCDD	0.559 JK	0.0711	4.88	0.66	1.001	1
2,3,7,8-TCDF	ND U	0.0583	0.488			1
1,2,3,7,8-PeCDF	0.0932 J	0.0358	2.44	1.52	1.001	1
2,3,4,7,8-PeCDF	ND U	0.0355	2.44			1
1,2,3,4,7,8-HxCDF	0.104 JK	0.0168	2.44	0.86	1.001	1
1,2,3,6,7,8-HxCDF	0.0970 JK	0.0167	2.44	0.85	1.000	1
1,2,3,7,8,9-HxCDF	0.105 JK	0.0196	2.44	3.23	1.000	1
2,3,4,6,7,8-HxCDF	0.0774 JK	0.0176	2.44	0.85	1.000	1
1,2,3,4,6,7,8-HpCDF	0.357 J	0.0289	2.44	0.94	1.000	1
1,2,3,4,7,8,9-HpCDF	0.116 J	0.0341	2.44	1.17	1.000	1
OCDF	0.275 J	0.0821	4.88	0.83	1.006	1
Total Tetra-Dioxins	ND U	0.0411	0.488			1
Total Penta-Dioxins	ND U	0.0487	2.44			1
Total Hexa-Dioxins	ND U	0.0323	2.44			1
Total Hepta-Dioxins	0.213 J	0.0251	2.44	1.13		1
Total Tetra-Furans	ND U	0.0583	0.488			1
Total Penta-Furans	0.217 J	0.0329	2.44			1
Total Hexa-Furans	ND U	0.0176	2.44			1
Total Hepta-Furans	0.473 J	0.0313	2.44	0.94		1

Blank File Name: P176384

Cal Ver. File Name: P176382

Analytical Report

Client:	Barr Engineering Company	Service Request: K	K1501105
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected: N	JA
Sample Matrix:	Soil	Date Received: N	IA
Sample Name:	Method Blank	Units: P	ercent
Lab Code:	EQ1500104-01	Basis: D	Dry
	Polychlorinated Dibenzodioxins and Polychlor	nated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed: 0.	2/18/15 17:07
Prep Method:	Method	Date Extracted: 2	/10/15
Sample Amount:	10.239g	Instrument Name: E	E-HRMS-03
		GC Column: D	DB-5MSUI
Data File Name:	P176384	Blank File Name: P	176384
ICAL Date:	10/18/14	Cal Ver. File Name: P	176382

	Spike	Conc.			Control	Ion	
Labeled Compounds	Conc.(pg)	Found (pg)	% Rec	Q	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1470.565	74		40-135	0.77	1.018
13C-1,2,3,7,8-PeCDD	2000	1651.803	83		40-135	1.58	1.168
13C-1,2,3,4,7,8-HxCDD	2000	1391.008	70		40-135	1.27	0.992
13C-1,2,3,6,7,8-HxCDD	2000	1319.772	66		40-135	1.28	0.994
13C-1,2,3,4,6,7,8-HpCDD	2000	1217.226	61		40-135	1.05	1.065
13C-OCDD	4000	1894.281	47		40-135	0.90	1.141
13C-2,3,7,8-TCDF	2000	1435.470	72		40-135	0.79	0.994
13C-1,2,3,7,8-PeCDF	2000	1644.192	82		40-135	1.59	1.129
13C-2,3,4,7,8-PeCDF	2000	1623.282	81		40-135	1.58	1.159
13C-1,2,3,4,7,8-HxCDF	2000	1389.477	69		40-135	0.53	0.973
13C-1,2,3,6,7,8-HxCDF	2000	1324.523	66		40-135	0.53	0.976
13C-1,2,3,7,8,9-HxCDF	2000	1517.006	76		40-135	0.52	1.008
13C-2,3,4,6,7,8-HxCDF	2000	1345.471	67		40-135	0.53	0.988
13C-1,2,3,4,6,7,8-HpCDF	2000	1039.450	52		40-135	0.45	1.040
13C-1,2,3,4,7,8,9-HpCDF	2000	1237.382	62		40-135	0.44	1.079
37Cl-2,3,7,8-TCDD	800	650.940	81		40-135	NA	1.019

Labeled Standard Results

Accuracy & Precision

ALS Environmental - Houston HRMS 10450 Stancliff Rd., Suite 210, Houston TX 77099 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

QA/QC Report

Client:	Barr Engineering Company	Service Request:	K1501105
Project:	Joslyn OU5 2015 Soil/23270110	Date Analyzed:	02/18/15
Sample Matrix:	Soil	Date Extracted:	02/10/15

Lab Control Sample Summary

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analysis Method:	8290	Units:	ng/Kg
Prep Method:	Method	Basis:	Dry
		Analysis Lot:	433767

Lab Control Sample EQ1500104-02

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
1,2,3,4,6,7,8-HpCDD	99.5	95.1	105	70-130
1,2,3,4,7,8-HxCDD	95.0	95.1	100	70-130
1,2,3,6,7,8-HxCDD	96.2	95.1	101	70-130
1,2,3,7,8,9-HxCDD	91.9	95.1	97	70-130
1,2,3,7,8-PeCDD	94.7	95.1	100	70-130
2,3,7,8-TCDD	18.0	19.0	94	70-130
OCDD	259	190	136 *	70-130
1,2,3,4,6,7,8-HpCDF	85.2	95.1	90	70-130
1,2,3,4,7,8,9-HpCDF	83.5	95.1	88	70-130
1,2,3,4,7,8-HxCDF	86.6	95.1	91	70-130
1,2,3,6,7,8-HxCDF	84.2	95.1	89	70-130
1,2,3,7,8,9-HxCDF	85.1	95.1	89	70-130
1,2,3,7,8-PeCDF	89.1	95.1	94	70-130
2,3,4,6,7,8-HxCDF	85.5	95.1	90	70-130
2,3,4,7,8-PeCDF	86.4	95.1	91	70-130
2,3,7,8-TCDF	17.9	19.0	94	70-130
OCDF	200	190	105	70-130

Analytical Report

	Analytical Report		
Client:	Barr Engineering Company	Service Request:	K1501105
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Lab Control Sample	Units:	ng/Kg
Lab Code:	EQ1500104-02	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlorinate	ed Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	02/18/15 22:43
Prep Method:	Method	Date Extracted:	2/10/15
Sample Amount:	10 517-	<u> </u>	
Sample Amount.	10.517g	Instrument Name:	E-HKMS-03
Sample Anount.	10.51/g	Instrument Name: GC Column:	

ICAL Date: 10/18/14

Native Analyte Results

Analyte Name	Result () EDL	MRL	Ion Ratio	RRT	Dilution Factor
2,3,7,8-TCDD	<u>18.0</u>	0.113	0.475	0.79	1.001	1
1,2,3,7,8-PeCDD	94.7	0.406	2.38	1.54	1.001	1
1,2,3,4,7,8-HxCDD	95.0	1.35	2.38	1.27	1.000	1
1,2,3,6,7,8-HxCDD	96.2	1.40	2.38	1.28	1.000	1
1,2,3,7,8,9-HxCDD	91.9	1.28	2.38	1.20	1.006	1
1,2,3,4,6,7,8-HpCDD	99.5	1.21	2.38	1.07	1.000	1
OCDD	259	0.780	4.75	0.89	1.000	1
2,3,7,8-TCDF	17.9	0.0903	0.475	0.77	1.001	1
1,2,3,7,8-PeCDF	89.1	0.354	2.38	1.58	1.001	1
2,3,4,7,8-PeCDF	86.4	0.353	2.38	1.57	1.000	1
1,2,3,4,7,8-HxCDF	86.6	1.18	2.38	1.27	1.000	1
1,2,3,6,7,8-HxCDF	84.2	1.16	2.38	1.23	1.000	1
1,2,3,7,8,9-HxCDF	85.1	1.40	2.38	1.26	1.000	1
2,3,4,6,7,8-HxCDF	85.5	1.19	2.38	1.21	1.000	1
1,2,3,4,6,7,8-HpCDF	85.2	1.97	2.38	1.03	1.000	1
1,2,3,4,7,8,9-HpCDF	83.5	2.22	2.38	1.05	1.000	1
OCDF	200	1.04	4.75	0.90	1.005	1
Total Tetra-Dioxins	18.0	0.113	0.475	0.79		1
Total Penta-Dioxins	94.7	0.406	2.38	1.54		1
Total Hexa-Dioxins	283	1.34	2.38	1.27		1
Total Hepta-Dioxins	109	1.21	2.38	1.06		1
Total Tetra-Furans	18.4	0.0903	0.475	0.77		1
Total Penta-Furans	178	0.116	2.38			1
Total Hexa-Furans	343	1.23	2.38	1.08		1
Total Hepta-Furans	179	2.09	2.38	1.03		1

Cal Ver. File Name: P176382

Analytical Report

	7 Huly Ho	il report	
Client:	Barr Engineering Company	Service Request:	K1501105
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Lab Control Sample	Units:	Percent
Lab Code:	EQ1500104-02	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polych	lorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	02/18/15 22:43
Prep Method:	Method	Date Extracted:	2/10/15
Sample Amount:	10.517g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5MSUI
Data File Name:	P176391	Blank File Name:	P176384
ICAL Date:	10/18/14	Cal Ver. File Name:	P176382

	20000000						
	Spike	Conc.			Control	Ion	
Labeled Compounds	Conc.(pg)	Found (pg)	% Rec	Q	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1521.470	76		40-135	0.78	1.018
13C-1,2,3,7,8-PeCDD	2000	1718.932	86		40-135	1.59	1.168
13C-1,2,3,4,7,8-HxCDD	2000	1490.778	75		40-135	1.26	0.992
13C-1,2,3,6,7,8-HxCDD	2000	1363.202	68		40-135	1.26	0.994
13C-1,2,3,4,6,7,8-HpCDD	2000	1189.668	59		40-135	1.06	1.066
13C-OCDD	4000	1747.448	44		40-135	0.90	1.141
13C-2,3,7,8-TCDF	2000	1454.795	73		40-135	0.79	0.993
13C-1,2,3,7,8-PeCDF	2000	1683.311	84		40-135	1.60	1.129
13C-2,3,4,7,8-PeCDF	2000	1653.526	83		40-135	1.59	1.159
13C-1,2,3,4,7,8-HxCDF	2000	1456.857	73		40-135	0.53	0.973
13C-1,2,3,6,7,8-HxCDF	2000	1366.594	68		40-135	0.53	0.976
13C-1,2,3,7,8,9-HxCDF	2000	1512.233	76		40-135	0.53	1.008
13C-2,3,4,6,7,8-HxCDF	2000	1429.006	71		40-135	0.52	0.988
13C-1,2,3,4,6,7,8-HpCDF	2000	947.721	47		40-135	0.45	1.040
13C-1,2,3,4,7,8,9-HpCDF	2000	1212.061	61		40-135	0.45	1.079
37Cl-2,3,7,8-TCDD	800	697.882	87		40-135	NA	1.019

Labeled Standard Results

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T** : +1 360 577 7222 **F** : +1 360 636 1068 www.alsglobal.com

Analytical Report for Service Request No: K1501100 Revised Service Request No: K1501100.01

May 03, 2015

Terri Olson Barr Engineering 4700 West 77th Street Minneapolis, MN 55435

RE: Joslyn OU5 2015 Soil / 23270110

Dear Terri,

Enclosed is the revised report for the sample(s) submitted to our laboratory February 04, 2015 For your reference, these analyses have been assigned our service request number **K1501100**.

The dioxin report was revised due to a reporting error for the method blank. Please reference the enclosed Houston cover letter.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

We apologize for the inconvenience.

Please contact me if you have any questions. My extension is 3363. You may also contact me via email at Lisa.Domenighini@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Lusa & Jomenighin

Lisa Domenighini Project Manager

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 3 of 94

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	Not available	-
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingW aterLabs/tabid/1833/Default.aspx	-
ISO 17025	http://www.pjlabs.com/	L14-50
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPer mitSupport/LouisianaLaboratoryAccreditationProgram.aspx	03016
Maine DHS	Not available	WA01276
Michigan DEQ	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 5 of 94

ALS ENVIRONMENTAL

Client:Barr Engineering CompanyProject:Joslyn OU5 2015 Soil/ 23270110Sample Matrix:Soil

Service Request No.: Date Received: K1501100 02/04/15

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), and Matrix/Duplicate Matrix Spike (MS/DMS).

Sample Receipt

Twenty soil samples were received for analysis at ALS Environmental on 02/04/15. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry Parameters

Total Organic Carbon by ASTM D4129-05 Modified:

All samples were received past holding time. The analysis was performed as soon as possible after receipt by the laboratory. The data was flagged to indicate the holding time violation.

No other anomalies associated with the analysis of these samples were observed.

Dioxins and Furans by EPA Method 8290

The analysis for Dioxins and Furans was performed at ALS Houston, Texas Laboratory. The data for this analysis is included in the corresponding section of this report.

Jua & Jomenighin

Approved by_

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 7 of 94

		_							_														<u> </u>	190	IIU	'j
Chain oj 4700 West 77	th Street											Nun Wate		of Con	taine	ers/F		rva Soi				_	coc		_ of _	2
BARR Minneapolis, (952) 832-260	MN 55432 00	5-4803																					Project Manag	er: Jol	~ H	unt
Project Number: 232	70110												(SLS				
Project Name: Josly	n OU	52	515	Soil						#2	U3)	#3	s (HC			H)#1	(ed)	¢,	#2 npres.)			ntaine	Project QC Co	ontact:	<u>erri</u>	Olson Puetz
Sample Origination State M	N (use two	letter p	oostal s	tate abbreviation)						rved)	s (HNU3	erved)	rganic		(HO	d McO	Dreserv	rved)	vial, u		0.50	5			۸	0
COC Number:					N	0	438	300	(HCl) #/	nprese	Metal ale (u	unpres	nge O		M	X (tare	ed un	nprese	plastic		4	mber	Sample	ed by:	tlex	Puetz
Location	Start Depth	Stop Depth	Depth Unit (m./ft. or in.)	Date	Collection Time (hh:mm)	Water Soil	ix Utap	Type dub Comb	OC HI	SVOCs (unpreserved)	Dissolved Metals	General (unpreserved)	Diesel Range Organics (HCl) Nutrients (H3SO4) #4		VOC: (1000 M Porto) 2001	GRO, BTE	DRO (tared unpreserved)	Metals (unpreserved) SVOCs (unpreserved) #2	% Solids (plastic vial, unpres.)	Diskins	10C	IOTAL NU	Labora	tory:	ALS	
^{1.} B-1	2	3.5	ft	02/02/2015	10:35	X		X													1					
^{2.} B-1	3.5	5			11:40	X		X												-		2				
^{3.} B-1	5	6.5			11:45	X		X														2				
^{4.} B - 1	6.5	9			11:50	X		X												-		2				
^{5.} B-1	9	10			12:00	X		X														2	ŀ	- H()1(>
6. R - 3	5	6.5			14:15	X		X												vulinscorus		2		AL		
^{7.} B-3	6.5	9			14:20	X		X										Ì			1	2		SA	MPI	ES
^{8.} B - 3	9	10			14:25	X		X												-	1	2				
^{9.} C-3	5	6.5			13:40	X		X														2				
^{10.} C - 3	6.5	9	Ŷ	\downarrow	13:45	X		X				-										2				
Common Parameter/Container - Preservation Key Relinquished By: Common Parameter/Container - Preservation Key								Dat 2/02			Tim 6:1		Receiv	1.	· .	4	K	6	 12	k	i		Date 2/02/15		Time 6:15	
 Volatile Organics = BTEX, G Semivolatile Organics = PAH Full List, Herbicide/Pesticide/l General = pH, Chloride, Fluo 		Relinquished By: Pereny Gutter & N 02/03				Dat 2/03	e 15		Tim Ý:1	e 2	Received by: Da			Dare 2/4/19		Time 1940										
TDS, TS, Sulfate 4 - Nutrients = COD, TOC, Pher Nitrogen, TKN	L	• • • • • • • • • • • • • • • • • • • •	Other	:	Samples Shipped VIA: Air Freight Federal Express Sampler Other: Distribution: White-Original Accompanies Shipment to Lab: Yellow - Fiel																					

	~	_																					KI?) <i>U</i> [ω	
Chain of 4700 West 77th	Street								E			umb ater		f Conta	aine	rs/P		vativ Soil	/e			С	эс _	2	of	<u>\</u>
BARR Minneapolis, MN (952) 832-2600	V 55433	-4803																				Proj Mar	ect nager:_	Joh	n Hu	<u></u>
Project Number: 232701	10											-									e r s					
Project Name: Joslyn	00.	52	015	Soil						#2 (03)		eserved) #3 Oroanics (HCl)			1#	1# (H(ved)	#2	Solids (plastic vial, unpres.)		ontaine	Proj QC	ect Conta	ict: <u>l</u> e	-r: 0	<u>50m</u>
Sample Origination State M N	(use two	letter j	postal s	tate abbre	viation)					erved) Is (H)	(HNO ₃)	served)	04) #4		6 OH)	od Me(preser	erved)	vial, 1		Of C			Ν	0	
							3801	(HCI) #1	s (unpreserved) ved Metals (HN	tals (F	ll (unpre: Range C	(H ₂ S(ned M	X (tare	red un	s (unpreserved) #2	(plastic	2	mber	Sam	pled t	у:_Ң	ex l'	<u>setz</u>	
Location	Start Depth	Stop Depth	Depth Unit (m./ft. or in.)	Colle Da (mm/d	ite	Collection Time (hh:mm)	Matrix Soil	Type Combined OC Combined OC Combined C	്	SVOCs (unpreserved) #2 Dissolved Metals (HNO3)	Total Metals	General Diesel R	Nutrients (H ₂ SO ₄) #4		VOCs (tared McOH) #1	GRO, BTEX (tared MeOH) #1	DRO (tared unpreserved) Metals (unpreserved)	SVOCs (% Solids	LO VIO	Total Nu	Proj QC Sam Labe	oratory	y:	ALS	setz.
^{I.} C-3	9	10	ft	02/02	/2015	13:50	Х	Х											1		2					
² D-1	2	3.5				11:05	X	X)		2					
^{3.} D-1	3.5	9				11:10	X	X											1		2					
^{4.} D-1	9	10	All Constant of Long Street Street			11:20	X	X												-	2					
5. E-4	5	6.5	- Alexandron Andreas			13:00	X	X												Lange and the second se	2	-	- H	ΟL	D	
^{6.} E - 4	6.5	9				13:05	X	Х													2			LL		
^{7.} E-4	9	10				13:10	Х	X													2		S	AM	PLE	S
⁸ F-3	ч	5.5				12:25	X	X													2					
^{9.} F-3	5,5	9				12:30	X	X													2					
^{10.} F - 3	9	10	V		1	12:35	Х	X													2	J				
								Date			ime LS	~ 1	Receive	ed by		ill	ytz	 Х					Date	т 16	ime 15	
#2 - Semivolatile Organics = PAHs, PCP. Dioxins, 8270 Full List, Herbicide/Pesticide/PCBs							1 Ice?]N 02/	Date		Т	ime 17		Receive			4	γ	,e	/	/		Ţį	Date 7 / 5		me	
 #3 - General = pH, Chloride, Fluoride, Alkalinity, TSS, TDS, TS, Sulfate #4 - Nutrients = COD, TOC, Phenols, Ammonia 					Samples Shipped VIA: Air Freight Federal Ex							Sampler Air Bill Number:				<u> </u>										
Nitrogen, TKN		Other: Distribution: White-Original Accompanies Shipment to						b Y	ellow	I v - Field Copy: Pink - Lab Coordinator																

Page 9 of 94

|--|

Cooler Receipt and Preservation Form	5		
Client / Project: Dar Service Request K15 010)		
Received: $2/4/5$ Opened: $2/4/5$ By: Sur Unloaded: $2/4/5$	By:	be_	
1. Samples were received via? Mail Fed Ex UPS DHL PDX Courier Hand Delivere	d		
2. Samples were received in: (circle) Cooler Box Envelope Other	\	NA	
3. Were <u>custody seals</u> on coolers? NA $(Y' \cap Y')$ N If yes, how many and where? QUU , H	ont		
If present, were custody seals intact? Y^{J} N If present, were they signed and dated?		Y	N
Raw Corrected, Raw Corrected, Corrected, Corrected, Corrected, Corrected, Corrected, Corrected, Corrected, Tracking Cooler Temp Cooler, Temp Temp Blank Factor ID NA Tracking	Number	NA	A Filed
5.7 5.8 5.6 5.6 40.1 347 43799 6275 1644	747	12	
4. Packing material: Inserts Baggies Bubble Wrap? Gel Packs (Wet Ice?) Dry Ice Sleeves			,
5. Were custody papers properly filled out (ink, signed, etc.)?	NA	Ŷ	N
6. Did all bottles arrive in good condition (unbroken)? <i>Indicate in the table below.</i>	NA	Ŷ	N
7. Were all sample labels complete (i.e analysis, preservation, etc.)?	NA	$\underbrace{(\mathbf{Y})}_{\mathbf{Y}}$	N
8. Did all sample labels and tags agree with custody papers? <i>Indicate major discrepancies in the table on page 2.</i>	NA	Y	N
9. Were appropriate bottles/containers and volumes received for the tests indicated?	NA	$\underbrace{\smile}_{(\underline{N})}$	N
10. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below	NA	Y	N
11. Were VOA vials received without headspace? Indicate in the table below.	NA	Y	Ν
12. Was C12/Res negative?	NAJ	Y	N
Sample ID on Bottle Sample ID on COC Identified b	y:		
			<u>, , , , , , , , , , , , , , , , , , , </u>

Sample ID	Out of Temp	Head- space	Broke	pН		Reagent	Volume added	Reagent Lot Number	Initials	Time
										
	 				ļ					

Notes, Discrepancies, & Resolutions:

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 11 of 94

Analytical Report

Client:Barr Engineering CompanyProject:Joslyn OU5 2015 Soil/23270110Sample Matrix:SoilAnalysis Method:160.3 ModifiedPrep Method:None

Service Request: K1501100 Date Collected: 02/2/15 Date Received: 02/4/15

Units: Percent Basis: As Received

Solids, Total

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
B-1 2-3.5'	K1501100-001	74.0	-	1	03/13/15 09:17	
B-1 6.5-9'	K1501100-004	82.3	-	1	03/13/15 09:17	
B-1 9-10'	K1501100-005	83.6	-	1	03/13/15 09:17	
B-3 5-6.5'	K1501100-006	19.0	-	1	03/13/15 09:17	
<u>C-3 5-6.5'</u>	K1501100-009	17.5	-	1	03/13/15 09:17	
D-1 2-3.5'	K1501100-012	84.2	-	1	03/13/15 09:17	
E-4 5-6.5'	K1501100-015	16.5	-	1	03/13/15 09:17	
E-4 6.5-9'	K1501100-016	32.9	-	1	03/13/15 09:17	
E-4 9-10'	K1501100-017	40.8	-	1	03/13/15 09:17	
F-3 4-5.5'	K1501100-018	25.8	-	1	03/13/15 09:17	

QA/QC Report

Client:	Barr Engineering Compar	ny			Service Reque	st: K150	01100
Project	Joslyn OU5 2015 Soil/232	270110			Date Collect	ed: 02/02	2/15
Sample Matrix:	Soil				Date Receiv	ed: 02/04	4/15
					Date Analyz	ed: 03/13	3/15
		Repli	cate Sample Su	mmary			
		Genera	ll Chemistry Pa	rameters			
Sample Name:	B-1 2-3.5'				Un	its: Perc	ent
Lab Code:	K1501100-001				Ba	sis: As R	Received
			Sample	Duplicate Sample K1501100- 001DUP			
Analyte Name	Analysis Method	MRL	Result	Result	Average	RPD	RPD Limit
Solids, Total	160.3 Modified	-	74.0	74.4	74.2	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Report

Client:	Barr Engineering Company
Project:	Joslyn OU5 2015 Soil/23270110
Sample Matrix:	Soil
Analysis Method: Prep Method:	ASTM D4129-05 Modified ALS SOP

Service Request: K1501100 Date Collected: 02/2/15 Date Received: 02/4/15

Units: Percent Basis: Dry, per Method

Carbon, Total Organic (TOC)

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
B-1 2-3.5'	K1501100-001	2.47	0.050	1	03/27/15 18:20	3/26/15	*
B-1 6.5-9'	K1501100-004	0.553	0.050	1	03/27/15 18:20	3/26/15	*
B-1 9-10'	K1501100-005	0.124	0.050	1	03/27/15 18:20	3/26/15	*
B-3 5-6.5'	K1501100-006	42.2	0.050	1	03/27/15 18:20	3/26/15	*
C-3 5-6.5'	K1501100-009	40.2	0.050	1	03/27/15 18:20	3/26/15	*
D-1 2-3.5'	K1501100-012	1.37	0.050	1	03/27/15 18:20	3/26/15	*
E-4 5-6.5'	K1501100-015	31.9	0.050	1	03/27/15 18:20	3/26/15	*
E-4 6.5-9'	K1501100-016	8.01	0.050	1	03/27/15 18:20	3/26/15	*
E-4 9-10'	K1501100-017	3.91	0.050	1	03/27/15 18:20	3/26/15	*
F-3 4-5.5'	K1501100-018	17.9	0.050	1	03/27/15 18:20	3/26/15	*
Method Blank	K1501100-MB	ND U	0.050	1	03/27/15 18:20	3/26/15	

QA/QC Report

Client: Project	e	ering Company 2015 Soil/23270110				ice Request: te Collected:		
Sample Matrix:	Soil					te Received:		
		Replicate General Ch	-	-	Da	te Analyzed:	03/27/15	
Sample Name:	B-1 2-3.5'					Units:	Percent	
Lab Code:	K1501100-	001		Sample	Duplicate Sample K1501100- 001DUP	Basis:	Dry, per	Method
Analyte Name		Analysis Method	MRL	Result	Result	Average	RPD	RPD Limit
Carbon, Total Organic (T	OC)	ASTM D4129-05 Modified	0.050	2.47	2.62	2.55	6	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Project: Sample Matrix:	Barr Engineering Com Joslyn OU5 2015 Soil/2 Soil	•				Service Date Co Date Re		K150 02/02 02/04	/15	
r						Date An		03/27		
						Date Ex	tracted:	03/26	/15	
		Dup	licate Matri	ix Spike S	ummary					
		Ca	arbon, Tota	Organic	(TOC)					
Sample Name:	B-1 2-3.5'						Units:	Perce	nt	
Lab Code:	K1501100-001						Basis:	Dry, j	per Meth	od
Analysis Method:	ASTM D4129-05 Mod	ified								
Prep Method:	ALS SOP									
			latrix Spike 01100-001N		-	l icate Matri 501100-001	-			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Carbon, Total Organi	c (TOC) 2.47	6.59	4.16	99	7.04	4.51	101	70-122	2	20

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Project: Sample Matrix:	Barr Engineering Company Joslyn OU5 2015 Soil/23270110 Soil		Service Rec Date Analy Date Extrac	zed:	K1501100 03/27/15 03/26/15
		ontrol Sample Summary n, Total Organic (TOC)			
Analysis Method: Prep Method:	ASTM D4129-05 Modified ALS SOP		Units: Basis: Analysis Lo	ot:	Percent Dry, per Method 438290
Sample Name Lab Control Sample	Lab Code K1501100-LCS	Result 0.504	Spike Amount 0.543	% Rec 93	% Rec Limits 72-122

Subcontract Lab Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 18 of 94

April 30, 2015

Service Request No: K1501100

Lisa Domenighini. ALS Environmental 1317 South 13th Avenue Kelso, WA 98626 Laboratory Results for: Barr Engineering

Dear Lisa,

Enclosed is the amended report for samples submitted to our laboratory on March 11, 2015. For your reference, these analyses have been assigned our service request number **K1501100**.

This amended report has the correct Native Analyte Results page for EQ1500199-01MB. In the original report the value for 2,3,4,6,7,8-HxCDF is non-detect (ND), however the ion ratio was flagged as being out in the report which is incorrect. The issue was traced to the report assembly program, where the ion ratio outage was reported even though the result was a ND. The report assembly program was corrected and updated. Please replace Final_K1501100ak with the report enclosed.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current TNI standards, where applicable, and considered in their entirety, and ALS Environmental is not responsible for use of less than the final complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the TNI 2009 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My direct number is 281-575-2279.

Respectfully submitted,

Arthi Kodur Project Manager

> ADDRESS 10450 Stancliff Road, Suite 210, Houston Texas 77099 USA | PHONE +1 713 266 1599 ALS GROUP USA, CORP. Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

10450 Stancliff Rd., Suite 210 Houston, TX 77099 T: +1 713 266 1599 F: +1 713 266 1599 www.alsglobal.com

March 31, 2015

Service Request No: K1501100

Lisa Domenighini. ALS Environmental 1317 South 13th Avenue Kelso, WA 98626

Laboratory Result for: Barr Engineering.

Dear Lisa:

Enclosed are the results of the sample(s) submitted to our laboratory on March 11, 2015. For Your reference, these analyses have been assigned our service request number: **K1501100**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current TNI standards, where applicable, and considered in their entirety, and ALS Environmental is not responsible for use of less than the final complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the TNI 2009 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My direct line is 281-575-2279. You may also contact me via email at Arthi.Kodur@alsglobal.com

Respectfully submitted,

ALS Group USA Corp., dba ALS Environmental

Arthi Kodur Project Manager

Page 1 of _____

For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com.

REPRI AMERICANA | RIPHT PRIVING

Certificate of Analysis

ALS Environmental - Houston HRMS 10450 Stancliff Rd, Suite 210, Houston TX 77099 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 21 of 94

ALS ENVIRONMENTAL

Client:Barr Engineering CompanyProject:Joslyn OU5 2015 Soil/23270110Sample Matrix:Soil

 Service Request No.:
 K1501100

 Date Received:
 3/11/15

ALS ENVIRONMENTAL NARRATIVE

All analyses were performed in adherence to the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Ten soil samples were received for analysis at ALS Environmental on 3/11/15.

Please note the reporting forms are currently referencing the date ALS Environmental-Kelso received the samples (2/4/15 and not) the date ALS Environmental-Houston received the samples (3/11/15).

The samples were received at 0°C in good condition and are consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Data Validation Notes and Discussion

B flags – Method Blanks

The Method Blank EQ1500199-01 contained low levels of 1234678-HpCDD, OCDD, 1234678-HpCDF and OCDF at or below the Method Reporting Limit (MRL).

The associated compounds in the samples are flagged with 'B' flags.

MS/MSD

EQ1500199: Laboratory Control Spike/Duplicate Laboratory Control Spike (LCS/DLCS) samples were analyzed and reported in lieu of an MS/MSD for this extraction batch. 1234678-HpCDD, OCDD and OCDF were outside the percent recoveries for EQ1500199-02 (LCS) and 03 (DLCS). The outages can be traced back to high level samples in the batch.

2378-TCDF

Samples analyzed on the DB-5MSUI column were analyzed under conditions were sufficient separation between 2,3,7,8-TCDF and its closest eluter was achieved. Confirmation of this result was not required.

Y flags - Labeled Standards

Quantification of the native 2,3,7,8-substituted analytes is based on isotopic dilution, which automatically corrects for variation in extraction efficiency and provides accurate values even with poor recovery. Samples that had recoveries of labeled standards outside the acceptance limits are qualified with 'Y' flags on the Labeled Compound summary pages. In all cases, the signal-to-noise ratios are greater than 10:1 and detection limit were below the Method Reporting Limit.

Sample K1501100-017 has labeled standard recovery above the percent recovery. This can be attributed to matrix interference in the sample.

Dilutions

All samples associated with service request K1501100 have elevated levels of target analytes and required a dilution. The undiluted and diluted results were combined into one Total TEQ summary report for each sample. This reports a 'Total' result that includes the most appropriate concentration found for the associated target analyte.

<u>K flags</u>

EMPC - When the ion abundance ratios associated with a particular compound are outside the QC limits, samples are flagged with a 'K' flag. A 'K' flag indicates an estimated maximum possible concentration for the associated compound.

Detection Limits

Detection limits are calculated for each analyte in each sample by measuring the height of the noise level for each quantitation ion for the associated labeled standard. The concentration equivalent to 2.5 times the height of the noise is then calculated using the appropriate response factor and the weight of the sample. The calculated concentration equals the detection limit.

The TEQ Summary results for each sample have been calculated by ALS ENVIRONMENTAL/Houston to include:

- WHO-2005 TEFs, The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds (M. Van den Berg et al., Toxicological Sciences 93(2):223-241, 2006)
- > Non-detected compounds are not included in the 'Total'
- > The 1:1 and associated dilution have been combined into one TEQ Summary report

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS group USA Corp dba ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
K1501100-001	B-1 2-3.5'	2/2/2015	1035
K1501100-002	B-1 3.5-5'	2/2/2015	1140
K1501100-003	B-1 5-6.5'	2/2/2015	1145
K1501100-004	B-1 6.5-9'	2/2/2015	1150
K1501100-005	B-1 9-10'	2/2/2015	1200
K1501100-006	B-3 5-6.5'	2/2/2015	1415
K1501100-007	B-3 6.5-9'	2/2/2015	1420
K1501100-008	B-3 9-10'	2/2/2015	1425
K1501100-009	C-3 5-6.5'	2/2/2015	1340
K1501100-010	C-3 6.5-9'	2/2/2015	1345
K1501100-011	C-3 9-10'	2/2/2015	1350
K1501100-012	D-1 2-3.5'	2/2/2015	1105
K1501100-013	D-1 3.5-9'	2/2/2015	1110
K1501100-014	D-1 9-10'	2/2/2015	1120
K1501100-015	E-4 5-6.5'	2/2/2015	1300
K1501100-016	E-4 6.5-9'	2/2/2015	1305
K1501100-017	E-4 9-10'	2/2/2015	1310
K1501100-018	F-3 4-5.5'	2/2/2015	1225
K1501100-019	F-3 5.5-9'	2/2/2015	1230
K1501100-020	F-3 9-10'	2/2/2015	1235

Service Request Summary

Folder #:	K1501100	Project Chemist:	Lisa Domenighini
Client Name:	Barr Engineering Company	Originating Lab:	KELSO
Project Name:	Joslyn OU5 2015 Soil	Logged By:	SWOLF
Project Number:	23270110	Date Received:	02/04/15
Report To:	Terri Olson	Internal Due Date:	3/27/2015
Report To.		QAP:	LAB QAP
	Barr Engineering 4700 West 77th Street	Qualifier Set:	Lab Standard
	Minneapolis, MN 55435	Formset:	Lab Standard
	USA	Merged?:	Y
Phone Number:	952-842-3578	Report to MDL?:	Ν, Υ
Cell Number:		P.O. Number:	
Fax Number:		EDD:	BARR - EQUIS
E-mail:	tolson@barr.com		

Г

 40
 4 oz-Glass Jar WM CLEAR Teflon Liner Unpreserved

 Location:
 K-Delilah-41, EHRMS-WIC 1C

 Pressure Gas:
 K-Delilah-41, EHRMS-WIC 1C

NPDES

				KEI	LSO	HOUST ON
Lak Carry Ma	Oliont Comp No.			TOC/ASTM D4129-05 Modified	TS/160.3 Modified	PCDD PCDF/8290
Lab Samp No. K1501100-001	Client Samp No B-1 2-3.5'	Matrix Soil	Collected 02/02/15 1035		II	-
K1501100-002	B-1 3.5-5'	Soil	02/02/15 1140			
K1501100-003	B-1 5-6.5'	Soil	02/02/15 1145	11	II	
K1501100-004	B-1 6.5-9'	Soil	02/02/15 1150	Ш	Ш	П
K1501100-005	B-1 9-10'	Soil	02/02/15 1200	II	II	II
K1501100-006	B-3 5-6.5'	Soil	02/02/15 1415	II	II	II
K1501100-007	B-3 6.5-9'	Soil	02/02/15 1420	II	II	II
K1501100-008	B-3 9-10'	Soil	02/02/15 1425	II	II	II
K1501100-009	C-3 5-6.5'	Soil	02/02/15 1340	II	II	П
K1501100-010	C-3 6.5-9'	Soil	02/02/15 1345	II	Ш	П
K1501100-011	C-3 9-10'	Soil	02/02/15 1350	II	Ш	П
K1501100-012	D-1 2-3.5'	Soil	02/02/15 1105	II	II	II
K1501100-013	D-1 3.5-9'	Soil	02/02/15 1110	II	II	II
K1501100-014	D-1 9-10'	Soil	02/02/15 1120	II	II	II
K1501100-015	E-4 5-6.5'	Soil	02/02/15 1300	II	Ш	II
K1501100-016	E-4 6.5-9'	Soil	02/02/15 1305	II	II	II

Service Request Summary

						_	
Folder #:	K1501100			Pro	ject C	hemist:	Lisa Domenighini
Client Name:	Barr Engineering Compa	any		Ori	iginatii	ng Lab:	KELSO
Project Name:	Joslyn OU5 2015 Soil				Log	ged By:	SWOLF
Project Number:	23270110			Da	ate Re	ceived:	02/04/15
Bonort To	Terri Olson			Interr	nal Du	e Date:	3/27/2015
Report To:						QAP:	LAB QAP
	Barr Engineering 4700 West 77th Street				Qualif	ier Set:	Lab Standard
	Minneapolis, MN 55435				F	ormset:	Lab Standard
	USA				Me	erged?:	Y
Phone Number:	952-842-3578			Rep	oort to	MDL?:	N, Y
Cell Number:				F	P.O. N	umber:	
Fax Number:						EDD:	BARR - EQUIS
E-mail:	tolson@barr.com						
				KE	LSO	HOUST ON	
				2			
				TOC/ASTM D4129-05 Modified	fied	290	
				D41: ied	Aodi	PCDF/8290	
				STM D4 Modified	TS/160.3 Modified	PCI	
				NAS N	s/16(PCDD	
Lah Cama Ma	Olient Comp No		.	TOC	μĔ	ГЩ Г	
Lab Samp No.	Client Samp No E-4 9-10'	Matrix Soil	Collected 02/02/15 1310				
K1501100-018	F-3 4-5.5'	Soil	02/02/15 1225				
K1501100-019	F-3 5.5-9'	Soil	02/02/15 1230		II	Ш	
K1501100-020	F-3 9-10'	Soil	02/02/15 1235	II	II	II	

40 4 oz-Glass Jar WM CLEAR Teflon Liner Unpreserved Location: K-Delilah-41, EHRMS-WIC 1C Pressure Gas:

NPDES

Folder Comments:

Tier II except when requested otherwise. Add narrative note that Benzo(b)fluoranthene cannot be separated from Benzo(j)fluoranthene. The .02 jar is designated for 8290 Houston.

3/6/15: Samples released from hold. LAD

Service Request Summary

Folder #:	K1501100	Project Chemist:	Lisa Domenighini
Client Name:	Barr Engineering Company	Originating Lab:	KELSO
Project Name:	Joslyn OU5 2015 Soil	Logged By:	SWOLF
Project Number:	23270110	Date Received:	02/04/15
Report To:	Terri Olson	Internal Due Date:	3/27/2015
Report To.		QAP:	LAB QAP
	Barr Engineering 4700 West 77th Street	Qualifier Set:	Lab Standard
	Minneapolis, MN 55435	Formset:	Lab Standard
	USA	Merged?:	Y
Phone Number:	952-842-3578	Report to MDL?:	N, Y
Cell Number:		P.O. Number:	
Fax Number:		EDD:	BARR - EQUIS
E-mail:	tolson@barr.com		

40 4 oz-Glass Jar WM CLEAR Teflon Liner Unpreserved Location: K-Delilah-41, EHRMS-WIC 1C Pressure Gas: NPDES

Test Comments:

Group	Test/Method	Samples	Comments
Semivoa GCMS	PCDD PCDF/8290	30	rcvd samples on 3/11/15

rcvd samples on 3/11/15 full list (ak 3/11/15) Samples are high level use 5 grams for sample weight (ak 3/12/15)

Data Qualifiers

HRMS Qualifier Set

- B Indicates the associated analyte was found in the method blank at >1/10th the reported value.
- E Estimated value. The reported concentration is above the calibration range of the instrument.
- H Sample extracted and/or analyzed out of suggested holding time.
- J Estimated value. The reported concentration is below the MRL.
- K The ion abundance ratio between the primary and secondary ions were outside of theoretical acceptance limits. Reported concentration is a conservative estimate, however EMPC correction was not applied.
- P Chlorodiphenyl ether interference was present at the retention time of the target analyte. Reported result should be considered an estimate.
- Q Monitored lock-mass indicates matrix-interference. Reported result is estimated.
- S Signal saturated detector. Result reported from dilution.
- U Compound was analyzed for, but was not detected (ND).
- X See Case Narrative.
- Y Isotopically Labeled Standard recovery outside of acceptance limits. In all cases, the signal-to-nois ratios are greater than 10:1, making the recoveries acceptable.
- i The MDL/MRL have been elevated due to a matrix interference.

ALS Laboratory Group

Acronyms

Cal	Calibration
Conc	CONCentration
Dioxin(s)	Polychlorinated dibenzo-p-dioxin(s)
EDL	Estimated Detection Limit
EMPC	Estimated Maximum Possible Concentration
Flags	Data qualifiers
Furan(s)	Polychlorinated dibenzofuran(s)
	Grams
g ICAL	Initial CALibration
ID	IDentifier
Ions	Masses monitored for the analyte during data acquisition
L	Liter (s)
LCS	Laboratory Control Sample
DLCS	Duplicate Laboratory Control Sample
MB	Method Blank
MCL	Method Calibration Limit
MDL	Method Detection Limit
mL	Milliliters
MS	Matrix Spiked sample
DMS	Duplicate Matrix Spiked sample
NO	Number of peaks meeting all identification criteria
PCDD(s)	Polychlorinated dibenzo-p-dioxin(s)
PCDF(s)	Polychlorinated dibenzofuran(s)
ppb	Parts per billion
ppm	Parts per million
ppq	Parts per quadrillion
ppt	Parts per trillion
QA	Quality Assurance
QC	Quality Control
Ratio	Ratio of areas from monitored ions for an analyte
% Rec.	Percent recovery
RPD	Relative Percent Difference
RRF	Relative Response Factor
RT	Retention Time
SDG	Sample Delivery Group
S/N	Signal-to-noise ratio
TEF	Toxicity Equivalence Factor
TEQ	Toxicity Equivalence Quotient

State Certifications, Accreditations, and Licenses

Agency	Number	Expire Date
American Association for Laboratory Accreditation	2897.01	11/30/2015
Arizona Department of Health Services	AZ0793	5/27/2015
Arkansas Department of Environmental Quality	14-038-0	6/16/2015
Florida Department of Health	E87611	6/30/2015
Hawaii Department of Health	TX02694	6/30/2015
Illinois Environmental Protection Agency	200057	10/6/2015
Louisiana Department of Environmental Quality	03048	6/30/2015
Louisiana Department of Health and Hospitals	LA150026	12/31/2015
Maine Center for Disease Control and Prevention	2014019	6/5/2016
Maryland Department of the Environment	343	6/30/2015
Michigan Depratment of Environmental Quality	9971	6/30/2015
Minnesota Department of Health	840911	12/31/2015
Nebraska Department of Health and Human Services	NE-OS-25-13	6/30/2015
Nevada Department of Concervation and Natural Resources	TX014112013-2	7/31/2015
New Jersey Department of Environmental Protection	NLC140001	6/30/2015
New Mexico Environment Department	TX02694	6/30/2015
New York Department of Health	11707	4/1/2015
Oklahoma Department of Environmental Quality	2014 124	8/31/2015
Oklahoma Department of Environmental Quality	2014-124	8/31/2015
Pennsylvania Department of Environmental Protection	68-03441	6/30/2015
Tennessee Department of Environment and Concervation	04016	6/30/2015
Texas Commision on Environmental Quality	TX104704216-14-5	6/30/2015
United States Department of Agriculture	P330-14-00067	2/21/2017
Utah Department of Health Environmental Laboratory Certification	TX02694	7/31/2015
Washington Department of Health	c819	11/14/2015
West Virginia Department of Environmental Protection	347	6/30/2015

ALS ENVIRONMENTAL - Houston Data Processing/Form Production and Peer Review Signatures DB-5 (DB-5MSUI) DB-225 SR# Unique ID K (501100 SPB-Octyl First Level - Data Processing - to be filled by person generating the forms Date: Analyst: Samples: 03/20/15 -001,-004,-005,-006 TC Second Level - Data Review - to be filled by person doing peer review Date: (D) Samples: 001,004-006 Analyst: PEER REVIEW PAGE

SR# Unique ID K	1501100		DB-5	DB-6MBUI	SPB-Octyl	
	I - Data Proces	sing - to be	filled by pe	erson genera	ating the form	ns
Date: 3/31/15	Analyst: Ce	L	Samples: /	6,9,12,15,1	8,17	
A.///////	Level - Data Re	eview – to be		person doing	j peer review	
Date: 03/31/11	_ Analyst: OP		Samples:	009,012,01	5-018	
1999 - Marine Barrison, and a second state of the second state of the second state of the second state of the s	n m m Ar a Mart Mart Mart Mart Mart Mart Mart M					
						×

	MENTAL – Houston tion and Peer Review Signatures
SR# Unique ID K 50 11 00	DB-5 DB-5MSUI DB-225 SPB-Octyl
First Level - Data Processing - to	be filled by person generating the forms
Date: 033115Analyst: ()	Samples: 001DL, 004DL, 005DL, DUGDL, 009DL, 012DL, 015DL, 017DL, 018DL
Second Level - Data Review - to	be filled by person doing peer review
Date: 33/31 11 Analyst: 012	Samples: ODIDL, 004DL, 005DL, 006DL, 009DL 012DL, 015DL, 017DL, 018DL

Dat	1100 - 11	VIRONMENTAL – Houston Production and Peer Review Signatures	
SR# Unique ID	K1501100	DB-5 OB-5MSUI DB-225 SPB-Octyl	
First	Level - Data Process	sing - to be filled by person generating the forms	
Date: 13 31	5 Analyst:	Samples: 016DL	
Se	cond Level - Data Re	eview – to be filled by person doing peer review	
Date:	Analyst:	Samples:	
03/31/15	LKL	016PL	

Chain of Custody

ALS Environmental - Houston HRMS 10450 Stancliff Rd, Suite 210, Houston TX 77099 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 35 of 94

Project Name:Joslyn OU5 2015 SoilProject Number:23270110Project Manager:Terri OlsonCompany:Barr Engineering

Intra-Network	Chain of	Custody
---------------	----------	---------

1317 South 13th Avenue • Kelso, WA 98626 • 1-360-577-7222 • FAX 1-360-636-1068

Project Manager Company:	: Terri Olson Barr Engineering							PCDD PCDF 8290
Lab Code	Client Sample ID	# of Cont.	Matrix	Sam Date	ple Time	Date Received	Send To	50
K1501100-001	B-1 2-3.5'	1	Soil	2/2/15	1035	2/4/15	HOUSTON	П
K1501100-002	B-1 3.5-5'	6	Soil	2/2/15	1140	2/4/15	HOUSTON	II (H)
K1501100-003	B-1 5-6.5'		Soil	2/2/15	1145	2/4/15	HOUSTON	II (H)
K1501100-004	B-1 6.5-9'	9	Soil	2/2/15	1150	2/4/15	HOUSTON	П
K1501100-005	B-1 9-10'		Soil	2/2/15	1200	2/4/15	HOUSTON	П
K1501100-006	B-3 5-6.5'		Soil	2/2/15	1415	2/4/15	HOUSTON	п
K1501100-007	B-3 6.5-9'	à	Soil	2/2/15	1420	2/4/15	HOUSTON	II (H)
K1501100-008	B-3 9-10'	Ó	Soil	2/2/15	1425	2/4/15	HOUSTON	II (H)
K1501100-009	C-3 5-6.5'		Soil	2/2/15	1340	2/4/15	HOUSTON	П
K1501100-010	C-3 6.5-9'	ð	Soil	2/2/15	1345	2/4/15	HOUSTON	II (H)
K1501100-011	C-3 9-10'	Ó	Soil	2/2/15	1350	2/4/15	HOUSTON	II (H)
K1501100-012	D-1 2-3.5')	Soil	2/2/15	1105	2/4/15	HOUSTON	П

K1501100 5 Barr Engineering Joslyn OU5 2015 Soil

Samples Could have high concentration,

Special Instructions/Comments Please provide the electronic (PDF and EDD) report to the following e-mail address: ALKLS.Data@alsglobal.com.	Turnaround Requirements RUSH (Surcharges Apply) PLEASE CIRCLE WORK DAYS 1 2 3 4 5 STANDARD	Report Requirements I. Results Only N. Results + QC Summaries III. Results + QC and Calibration Summaries IV. Data Validation Report with Raw Data	Invoice Information PO# K1501100
pH Checked	Requested FAX Date: Requested Report Date: 03/27/15	PQL/MDL/J <u>N</u> EDD <u>Y</u>	Bill to

Relinquished By:

nith 31

Received By: Include

Page/3610/1/94

1100

Airbill Number:

Intra-Network Chain of Custody

1317 South 13th Avenue • Kelso, WA 98626 • 1-360-577-7222 • FAX 1-360-636-1068

Project Name:Joslyn OU5 2015 SoilProject Number:23270110Project Manager:Terri OlsonCompany:Barr Engineering

JF	
D PCI 290	
DI 8	

				Sam	ple	Date		-
Lab Code	Client Sample ID	# of Cont.	Matrix	Date	Time	Received	Send To	
K1501100-013	D-1 3.5-9'	4	Soil	2/2/15	1110	2/4/15	HOUSTON	II (H)
K1501100-014	D-1 9-10'	Ð	Soil	2/2/15	1120	2/4/15	HOUSTON	II (H)
K1501100-015	E-4 5-6.5'	/1	Soil	2/2/15	1300	2/4/15	HOUSTON	П
K1501100-016	E-4 6.5-9'	P	Soil	2/2/15	1305	2/4/15	HOUSTON	II
K1501100-017	E-4 9-10'		Soil	2/2/15	1310	2/4/15	HOUSTON	п
K1501100-018	F-3 4-5.5'		Soil	2/2/15	1225	2/4/15	HOUSTON	п
K1501100-019	F-3 5.5-9'	0	Soil	2/2/15	1230	2/4/15	HOUSTON	II (H)
K1501100-020	F-3 9-10'	20	Soil	2/2/15	1235	2/4/15	HOUSTON	II (H)

Folder Comments:

Tier II except when requested otherwise. Add narrative note that Benzo(b)fluoranthene cannot be separated from Benzo(j)fluoranthene. The .02 jar is designated for 8290 Houston.

3/6/15: Samples released from hold. LAD

Special Instructions/Comments Please provide the electronic (PDF and EDD) report to the following e-mail address: ALKLS.Data@alsglobal.com.	Turnaround Requirements RUSH (Surcharges Apply) PLEASE CIRCLE WORK DAYS	Report Requirements I. Results Only II. Results + QC Summaries	Invoice Information
	1 2 3 4 5	III. Results + QC and Calibration Summaries IV. Data Validation Report with Raw Data	PO# K1501100
pH Checked	Requested FAX Date:	PQL/MDL/J <u>N</u> EDD <u>Y</u>	Bill to

Received By: -Relinquished By: onth Airbill Number: 3 11 192.2 Page 37 of 94 1110

ALS) Environmental	Coole	er Receipt	. FOITI	Project Cher		nve
Client/Project Kelso - Bo	urr E	nej-	The	rmometer ID	SM	Ø
Date/Time Received: 3/11/15 /100	Initi	als: Ju Date	e/Time Logge	ed in: 3/11/15	5 1215 Init	ials <i>W</i>
. Method of delivery: C US Mail	(Fed Ex		CDHLC	Courier CClie	ent	
. Samples received in: Cooler	← Box ← Env	elope C Other				
. Were custody seals on coolers?	Yes CNO		yes, how mai	ny	and -	ceal
Were they intact? (A Were they signed and dated? (C I. Packing Material: (C) Inserts (C) Baggin	Yes (No Yes (No es(Búbble Wr Yes (Mo	CN/A CN/A		one f		700(
Were they intact? (A Were they signed and dated? (C Packing Material: (C) Inserts (C) Baggin	es Bubble Wr	CN/A CN/A ap (VGel Packs	;			Temp Blank?
Were they intact? (~ Were they signed and dated? (~ Packing Material: (~ Inserts (~ Baggin Foreign or Regulated Soil? (~	Yes (No es(Bubble Wr Yes (No COC ID	CN/A CN/A ap CGel Packs Location of Sa	: C Wet lo ampling:	e (~ Sleeves (Other	Temp
Were they intact? (* Were they signed and dated? (* Packing Material: (*) Inserts (*) Baggin Foreign or Regulated Soil? (* Cooler Tracking Number	Yes (No es(Bubble Wr Yes (No COC ID	C N/A C N/A ap C Gel Packs Location of Sa Date Opened	G Wet lo ampling: Time Opened	e (Sleeves (Opened By	Other	Temp Blank?
Were they intact? (* Were they signed and dated? (* 1. Packing Material: (*) Inserts (*) Baggin 5. Foreign or Regulated Soil? (* Cooler Tracking Number	Yes (No es(Bubble Wr Yes (No COC ID	C N/A C N/A ap C Gel Packs Location of Sa Date Opened	G Wet lo ampling: Time Opened	e (Sleeves (Opened By	Other	Temp Blank?

6. Were custody papers properly filled out (ink, signed, dated, etc)?	(Yes	CNO
7. Did all bottles arrive in good condition (not broken, no signs of leakage)?	Cres	C No
8. Were all sample labels complete (i.e., sample ID, analysis, preservation, etc)?	CXes	(No
9. Were appropriate bottles/containers and volumes received for the requested tests?	Nes	CNO
10. Did sample labels and tags agree with custody documents?	(Mes	CNO
9. Were appropriate bottles/containers and volumes received for the requested tests?	Wes	CNO

Notes, Discrepancies, & Resolutions:

Service request Label:

ALS Environmental - Houston HRMS

10450 Stancliff Rd., Suite 210 Houston, TX 77099 T: +1 713 266 1599 F: +1 713 266 1599 www.alsglobal.com

SAMPLE ACCEPTANCE POLICY

This policy outlines the criteria samples must meet to be accepted by ALS Environmental - Houston HRMS.

Cooler Custody Seals (desirable, mandatory if specified in SAP):

✓ Intact on outside of cooler, signed and dated

Chain-of-Custody (COC) documentation (mandatory):

The following is required on each COC:

- ✓ Sample ID, the location, date and time of collection, collector's name, preservation type, sample type, and any other special remarks concerning the sampleThe COC must be completed in ink.
- ✓ Signature and date of relinquishing party.

In the absence of a COC at sample receipt, the COC will be requested from the client.

Sample Integrity (mandatory):

Samples are inspected upon arrival to ensure that sample integrity was not compromised during transfer to the laboratory.

- ✓ Sample containers must arrive in good condition (not broken or leaking).
- ✓ Samples must be labeled appropriately, including Sample IDs, and requested test using durable labels and indelible ink.
- \checkmark The correct type of sample bottle must be used for the method requested.
- ✓ An appropriate sample volume, or weight, must be received.
- ✓ Sample IDs and number of containers must reconcile with the COC.
- \checkmark Samples must be received within the method defined holding time.

Temperature Requirement (varies by sample matrix):

- \checkmark Aqueous and Non-aqueous samples must be shipped and stored cold, at 0 to 6°C.
- \checkmark Tissue samples must be shipped and stored frozen, at -20 to -10°C.
- \checkmark Air samples are shipped and stored cold, at 0 to 6°C
- \checkmark The sample temperature must be recorded on the COC

All cooler inspections are documented on the Cooler Receipt Form (CRF). A separate CRF is completed for each service request. Any samples not meeting the above criteria are noted on the CRF and the Project Manager notified. The Project Manager must resolve any sample integrity issues with the client prior to proceeding with the analysis. Such resolutions are documented in writing and filed with the project folder. Data associated with samples received outside of this acceptance policy will be qualified on the case narrative of the final report

Preparation Information Benchsheets

ALS Environmental - Houston HRMS 10450 Stancliff Rd., Suite 210, Houston, TX 77099 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 40 of 94

Preparation Information Benchsheet

Prep Run#:231253Team:Semivoa GCMS/DEDWARDS

Prep WorkFlow: OrgExtDioxS(30)
 Prep Method: Method

Status: Prepped Prep Date/Time: 3/16/15 07:35 AM

#	Lab Code	Client ID	B#	Method /Test	рH	Matrix	Amt. Ext.	Sample Description	
1	E1500230-001	PRC-DU1-Comp	.01	8290/PCDD PCDF		Sediment	10.054g	Watery Green Sediment	
2	E1500230-002	PRC-DU2-Comp	.01	8290/PCDD PCDF		Sediment	10.208g	Watery Green Sediment	
3	EQ1500199-01	MB		8290/PCDD PCDF		Solid	10.277g		
4	EQ1500199-02	LCS		8290/PCDD PCDF		Solid	10.494g		
5	EQ1500199-03	DLCS		8290/PCDD PCDF		Solid	10.162g		
6	K1501100-001	B-1 2-3.5'	.02	8290/PCDD PCDF		Soil	10.355g	Moist Brown Sediment Crumbles	
7	K1501100-004	B-1 6.5-9'	.02	8290/PCDD PCDF		Soil	10.148g	Moist Brown Sediment	
8	K1501100-005	B-1 9-10'	.02	8290/PCDD PCDF		Soil	10.073g	Moist Brown Sediment	
9	K1501100-006	B-3 5-6.5'	.02	8290/PCDD PCDF		Soil	10.164g	Black Soft Soil	
10	K1501100-009	C-3 5-6.5'	.02	8290/PCDD PCDF		Soil	10.373g	Black Soft Soil	
11	K1501100-012	D-1 2-3.5'	.02	8290/PCDD PCDF		Soil	10.006g	Brown Moist Sand	
12	K1501100-015	E-4 5-6.5'	.02	8290/PCDD PCDF		Soil	10.094g	Black Moist Sludge	
13	K1501100-016	E-4 6.5-9'	.02	8290/PCDD PCDF		Soil	10.272g	Brown Moist Crumbles Sediment	
14	K1501100-017	E-4 9-10'	.02	8290/PCDD PCDF		Soil	10.206g	Tannish Moist Mud	
15	K1501100-018	F-3 4-5.5'	.02	8290/PCDD PCDF		Soil	10.143g	Black Moist Mud	
	Name: 1613B M EQ1500199-02 100	latrix Working Standard 0.00µL EQ1500199-03 100.00	μL	Inventory ID 79278		Logbook Ref: 2	-20 ng/ml 79278	3 DE 3/4/15	Expires On: 03/04/2016
	Name: 8290/161	3B Cleanup Working Standard		Inventory ID 79294		Logbook Ref: 7	9294 LM 3/5/15	8ng/mL	Expires On: 03/05/2016
L	K1501100-004 100	0.00µL E1500230-002 100.00 0.00µL K1501100-005 100.00 0.00µL K1501100-017 100.00	μL	EQ1500199-01 100.00µI K1501100-006 100.00µI K1501100-018 100.00µI	L	EQ1500199-02 K1501100-009	100.00μL 100.00μL	EQ1500199-03 100.00µL K1501100-012 100.00µL	K1501100-001 100.00μL K1501100-015 100.00μL
Ĩ	Name: 1613B La	abeled Working Standard		Inventory ID 79431		Logbook Ref: 2	-4 ng/ml 79431	DE 3/12/15	Expires On: 08/19/2015
-		000.00μL E1500230-002 1,000.0 000.00μL K1501100-005 1,000.0	•	EQ1500199-01 1,000.00 K1501100-006 1,000.00	•	EQ1500199-02 K1501100-009	1,000.00μL 1,000.00μL	EQ1500199-03 1,000.00µL K1501100-012 1,000.00µL	K1501100-001 1,000.00μL K1501100-015 1,000.00μL
Ī	Name: 1613B La	abeled Working Standard		Inventory ID 79546		Logbook Ref: 2	-4 ng/ml 79546	DE 3/16/15	Expires On: 08/19/2015
-	K1501100-016 1,0	000.00μL K1501100-017 1,000.0	00µL	K1501100-018 1,000.00	μL				

Preparation Information Benchsheet

Prep WorkFlow: OrgExtDioxS(30)

Prep Method: Method

Prep Run#: 231253 Team: Semivoa GCMS/DEDWARDS

Preparation Materials

Carbon, High Purity	LM 3/4/15 (79266)	Ethyl Acetate 99.9% Minimum EtOAc	LM 2/27/15 (79153)	Glass Wool	AL 2/17/15 (78802)
Sulfuric Acid Reagent Grade H2SO4	LM 3/4/15 (79265)	Hexanes 95%	LM 3/4/15 (79263)	Dichloromethane (Methylene Chloride) 99.9% MeCl2	LM 2/20/15 (78906)
Sodium Chloride Reagent Grade NaCl	C2-65-5 (38670)	Sodium Hydroxide Reagent Grade NaOH	LM 09/02/14 (74232)	Sodium Sulfate Anhydrous Reagent Grade Na2SO4	LM 11/25/14 (76864)
Tridecane (n-Tridecane)	AL 03/10/15 (79360)	Silica Gel Reagent Grade	AL 03/13/15 (79494)	Toluene 99.9% Minimum	LM 3/4/15 (79264)
Preparation Steps					
Step: Extraction	Step: Acid Clean	Step: Silica Ge	el Clean Step:	Final Volume	
Started: 3/16/15 07:35	Started: 3/17/15 06:15	Started: 3/17/15	08:15 Started:	3/17/15 17:50	
Finished: 3/17/15 04:30	Finished: 3/17/15 06:45	Finished: 3/17/15	09:45 Finished:	3/17/15 18:20	
By: DEDWARDS	By: CDIAZ	By: CDIAZ	By:	LMCCRINK	
Comments	Comments	Comments	Comments	3	

Comments:

Reviewed By:	ak	Date: 3/18/15	
Chain of Custody			
Relinquished By:		Date:	Extracts Examined
Received By:		Date:	Yes No

Printed 3/18/15 7:15

Status: Prepped **Prep Date/Time:** 3/16/15 07:35 AM

Analytical Results

ALS Environmental - Houston HRMS 10450 Stancliff Rd., Suite 210, Houston, TX 77099 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 43 of 94

Analytical Report

	Analytical Report		
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 10:35
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	B-1 2-3.5'	Units:	ng/Kg
Lab Code:	K1501100-001	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlorinated Dibenzo	ofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/18/15 18:09
Analysis Method: Prep Method:	8290 Method	·	
•		Date Analyzed:	3/16/15
Prep Method:	Method	Date Analyzed: Date Extracted:	3/16/15 E-HRMS-04

Cal Ver. File Name: P234981

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	0.575 JK	0.173	0.653	0.48	1.001	1
1,2,3,7,8-PeCDD	17.9	0.159	3.26	1.67	1.000	1
1,2,3,4,7,8-HxCDD	96.4	0.396	3.26	1.25	1.000	1
1,2,3,6,7,8-HxCDD	4510 K	134	653	1.52	1.000	200
1,2,3,7,8,9-HxCDD	292	0.395	3.26	1.29	1.007	1
1,2,3,4,6,7,8-HpCDD	122000	379	653	1.13	1.000	200
OCDD	3050000	933	1310	0.88	1.000	200
2,3,7,8-TCDF	41.3	0.156	0.653	0.77	1.001	1
1,2,3,7,8-PeCDF	322	13.6	13.6	1.56	1.001	1
2,3,4,7,8-PeCDF	697	13.4	13.4	1.53	1.002	1
1,2,3,4,7,8-HxCDF	2230 K	291	653	1.63	1.000	200
1,2,3,6,7,8-HxCDF	643	22.9	22.9	1.24	1.000	1
1,2,3,7,8,9-HxCDF	1080	25.8	25.8	1.24	1.000	1
2,3,4,6,7,8-HxCDF	1210	24.3	24.3	1.25	1.000	1
1,2,3,4,6,7,8-HpCDF	39600	924	924	1.04	1.000	200
1,2,3,4,7,8,9-HpCDF	3080	1240	1240	1.16	1.000	200
OCDF	479000	984	1310	0.85	1.005	200

ICAL Date:

10/28/14

Analytical Report

	Analytical Rep	on	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 10:35
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	B-1 2-3.5'	Units:	ng/Kg
Lab Code:	K1501100-001	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlorin	ated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/18/15 18:09
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.355g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P234987	Blank File Name:	P235018

ICAL Date: 10/28/14

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q) EDL	MRL	Ratio	RRT	Factor
Total Tetra-Dioxins	17.6	0.173	0.653	0.75		1
Total Penta-Dioxins	143	0.159	3.26	1.58		1
Total Hexa-Dioxins	11700	0.406	3.26	1.27		1
Total Hepta-Dioxins	182000	35.4	35.4	1.05		1
Total Tetra-Furans	122	0.156	0.653	0.79		1
Total Penta-Furans	3850	0.0673	3.26	1.56		1
Total Hexa-Furans	59700	24.4	24.4	1.23		1
Total Hepta-Furans	144000	236	236	1.02		1

Analytical Report

	Allaly	lical Report	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 10:35
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	B-1 2-3.5'	Units:	Percent
Lab Code:	K1501100-001	Basis:	Dry
	Polychlorinated Dibenzodioxins and Poly	chlorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/18/15 18:09
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.355g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P234987	Blank File Name:	P235018
ICAL Date:	10/28/14	Cal Ver. File Name:	P234981

	Spike	Conc.			Control	Ion	
Labeled Compounds	Conc.(pg)	Found (pg)	% Rec	Q	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1302.966	65		40-135	0.76	1.022
13C-1,2,3,7,8-PeCDD	2000	1560.537	78		40-135	1.60	1.192
13C-1,2,3,4,7,8-HxCDD	2000	1169.346	58		40-135	1.30	0.991
13C-1,2,3,6,7,8-HxCDD	2000	1069.459	53		40-135	1.29	0.994
13C-1,2,3,4,6,7,8-HpCDD	2000	799.030	40		40-135	1.07	1.067
13C-OCDD	4000	588.902	15	KY	40-135	1.11	1.143
13C-2,3,7,8-TCDF	2000	1349.027	67		40-135	0.80	0.993
13C-1,2,3,7,8-PeCDF	2000	1517.144	76		40-135	1.61	1.149
13C-2,3,4,7,8-PeCDF	2000	1600.035	80		40-135	1.62	1.182
13C-1,2,3,4,7,8-HxCDF	2000	1151.253	58		40-135	0.52	0.971
13C-1,2,3,6,7,8-HxCDF	2000	1143.502	57		40-135	0.53	0.974
13C-1,2,3,7,8,9-HxCDF	2000	1285.181	64		40-135	0.53	1.009
13C-2,3,4,6,7,8-HxCDF	2000	1213.189	61		40-135	0.53	0.988
13C-1,2,3,4,6,7,8-HpCDF	2000	861.217	43		40-135	0.45	1.043
13C-1,2,3,4,7,8,9-HpCDF	2000	1209.566	60		40-135	0.45	1.080
37Cl-2,3,7,8-TCDD	800	604.207	76		40-135	NA	1.022

Labeled Standard Results

Analytical Report

Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 10:35
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	B-1 2-3.5'	Units:	ng/Kg
Lab Code:	K1501100-001	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlorina	ated Dibenzofurans by HRGC/HRMS	

Analysis Method: **Prep Method:**

8290 Method

Toxicity Equivalency Quotient

Analyte Name	Result	DL	MRL	Dilution Factor	TEF	TEF - Adjusted Concentration
2,3,7,8-TCDD	0.575	0.173	0.653	1	1	0.575
1,2,3,7,8-PeCDD	17.9	0.159	3.26	1	1	17.9
1,2,3,4,7,8-HxCDD	96.4	0.396	3.26	1	0.1	9.64
1,2,3,6,7,8-HxCDD	4510	134	653	200	0.1	451
1,2,3,7,8,9-HxCDD	292	0.395	3.26	1	0.1	29.2
1,2,3,4,6,7,8-HpCDD	122000	379	653	200	0.01	1220
OCDD	3050000	933	1310	200	0.0003	915
2,3,7,8-TCDF	41.3	0.156	0.653	1	0.1	4.13
1,2,3,7,8-PeCDF	322	13.6	13.6	1	0.03	9.66
2,3,4,7,8-PeCDF	697	13.4	13.4	1	0.3	209
1,2,3,4,7,8-HxCDF	2230	291	653	200	0.1	223
1,2,3,6,7,8-HxCDF	643	22.9	22.9	1	0.1	64.3
1,2,3,7,8,9-HxCDF	1080	25.8	25.8	1	0.1	108
2,3,4,6,7,8-HxCDF	1210	24.3	24.3	1	0.1	121
1,2,3,4,6,7,8-HpCDF	39600	924	924	200	0.01	396
1,2,3,4,7,8,9-HpCDF	3080	1240	1240	200	0.01	30.8
OCDF	479000	984	1310	200	0.0003	144
	Te	otal TEQ				3950

2005 WHO TEFs, ND = 0

Analytical Report

	Alla	nyucai keport					
Client:	Barr Engineering Company	Service Request:	K1501100				
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 11:50				
Sample Matrix:	Soil	Date Received:	02/04/15 09:40				
Sample Name:	B-1 6.5-9'	Units:	ng/Kg				
Lab Code:	K1501100-004	Basis:	Dry				
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS							
Analysis Method:	8290	Date Analyzed:	03/18/15 18:57				
Prep Method:	Method	Date Extracted:	3/16/15				
Sample Amount:	10.148g	Instrument Name:	E-HRMS-04				
		GC Column:	DB-5MSUI				
Data File Name:	P234988	Blank File Name:	P235018				
ICAL Date:	10/28/14	Cal Ver. File Name:	P234981				

Native Analyte Results

A	Demolt O	FDI	MDI	Ion	ррт	Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	0.247 JK	0.175	0.599	0.92	1.000	1
1,2,3,7,8-PeCDD	5.77	0.267	2.99	1.57	1.001	1
1,2,3,4,7,8-HxCDD	74.2	1.16	2.99	1.21	1.000	1
1,2,3,6,7,8-HxCDD	4620	30.2	299	1.17	1.000	100
1,2,3,7,8,9-HxCDD	497	1.41	2.99	1.25	1.006	1
1,2,3,4,6,7,8-HpCDD	99200	162	299	1.01	1.000	100
OCDD	762000	127	599	0.88	1.000	100
2,3,7,8-TCDF	0.529 J	0.162	0.599	0.85	1.001	1
1,2,3,7,8-PeCDF	2.39 JK	1.62	2.99	1.24	1.001	1
2,3,4,7,8-PeCDF	10.9	1.62	2.99	1.61	1.002	1
1,2,3,4,7,8-HxCDF	1040 P	1.67	2.99	1.25	1.000	1
1,2,3,6,7,8-HxCDF	96.8	1.11	2.99	1.21	1.000	1
1,2,3,7,8,9-HxCDF	98.4	0.959	2.99	1.40	1.001	1
2,3,4,6,7,8-HxCDF	383	0.928	2.99	1.23	1.000	1
1,2,3,4,6,7,8-HpCDF	24100	78.9	299	1.02	1.000	100
1,2,3,4,7,8,9-HpCDF	1260 K	107	299	0.77	1.000	100
OCDF	308000	118	599	0.86	1.005	100

Analytical Report

	Anarytical Report						
Client:	Barr Engineering Company	Service Request:	K1501100				
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 11:50				
Sample Matrix:	Soil	Date Received:	02/04/15 09:40				
Sample Name:	B-1 6.5-9'	Units:	ng/Kg				
Lab Code:	K1501100-004	Basis:	Dry				
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS							
Analysis Method:	8290	Date Analyzed:	03/18/15 18:57				
Prep Method:	Method	Date Extracted:	3/16/15				
Sample Amount:	10.148g	Instrument Name:	E-HRMS-04				
		GC Column:	DB-5MSUI				
Data File Name:	P234988	Blank File Name:					

ICAL Date: 10/28/14

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
Total Tetra-Dioxins	8.98	0.175	0.599	0.83		1
Total Penta-Dioxins	45.0	0.267	2.99	1.53		1
Total Hexa-Dioxins	16900	1.45	2.99	1.26		1
Total Hepta-Dioxins	220000	92.8	92.8	1.03		1
Total Tetra-Furans	47.4	0.162	0.599	0.75		1
Total Penta-Furans	192	0.165	2.99	1.56		1
Total Hexa-Furans	6760	113	113	1.26		1
Total Hepta-Furans	167000	46.8	46.8	1.00		1

Analytical Report

	7 marytear Rep						
Client:	Barr Engineering Company	Service Request: K1501100					
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected: 02/02/15 11:50					
Sample Matrix:	Soil	Date Received: 02/04/15 09:40					
Sample Name:	B-1 6.5-9'	Units: Percent					
Lab Code:	K1501100-004	Basis: Dry					
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS							
Analysis Method:	8290	Date Analyzed: 03/18/15 18:57					
Prep Method:	Method	Date Extracted: 3/16/15					
Sample Amount:	10.148g	Instrument Name: E-HRMS-04					
		GC Column: DB-5MSUI					
Data File Name:	P234988	Blank File Name: P235018					
ICAL Date:	10/28/14	Cal Ver. File Name: P234981					

Spike Conc. Control Ion RRT Conc.(pg) % Rec Q Limits Ratio Labeled Compounds Found (pg) 13C-2,3,7,8-TCDD 2000 1579.361 79 40-135 0.78 1.021 13C-1,2,3,7,8-PeCDD 2000 1710.656 40-135 1.189 86 1.63 13C-1,2,3,4,7,8-HxCDD 2000 1359.296 68 40-135 1.27 0.991 2000 41 40-135 1.30 0.994 13C-1,2,3,6,7,8-HxCDD 820.287 2000 13C-1,2,3,4,6,7,8-HpCDD 910.520 46 40-135 1.08 1.067 KY 13C-OCDD 4000 1392.404 35 40-135 1.09 1.144 2000 1568.699 0.81 0.993 13C-2,3,7,8-TCDF 78 40-135 2000 13C-1,2,3,7,8-PeCDF 1668.356 83 40-135 1.62 1.146 13C-2,3,4,7,8-PeCDF 2000 1748.033 87 40-135 1.62 1.178 13C-1,2,3,4,7,8-HxCDF 875.850 40-135 2000 44 0.52 0.970 13C-1,2,3,6,7,8-HxCDF 2000 1215.985 61 40-135 0.53 0.974 13C-1,2,3,7,8,9-HxCDF 2000 1462.419 40-135 73 0.53 1.008 13C-2,3,4,6,7,8-HxCDF 2000 1330.908 67 40-135 0.53 0.988 13C-1,2,3,4,6,7,8-HpCDF 2000 1036.620 52 40-135 0.48 1.042 13C-1,2,3,4,7,8,9-HpCDF 2000 1057.542 53 40-135 0.44 1.079 37Cl-2,3,7,8-TCDD 800 697.173 87 40-135 NA 1.022

Labeled Standard Results

Analytical Report

Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 11:50
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	B-1 6.5-9'	Units:	ng/Kg
Lab Code:	K1501100-004	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlorina	ated Dibenzofurans by HRGC/HRMS	

Analysis Method: 8290 **Prep Method:**

Method

Toxicity Equivalency Quotient

Analyte Name	Result	DL	MRL	Dilution Factor	TEF	TEF - Adjusted Concentration
2,3,7,8-TCDD	0.247	0.175	0.599	1	1	0.247
1,2,3,7,8-PeCDD	5.77	0.267	2.99	1	1	5.77
1,2,3,4,7,8-HxCDD	74.2	1.16	2.99	1	0.1	7.42
1,2,3,6,7,8-HxCDD	4620	30.2	299	100	0.1	462
1,2,3,7,8,9-HxCDD	497	1.41	2.99	1	0.1	49.7
1,2,3,4,6,7,8-HpCDD	99200	162	299	100	0.01	992
OCDD	762000	127	599	100	0.0003	229
2,3,7,8-TCDF	0.529	0.162	0.599	1	0.1	0.0529
1,2,3,7,8-PeCDF	2.39	1.62	2.99	1	0.03	0.0717
2,3,4,7,8-PeCDF	10.9	1.62	2.99	1	0.3	3.27
1,2,3,4,7,8-HxCDF	1040	1.67	2.99	1	0.1	104
1,2,3,6,7,8-HxCDF	96.8	1.11	2.99	1	0.1	9.68
1,2,3,7,8,9-HxCDF	98.4	0.959	2.99	1	0.1	9.84
2,3,4,6,7,8-HxCDF	383	0.928	2.99	1	0.1	38.3
1,2,3,4,6,7,8-HpCDF	24100	78.9	299	100	0.01	241
1,2,3,4,7,8,9-HpCDF	1260	107	299	100	0.01	12.6
OCDF	308000	118	599	100	0.0003	92.4
	Te	otal TEQ				2260

2005 WHO TEFs, ND = 0

Analytical Report

	Analytical Re	port					
Client:	Barr Engineering Company	Service Request:	K1501100				
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 12:00				
Sample Matrix:	Soil	Date Received:	02/04/15 09:40				
Sample Name:	B-1 9-10'	Units:	ng/Kg				
Lab Code:	K1501100-005	Basis:	Dry				
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS							
Analysis Method:	8290	Date Analyzed:	03/18/15 19:45				
Prep Method:	Method	Date Extracted:	3/16/15				
Sample Amount:	10.073g	Instrument Name:	E-HRMS-04				
		GC Column:	DB-5MSUI				
Data File Name:	P234989	Blank File Name:	P235018				

ICAL Date: 10/28/14

Native Analyte Results

					Ion		Dilution
Analyte Name	Result	Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	ND	U	0.307	0.594			1
1,2,3,7,8-PeCDD	ND	U	0.773	2.97			1
1,2,3,4,7,8-HxCDD	6.51		3.40	3.40	1.20	1.000	1
1,2,3,6,7,8-HxCDD	329		3.49	3.49	1.29	1.000	1
1,2,3,7,8,9-HxCDD	101		3.30	3.30	1.27	1.007	1
1,2,3,4,6,7,8-HpCDD	27700		69.9	148	1.04	1.000	50
OCDD	289000		86.4	297	0.87	1.000	50
2,3,7,8-TCDF	ND	U	0.280	0.594			1
1,2,3,7,8-PeCDF	ND	U	1.07	2.97			1
2,3,4,7,8-PeCDF	ND	U	1.07	2.97			1
1,2,3,4,7,8-HxCDF	16.8		1.46	2.97	1.22	1.000	1
1,2,3,6,7,8-HxCDF	ND	U	1.31	2.97			1
1,2,3,7,8,9-HxCDF	ND	U	1.44	2.97			1
2,3,4,6,7,8-HxCDF	9.31		1.43	2.97	1.21	1.000	1
1,2,3,4,6,7,8-HpCDF	1330		25.2	25.2	1.02	1.000	1
1,2,3,4,7,8,9-HpCDF	63.0		25.8	25.8	1.02	1.000	1
OCDF	9780		232	297	0.89	1.005	50

Analytical Report

	Analytical Report						
Client:	Barr Engineering Company	Service Request:	K1501100				
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 12:00				
Sample Matrix:	Soil	Date Received:	02/04/15 09:40				
Sample Name:	B-1 9-10'	Units:	ng/Kg				
Lab Code:	K1501100-005	Basis:					
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS							
Analysis Method:	8290	Date Analyzed:	03/18/15 19:45				
Prep Method:	Method	Date Extracted:	3/16/15				
Sample Amount:	10.073g	Instrument Name:	E-HRMS-04				
		GC Column:	DB-5MSUI				
Data File Name:	P234989	Blank File Name:	P235018				

ICAL Date: 10/28/14

Native Analyte Results

				Ion		Dilution
Result	Q	EDL	MRL	Ratio	RRT	Factor
2.15		0.307	0.594	0.66		1
ND	U	0.773	2.97			1
1900		3.40	3.40	1.27		1
48900		15.2	15.2	1.06		1
1.06		0.280	0.594	0.74		1
13.0		0.330	2.97	1.53		1
1020		5.73	5.73	1.25		1
7430		25.4	25.4	1.02		1
	2.15 ND 1900 48900 1.06 13.0 1020	2.15 ND U 1900 48900 1.06 13.0 1020	2.15 0.307 ND U 0.773 1900 3.40 48900 15.2 1.06 0.280 13.0 0.330 1020 5.73	2.15 0.307 0.594 ND U 0.773 2.97 1900 3.40 3.40 48900 15.2 15.2 1.06 0.280 0.594 13.0 0.330 2.97 1020 5.73 5.73	ResultQEDLMRLRatio2.150.3070.5940.66NDU0.7732.9719003.403.401.274890015.215.21.061.060.2800.5940.7413.00.3302.971.5310205.735.731.25	Result Q EDL MRL Ratio RRT 2.15 0.307 0.594 0.66 ND U 0.773 2.97 1900 3.40 3.40 1.27 48900 15.2 15.2 1.06 1.06 0.280 0.594 0.74 13.0 0.330 2.97 1.53 1020 5.73 5.73 1.25

Analytical Report

Client:	Barr Engineering Company	Service Request: K1501100					
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected: 02/02/15 12:00					
Sample Matrix:	Soil	Date Received: 02/04/15 09:40					
Sample Name:	B-1 9-10'	Units: Percent					
Lab Code:	K1501100-005	Basis: Dry					
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS							
Analysis Method:	8290	Date Analyzed: 03/18/15 19:45					
Prep Method:	Method	Date Extracted: 3/16/15					
Sample Amount:	10.073g	Instrument Name: E-HRMS-04					
		GC Column: DB-5MSUI					
Data File Name:	P234989	Blank File Name: P235018					
ICAL Date:	10/28/14	Cal Ver. File Name: P234981					

	Spike	Conc.			Control	Ion	
Labeled Compounds	Conc.(pg)	Found (pg)	% Rec	0	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1155.129	58	L	40-135	0.77	1.022
13C-1,2,3,7,8-PeCDD	2000	1343.801	67		40-135	1.61	1.192
13C-1,2,3,4,7,8-HxCDD	2000	1078.917	54		40-135	1.30	0.991
13C-1,2,3,6,7,8-HxCDD	2000	927.811	46		40-135	1.26	0.993
13C-1,2,3,4,6,7,8-HpCDD	2000	832.971	42		40-135	1.09	1.066
13C-OCDD	4000	1021.020	26	Y	40-135	0.93	1.140
13C-2,3,7,8-TCDF	2000	1230.318	62		40-135	0.81	0.993
13C-1,2,3,7,8-PeCDF	2000	1315.909	66		40-135	1.64	1.149
13C-2,3,4,7,8-PeCDF	2000	1339.975	67		40-135	1.62	1.182
13C-1,2,3,4,7,8-HxCDF	2000	997.259	50		40-135	0.53	0.970
13C-1,2,3,6,7,8-HxCDF	2000	1017.538	51		40-135	0.53	0.973
13C-1,2,3,7,8,9-HxCDF	2000	1162.607	58		40-135	0.53	1.008
13C-2,3,4,6,7,8-HxCDF	2000	1061.535	53		40-135	0.53	0.988
13C-1,2,3,4,6,7,8-HpCDF	2000	823.457	41		40-135	0.44	1.042
13C-1,2,3,4,7,8,9-HpCDF	2000	1106.433	55		40-135	0.45	1.079
37Cl-2,3,7,8-TCDD	800	560.717	70		40-135	NA	1.023

Labeled Standard Results

Analytical Report

Client:	Barr Engineering Company	Service Request: K15011	00		
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected: 02/02/1	5 12:00		
Sample Matrix:	Soil	Date Received: 02/04/1	5 09:40		
Sample Name:	B-1 9-10'	Units: ng/Kg			
Lab Code:	K1501100-005	Basis: Dry			
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS					

ly Iy)y

Analysis Method: Prep Method:

8290 Method

Toxicity Equivalency Quotient

Analyte Name	Result	DL	MRL	Dilution Factor	TEF	TEF - Adjusted Concentration
2,3,7,8-TCDD	ND	0.307	0.594	1	1	
1,2,3,7,8-PeCDD	ND	0.773	2.97	1	1	
1,2,3,4,7,8-HxCDD	6.51	3.40	3.40	1	0.1	0.651
1,2,3,6,7,8-HxCDD	329	3.49	3.49	1	0.1	32.9
1,2,3,7,8,9-HxCDD	101	3.30	3.30	1	0.1	10.1
1,2,3,4,6,7,8-HpCDD	27700	69.9	148	50	0.01	277
OCDD	289000	86.4	297	50	0.0003	86.7
2,3,7,8-TCDF	ND	0.280	0.594	1	0.1	
1,2,3,7,8-PeCDF	ND	1.07	2.97	1	0.03	
2,3,4,7,8-PeCDF	ND	1.07	2.97	1	0.3	
1,2,3,4,7,8-HxCDF	16.8	1.46	2.97	1	0.1	1.68
1,2,3,6,7,8-HxCDF	ND	1.31	2.97	1	0.1	
1,2,3,7,8,9-HxCDF	ND	1.44	2.97	1	0.1	
2,3,4,6,7,8-HxCDF	9.31	1.43	2.97	1	0.1	0.931
1,2,3,4,6,7,8-HpCDF	1330	25.2	25.2	1	0.01	13.3
1,2,3,4,7,8,9-HpCDF	63.0	25.8	25.8	1	0.01	0.630
OCDF	9780	232	297	50	0.0003	2.93
	Te	otal TEQ				427

2005 WHO TEFs, ND = 0

Analytical Report

	Analytical Report		
Client:	Barr Engineering Company	Service Request: K1	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected: 02	2/02/15 14:15
Sample Matrix:	Soil	Date Received: 02	02/04/15 09:40
Sample Name:	B-3 5-6.5'	Units: ng	lg/Kg
Lab Code:	K1501100-006	Basis: Dr	Dry
	Polychlorinated Dibenzodioxins and Polychlorinated Dibenz	ofurans by HRGC/HRMS	
Analysis Method:	Polychlorinated Dibenzodioxins and Polychlorinated Dibenz	ofurans by HRGC/HRMS Date Analyzed: 03	3/18/15 20:34
Analysis Method: Prep Method:	· ·	-	
•	8290	Date Analyzed: 03	8/16/15
Prep Method:	8290 Method	Date Analyzed: 03 Date Extracted: 3/2	5/16/15 E-HRMS-04

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	4.59	0.993	2.59	0.73	1.000	1
1,2,3,7,8-PeCDD	41.4	4.01	12.9	1.68	1.001	1
1,2,3,4,7,8-HxCDD	194	27.8	27.8	1.25	1.000	1
1,2,3,6,7,8-HxCDD	1530	29.4	29.4	1.26	1.000	1
1,2,3,7,8,9-HxCDD	336	27.4	27.4	1.20	1.007	1
1,2,3,4,6,7,8-HpCDD	94900	367	647	1.14	1.000	50
OCDD	1430000	217	1290	0.89	1.000	50
2,3,7,8-TCDF	ND U	0.910	2.59			1
1,2,3,7,8-PeCDF	6.09 JK	3.55	12.9	1.89	1.001	1
2,3,4,7,8-PeCDF	16.4 K	3.48	12.9	1.31	1.002	1
1,2,3,4,7,8-HxCDF	299 P	4.77	12.9	1.16	1.000	1
1,2,3,6,7,8-HxCDF	ND U	4.57	12.9			1
1,2,3,7,8,9-HxCDF	ND U	5.28	12.9			1
2,3,4,6,7,8-HxCDF	133	4.61	12.9	1.27	1.001	1
1,2,3,4,6,7,8-HpCDF	23700	375	647	0.95	1.000	50
1,2,3,4,7,8,9-HpCDF	911	193	193	1.02	1.000	1
OCDF	264000	283	1290	0.89	1.005	50

ICAL Date:

10/28/14

Analytical Report

	Analytical Report	
Client:	Barr Engineering Company	Service Request: K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected: 02/02/15 14:15
Sample Matrix:	Soil	Date Received: 02/04/15 09:40
Sample Name:	B-3 5-6.5'	Units: ng/Kg
Lab Code:	K1501100-006	Basis: Dry
	Polychlorinated Dibenzodioxins and Polychlorinated Dibe	profurans by HRGC/HRMS
Analysis Method:	8290	Date Analyzed: 03/18/15 20:34
Analysis Method: Prep Method:	8290 Method	·
·		Date Analyzed: 03/18/15 20:34
Prep Method:	Method	Date Analyzed: 03/18/15 20:34 Date Extracted: 3/16/15

ICAL Date: 10/28/14

Native Analyte Results

			Ion		Dilution
Result Q	EDL	MRL	Ratio	RRT	Factor
120	0.993	2.59	0.72		1
930	4.01	12.9	1.57		1
9830	28.2	28.2	1.27		1
104000	32.9	32.9	1.06		1
48.3	0.910	2.59	0.82		1
492	1.86	12.9	1.58		1
14500	48.9	48.9	1.26		1
92900	182	182	1.03		1
	120 930 9830 104000 48.3 492 14500	120 0.993 930 4.01 9830 28.2 104000 32.9 48.3 0.910 492 1.86 14500 48.9	$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$	ResultQEDLMRLRatio1200.9932.590.729304.0112.91.57983028.228.21.2710400032.932.91.0648.30.9102.590.824921.8612.91.581450048.948.91.26	ResultQEDLMRLRatioRRT1200.9932.590.729304.0112.91.57983028.228.21.2710400032.932.91.0648.30.9102.590.824921.8612.91.581450048.948.91.26

Analytical Report

	7 Marytean Repo	11	
Client:	Barr Engineering Company	Service Request: K1	1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected: 02	2/02/15 14:15
Sample Matrix:	Soil	Date Received: 02	2/04/15 09:40
Sample Name:	B-3 5-6.5'	Units: Pe	ercent
Lab Code:	K1501100-006	Basis: Dr	ry
	Polychlorinated Dibenzodioxins and Polychlorina	ted Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed: 03	8/18/15 20:34
Prep Method:	Method	Date Extracted: 3/2	16/15
Sample Amount:	10.164g	Instrument Name: E-	HRMS-04
		GC Column: DH	B-5MSUI
Data File Name:	P234990	Blank File Name: P2	235018
ICAL Date:	10/28/14	Cal Ver. File Name: P2	234981

Spike Conc. Control Ion RRT Conc.(pg) % Rec Q Limits Ratio Labeled Compounds Found (pg) 13C-2,3,7,8-TCDD 2000 40-135 1455.519 73 0.78 1.022 2000 13C-1,2,3,7,8-PeCDD 1702.421 85 40-135 1.192 1.63 13C-1,2,3,4,7,8-HxCDD 2000 1212.939 61 40-135 1.35 0.991 2000 1110.451 40-135 1.26 0.994 13C-1,2,3,6,7,8-HxCDD 56 2000 13C-1,2,3,4,6,7,8-HpCDD 1018.766 51 40-135 1.06 1.067 4000 Y 13C-OCDD 1409.102 35 40-135 0.95 1.141 13C-2,3,7,8-TCDF 2000 1458.868 0.81 0.993 73 40-135 2000 13C-1,2,3,7,8-PeCDF 1641.294 82 40-135 1.61 1.149 13C-2,3,4,7,8-PeCDF 2000 1720.349 86 40-135 1.62 1.182 13C-1,2,3,4,7,8-HxCDF 2000 1187.748 59 40-135 0.53 0.971 13C-1,2,3,6,7,8-HxCDF 2000 1142.453 57 40-135 0.52 0.974 13C-1,2,3,7,8,9-HxCDF 2000 1273.306 40-135 64 0.53 1.009 2000 13C-2,3,4,6,7,8-HxCDF 1238.425 62 40-135 0.53 0.988 13C-1,2,3,4,6,7,8-HpCDF 2000 1012.805 51 40-135 0.45 1.042 13C-1,2,3,4,7,8,9-HpCDF 2000 1269.955 40-135 0.45 1.080 63 40-135 37Cl-2,3,7,8-TCDD 800 704.025 88 NA 1.022

Labeled Standard Results

Analytical Report

Client:	Barr Engineering Company	Service Request:	K1501100		
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 14:15		
Sample Matrix:	Soil	Date Received:	02/04/15 09:40		
Sample Name:	B-3 5-6.5'	Units:	ng/Kg		
Lab Code:	K1501100-006	Basis:	Dry		
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS					

ly)y Iy

Analysis Method: Prep Method:

8290 Method

Toxicity Equivalency Quotient

Analyte Name	Result	DL	MRL	Dilution Factor	TEF	TEF - Adjusted Concentration
2,3,7,8-TCDD	<u>4.59</u>	0.993	2.59	1	1	4.59
1,2,3,7,8-PeCDD	41.4	4.01	12.9	1	1	41.4
1,2,3,4,7,8-HxCDD	194	27.8	27.8	1	0.1	19.4
1,2,3,6,7,8-HxCDD	1530	29.4	29.4	1	0.1	153
1,2,3,7,8,9-HxCDD	336	27.4	27.4	1	0.1	33.6
1,2,3,4,6,7,8-HpCDD	94900	367	647	50	0.01	949
OCDD	1430000	217	1290	50	0.0003	429
2,3,7,8-TCDF	ND	0.910	2.59	1	0.1	
1,2,3,7,8-PeCDF	6.09	3.55	12.9	1	0.03	0.183
2,3,4,7,8-PeCDF	16.4	3.48	12.9	1	0.3	4.92
1,2,3,4,7,8-HxCDF	299	4.77	12.9	1	0.1	29.9
1,2,3,6,7,8-HxCDF	ND	4.57	12.9	1	0.1	
1,2,3,7,8,9-HxCDF	ND	5.28	12.9	1	0.1	
2,3,4,6,7,8-HxCDF	133	4.61	12.9	1	0.1	13.3
1,2,3,4,6,7,8-HpCDF	23700	375	647	50	0.01	237
1,2,3,4,7,8,9-HpCDF	911	193	193	1	0.01	9.11
OCDF	264000	283	1290	50	0.0003	79.2
	Te	otal TEQ				2000

2005 WHO TEFs, ND = 0

Analytical Report

	Analytical Report	
Client:	Barr Engineering Company	Service Request: K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected: 02/02/15 13:40
Sample Matrix:	Soil	Date Received: 02/04/15 09:40
Sample Name:	C-3 5-6.5'	Units: ng/Kg
Lab Code:	K1501100-009	Basis: Dry
	Polychlorinated Dibenzodioxins and Polychlorinated Dil	enzofurans by HRGC/HRMS
Analysis Method:	8290	Date Analyzed: 03/31/15 01:22
Analysis Method: Prep Method:	8290 Method	Date Analyzed: 03/31/15 01:22 Date Extracted: 3/16/15
•		·
Prep Method:	Method	Date Extracted: 3/16/15

Cal Ver. File Name: P235303

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	2.04 JK	1.41	2.75	0.63	1.002	1
1,2,3,7,8-PeCDD	104	5.18	13.8	1.46	1.001	1
1,2,3,4,7,8-HxCDD	501	10.2	13.8	1.21	1.001	1
1,2,3,6,7,8-HxCDD	18500	1580	13800	1.25	1.000	1000
1,2,3,7,8,9-HxCDD	1100	9.50	13.8	1.27	1.007	1
1,2,3,4,6,7,8-HpCDD	382000	2170	13800	1.04	1.000	1000
OCDD	4450000	3440	27500	0.87	1.000	1000
2,3,7,8-TCDF	327	0.993	2.75	0.77	1.000	1
1,2,3,7,8-PeCDF	2350	18.2	18.2	1.55	1.000	1
2,3,4,7,8-PeCDF	4770	18.1	18.1	1.56	1.001	1
1,2,3,4,7,8-HxCDF	20500	1810	13800	1.16	1.000	1000
1,2,3,6,7,8-HxCDF	4370	40.4	40.4	1.21	1.000	1
1,2,3,7,8,9-HxCDF	7660	41.4	41.4	1.23	1.001	1
2,3,4,6,7,8-HxCDF	6410	42.6	42.6	1.23	1.000	1
1,2,3,4,6,7,8-HpCDF	171000	2240	13800	1.00	1.000	1000
1,2,3,4,7,8,9-HpCDF	16900	2930	13800	1.02	1.000	1000
OCDF	1290000	9340	27500	0.91	1.005	1000

ICAL Date:

10/28/14

Analytical Report

	Anarytical Repo	UIL	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 13:40
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	C-3 5-6.5'	Units:	ng/Kg
Lab Code:	K1501100-009	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlorina	ated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/31/15 01:22
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.373g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235308	Blank File Name:	P235018

ICAL Date: 10/28/14

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
Total Tetra-Dioxins	291	1.41	2.75	0.78		1
Total Penta-Dioxins	2850	5.18	13.8	1.61		1
Total Hexa-Dioxins	48200	9.78	13.8	1.27		1
Total Hepta-Dioxins	651000	147	147	1.05		1
Total Tetra-Furans	1590	0.993	2.75	0.74		1
Total Penta-Furans	27900	0.615	13.8	1.57		1
Total Hexa-Furans	116000	41.4	41.4	1.23		1
Total Hepta-Furans	212000	87.9	87.9	1.03		1

Analytical Report

T mary floar Re	polit	
Barr Engineering Company	Service Request:	K1501100
Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 13:40
Soil	Date Received:	02/04/15 09:40
C-3 5-6.5'	Units:	Percent
K1501100-009	Basis:	Dry
Polychlorinated Dibenzodioxins and Polychlorin	nated Dibenzofurans by HRGC/HRMS	
8290	Date Analyzed:	03/31/15 01:22
Method	Date Extracted:	3/16/15
10.373g	Instrument Name:	E-HRMS-04
	GC Column:	DB-5MSUI
P235308	Blank File Name:	P235018
10/28/14	Cal Ver. File Name:	P235303
	Barr Engineering Company Joslyn OU5 2015 Soil/23270110 Soil C-3 5-6.5' K1501100-009 Polychlorinated Dibenzodioxins and Polychlorin 8290 Method 10.373g P235308	Joslyn OU5 2015 Soil/23270110Date Collected:SoilDate Received:C-3 5-6.5'Units:K1501100-009Basis:Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS8290Date Analyzed:MethodDate Extracted:10.373gInstrument Name:GC Column:P235308Blank File Name:

Spike Conc. Control Ion RRT Conc.(pg) Found (pg) % Rec Q Limits Ratio Labeled Compounds 13C-2,3,7,8-TCDD 2000 40-135 1624.133 81 0.77 1.023 2000 13C-1,2,3,7,8-PeCDD 1764.872 88 40-135 1.60 1.198 13C-1,2,3,4,7,8-HxCDD 2000 1383.623 69 40-135 1.34 0.990 2000 1389.870 69 40-135 1.30 0.993 13C-1,2,3,6,7,8-HxCDD 2000 13C-1,2,3,4,6,7,8-HpCDD 1245.596 62 40-135 1.07 1.067 4000 KY 13C-OCDD 1189.436 30 40-135 1.03 1.142 13C-2,3,7,8-TCDF 2000 1659.535 0.80 0.993 83 40-135 2000 13C-1,2,3,7,8-PeCDF 1720.218 86 40-135 1.64 1.154 13C-2,3,4,7,8-PeCDF 2000 1747.664 87 40-135 1.64 1.188 13C-1,2,3,4,7,8-HxCDF 2000 1410.426 71 40-135 0.53 0.970 13C-1,2,3,6,7,8-HxCDF 2000 1309.683 65 40-135 0.54 0.973 13C-1,2,3,7,8,9-HxCDF 2000 1499.453 40-135 75 0.53 1.008 2000 13C-2,3,4,6,7,8-HxCDF 1380.432 69 40-135 0.52 0.987 13C-1,2,3,4,6,7,8-HpCDF 2000 1436.512 72 40-135 0.45 1.043 13C-1,2,3,4,7,8,9-HpCDF 2000 1473.776 74 40-135 0.45 1.079 1.024 37Cl-2,3,7,8-TCDD 800 712.714 89 40-135 NA

Labeled Standard Results

Analytical Report

Client:	Barr Engineering Company	Service Request:	K1501100	
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 13:40	
Sample Matrix:	Soil	Date Received:	02/04/15 09:40	
Sample Name:	C-3 5-6.5'	Units:	ng/Kg	
Lab Code:	K1501100-009	Basis:	Dry	
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS				

Analysis Method: 8290 **Prep Method:**

Method

Toxicity Equivalency Quotient

			Dilution			TEF - Adjusted
Analyte Name	Result	DL	MRL	Factor	TEF	Concentration
2,3,7,8-TCDD	2.04	1.41	2.75	1	1	2.04
1,2,3,7,8-PeCDD	104	5.18	13.8	1	1	104
1,2,3,4,7,8-HxCDD	501	10.2	13.8	1	0.1	50.1
1,2,3,6,7,8-HxCDD	18500	1580	13800	1000	0.1	1850
1,2,3,7,8,9-HxCDD	1100	9.50	13.8	1	0.1	110
1,2,3,4,6,7,8-HpCDD	382000	2170	13800	1000	0.01	3820
OCDD	4450000	3440	27500	1000	0.0003	1340
2,3,7,8-TCDF	327	0.993	2.75	1	0.1	32.7
1,2,3,7,8-PeCDF	2350	18.2	18.2	1	0.03	70.5
2,3,4,7,8-PeCDF	4770	18.1	18.1	1	0.3	1430
1,2,3,4,7,8-HxCDF	20500	1810	13800	1000	0.1	2050
1,2,3,6,7,8-HxCDF	4370	40.4	40.4	1	0.1	437
1,2,3,7,8,9-HxCDF	7660	41.4	41.4	1	0.1	766
2,3,4,6,7,8-HxCDF	6410	42.6	42.6	1	0.1	641
1,2,3,4,6,7,8-HpCDF	171000	2240	13800	1000	0.01	1710
1,2,3,4,7,8,9-HpCDF	16900	2930	13800	1000	0.01	169
OCDF	1290000	9340	27500	1000	0.0003	387
	Te	otal TEQ				15000

2005 WHO TEFs, ND = 0

Analytical Report

	Analyt	ical Report	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 11:05
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	D-1 2-3.5'	Units:	ng/Kg
Lab Code:	K1501100-012	Basis:	Dry
	Polychlorinated Dibenzodioxins and Poly	chlorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/31/15 02:10
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.006g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235309	Blank File Name:	P235018

Native Analyte Results

Analyte Name	Result Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor
2,3,7,8-TCDD	1.88 K	0.289	0.593	0.64	1.001	1
1,2,3,7,8-PeCDD	32.0	0.566	2.97	1.58	1.001	1
1,2,3,4,7,8-HxCDD	171	1.94	2.97	1.23	1.000	1
1,2,3,6,7,8-HxCDD	2180	2.04	2.97	1.26	1.000	1
1,2,3,7,8,9-HxCDD	359	1.91	2.97	1.31	1.008	1
1,2,3,4,6,7,8-HpCDD	52000	690	2970	1.08	1.000	1000
OCDD	684000	661	5930	0.88	1.000	1000
2,3,7,8-TCDF	5.36	0.511	0.593	0.72	1.001	1
1,2,3,7,8-PeCDF	25.7	4.06	4.06	1.59	1.000	1
2,3,4,7,8-PeCDF	138	4.13	4.13	1.55	1.001	1
1,2,3,4,7,8-HxCDF	1000	31.7	31.7	1.21	1.000	1
1,2,3,6,7,8-HxCDF	195	31.7	31.7	1.19	1.000	1
1,2,3,7,8,9-HxCDF	101	38.0	38.0	1.28	1.000	1
2,3,4,6,7,8-HxCDF	328	34.9	34.9	1.27	1.000	1
1,2,3,4,6,7,8-HpCDF	22700	302	2970	1.11	1.000	1000
1,2,3,4,7,8,9-HpCDF	2020	11.1	11.1	1.04	1.000	1
OCDF	180000	960	5930	0.84	1.005	1000

ICAL Date:

10/28/14

Analytical Report

	Analytical Kep	DOIL
Client:	Barr Engineering Company	Service Request: K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected: 02/02/15 11:05
Sample Matrix:	Soil	Date Received: 02/04/15 09:40
Sample Name:	D-1 2-3.5'	Units: ng/Kg
Lab Code:	K1501100-012	Basis: Dry
	Polychlorinated Dibenzodioxins and Polychlorin	nated Dibenzofurans by HRGC/HRMS
Analysis Method:	8290	Date Analyzed: 03/31/15 02:10
Prep Method:	Method	Date Extracted: 3/16/15
Sample Amount:	10.006g	Instrument Name: E-HRMS-04
		GC Column: DB-5MSUI
		GC Column: DB-5MSUI

ICAL Date: 10/28/14

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
Total Tetra-Dioxins	43.2	0.289	0.593	0.73		1
Total Penta-Dioxins	228	0.566	2.97	1.64		1
Total Hexa-Dioxins	8650	1.96	2.97	1.26		1
Total Hepta-Dioxins	116000	41.5	41.5	1.06		1
Total Tetra-Furans	57.6	0.511	0.593	0.77		1
Total Penta-Furans	835	0.302	2.97	1.62		1
Total Hexa-Furans	6370	33.7	33.7	1.23		1
Total Hepta-Furans	32800	10.5	10.5	1.04		1

Analytical Report

	Ана	yilda Kepoli	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 11:05
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	D-1 2-3.5'	Units:	Percent
Lab Code:	K1501100-012	Basis:	Dry
	Polychlorinated Dibenzodioxins and Po	lychlorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/31/15 02:10
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.006g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235309	Blank File Name:	P235018
ICAL Date:	10/28/14	Cal Ver. File Name:	P235303

	Spilzo	Cono			Control	Ion	
Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	% Rec	0	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1582.231	79		40-135	0.77	1.023
13C-1,2,3,7,8-PeCDD	2000	1923.341	96		40-135	1.64	1.198
13C-1,2,3,4,7,8-HxCDD	2000	1443.161	72		40-135	1.31	0.990
13C-1,2,3,6,7,8-HxCDD	2000	1314.350	66		40-135	1.29	0.993
13C-1,2,3,4,6,7,8-HpCDD	2000	1524.101	76		40-135	1.01	1.064
13C-OCDD	4000	2008.429	50		40-135	0.99	1.138
13C-2,3,7,8-TCDF	2000	1566.419	78		40-135	0.80	0.993
13C-1,2,3,7,8-PeCDF	2000	1906.971	95		40-135	1.63	1.154
13C-2,3,4,7,8-PeCDF	2000	1934.127	97		40-135	1.63	1.188
13C-1,2,3,4,7,8-HxCDF	2000	1449.428	72		40-135	0.52	0.968
13C-1,2,3,6,7,8-HxCDF	2000	1342.441	67		40-135	0.52	0.971
13C-1,2,3,7,8,9-HxCDF	2000	1026.328	51		40-135	0.50	1.007
13C-2,3,4,6,7,8-HxCDF	2000	1476.336	74		40-135	0.53	0.986
13C-1,2,3,4,6,7,8-HpCDF	2000	1352.791	68		40-135	0.43	1.040
13C-1,2,3,4,7,8,9-HpCDF	2000	1582.332	79		40-135	0.44	1.076
37Cl-2,3,7,8-TCDD	800	692.202	87		40-135	NA	1.024

Analytical Report

Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 11:05
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	D-1 2-3.5'	Units:	ng/Kg
Lab Code:	K1501100-012	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlorinated Di	ibenzofurans by HRGC/HRMS	

Analysis Method:82Prep Method:Method:

8290 Method

Toxicity Equivalency Quotient

Analyte Name	Result	DL	MRL	Dilution Factor	TEF	TEF - Adjusted Concentration
2,3,7,8-TCDD	1.88	0.289	0.593	1	1	1.88
1,2,3,7,8-PeCDD	32.0	0.566	2.97	1	1	32.0
1,2,3,4,7,8-HxCDD	171	1.94	2.97	1	0.1	17.1
1,2,3,6,7,8-HxCDD	2180	2.04	2.97	1	0.1	218
1,2,3,7,8,9-HxCDD	359	1.91	2.97	1	0.1	35.9
1,2,3,4,6,7,8-HpCDD	52000	690	2970	1000	0.01	520
OCDD	684000	661	5930	1000	0.0003	205
2,3,7,8-TCDF	5.36	0.511	0.593	1	0.1	0.536
1,2,3,7,8-PeCDF	25.7	4.06	4.06	1	0.03	0.771
2,3,4,7,8-PeCDF	138	4.13	4.13	1	0.3	41.4
1,2,3,4,7,8-HxCDF	1000	31.7	31.7	1	0.1	100
1,2,3,6,7,8-HxCDF	195	31.7	31.7	1	0.1	19.5
1,2,3,7,8,9-HxCDF	101	38.0	38.0	1	0.1	10.1
2,3,4,6,7,8-HxCDF	328	34.9	34.9	1	0.1	32.8
1,2,3,4,6,7,8-HpCDF	22700	302	2970	1000	0.01	227
1,2,3,4,7,8,9-HpCDF	2020	11.1	11.1	1	0.01	20.2
OCDF	180000	960	5930	1000	0.0003	54.0
	Te	otal TEQ				1540

2005 WHO TEFs, ND = 0

Analytical Report

	Analytical Report		
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 13:00
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	E-4 5-6.5'	Units:	ng/Kg
Lab Code:	K1501100-015	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlorinate	d Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/31/15 02:58
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.094g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:		Blank File Name:	

Native Analyte Results

Analyte Name	Result O)	EDL	MRL	Ion Ratio	RRT	Dilution Factor
2,3,7,8-TCDD	3.80 K	с	2.11	3.00	1.25	1.001	1
1,2,3,7,8-PeCDD	55.3		4.24	15.0	1.46	1.001	1
1,2,3,4,7,8-HxCDD	275		14.7	15.0	1.27	1.000	1
1,2,3,6,7,8-HxCDD	1050		15.1	15.1	1.21	1.000	1
1,2,3,7,8,9-HxCDD	407		14.3	15.0	1.35	1.007	1
1,2,3,4,6,7,8-HpCDD	55100		1890	15000	0.94	1.001	1000
OCDD	397000		5390	30000	0.80	1.000	1000
2,3,7,8-TCDF	ND U	J	2.91	3.00			1
1,2,3,7,8-PeCDF	34.1		8.35	15.0	1.43	1.001	1
2,3,4,7,8-PeCDF	75.2		9.15	15.0	1.67	1.001	1
1,2,3,4,7,8-HxCDF	316		28.6	28.6	1.22	1.000	1
1,2,3,6,7,8-HxCDF	81.5		28.2	28.2	1.32	1.001	1
1,2,3,7,8,9-HxCDF	85.2		51.1	51.1	1.13	1.000	1
2,3,4,6,7,8-HxCDF	141		33.0	33.0	1.20	0.999	1
1,2,3,4,6,7,8-HpCDF	7290		20.6	20.6	1.04	1.000	1
1,2,3,4,7,8,9-HpCDF	422		21.4	21.4	1.02	1.000	1
OCDF	29300 JK		4850	30000	0.55	1.005	1000

ICAL Date:

10/28/14

Analytical Report

	Analytical Rep	ort	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 13:00
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	E-4 5-6.5'	Units:	ng/Kg
Lab Code:	K1501100-015	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlorin	ated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/31/15 02:58
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.094g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI

ICAL Date: 10/28/14

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
Total Tetra-Dioxins	66.7	2.11	3.00	0.65		1
Total Penta-Dioxins	1050	4.24	15.0	1.61		1
Total Hexa-Dioxins	26200	14.7	15.0	1.28		1
Total Hepta-Dioxins	253000	159	159	1.05		1
Total Tetra-Furans	33.9	2.91	3.00	0.87		1
Total Penta-Furans	520	1.69	15.0	1.54		1
Total Hexa-Furans	8790	32.3	32.3	1.27		1
Total Hepta-Furans	34200	20.9	20.9	1.04		1

Analytical Report

	Allaly	lical Report	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 13:00
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	E-4 5-6.5'	Units:	Percent
Lab Code:	K1501100-015	Basis:	Dry
	Polychlorinated Dibenzodioxins and Pol	ychlorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/31/15 02:58
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.094g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235310	Blank File Name:	P235018
ICAL Date:	10/28/14	Cal Ver. File Name:	P235303

	Spike	Conc.			Control	Ion	
Labeled Compounds	Conc.(pg)	Found (pg)	% Rec	Q	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1407.233	70		40-135	0.77	1.024
13C-1,2,3,7,8-PeCDD	2000	1553.250	78		40-135	1.66	1.196
13C-1,2,3,4,7,8-HxCDD	2000	1186.603	59		40-135	1.25	0.990
13C-1,2,3,6,7,8-HxCDD	2000	1111.705	56		40-135	1.28	0.993
13C-1,2,3,4,6,7,8-HpCDD	2000	1144.219	57		40-135	1.06	1.061
13C-OCDD	4000	1987.432	50		40-135	0.94	1.134
13C-2,3,7,8-TCDF	2000	1385.120	69		40-135	0.82	0.993
13C-1,2,3,7,8-PeCDF	2000	1527.818	76		40-135	1.65	1.152
13C-2,3,4,7,8-PeCDF	2000	1595.961	80		40-135	1.61	1.187
13C-1,2,3,4,7,8-HxCDF	2000	1155.271	58		40-135	0.53	0.967
13C-1,2,3,6,7,8-HxCDF	2000	1079.984	54		40-135	0.52	0.970
13C-1,2,3,7,8,9-HxCDF	2000	505.045	25	Y	40-135	0.51	1.006
13C-2,3,4,6,7,8-HxCDF	2000	1118.549	56		40-135	0.51	0.987
13C-1,2,3,4,6,7,8-HpCDF	2000	1024.724	51		40-135	0.45	1.037
13C-1,2,3,4,7,8,9-HpCDF	2000	1311.199	66		40-135	0.43	1.073
37Cl-2,3,7,8-TCDD	800	639.617	80		40-135	NA	1.024
			-				

Analytical Report

Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 13:00
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	E-4 5-6.5'	Units:	ng/Kg
Lab Code:	K1501100-015	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlorina	ted Dibenzofurans by HRGC/HRMS	

Analysis Method:829Prep Method:Method:

8290 Method

Toxicity Equivalency Quotient

Analyte Name	Result	DL	MRL	Dilution Factor	TEF	TEF - Adjusted Concentration
2,3,7,8-TCDD	3.80	2.11	3.00	1	1	3.80
1,2,3,7,8-PeCDD	55.3	4.24	15.0	1	1	55.3
1,2,3,4,7,8-HxCDD	275	14.7	15.0	1	0.1	27.5
1,2,3,6,7,8-HxCDD	1050	15.1	15.1	1	0.1	105
1,2,3,7,8,9-HxCDD	407	14.3	15.0	1	0.1	40.7
1,2,3,4,6,7,8-HpCDD	55100	1890	15000	1000	0.01	551
OCDD	397000	5390	30000	1000	0.0003	119
2,3,7,8-TCDF	ND	2.91	3.00	1	0.1	
1,2,3,7,8-PeCDF	34.1	8.35	15.0	1	0.03	1.02
2,3,4,7,8-PeCDF	75.2	9.15	15.0	1	0.3	22.6
1,2,3,4,7,8-HxCDF	316	28.6	28.6	1	0.1	31.6
1,2,3,6,7,8-HxCDF	81.5	28.2	28.2	1	0.1	8.15
1,2,3,7,8,9-HxCDF	85.2	51.1	51.1	1	0.1	8.52
2,3,4,6,7,8-HxCDF	141	33.0	33.0	1	0.1	14.1
1,2,3,4,6,7,8-HpCDF	7290	20.6	20.6	1	0.01	72.9
1,2,3,4,7,8,9-HpCDF	422	21.4	21.4	1	0.01	4.22
OCDF	29300	4850	30000	1000	0.0003	8.79
	Te	otal TEQ				1070

2005 WHO TEFs, ND = 0

Analytical Report

	Analytica	al Report	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 13:05
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	E-4 6.5-9'	Units:	ng/Kg
Lab Code:	K1501100-016	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polych	lorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/31/15 00:33
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.272g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235307	Blank File Name:	P235018

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	47.2	0.475	1.48	0.73	1.001	1
1,2,3,7,8-PeCDD	124	0.328	7.40	1.54	1.000	1
1,2,3,4,7,8-HxCDD	31.6	2.59	7.40	1.43	1.000	1
1,2,3,6,7,8-HxCDD	279	2.40	7.40	1.23	1.000	1
1,2,3,7,8,9-HxCDD	54.1	2.39	7.40	1.16	1.007	1
1,2,3,4,6,7,8-HpCDD	22500	539	740	1.10	1.000	100
OCDD	134000	120	1480	0.94	1.000	100
2,3,7,8-TCDF	40.7	0.353	1.48	0.77	1.000	1
1,2,3,7,8-PeCDF	123	0.190	7.40	1.55	1.001	1
2,3,4,7,8-PeCDF	2.66 J	0.219	7.40	1.55	1.001	1
1,2,3,4,7,8-HxCDF	21.7	2.25	7.40	1.21	1.000	1
1,2,3,6,7,8-HxCDF	72.7	2.17	7.40	1.24	1.001	1
1,2,3,7,8,9-HxCDF	ND U	4.22	7.40			1
2,3,4,6,7,8-HxCDF	9.92	2.53	7.40	1.32	0.999	1
1,2,3,4,6,7,8-HpCDF	1350	2.65	7.40	1.04	1.000	1
1,2,3,4,7,8,9-HpCDF	67.9	3.31	7.40	0.94	1.000	1
OCDF	9360	0.372	14.8	0.89	1.005	1

ICAL Date:

10/28/14

Analytical Report

	Analytical	Report	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 13:05
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	E-4 6.5-9'	Units:	ng/Kg
Lab Code:	K1501100-016	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlo	rinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/31/15 00:33
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.272g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235307	Blank File Name:	P235018

ICAL Date: 10/28/14

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
Total Tetra-Dioxins	47.2	0.475	1.48	0.73		1
Total Penta-Dioxins	198	0.328	7.40	1.62		1
Total Hexa-Dioxins	6940	2.46	7.40	1.28		1
Total Hepta-Dioxins	88200	31.6	31.6	1.05		1
Total Tetra-Furans	41.1	0.353	1.48	0.75		1
Total Penta-Furans	131	0.195	7.40	1.48		1
Total Hexa-Furans	1320	2.50	7.40	1.29		1
Total Hepta-Furans	7500	2.95	7.40	1.04		1

Analytical Report

	Allaly	dical Report	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 13:05
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	E-4 6.5-9'	Units	Percent
Bample Name.	E-+ 0.5-9	Clifts.	reicent
Lab Code:	K1501100-016	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlorinated	ychlorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/31/15 00:33
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.272g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235307	Blank File Name:	P235018
ICAL Date:	10/28/14	Cal Ver. File Name:	P235303

	Spike	Conc.			Control	Ion	
Labeled Compounds	Conc.(pg)	Found (pg)	% Rec	Q	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1767.852	88		40-135	0.78	1.024
13C-1,2,3,7,8-PeCDD	2000	1529.612	76		40-135	1.58	1.197
13C-1,2,3,4,7,8-HxCDD	2000	1250.877	63		40-135	1.28	0.991
13C-1,2,3,6,7,8-HxCDD	2000	1217.628	61		40-135	1.30	0.993
13C-1,2,3,4,6,7,8-HpCDD	2000	1156.034	58		40-135	1.07	1.060
13C-OCDD	4000	2341.785	59		40-135	0.93	1.133
13C-2,3,7,8-TCDF	2000	1603.497	80		40-135	0.80	0.995
13C-1,2,3,7,8-PeCDF	2000	1548.821	77		40-135	1.60	1.152
13C-2,3,4,7,8-PeCDF	2000	1613.543	81		40-135	1.60	1.187
13C-1,2,3,4,7,8-HxCDF	2000	1159.455	58		40-135	0.52	0.967
13C-1,2,3,6,7,8-HxCDF	2000	1078.066	54		40-135	0.53	0.970
13C-1,2,3,7,8,9-HxCDF	2000	434.459	22	Y	40-135	0.53	1.006
13C-2,3,4,6,7,8-HxCDF	2000	1065.502	53		40-135	0.53	0.987
13C-1,2,3,4,6,7,8-HpCDF	2000	1181.053	59		40-135	0.44	1.036
13C-1,2,3,4,7,8,9-HpCDF	2000	1259.437	63		40-135	0.43	1.072
37Cl-2,3,7,8-TCDD	800	645.327	81		40-135	NA	1.025

Analytical Report

Client:	Barr Engineering Company	Service Request: K1501100		
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected: 02/02/15 13:05		
Sample Matrix:	Soil	Date Received: 02/04/15 09:40		
Sample Name:	E-4 6.5-9'	Units: ng/Kg		
Lab Code:	K1501100-016	Basis: Dry		
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS				

Analysis Method: **Prep Method:**

8290 Method

Toxicity Equivalency Quotient

Analyte Name	Result	DL	MRL	Dilution Factor	TEF	TEF - Adjusted Concentration
2,3,7,8-TCDD	47.2	0.475	1.48	1	1	47.2
1,2,3,7,8-PeCDD	124	0.328	7.40	1	1	124
1,2,3,4,7,8-HxCDD	31.6	2.59	7.40	1	0.1	3.16
1,2,3,6,7,8-HxCDD	279	2.40	7.40	1	0.1	27.9
1,2,3,7,8,9-HxCDD	54.1	2.39	7.40	1	0.1	5.41
1,2,3,4,6,7,8-HpCDD	22500	539	740	100	0.01	225
OCDD	134000	120	1480	100	0.0003	40.2
2,3,7,8-TCDF	40.7	0.353	1.48	1	0.1	4.07
1,2,3,7,8-PeCDF	123	0.190	7.40	1	0.03	3.69
2,3,4,7,8-PeCDF	2.66	0.219	7.40	1	0.3	0.798
1,2,3,4,7,8-HxCDF	21.7	2.25	7.40	1	0.1	2.17
1,2,3,6,7,8-HxCDF	72.7	2.17	7.40	1	0.1	7.27
1,2,3,7,8,9-HxCDF	ND	4.22	7.40	1	0.1	
2,3,4,6,7,8-HxCDF	9.92	2.53	7.40	1	0.1	0.992
1,2,3,4,6,7,8-HpCDF	1350	2.65	7.40	1	0.01	13.5
1,2,3,4,7,8,9-HpCDF	67.9	3.31	7.40	1	0.01	0.679
OCDF	9360	0.372	14.8	1	0.0003	2.81
	Te	otal TEQ				509

2005 WHO TEFs, ND = 0

Analytical Report

	Analytical R	eport	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 13:10
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	E-4 9-10'	Units:	ng/Kg
Lab Code:	K1501100-017	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlor	inated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/31/15 04:35
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.206g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235312	Blank File Name:	P235018

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	ND U	1.47	1.47			1
1,2,3,7,8-PeCDD	35.9 K	3.76	6.00	1.16	1.002	1
1,2,3,4,7,8-HxCDD	184	37.1	37.1	1.22	1.000	1
1,2,3,6,7,8-HxCDD	2050	47.9	47.9	1.26	1.000	1
1,2,3,7,8,9-HxCDD	168	40.0	40.0	1.30	1.005	1
1,2,3,4,6,7,8-HpCDD	232000	2510	30000	0.94	1.000	5000
OCDD	2220000	2650	60000	0.86	1.000	5000
2,3,7,8-TCDF	ND U	1.17	1.20			1
1,2,3,7,8-PeCDF	1.66 JK	0.856	6.00	1.04	1.001	1
2,3,4,7,8-PeCDF	ND U	3.02	6.00			1
1,2,3,4,7,8-HxCDF	170	9.40	9.40	1.23	1.000	1
1,2,3,6,7,8-HxCDF	30.3	9.46	9.46	1.31	1.001	1
1,2,3,7,8,9-HxCDF	ND U	31.5	31.5			1
2,3,4,6,7,8-HxCDF	64.8	15.2	15.2	1.15	0.999	1
1,2,3,4,6,7,8-HpCDF	12400 J	981	30000	1.15	1.000	5000
1,2,3,4,7,8,9-HpCDF	533	12.8	12.8	1.06	1.000	1
OCDF	91700	3090	60000	0.77	1.005	5000

ICAL Date:

10/28/14

Analytical Report

	Analy	tical Report	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 13:10
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	E-4 9-10'	Units:	ng/Kg
Lab Code:	K1501100-017	Basis:	Dry
	Polychlorinated Dibenzodioxins and Poly	chlorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/31/15 04:35
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.206g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235312	Blank File Name:	P235018

Native Analyte Results

					Ion		Dilution
Analyte Name	Result	Q	EDL	MRL	Ratio	RRT	Factor
Total Tetra-Dioxins	ND	U	1.47	1.47			1
Total Penta-Dioxins	470		3.76	6.00	1.62		1
Total Hexa-Dioxins	164000		41.1	41.1	1.24		1
Total Hepta-Dioxins	810000		299	299	1.03		1
Total Tetra-Furans	2.29		1.17	1.20	0.71		1
Total Penta-Furans	21.8		1.06	6.00	1.56		1
Total Hexa-Furans	10400		11.9	11.9	1.24		1
Total Hepta-Furans	59000		12.8	12.8	1.02		1

ICAL Date:

10/28/14

Analytical Report

	7 that y the	arkeport	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 13:10
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	E-4 9-10'	Units:	Percent
Lab Code:	K1501100-017	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polych	nlorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/31/15 04:35
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.206g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235312	Blank File Name:	P235018
ICAL Date:	10/28/14	Cal Ver. File Name:	P235303

	Spike	Conc.			Control	Ion	
Labeled Compounds	Conc.(pg)	Found (pg)	% Rec	Q	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1620.044	81		40-135	0.75	1.032
13C-1,2,3,7,8-PeCDD	2000	1679.437	84		40-135	1.61	1.193
13C-1,2,3,4,7,8-HxCDD	2000	2562.847	128		40-135	1.22	0.993
13C-1,2,3,6,7,8-HxCDD	2000	1740.957	87		40-135	1.33	0.995
13C-1,2,3,4,6,7,8-HpCDD	2000	3226.544	161	Y	40-135	1.10	1.050
13C-OCDD	4000	7840.595	196	Y	40-135	0.96	1.123
13C-2,3,7,8-TCDF	2000	1557.485	78		40-135	0.78	1.001
13C-1,2,3,7,8-PeCDF	2000	1369.333	68		40-135	1.62	1.151
13C-2,3,4,7,8-PeCDF	2000	1375.329	69		40-135	1.65	1.182
13C-1,2,3,4,7,8-HxCDF	2000	5672.022	284	Y	40-135	0.50	0.974
13C-1,2,3,6,7,8-HxCDF	2000	5069.427	253	Y	40-135	0.53	0.978
13C-1,2,3,7,8,9-HxCDF	2000	996.476	50		40-135	0.51	1.004
13C-2,3,4,6,7,8-HxCDF	2000	2615.138	131		40-135	0.53	0.992
13C-1,2,3,4,6,7,8-HpCDF	2000	4276.117	214	Y	40-135	0.45	1.028
13C-1,2,3,4,7,8,9-HpCDF	2000	5157.015	258	Y	40-135	0.45	1.062
37Cl-2,3,7,8-TCDD	800	699.922	87		40-135	NA	1.033

Analytical Report

Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 13:10
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	E-4 9-10'	Units:	ng/Kg
Lab Code:	K1501100-017	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlorina	ited Dibenzofurans by HRGC/HRMS	

ly Iy)y

Analysis Method: Prep Method:

8290 Method

Toxicity Equivalency Quotient

Analyte Name	Result	DL	MRL	Dilution Factor	TEF	TEF - Adjusted Concentration
2,3,7,8-TCDD	ND	1.47	1.47	1	1 EF	Concentration
1,2,3,7,8-PeCDD	35.9	3.76	6.00	1	1	35.9
1,2,3,4,7,8-HxCDD	184	37.1	37.1	1	0.1	18.4
1,2,3,6,7,8-HxCDD	2050	47.9	47.9	1	0.1	205
1,2,3,7,8,9-HxCDD	168	40.0	40.0	1	0.1	16.8
1,2,3,4,6,7,8-HpCDD	232000	2510	30000	5000	0.01	2320
OCDD	2220000	2650	60000	5000	0.0003	666
2,3,7,8-TCDF	ND	1.17	1.20	1	0.1	
1,2,3,7,8-PeCDF	1.66	0.856	6.00	1	0.03	0.0498
2,3,4,7,8-PeCDF	ND	3.02	6.00	1	0.3	
1,2,3,4,7,8-HxCDF	170	9.40	9.40	1	0.1	17.0
1,2,3,6,7,8-HxCDF	30.3	9.46	9.46	1	0.1	3.03
1,2,3,7,8,9-HxCDF	ND	31.5	31.5	1	0.1	
2,3,4,6,7,8-HxCDF	64.8	15.2	15.2	1	0.1	6.48
1,2,3,4,6,7,8-HpCDF	12400	981	30000	5000	0.01	124
1,2,3,4,7,8,9-HpCDF	533	12.8	12.8	1	0.01	5.33
OCDF	91700	3090	60000	5000	0.0003	27.5
	Te	otal TEQ				3450

2005 WHO TEFs, ND = 0

Analytical Report

	Analytical	Report	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 12:25
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	F-3 4-5.5'	Units:	ng/Kg
Lab Code:	K1501100-018	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlo	orinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/31/15 03:46
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.143g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235311	Blank File Name:	P235018

Native Analyte Results

Analyte Name	Result Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor
2,3,7,8-TCDD	26.5	1.36	1.91	0.75	1.002	1
1,2,3,7,8-PeCDD	190	5.93	9.55	1.47	1.001	1
1,2,3,4,7,8-HxCDD	547	11.8	11.8	1.28	1.000	1
1,2,3,6,7,8-HxCDD	2440	12.3	12.3	1.29	1.000	1
1,2,3,7,8,9-HxCDD	800	11.5	11.5	1.30	1.006	1
1,2,3,4,6,7,8-HpCDD	72000	1870	9550	1.01	1.000	1000
OCDD	602000	1710	19100	0.94	1.000	1000
2,3,7,8-TCDF	28.9 K	1.62	1.91	0.94	1.001	1
1,2,3,7,8-PeCDF	88.3	8.57	9.55	1.40	1.000	1
2,3,4,7,8-PeCDF	237	9.79	9.79	1.52	1.001	1
1,2,3,4,7,8-HxCDF	847	28.0	28.0	1.23	1.000	1
1,2,3,6,7,8-HxCDF	290	27.1	27.1	1.26	1.000	1
1,2,3,7,8,9-HxCDF	258	57.8	57.8	1.26	1.000	1
2,3,4,6,7,8-HxCDF	186 K	27.3	27.3	1.47	1.000	1
1,2,3,4,6,7,8-HpCDF	17800	430	9550	0.99	1.000	1000
1,2,3,4,7,8,9-HpCDF	1270	30.2	30.2	1.03	1.000	1
OCDF	91300	2310	19100	0.80	1.005	1000

ICAL Date:

10/28/14

Analytical Report

	Analytical Rep	ort
Client:	Barr Engineering Company	Service Request: K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected: 02/02/15 12:25
Sample Matrix:	Soil	Date Received: 02/04/15 09:40
Sample Name:	F-3 4-5.5'	Units: ng/Kg
Lab Code:	K1501100-018	Basis: Dry
	Polychlorinated Dibenzodioxins and Polychlorin	ated Dibenzofurans by HRGC/HRMS
Analysis Method:	8290	Date Analyzed: 03/31/15 03:46
Prep Method:	Method	Date Extracted: 3/16/15
Sample Amount:	10.143g	Instrument Name: E-HRMS-04
		GC Column: DB-5MSUI

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
Total Tetra-Dioxins	1290	1.36	1.91	0.77		1
Total Penta-Dioxins	5160	5.93	9.55	1.59		1
Total Hexa-Dioxins	31000	11.9	11.9	1.27		1
Total Hepta-Dioxins	186000	66.6	66.6	1.06		1
Total Tetra-Furans	579	1.62	1.91	0.78		1
Total Penta-Furans	3780	0.962	9.55	1.59		1
Total Hexa-Furans	33100	30.1	30.1	1.21		1
Total Hepta-Furans	94600	30.5	30.5	1.03		1

ICAL Date:

10/28/14

Analytical Report

	Allal	Alcal Report	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 12:25
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	F-3 4-5.5'	Units:	Percent
Lab Code:	K1501100-018	Basis:	Dry
	Polychlorinated Dibenzodioxins and Pol	ychlorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/31/15 03:46
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.143g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235311	Blank File Name:	P235018
ICAL Date:	10/28/14	Cal Ver. File Name:	P235303

	Spike	Conc.			Control	Ion	
Labeled Compounds	Conc.(pg)	Found (pg)	% Rec	Q	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1527.344	76		40-135	0.77	1.025
13C-1,2,3,7,8-PeCDD	2000	1683.853	84		40-135	1.60	1.198
13C-1,2,3,4,7,8-HxCDD	2000	1536.124	77		40-135	1.36	0.992
13C-1,2,3,6,7,8-HxCDD	2000	1285.792	64		40-135	1.33	0.994
13C-1,2,3,4,6,7,8-HpCDD	2000	1307.838	65		40-135	1.09	1.059
13C-OCDD	4000	2262.506	57		40-135	0.91	1.133
13C-2,3,7,8-TCDF	2000	1489.478	74		40-135	0.78	0.995
13C-1,2,3,7,8-PeCDF	2000	1675.618	84		40-135	1.61	1.154
13C-2,3,4,7,8-PeCDF	2000	1742.788	87		40-135	1.58	1.189
13C-1,2,3,4,7,8-HxCDF	2000	1338.316	67		40-135	0.56	0.968
13C-1,2,3,6,7,8-HxCDF	2000	1269.755	63		40-135	0.53	0.971
13C-1,2,3,7,8,9-HxCDF	2000	452.378	23	Y	40-135	0.53	1.006
13C-2,3,4,6,7,8-HxCDF	2000	1384.795	69		40-135	0.53	0.989
13C-1,2,3,4,6,7,8-HpCDF	2000	1217.034	61		40-135	0.43	1.034
13C-1,2,3,4,7,8,9-HpCDF	2000	1554.851	78		40-135	0.45	1.071
· · · · A							
37Cl-2,3,7,8-TCDD	800	746.175	93		40-135	NA	1.026

Analytical Report

Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 12:25
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	F-3 4-5.5'	Units:	ng/Kg
Lab Code:	K1501100-018	Basis:	Dry
	Polychlorinated Dibenzodioxins and Poly	chlorinated Dibenzofurans by HRGC/HRMS	

Analysis Method:82Prep Method:M

8290 Method

Toxicity Equivalency Quotient

Analyte Name	Result	DL	MRL	Dilution Factor	TEF	TEF - Adjusted Concentration
2,3,7,8-TCDD	26.5	1.36	1.91	1	1	26.5
1,2,3,7,8-PeCDD	190	5.93	9.55	1	1	190
1,2,3,4,7,8-HxCDD	547	11.8	11.8	1	0.1	54.7
1,2,3,6,7,8-HxCDD	2440	12.3	12.3	1	0.1	244
1,2,3,7,8,9-HxCDD	800	11.5	11.5	1	0.1	80.0
1,2,3,4,6,7,8-HpCDD	72000	1870	9550	1000	0.01	720
OCDD	602000	1710	19100	1000	0.0003	181
2,3,7,8-TCDF	28.9	1.62	1.91	1	0.1	2.89
1,2,3,7,8-PeCDF	88.3	8.57	9.55	1	0.03	2.65
2,3,4,7,8-PeCDF	237	9.79	9.79	1	0.3	71.1
1,2,3,4,7,8-HxCDF	847	28.0	28.0	1	0.1	84.7
1,2,3,6,7,8-HxCDF	290	27.1	27.1	1	0.1	29.0
1,2,3,7,8,9-HxCDF	258	57.8	57.8	1	0.1	25.8
2,3,4,6,7,8-HxCDF	186	27.3	27.3	1	0.1	18.6
1,2,3,4,6,7,8-HpCDF	17800	430	9550	1000	0.01	178
1,2,3,4,7,8,9-HpCDF	1270	30.2	30.2	1	0.01	12.7
OCDF	91300	2310	19100	1000	0.0003	27.4
	Te	otal TEQ				1950

2005 WHO TEFs, ND = 0

Analytical Report

	Anaryuo	car Report	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Method Blank	Units:	ng/Kg
Lab Code:	EQ1500199-01	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polyc	hlorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/19/15 21:11
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.277g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235018	Blank File Name:	P235018

ICAL Date: 10/28/14

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	ND U	0.173	0.487			1
1,2,3,7,8-PeCDD	ND U	0.184	2.43			1
1,2,3,4,7,8-HxCDD	ND U	0.269	2.43			1
1,2,3,6,7,8-HxCDD	ND U	0.278	2.43			1
1,2,3,7,8,9-HxCDD	ND U	0.262	2.43			1
1,2,3,4,6,7,8-HpCDD	0.836 JK	0.302	2.43	1.47	1.000	1
OCDD	3.95 J	0.298	4.87	0.87	1.000	1
2,3,7,8-TCDF	ND U	0.185	0.487			1
1,2,3,7,8-PeCDF	ND U	0.140	2.43			1
2,3,4,7,8-PeCDF	ND U	0.138	2.43			1
1,2,3,4,7,8-HxCDF	ND U	0.156	2.43			1
1,2,3,6,7,8-HxCDF	ND U	0.148	2.43			1
1,2,3,7,8,9-HxCDF	ND U	0.181	2.43			1
2,3,4,6,7,8-HxCDF	ND U	0.149	2.43			1
1,2,3,4,6,7,8-HpCDF	0.266 JK	0.131	2.43	0.60	1.000	1
1,2,3,4,7,8,9-HpCDF	ND U	0.180	2.43			1
OCDF	1.46 JK	0.136	4.87	0.74	1.005	1

9:22 am, May 04, 2015

Analytical Report

	Allalytica	report	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Method Blank	Units:	ng/Kg
Lab Code:	EQ1500199-01	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polych	lorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/19/15 21:11
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.277g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235018	Blank File Name:	P235018

Cal Ver. File Name: P235015

Native Analyte Resul	ts
----------------------	----

				Ion		Dilution
Result	Q	EDL	MRL	Ratio	RRT	Factor
ND	U	0.173	0.487			1
ND	U	0.184	2.43			1
ND	U	0.270	2.43			1
ND	U	0.302	2.43			1
ND	U	0.185	0.487			1
ND	U	0.0990	2.43			1
ND	U	0.158	2.43			1
ND	U	0.153	2.43			1
	ND ND ND ND ND ND	ND U ND U ND U ND U ND U ND U ND U ND U	ND U 0.173 ND U 0.184 ND U 0.270 ND U 0.302 ND U 0.185 ND U 0.185 ND U 0.0990 ND U 0.158	ND U 0.173 0.487 ND U 0.184 2.43 ND U 0.270 2.43 ND U 0.302 2.43 ND U 0.185 0.487 ND U 0.1990 2.43 ND U 0.185 0.487 ND U 0.0990 2.43 ND U 0.158 2.43	Result Q EDL MRL Ratio ND U 0.173 0.487 ND U 0.184 2.43 ND U 0.270 2.43 ND U 0.302 2.43 ND U 0.185 0.487 ND U 0.302 2.43 ND U 0.185 0.487 ND U 0.185 2.43 ND U 0.158 2.43	Result Q EDL MRL Ratio RRT ND U 0.173 0.487

ICAL Date:

10/28/14

Analytical Report

		report	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Method Blank	Units:	Percent
Lab Code:	EQ1500199-01	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polych	lorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/19/15 21:11
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.277g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235018	Blank File Name:	P235018
ICAL Date:	10/28/14	Cal Ver. File Name:	P235015

	Spike	Conc.			Control	Ion	
Labeled Compounds	Conc.(pg)	Found (pg)	% Rec	Q	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1654.986	83		40-135	0.77	1.022
13C-1,2,3,7,8-PeCDD	2000	1931.858	97		40-135	1.57	1.193
13C-1,2,3,4,7,8-HxCDD	2000	1573.381	79		40-135	1.39	0.991
13C-1,2,3,6,7,8-HxCDD	2000	1514.957	76		40-135	1.22	0.994
13C-1,2,3,4,6,7,8-HpCDD	2000	1706.566	85		40-135	1.06	1.067
13C-OCDD	4000	3115.620	78		40-135	0.90	1.141
13C-2,3,7,8-TCDF	2000	1644.143	82		40-135	0.81	0.993
13C-1,2,3,7,8-PeCDF	2000	1890.211	95		40-135	1.64	1.149
13C-2,3,4,7,8-PeCDF	2000	1981.904	99		40-135	1.67	1.183
13C-1,2,3,4,7,8-HxCDF	2000	1534.947	77		40-135	0.52	0.971
13C-1,2,3,6,7,8-HxCDF	2000	1566.040	78		40-135	0.53	0.974
13C-1,2,3,7,8,9-HxCDF	2000	1656.114	83		40-135	0.54	1.009
13C-2,3,4,6,7,8-HxCDF	2000	1647.189	82		40-135	0.53	0.988
13C-1,2,3,4,6,7,8-HpCDF	2000	1622.344	81		40-135	0.45	1.042
13C-1,2,3,4,7,8,9-HpCDF	2000	1723.000	86		40-135	0.46	1.080
37Cl-2,3,7,8-TCDD	800	435.089	54		40-135	NA	1.023

Accuracy & Precision

ALS Environmental - Houston HRMS 10450 Stancliff Rd., Suite 210, Houston TX 77099 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 87 of 94

QA/QC Report

Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Analyzed:	03/25/15
Sample Matrix:	Soil	Date Extracted:	03/16/15

Duplicate Lab Control Sample Summary

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analysis Method:	8290	Units:	ng/Kg
Prep Method:	Method	Basis:	Dry
		Analysis Lot:	437945

Lab Control Sample

EQ1500199-02

							% Rec		
Analyte Name	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	Limits	RPD	RPD Limit
1,2,3,4,6,7,8-HpCDD	144	95.3	151 *	147	98.4	149 *	70-130	2	25
1,2,3,4,7,8-HxCDD	101	95.3	106	104	98.4	106	70-130	3	25
1,2,3,6,7,8-HxCDD	101	95.3	106	103	98.4	105	70-130	2	25
1,2,3,7,8,9-HxCDD	101	95.3	106	101	98.4	103	70-130	<1	25
1,2,3,7,8-PeCDD	98.1	95.3	103	100	98.4	102	70-130	2	25
2,3,7,8-TCDD	19.0	19.1	100	19.4	19.7	99	70-130	2	25
OCDD	539	191	283 *	536	197	273 *	70-130	<1	25
1,2,3,4,6,7,8-HpCDF	114	95.3	120	120	98.4	122	70-130	5	25
1,2,3,4,7,8,9-HpCDF	89.9	95.3	94	90.8	98.4	92	70-130	<1	25
1,2,3,4,7,8-HxCDF	91.2	95.3	96	92.8	98.4	94	70-130	2	25
1,2,3,6,7,8-HxCDF	89.9	95.3	94	90.7	98.4	92	70-130	<1	25
1,2,3,7,8,9-HxCDF	88.5	95.3	93	92.2	98.4	94	70-130	4	25
1,2,3,7,8-PeCDF	93.6	95.3	98	95.0	98.4	97	70-130	1	25
2,3,4,6,7,8-HxCDF	90.3	95.3	95	92.5	98.4	94	70-130	2	25
2,3,4,7,8-PeCDF	93.9	95.3	99	94.6	98.4	96	70-130	<1	25
2,3,7,8-TCDF	19.1	19.1	100	19.5	19.7	99	70-130	2	25
OCDF	307	191	161 *	308	197	157 *	70-130	<1	25

Analytical Report

	Ana	lytical Report	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Lab Control Sample	Units:	ng/Kg
Lab Code:	EQ1500199-02	Basis:	Dry
	Polychlorinated Dibenzodioxins and Po	lychlorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/25/15 20:57
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.494g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5MSUI
Data File Name:	P177105	Blank File Name:	P235018
ICAL Date:	10/18/14	Cal Ver. File Name:	P177096

Native Analyte Results

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor
2,3,7,8-TCDD	19.0	<u> </u>	0.0960	0.476	0.77	1.001	1
1,2,3,7,8-PeCDD	98.1		0.0677	2.38	1.60	1.000	1
1,2,3,4,7,8-HxCDD	101		0.0374	2.38	1.27	1.000	1
1,2,3,6,7,8-HxCDD	101		0.0399	2.38	1.28	1.000	1
1,2,3,7,8,9-HxCDD	101		0.0360	2.38	1.26	1.007	1
1,2,3,4,6,7,8-HpCDD	144		0.0716	2.38	1.04	1.000	1
OCDD	539		0.206	4.76	0.90	1.000	1
2,3,7,8-TCDF	19.1		0.107	0.476	0.77	1.001	1
1,2,3,7,8-PeCDF	93.6		0.0728	2.38	1.57	1.000	1
2,3,4,7,8-PeCDF	93.9		0.0662	2.38	1.60	1.000	1
1,2,3,4,7,8-HxCDF	91.2		0.0797	2.38	1.24	1.000	1
1,2,3,6,7,8-HxCDF	89.9		0.0741	2.38	1.26	1.000	1
1,2,3,7,8,9-HxCDF	88.5		0.0807	2.38	1.26	1.000	1
2,3,4,6,7,8-HxCDF	90.3		0.0794	2.38	1.24	1.000	1
1,2,3,4,6,7,8-HpCDF	114		0.163	2.38	1.04	1.000	1
1,2,3,4,7,8,9-HpCDF	89.9		0.172	2.38	1.03	1.000	1
OCDF	307		0.133	4.76	0.92	1.005	1

Analytical Report

	Allaly	lical Report	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Lab Control Sample	Units:	ng/Kg
Lab Code:	EQ1500199-02	Basis:	Dry
	Polychlorinated Dibenzodioxins and Poly	chlorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/25/15 20:57
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.494g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5MSUI
Data File Name:	P177105	Blank File Name:	P235018

Cal Ver. File Name: P177096

Native Analyte Results

					Ion		Dilution
Analyte Name	Result	Q	EDL	MRL	Ratio	RRT	Factor
Total Tetra-Dioxins	19.0		0.0960	0.476	0.77		1
Total Penta-Dioxins	98.1		0.0677	2.38	1.60		1
Total Hexa-Dioxins	307		0.0377	2.38	1.33		1
Total Hepta-Dioxins	177		0.0716	2.38	1.08		1
Total Tetra-Furans	19.4		0.107	0.476	0.86		1
Total Penta-Furans	188		0.0393	2.38	1.72		1
Total Hexa-Furans	379		0.0784	2.38	1.31		1
Total Hepta-Furans	286		0.167	2.38	1.04		1

ICAL Date:

10/18/14

Analytical Report

		-poit	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Lab Control Sample	Units:	Percent
Lab Code:	EQ1500199-02	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlori	inated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/25/15 20:57
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.494g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5MSUI
Data File Name:	P177105	Blank File Name:	P235018
ICAL Date:	10/18/14	Cal Ver. File Name:	P177096

Spike Conc. Control Ion RRT Conc.(pg) % Rec Q Limits Ratio Labeled Compounds Found (pg) 13C-2,3,7,8-TCDD 2000 40-135 1575.760 79 0.77 1.019 2000 13C-1,2,3,7,8-PeCDD 2292.702 40-135 1.58 1.176 115 13C-1,2,3,4,7,8-HxCDD 2000 1494.741 75 40-135 1.28 0.991 2000 1310.975 40-135 1.26 0.994 13C-1,2,3,6,7,8-HxCDD 66 2000 13C-1,2,3,4,6,7,8-HpCDD 1450.067 73 40-135 1.08 1.065 4000 13C-OCDD 2528.709 63 40-135 0.90 1.140 13C-2,3,7,8-TCDF 2000 1429.914 0.78 0.992 71 40-135 2000 13C-1,2,3,7,8-PeCDF 1958.771 98 40-135 1.60 1.136 13C-2,3,4,7,8-PeCDF 2000 2110.413 106 40-135 1.60 1.166 13C-1,2,3,4,7,8-HxCDF 2000 1294.237 65 40-135 0.52 0.972 13C-1,2,3,6,7,8-HxCDF 2000 1242.743 62 40-135 0.53 0.975 13C-1,2,3,7,8,9-HxCDF 2000 40-135 1531.871 77 0.52 1.008 2000 13C-2,3,4,6,7,8-HxCDF 1316.972 66 40-135 0.52 0.988 13C-1,2,3,4,6,7,8-HpCDF 2000 1115.678 56 40-135 0.44 1.041 13C-1,2,3,4,7,8,9-HpCDF 2000 1496.585 40-135 0.45 1.078 75 37Cl-2,3,7,8-TCDD 800 709.762 89 40-135 NA 1.020

Analytical Report

	Апа	ytical Report	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Duplicate Lab Control Sample	Units:	ng/Kg
Lab Code:	EQ1500199-03	Basis:	Dry
	Polychlorinated Dibenzodioxins and Po	lychlorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/25/15 21:45
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.162g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5MSUI
Data File Name:	P177106	Blank File Name:	P235018
ICAL Date:	10/18/14	Cal Ver. File Name:	P177096

Native Analyte Results

				Ion		Dilution
Analyte Name	Result	Q EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	19.4	0.0874	0.492	0.77	1.001	1
1,2,3,7,8-PeCDD	100	0.0588	2.46	1.60	1.000	1
1,2,3,4,7,8-HxCDD	104	0.0453	2.46	1.26	1.000	1
1,2,3,6,7,8-HxCDD	103	0.0482	2.46	1.26	1.000	1
1,2,3,7,8,9-HxCDD	101	0.0434	2.46	1.25	1.007	1
1,2,3,4,6,7,8-HpCDD	147	0.119	2.46	1.03	1.000	1
OCDD	536	0.0741	4.92	0.89	1.000	1
2,3,7,8-TCDF	19.5	0.0811	0.492	0.74	1.001	1
1,2,3,7,8-PeCDF	95.0	0.0479	2.46	1.57	1.000	1
2,3,4,7,8-PeCDF	94.6	0.0467	2.46	1.57	1.000	1
1,2,3,4,7,8-HxCDF	92.8	0.0732	2.46	1.24	1.000	1
1,2,3,6,7,8-HxCDF	90.7	0.0692	2.46	1.24	1.000	1
1,2,3,7,8,9-HxCDF	92.2	0.0778	2.46	1.26	1.000	1
2,3,4,6,7,8-HxCDF	92.5	0.0732	2.46	1.25	1.000	1
1,2,3,4,6,7,8-HpCDF	120	0.277	2.46	1.07	1.000	1
1,2,3,4,7,8,9-HpCDF	90.8	0.303	2.46	1.05	1.000	1
OCDF	308	0.106	4.92	0.90	1.005	1

Analytical Report

	Alla	nyucai kepoli	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Duplicate Lab Control Sample	Units:	ng/Kg
Lab Code:	EQ1500199-03	Basis:	Dry
	Polychlorinated Dibenzodioxins and Po	olychlorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/25/15 21:45
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.162g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5MSUI
Data File Name:	P177106	Blank File Name:	P235018
ICAL Date:	10/18/14	Cal Ver. File Name:	P177096

Native Analyte Results

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor
Total Tetra-Dioxins	19.4		0.0874	0.492	0.77		1
Total Penta-Dioxins	100		0.0588	2.46	1.60		1
Total Hexa-Dioxins	312		0.0456	2.46	1.29		1
Total Hepta-Dioxins	180		0.119	2.46	1.03		1
Total Tetra-Furans	21.4		0.0811	0.492	0.70		1
Total Penta-Furans	194		0.0293	2.46	1.35		1
Total Hexa-Furans	387		0.0732	2.46	1.31		1
Total Hepta-Furans	296		0.289	2.46	1.07		1

Analytical Report

	7 that y tied	i Report	
Client:	Barr Engineering Company	Service Request:	K1501100
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Duplicate Lab Control Sample	Units:	Percent
Lab Code:	EQ1500199-03	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polych	lorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	03/25/15 21:45
Prep Method:	Method	Date Extracted:	3/16/15
Sample Amount:	10.162g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5MSUI
Data File Name:	P177106	Blank File Name:	P235018
ICAL Date:	10/18/14	Cal Ver. File Name:	P177096

	Spike	Conc.			Control	Ion	
Labeled Compounds	Conc.(pg)	Found (pg)	% Rec	Q	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1568.994	78		40-135	0.77	1.019
13C-1,2,3,7,8-PeCDD	2000	1878.015	94		40-135	1.59	1.176
13C-1,2,3,4,7,8-HxCDD	2000	1477.291	74		40-135	1.33	0.991
13C-1,2,3,6,7,8-HxCDD	2000	1306.720	65		40-135	1.20	0.994
13C-1,2,3,4,6,7,8-HpCDD	2000	1389.941	69		40-135	1.04	1.065
13C-OCDD	4000	2362.459	59		40-135	0.88	1.140
13C-2,3,7,8-TCDF	2000	1427.052	71		40-135	0.79	0.992
13C-1,2,3,7,8-PeCDF	2000	1712.808	86		40-135	1.59	1.136
13C-2,3,4,7,8-PeCDF	2000	1715.775	86		40-135	1.58	1.167
13C-1,2,3,4,7,8-HxCDF	2000	1302.997	65		40-135	0.52	0.972
13C-1,2,3,6,7,8-HxCDF	2000	1255.496	63		40-135	0.53	0.975
13C-1,2,3,7,8,9-HxCDF	2000	1461.762	73		40-135	0.53	1.008
13C-2,3,4,6,7,8-HxCDF	2000	1321.497	66		40-135	0.52	0.988
13C-1,2,3,4,6,7,8-HpCDF	2000	1050.471	53		40-135	0.45	1.041
13C-1,2,3,4,7,8,9-HpCDF	2000	1383.233	69		40-135	0.44	1.078
37Cl-2,3,7,8-TCDD	800	705.071	88		40-135	NA	1.020

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T**:+1 360 577 7222 **F**:+1 360 636 1068 www.alsglobal.com

Analytical Report for Service Request No: K1503395

April 28, 2015

Terri Olson Barr Engineering 4700 West 77th Street Minneapolis, MN 55435

RE: Joslyn OU5 2015 Soil / 23270110

Dear Terri,

Enclosed are the results of the sample(s) submitted to our laboratory February 04, 2015 For your reference, these analyses have been assigned our service request number **K1503395**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3363. You may also contact me via email at Lisa.Domenighini@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Lua & Jomenighin

Lisa Domenighini Project Manager

Acronyms

ASTM	American Society for Testing and Materials	
A2LA	American Association for Laboratory Accreditation	
CARB	California Air Resources Board	
CAS Number	Chemical Abstract Service registry Number	
CFC	Chlorofluorocarbon	
CFU	Colony-Forming Unit	
DEC	Department of Environmental Conservation	
DEQ	Department of Environmental Quality	
DHS	Department of Health Services	
DOE	Department of Ecology	
DOH	Department of Health	
EPA	U. S. Environmental Protection Agency	
ELAP	Environmental Laboratory Accreditation Program	
GC	Gas Chromatography	
GC/MS	Gas Chromatography/Mass Spectrometry	
LOD	Limit of Detection	
LOQ	Limit of Quantitation	
LUFT	Leaking Underground Fuel Tank	
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.	
MDL	Method Detection Limit	
MPN	Most Probable Number	
MRL	Method Reporting Limit	
NA	Not Applicable	
NC	Not Calculated	
NCASI	National Council of the Paper Industry for Air and Stream Improvement	
ND	Not Detected	
NIOSH	National Institute for Occupational Safety and Health	
PQL	Practical Quantitation Limit	
RCRA	Resource Conservation and Recovery Act	
SIM	Selected Ion Monitoring	
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.	

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	Not available	-
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx	-
ISO 17025	http://www.pjlabs.com/	L14-50
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPer mitSupport/LouisianaLaboratoryAccreditationProgram.aspx	03016
Maine DHS	Not available	WA01276
Michigan DEQ	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 5 of 66

ALS ENVIRONMENTAL

Client: Barr Engineering Company Joslyn OU5 2015 Soil **Project:** Sample Matrix: Soil

Service Request No.: K1503395 Date Received: 2/4/15

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix/Duplicate Matrix Spike (MS/DMS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Four soil samples were received for analysis at ALS Environmental on 2/4/15. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

The samples included in this report were originally logged under service request K1501100. On April 3,2015 the client requested that the samples be re-issued and tested.

General Chemistry Parameters

Total Organic Carbon by EPA Method ASTM D4129-05 Modified:

All samples were re-issued past holding time. The analysis was performed as soon as possible after receipt by the laboratory. The data was flagged to indicate the holding time violation.

No other anomalies associated with the analysis of these samples were observed.

Dioxins and Furans by EPA Method 8290

Dioxin and Furan analysis by EPA Method 8290 was performed at ALS Environmental laboratory in Houston, TX. The narrative for this analysis can be found in the corresponding section of this data package.

Jusa & Jomenighin

Approved by

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 7 of 66

																										KI: K	テロ 1り	33 UII	95 UU	
Chain of	Custe	ody												Nı	umb	er o	f Con	tain	ers/	Pres	serv	ativo	3						of	ζ
4700 West 77th BARR Minneapolis, MN (952) 832-2600	Street 55432	5-4803									┝		TI	w	ater						sa		.	T						
											_																ger:	ahn	Hun	+
Project Number: 23270		<u> </u>													HCI)	,							(iners	Project	L	T.	r: 01	
Project Name: Joslyn												d) #2	(FNO ₃)	(E	ed)#3 nics (F	#4			H)#1	(parta)	(p	d)#2	. unpre		Conta	QC G				
Sample Origination State M N	(use two	letter p	ostal	state abbre	viation)	N	0	Λ	38	nr		#1 Feserve	etals (ONH)	General (unpreserved)#3 Diesel Range Organics (HCl)	Nutrients (H ₂ SO ₄) #4			VOCs (tared MeOH)#J	DRO (tared unpreserved)	reserve	reserve	Disvics	TOC	er Of	Sample	ed by:	AI	ex P.	setz
Start Start Unit Collection Matrix Ty				Гуре		dun) s	Dissolved Metals		al (un Rang	onts (F			(tared	(tared	dun) s	dun) s	ds (pla		qunN	-		•								
Location	Start Depth	Stop Depth	(m./f or in	t. Da	ite	Time (hh:mm)	Water	Soil	Grab	Comp.	UQ NON	SVOC	Dissol	Total	Diesel F	Nutrie			XOON	DRO.	Metal	SVOC	Disy	TOC	Total	Labora	ato ry:	A	LS	
^{1.} 8-1	2	3.5	ft	02/02	12015	10:35	T	X		X													1		2					
^{2.} B-1	3.5	5				11:40		X		X													1	[2					
3. B-1	5	6.5				11:45		X		X													1	1	2					
^{4.} B - 1	6.5	9				11:50		X		X													1	1	2					
^{5.} B-1	9	10				12:00		X		X															2	F		10	LD	
^{6.} B - 3	5	6.5				14:15	T	X		X					T								1	1	າ		A	rLL		
7. 8. 8. 3 .	6.5:	્ધ				14:20		X		X													1	1	2		S	AM	PLE	5
^{8.} B - 3	9	10				14:25		X		X													1		2					
». C-3	5	6.5				13:40		X		X													1	1	2					
¹⁰ C - S	6.5	73 9 333	251		1	13:45	T	X		X													1	1	2					
Common Parameter/Container	Ommon Parameter/Container - Preservation Key							Da 2/02	ate			ime 15		Recei	1	-	 ^	ý	J.	4.		I		Dat Dat	,	Tir 11. ·	ne 15			
#2 · Semivolatile Organics = PAHs, P Full List, Herbicide/Pesticide/PCB	Volatile Organics = BTEX, GRO, TPH, 8260 Full List Semivolatile Organics = PAHs, PCP, Dioxins, 8270 Full List, Herbicide/Pesticide/PCBs				-	Da	- <u>·</u> ····	-		ime		Recei	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	by:		- Sp	* *] 		/		0	Dat 2/4/	c	16. Tin 094	ne					
TDS, TS, Sulfate	neral = pH, Chloride, Fluoride, Alkalinity, TSS, , TS, Sulfate rients = COD, TOC, Phenols, Ammonia]Fed	eral	Exp	/ press	. [_] Sai	mple	r	Air Bi	in K	lum	ber:													

Distribution: White-Original Accompanies Shipment to Lab; Yellow - Field Copy; Pink - Lab Coordinator

									_															<u>K19</u>	011	ω		
Chain of 4700 West 77h	th Street											um /ater		f Cont	aine	rs/P	rese	rva So		: 			С	OC	2	of	2	
BARR Minneapolis, 1 (952) 832-260	MIN 5545 00	5-4803																					Pro Ma	ject nager:	Joh	<u>, H</u>	unt.	_
Project Number: 23270	0110																	ŀ				2						
Project Name: Josly	, OU	52	015	Soil						#2	16)#3	S (HCI		(#	1#(H	ved)		#2 innres.1	1.exide		ontaine	Pro QC	ject Contac	t: <u> </u>	<u>r: C</u>)lson	-
Sample Origination State M	(use two	letter	oostal s	tate abbreviation)						(bavr	NO ₃)	erved	rganic 04) #4		CHO3	d MeC	Dreser	rved)	vial.	1014		oí c			N	,) ,	
COC Number:					N		38	01	CI) #I	unprese	tals (H	(unpres	ange O (H ₂ SC		M M	X (tare	nu bər	uprese	unprese	Incerd		mber	San	npled by	<u>. H</u> I	ex	uetz	-
Location	Start Depth	Stop Depth	Depth Unit (m./ft. or in.)	Date	Collection Time (hh:mm)	Matriz Soil	Grab	O 1 Type	VOCs (H	SVOCs (Total Metals (HNO ₃)	General (unpreserved)	Diesel Range Organics (HCl) Nutrients (H2SO4) #4		VOCs (ta	GRO, BTF	DRO (tared unpreserved)	Metals (1	SVUCs (Dise	TOC	Total Nu	Pro QC San Lab	ject Contac apled by oratory:	/	ALS		~
^{1.} C-3	9	10	ft	02/02/2015	13:50	X		χ													۱	2	٦					
	2	3.5			11:05	X		X												1		2						
3. Deiler	- 3,5			5 m	11:10	X		χ												1	1	2						
^{4.} D-1	9	10			11:20	Y		X												1		2						
^{5.} E-4	5	6.5			13:00	X		χ												1	1	2		- H(CL	D		
6. E-4	6.5	9			13:65	X		X												1	1	2						
^{7.} E-4	9	10			13:10	X		X												1		2		SI	łMł	LE	ΞS	
^{8.} F-3	ч	5.5			12:25	X		X													1	2						
° F-3	5.5	9			12:30	X		X													1	2						
^{10.} F - 3	9	10	\checkmark	V	12:35	X		X												1	1	2	J					
Common Parameter/Contain	Common Parameter/Container - Preservation Key Relinquished By On Ice:						Date 02			ime		Receiv	ed b		if	h	6.						ate 32/15	1	Time			
#2 - Semivolatile Organics = PAH: Full List, Herbicide/Pesticide/F	- Volatile Organics = BTEX, GRO, TPH, 8260 Full List - Semivolatile Organics = PAHs, PCP. Dioxins, 8270 Full List, Herbicide/Pesticide/PCBs On Ice?			? 02/	Date 03/	15	ר 1 ק	[ime	2	Receive	ed b	<i>י</i> :	<u> </u>	h)	_		;			ate	-	Fime					
TDS, TS, Sulfate	al = pH, Chloride, Fluoride, Alkalinity, TSS, S, Sulfate ints = COD, TOC. Phenols, Ammonia				leral I	Expre	ss	Sa	ımpl	er 	Air Bil	l Nu	mbe	97) 									-					

K150339 5

Distribution: White-Original Accompanies Shipment to Lab; Yellow - Field Copy; Pink - Lab Coordinator

Chain of (Custo	dy			de la electrica. Nel constante de la constante d Transmission de la constante de	· ·	:				*******		mber	of C	Conta	iners	/Pre						coc	بر نسر	}		2	
4700 West 77th : Minneapolis, MN (952) 832-2600	Street 55435	-4803							-			Wa	ter T	1		+		Sc	bil T									
952) 832-2600 5ject Number: 2327011	****																		ند. ان مطلح المراجع الانتكار ا				roject Aanage	er:		<u>~ }</u>	turt.	
oject Name: Joshyn		5 21	015	501							3)		(HCI)				[# (6		1.25.1		laíners) H	Project	ontact	Ter	eri.	Olion	
mple Origination State M N .											(HNO	103)	ganics	** (†		0H) #/	HoaM	ved)	ved)#2	vial, unpres.)		of Con	t Bi She				~	and an other states
OC Number:						**	A:	38	01	J# ();;	Mcrals	als (HI	unpress nge Or	OSTH)		ed Me	X (iared	npreser	(unpreserved)	olastic		aber C	Sample	ed by:		¢X.	Kuel	¥ .
Location	Start Depth	Stop	Depth Unit (m/ft. or in.)	Collection Date (mm/dd/yyyy)	Collection Time (hh:mm)	Mat	irix ş	Crab	ype two cub c	VOCs (H(Dissolved	Total Met	Ucneral lunpreserveo) #3 Diesel Range Organics (HC	Nutricots		VOCs (tai	GRO, BTE	Metais (unpreserved)	SVOCs (u	Disk D.	Toc	Total Nur	Yroject QC Cc Sample Labora	itory:		<u>Al</u>	<u>S</u>	
C-3	9	10	f †	02/02/2015	13'50		(X											1	1	2	ì					
9-1		3.50			11.05	X	r \		X											1	1	2						
p-1	3.5	9			11 - 10	X			X												1	2						
D-1	9	10			11:20		[X													X						
÷-4	65	1.5			13-00		X.		X												1	2	ŀ	HC)L	D.	1	
E-4	1.5	۹.			13:05		(X												1	2		AL	L		· · · · · · · · · · · · · · · · · · ·	
	65 103	10			13:10		(V												1	17		SI	M	PL	ES	
F-3	<i>i</i> tri i	E.S			12.25		$\langle $		¥.													2						
Reduction	S.S	SA			12.30		X		X						ang						1	22			1997 1997 1997			
F-3	9	10	V	V	12:35		XI.		X													2	1		-			
ommon Parameter/Container - Preservation Key - Volatile Organics = BTEX, GRO, TPH, 8260 Full List - Senitvolatile Organics = PAHs, PCR Dioxins, 8270 Full List, Herbicide/Pesticide/PCBs			List	Relinquished By On Icc?					22/22/15 16:15 (11:00) "Griefy ? Date Time Referred by						Date Time Osf07/15 USE Date Time													

ALS	5

AL	S)							03395	PChis	6	
				Cooler	Receipt and	Preservation Fo	rm	03345	<u></u>		
Client / Pr	oject:	Bar				Service Reques	st K15 _	<u> </u>			
Received:	eceived: <u>2/4/15</u> Opened: <u>2/4/15</u> By: <u>5</u> Unloaded: <u>2/4/15</u> By: <u>Dke</u>										
1. Sample	es were rece	eived via?	Mail	Fed Ex)	UPS D	OHL PDX Co	urier	Hand Delivered			
2. Sample	es were rece	eived in: (ci	ircle)	Cooler	Box En	velope Other_		Λ	NA		
3. Were <u>c</u>	ustody seal	l <u>s</u> on cooler	s?	NA (Y	Р N	If yes, how many and	d where	· one twit	<u>.</u>		
If pres	ent, were cu	istody seals	intact?	Ŷ	N	If present, were the	nev sign	ed and dated?	Ŷ	N	
Raw Cooler Temp	Corrected. Cooler, Temp	Raw Temp Blank	Corrected Temp Blank	Corr. Factor	Thermometer ID	Cooler/COC ID	R	Tracking Num		Filed	
5.F	5.8	5.5	5.0	40,1	347	43799 ×	162	75 1644 72	172		
	<i></i>						<u> </u>				

4. Packing material: Inserts Baggies Bubble Wrap Gel Packs (Wet Ice) Dry Ice Sleeves

5.	Were custody papers properly filled out (ink, signed, etc.)?	NA	Ì	N
6.	Did all bottles arrive in good condition (unbroken)? Indicate in the table below.	NA	¥.	Ν
7.	Were all sample labels complete (i.e analysis, preservation, etc.)?	NA	(Y)	Ν
8.	Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2.	NA	Y	N
9.	Were appropriate bottles/containers and volumes received for the tests indicated?	NA	(V)	Ν
10.	Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below	NA	Y	N
11.	Were VOA vials received without headspace? Indicate in the table below.	NA	Y	Ν
12.	Was C12/Res negative?	, NAJ ,	Y	Ν

Sample ID on Bottle	Sample ID on COC	Identified by:

Sample ID	Bottle Count Bottle Type	Out of Temp	Head- space	Broke	pН	Reagent	Volume added	Reagent Lot Number	Initials	Time
· · · · · · · · · · · · · · · · · · ·										

Notes, Discrepancies, & Resolutions:

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 12 of 66

Analytical Report

Client:	Barr Engineering Company
Project:	Joslyn OU5 2015 Soil/23270110
Sample Matrix:	Soil
Analysis Method: Prep Method:	160.3 Modified None

Service Request: K1503395 Date Collected: 02/2/15 Date Received: 02/4/15

Units: Percent Basis: As Received

Solids, Total

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
B-3 6.5-9'	K1503395-001	27.6	-	1	04/03/15 14:05	
C-3 6.5-9'	K1503395-002	18.7	-	1	04/03/15 14:05	
D-1 3.5-9'	K1503395-003	39.9	-	1	04/03/15 14:05	
F-3 5.5-9'	K1503395-004	13.4	-	1	04/03/15 14:05	

QA/QC Report

					a		
Client:	Barr Engineering Compar	ny			Service Reques	t: K150	3395
Project	Joslyn OU5 2015 Soil/232	270110			Date Collected	1: 02/02	/15
Sample Matrix:	Soil				Date Received	I: 02/04	/15
					Date Analyzed	l: 04/03	/15
		Repli	cate Sample Su	mmary			
		Genera	ll Chemistry Pa	rameters			
Sample Name:	F-3 5.5-9'				Unit	s: Perce	ent
Lab Code:	K1503395-004				Basi	s: As R	eceived
			Sample	Duplicate Sample K1503395- 004DUP			
Analyte Name	Analysis Method	MRL	Result	Result	Average	RPD	RPD Limit
Solids, Total	160.3 Modified	-	13.4	15.1	14.3	12	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Report

Client:	Barr Engineering Company
Project:	Joslyn OU5 2015 Soil/23270110
Sample Matrix:	Soil
Analysis Method: Prep Method:	ASTM D4129-05 Modified ALS SOP

 Service Request:
 K1503395

 Date Collected:
 02/2/15

 Date Received:
 02/4/15

Units: Percent Basis: Dry, per Method

Carbon, Total Organic (TOC)

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
B-3 6.5-9'	K1503395-001	11.3	0.050	1	04/17/15 15:45	4/17/15	*
C-3 6.5-9'	K1503395-002	32.2	0.050	1	04/17/15 15:45	4/17/15	*
D-1 3.5-9'	K1503395-003	14.3	0.050	1	04/17/15 15:45	4/17/15	*
F-3 5.5-9'	K1503395-004	38.4	0.050	1	04/17/15 15:45	4/17/15	*
Method Blank	K1503395-MB	ND U	0.050	1	04/17/15 15:45	4/17/15	

QA/QC Report

Client:	Barr Engineeri	ing Company			Som	vice Request:	K150330	5
Chent.	Dan Engineen	ing Company			Serv	ice Request.	K150555	5
Project	Joslyn OU5 20	015 Soil/23270110			Da	te Collected:	NA	
Sample Matrix:	Soil				Da	te Received:	NA	
					Da	te Analyzed:	04/17/15	
		Replicate	Sample Su	mmary				
		General Ch	emistry Pa	rameters				
Sample Name:	Batch QC					Units:	Percent	
Lab Code:	K1503242-00	1				Basis:	Dry, per	Method
				Sample	Duplicate Sample K1503242- 001DUP			
Analyte Name		Analysis Method	MRL	Result	Result	Average	RPD	RPD Limit
Carbon, Total Organic (T	OC) A	STM D4129-05 Modified	0.050	0.070	0.067	0.0684	6	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Project:	Barr Engineering Comp Joslyn OU5 2015 Soil/2	•				Service Date Co	Request:	K150 N/A	3395	
Sample Matrix:	Soil	25270110				Date Co Date Re		N/A		
						Date An	alyzed:	04/17	/15	
						Date Ex	tracted:	04/17	/15	
	Duplicate Matrix Spike Summary									
		Ca	rbon, Total	Organic	(TOC)					
Sample Name:	Batch QC						Units:	Perce	nt	
Lab Code:	K1503242-001						Basis:	Dry, j	per Meth	od
Analysis Method:	ASTM D4129-05 Modi	ified								
Prep Method:	ALS SOP									
			l atrix Spike 03242-001N		-	l icate Matri 503242-001	-			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Carbon, Total Organi	c (TOC) 0.070	3.14	3.21	96	3.24	3.22	98	70-122	2	20

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Project: Sample Matrix:	Barr Engineering Company Joslyn OU5 2015 Soil/23270110 Soil		Service Req Date Analyz Date Extrac	zed:	K1503395 04/17/15 04/17/15
		ontrol Sample Summary n, Total Organic (TOC)			
Analysis Method: Prep Method:	ASTM D4129-05 Modified ALS SOP		Units: Basis: Analysis Lo	t:	Percent Dry, per Method 441059
Sample Name Lab Control Sample	Lab Code K1503395-LCS	Result 0.497	Spike Amount 0.543	% Rec 92	% Rec Limits 72-122

Subcontract Lab Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 19 of 66

10450 Stancliff Rd., Suite 210 Houston, TX 77099 T: +1 713 266 1599 F: +1 713 266 1599 www.alsglobal.com

April 21, 2015.

Service Request No: K1503395

Lisa Domenighini. ALS Environmental 1317 South 13th Avenue Kelso, WA 98626

Laboratory Result for: Barr Engineering.

Dear Lisa:

Enclosed are the results of the sample(s) submitted to our laboratory on April 07, 2015. For Your reference, these analyses have been assigned our service request number: **K1503395**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current TNI standards, where applicable, and considered in their entirety, and ALS Environmental is not responsible for use of less than the final complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the TNI 2009 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My direct line is 281-575-2279. You may also contact me via email at Arthi.Kodur@alsglobal.com

Respectfully submitted,

ALS Group USA Corp., dba ALS Environmental

Arthi Kodur Project Manager

Page 1 of _____

For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com.

REPRI AMERICANA | RIPHT PRIVING

Certificate of Analysis

ALS Environmental - Houston HRMS 10450 Stancliff Rd, Suite 210, Houston TX 77099 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 2149f 66

ALS ENVIRONMENTAL

Client:Barr Engineering CompanyProject:Joslyn OU5 2015 Soil/23270110Sample Matrix:Soil

 Service Request No.:
 K1503395

 Date Received:
 4/7/15

ALS ENVIRONMENTAL NARRATIVE

All analyses were performed in adherence to the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Four soil samples were received for analysis at ALS Environmental on 4/7/15.

Please note the reporting forms are currently referencing the date ALS Environmental-Kelso received the samples (2/4/15) and not the date ALS Environmental-Houston received the samples (4/7/15).

The samples were received at 3°C in good condition and are consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Data Validation Notes and Discussion

B flags – Method Blanks

The Method Blank EQ1500276-01 contained low levels of 1234678-HpCDD and 1,2,3,7,8,9-HxCDF below the Method Reporting Limit (MRL).

MS/MSD

EQ1500276: Laboratory Control Spike/Duplicate Laboratory Control Spike (LCS/DLCS) samples were analyzed and reported in lieu of an MS/MSD for this extraction batch. The batch quality control criteria were met.

2378-TCDF

Samples analyzed on the DB-5MSUI column were analyzed under conditions were sufficient separation between 2,3,7,8-TCDF and its closest eluter was achieved. Confirmation of this result was not required.

Y flags - Labeled Standards

Quantification of the native 2,3,7,8-substituted analytes is based on isotopic dilution, which automatically corrects for variation in extraction efficiency and provides accurate values even with poor recovery. Samples that had recoveries of labeled standards outside the acceptance limits are qualified with 'Y' flags on the Labeled Compound summary pages. In all cases, the signal-to-noise ratios are greater than 10:1 and detection limit were below the Method Reporting Limit.

Dilutions

Sample K1503395-002 (C-3 6.5-9') had elevated levels of target analytes , which required dilutions. The undiluted and diluted results were combined into one Total TEQ summary report for each sample. This reports a 'Total' result that includes the most appropriate concentration found for the associated target analyte.

<u>E flags</u>

When OCDD and/or OCDF exceed the upper method calibration limit (MCL), Method 8290 Section 7.9.3 advises the chemist to "report the measured concentration and indicate that the value exceeds the MCL." We use 'E' flag on the Sample Analytical Report results page results to indicate a compound has exceeded the MCL.

Sample K1503395-003 (D-1 3.5-9') and 004 (F-3 5.5-9') were E flagged.

K flags

EMPC - When the ion abundance ratios associated with a particular compound are outside the QC limits, samples are flagged with a 'K' flag. A 'K' flag indicates an estimated maximum possible concentration for the associated compound.

Detection Limits

Detection limits are calculated for each analyte in each sample by measuring the height of the noise level for each quantitation ion for the associated labeled standard. The concentration equivalent to 2.5 times the height of the noise is then calculated using the appropriate response factor and the weight of the sample. The calculated concentration equals the detection limit.

<u>The TEQ Summary results for each sample have been calculated by ALS ENVIRONMENTAL/Houston to include:</u>

- WHO-2005 TEFs, The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds (M. Van den Berg et al., Toxicological Sciences 93(2):223-241, 2006)
- > Non-detected compounds are not included in the 'Total'

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS group USA Corp dba ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
K1503395-001	B-3 6.5-9'	2/2/2015	1420
K1503395-002	C-3 6.5-9'	2/2/2015	1345
K1503395-003	D-1 3.5-9'	2/2/2015	1110
K1503395-004	F-3 5.5-9'	2/2/2015	1230

Service Request Summary

Folder #:	K1503395	Project Chemist:	Lisa Domenighini
Client Name:	Barr Engineering Company	Originating Lab:	KELSO
Project Name:	Joslyn OU5 2015 Soil	Logged By:	SWOLF
Project Number:	23270110	Date Received:	02/04/15
Domost To.	Terri Olson	Internal Due Date:	4/17/2015
Report To:		QAP:	LAB QAP
	Barr Engineering 4700 West 77th Street	Qualifier Set:	Lab Standard
	Minneapolis, MN 55435 USA	Formset:	Lab Standard
		Merged?:	Y
Phone Number:	952-842-3578	Report to MDL?:	Ν, Υ
Cell Number:		P.O. Number:	
Fax Number:		EDD:	BARR - EQUIS
E-mail:	tolson@barr.com		

8 4 oz-Glass Jar WM CLEAR Teflon Liner Unpreserved Location: K-Delilah-41, EHRMS-WIC 2D Pressure Gas: NPDES

				KEL	SO	HOUST ON
Lab Samp No.	Client Samp No	Matrix	Collected	TOC/ASTM D4129-05 Modified	TS/160.3 Modified	PCDD PCDF/8290
K1503395-001	B-3 6.5-9'	Soil	02/02/15 1420	II	II	11
K1503395-002	C-3 6.5-9'	Soil	02/02/15 1345	II	II	Ш
K1503395-003	D-1 3.5-9'	Soil	02/02/15 1110	II	II	II
K1503395-004	F-3 5.5-9'	Soil	02/02/15 1230	II	II	11

Folder Comments:

Tier II except when requested otherwise. Add narrative note that Benzo(b)fluoranthene cannot be separated from Benzo(j)fluoranthene. Samples are a re-issue from K1501100.

Service Request Summary

Folder #:	K1503395	Project Chemist:	Lisa Domenighini
Client Name:	Barr Engineering Company	Originating Lab:	KELSO
Project Name:	Joslyn OU5 2015 Soil	Logged By:	SWOLF
Project Number:	23270110	Date Received:	02/04/15
Report To:	Terri Olson	Internal Due Date:	4/17/2015
Report To.		QAP:	LAB QAP
	Barr Engineering 4700 West 77th Street	Qualifier Set:	Lab Standard
	Minneapolis, MN 55435	Formset:	Lab Standard
	USA	Merged?:	Y
Phone Number:	952-842-3578	Report to MDL?:	N, Y
Cell Number:		P.O. Number:	
Fax Number:		EDD:	BARR - EQUIS
E-mail:	tolson@barr.com		

5

8 4 oz-Glass Jar WM CLEAR Teflon Liner Unpreserved Location: K-Delilah-41, EHRMS-WIC 2D Pressure Gas: NPDES

Test Comments:

Group	Test/Method
Semivoa GCMS	PCDD PCDF/8290

Samples Comments full list

rcvd 4/7/15 must meet three week deadline

- **B** Indicates the associated analyte is found in the method blank, as well as in the sample
- C 2378-TCDF is detected on the DB-5 column above the MRL, confirmation analysis was performed on a second column (DB-225.) The results from both the DB-5 column and the DB-225 column are included in this data package. The results from the DB-225 analyses should be used to evaluate the 2378-TCDF in the samples. The confirmed result are used in determining the TEQ value for TCDF.
- **E** The reported result is above the instrument calibration range and is an estimated value.
- J Indicates an estimated value used when the analyte concentration is below the method reporting limit (MRL) and above the estimated detection limit (EDL)
- **K** Ion abundance ratios between the primary and secondary ions were outside of theoretical acceptance limits. The reported result is an estimated maximum possible concentration (EMPC)
- i The associated MRL/MDL has been elevated due to matrix interference.
- **U** Indicates the compound was analyzed for, but not detected (ND)
- Y C13-Labeled standard percent recoveries are outside of method acceptance limits
- **S** Peak is saturated; data not reportable
- **P** Indicates chlorodiphenyl ether interference present at the retention time of the target compound.
- **X** See case narrative

ALS Laboratory Group

Acronyms

Cal	Calibration
Conc	CONCentration
Dioxin(s)	Polychlorinated dibenzo-p-dioxin(s)
EDL	Estimated Detection Limit
EMPC	Estimated Maximum Possible Concentration
Flags	Data qualifiers
Furan(s)	Polychlorinated dibenzofuran(s)
g	Grams
ICAL	Initial CALibration
ID	IDentifier
Ions	Masses monitored for the analyte during data acquisition
L	Liter (s)
LCS	Laboratory Control Sample
DLCS	Duplicate Laboratory Control Sample
MB	Method Blank
MCL	Method Calibration Limit
MDL	Method Detection Limit
mL	Milliliters
MS	Matrix Spiked sample
DMS	Duplicate Matrix Spiked sample
NO	Number of peaks meeting all identification criteria
PCDD(s)	Polychlorinated dibenzo-p-dioxin(s)
PCDF(s)	Polychlorinated dibenzofuran(s)
ppb	Parts per billion
ppm	Parts per million
ppq	Parts per quadrillion
ppt	Parts per trillion
QA	Quality Assurance
QC	Quality Control
Ratio	Ratio of areas from monitored ions for an analyte
% Rec.	Percent recovery
RPD	Relative Percent Difference
RRF	Relative Response Factor
RT	Retention Time
SDG	Sample Delivery Group
S/N	Signal-to-noise ratio
TEF	Toxicity Equivalence Factor
TEQ	Toxicity Equivalence Quotient

State Certifications, Accreditations, and Licenses

Agency	Number	Expire Date
American Association for Laboratory Accreditation	2897.01	11/30/2015
Arizona Department of Health Services	AZ0793	5/27/2015
Arkansas Department of Environmental Quality	14-038-0	6/16/2015
Florida Department of Health	E87611	6/30/2015
Hawaii Department of Health	TX02694	6/30/2015
Illinois Environmental Protection Agency	200057	10/6/2015
Louisiana Department of Environmental Quality	03048	6/30/2015
Louisiana Department of Health and Hospitals	LA150026	12/31/2015
Maine Center for Disease Control and Prevention	2014019	6/5/2016
Maryland Department of the Environment	343	6/30/2015
Michigan Depratment of Environmental Quality	9971	6/30/2015
Minnesota Department of Health	840911	12/31/2015
Nebraska Department of Health and Human Services	NE-OS-25-13	6/30/2015
Nevada Department of Concervation and Natural Resources	TX014112013-2	7/31/2015
New Jersey Department of Environmental Protection	NLC140001	6/30/2015
New Mexico Environment Department	TX02694	6/30/2015
Oklahoma Department of Environmental Quality	2014 124	8/31/2015
Oklahoma Department of Environmental Quality	2014-124	8/31/2015
Pennsylvania Department of Environmental Protection	68-03441	6/30/2015
Fennessee Department of Environment and Concervation	04016	6/30/2015
Texas Commision on Environmental Quality	TX104704216-14-5	6/30/2015
United States Department of Agriculture	P330-14-00067	2/21/2017
Utah Department of Health Environmental Laboratory Certification	TX02694	7/31/2015
Washington Department of Health	c819	11/14/2015
West Virginia Department of Environmental Protection	347	6/30/2015

ALS ENVIRONMENTAL – Houston Data Processing/Form Production and Peer Review Signatures							
SR# Unique ID	K1503395	DB- 5 DB- 5MGUI	DB- 225	SPB- Cct yl			
Dat e: ()4 14	t Level - Data Processin	g - to be filled by person genera SampLes: ()() −()()	ating the forms				
	econd Level - Data Revie Anal yst	ew – to be filled by person doing	peer review				
Dat,e:	Maryst 	Sampl es: 00 (_004					

Data		NMENTAL – Houston duction and Peer Review Signatures	
SR# Unique ID	<1503395	DB-5 DB-5MSUV DB-225 SPB-Octyl	
Date:	Analyst:	Samples:	
Sec Date: 04 18 15	ond Level - Data Review Analyst: LIW	- to be filled by person doing peer review Samples:	
- · ·			

Chain of Custody

ALS Environmental - Houston HRMS 10450 Stancliff Rd, Suite 210, Houston TX 77099 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Intra-Network Chain of Custody 1317 South 13th Avenue • Kelso, WA 98626 • 1-360-577-7222 • FAX 1-360-636-1068

Project Name: Project Number: Project Manager: Company:	Joslyn OU5 2015 Soil 23270110 Terri Olson Barr Engineering							PCDD PCDF 8290
Lab Code	Client Sample ID	# of Cont.	Matrix	Samj Date	ple Time	Date Received	Send To	
K1503395-001	B-3 6.5-9'	1	Soil	2/2/15	1420	2/4/15	HOUSTON	Z
K1503395-002	C-3 6.5-9'	1	Soil	2/2/15	1345	2/4/15	HOUSTON	V
K1503395-003	D-1 3.5-9'	t	Soil	2/2/15	1110	2/4/15	HOUSTON	X
K1503395-004	F-3 5.5-9'		Soil	2/2/15	1230	2/4/15	HOUSTON	V

Folder Comments:

Tier II except when requested otherwise. Add narrative note that Benzo(b)fluoranthene cannot be separated from Benzo(j)fluoranthene.

Special Instructions/Comments Please provide the electronic (PDF and EDD) report to the following e-mail address: ALKLS.Data@alsglobal.com.	Turnaround Requirements RUSH (Surcharges Apply) PLEASE CIRCLE WORK DAYS 1 2 3 4 5 STANDARD STANDARD STANDARD Standard	Report Requirements I. Results Only II. Results + QC Summaries III. Results + QC and Calibration Summaries IV. Data Validation Report with Raw Data	Invoice Information PO# 51K1503395
pH Checked	Requested FAX Date:	$\frac{PQL/MDL/J}{EDD} \frac{N}{Y}$	Bill to
Relinquished By: 4/6/15 Received K1503395	By: Page 33 of 66	Airbill Number:	Page

Cooler Receipt Form	Project Chemist	AŁ
cooler needeler enter		

Date/Time Received:	Enginee 1/7/15	905	Initial	s: AL	Date/Time Logg		5 Initia	als AL
I. Method of delivery:	C US Mail	Fed		C UPS		Courier CClie	ent	
2. Samples received in:	Cooler	1		ope C Ot				
3. Were custody seals on co		-	∩ No		If yes, how man and where?	ny I Seal		
	av intact? (Yes (No	CN/A				
Were th	ey intact:	1						
Were they signed a	nd dated? (Yes (⊂ No ble Wrap	CN/A	acks 🦳 Wet Ic	e (~ Sleeves (Other	
	nd dated? (Inserts (~ Bagg I? (Yes (gies Bubb	ole Wrap	Gel Pi	of Sampling:	e (~ Sleeves (Opened By	Temp.	Temp: Blank?
Were they signed and the signed and the signed and the sign of the	nd dated? (Inserts (* Bagg I? (* g Number	Yes (gies Bubb	ble Wrap	De C Gel Pa Location d Date Opene	of Sampling: ed Dime Opened			Temp Blank?
Were they signed and the signed and the signed and the sign of the	nd dated? (Inserts (~ Bagg I? (Yes (gies Bubb	ble Wrap	Gel Picocation o	of Sampling: ed : Opened		Temp.	Blank?
Were they signed and the signed and the signed and the sign of the	nd dated? (Inserts (* Bagg I? (* g Number	Yes (gies Bubb	ble Wrap	De C Gel Pa Location d Date Opene	of Sampling: ed Dime Opened		Temp.	Blank?
Were they signed and the signed and the signed and the sign of the	nd dated? (Inserts (* Bagg I? (* g Number	Yes (gies Bubb	ble Wrap	De C Gel Pa Location d Date Opene	of Sampling: ed Dime Opened		Temp.	Blank?

8. Were all sample labels complete (i.e., sample ID, analysis, preservation, etc)?

9. Were appropriate bottles/containers and volumes received for the requested tests?

10. Did sample labels and tags agree with custody documents?

uironmental

Notes,	Discrepancies, & Resolutions:	
		-

Service	request	Label:
	1	

CNO

CNO

CNO

5

res

(Yes (Yes

K1503395 Barr Engineering Joslyn OU5 2015 Soil

Effective 10/04/2013

ALS Environmental - Houston HRMS

10450 Stancliff Rd., Suite 210 Houston, TX 77099 T: +1 713 266 1599 F: +1 713 266 1599 www.alsglobal.com

SAMPLE ACCEPTANCE POLICY

This policy outlines the criteria samples must meet to be accepted by ALS Environmental - Houston HRMS.

Cooler Custody Seals (desirable, mandatory if specified in SAP):

 \checkmark Intact on outside of cooler, signed and dated

Chain-of-Custody (COC) documentation (mandatory):

The following is required on each COC:

- ✓ Sample ID, the location, date and time of collection, collector's name, preservation type, sample type, and any other special remarks concerning the sampleThe COC must be completed in ink.
- ✓ Signature and date of relinquishing party.

In the absence of a COC at sample receipt, the COC will be requested from the client.

Sample Integrity (mandatory):

Samples are inspected upon arrival to ensure that sample integrity was not compromised during transfer to the laboratory.

- ✓ Sample containers must arrive in good condition (not broken or leaking).
- ✓ Samples must be labeled appropriately, including Sample IDs, and requested test using durable labels and indelible ink.
- \checkmark The correct type of sample bottle must be used for the method requested.
- ✓ An appropriate sample volume, or weight, must be received.
- ✓ Sample IDs and number of containers must reconcile with the COC.
- ✓ Samples must be received within the method defined holding time.

Temperature Requirement (varies by sample matrix):

- \checkmark Aqueous and Non-aqueous samples must be shipped and stored cold, at 0 to 6°C.
- \checkmark Tissue samples must be shipped and stored frozen, at -20 to -10°C.
- \checkmark Air samples are shipped and stored cold, at 0 to 6°C
- \checkmark The sample temperature must be recorded on the COC

All cooler inspections are documented on the Cooler Receipt Form (CRF). A separate CRF is completed for each service request. Any samples not meeting the above criteria are noted on the CRF and the Project Manager notified. The Project Manager must resolve any sample integrity issues with the client prior to proceeding with the analysis. Such resolutions are documented in writing and filed with the project folder. Data associated with samples received outside of this acceptance policy will be qualified on the case narrative of the final report

RIGHT SOLUTIONS | RIGHT PARTNER

Preparation Information Benchsheets

ALS Environmental - Houston HRMS 10450 Stancliff Rd., Suite 210, Houston, TX 77099 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Preparation Information Benchsheet

Prep Run#:233132Team:Semivoa GCMS/DEDWARDS

Prep WorkFlow: OrgExtDioxS(30)
 Prep Method: Method

Status: Prepped Prep Date/Time: 4/8/15 12:00 PM

	Lab Code	Client ID	1	В	# Method /Test	p⊦	l Matrix	Amt. Ext.	Sample Description	
1	EQ1500276-01	MB			8290/PCDD PCDF		Solid	10.260g		
2	EQ1500276-02	LCS			8290/PCDD PCDF		Solid	10.428g		
3	EQ1500276-03	DLCS			8290/PCDD PCDF		Solid	10.381g		
4	K1503395-001	B-3 6.5-9'		.0.	2 8290/PCDD PCDF		Soil	10.230g	Black Soft Mosit Soil	
5	K1503395-002	C-3 6.5-9'		.0.	8290/PCDD PCDF		Soil	10.137g	Black Soft Mosit Soil	
5	K1503395-003	D-1 3.5-9'		.0	8290/PCDD PCDF		Soil	10.313g	Black Soft Mosit Soil	
7	K1503395-004	F-3 5.5-9'		.0	8290/PCDD PCDF		Soil	10.108g	Black Soft Mosit Soil w/Roots	
pi	king Solutions									
]]	Name: 1613B M	Iatrix Work	ting Standard		Inventory ID 79845		Logbook Ref: 2	2-20 ng/ml 7984	5 WM 3/24/15	Expires On: 03/24/2016
]	EQ1500276-02 10	0.00µL	EQ1500276-03	100.00µL						
]	Name: 1613B L	abeled Wor	rking Standard		Inventory ID 79921		Logbook Ref: 2	2-4 ng/ml 79921	WM 3/27/15	Expires On: 03/17/2016
]	EQ1500276-01 1,0	000.00µL	EQ1500276-02	1,000.00µ	EQ1500276-03 1,000.0	00µL	K1503395-001	1,000.00µL	K1503395-002 1,000.00µL	K1503395-002.F 1,000.00µL
]	Name: 1613B L	abeled Wor	rking Standard		Inventory ID 79924		Logbook Ref: 2	2-4 ng/ml 79924	WM 3/27/15	Expires On: 03/27/2016
]	K1503395-003 1,0	000.00µL	K1503395-004	1,000.00µ	_					
]	Name: 8290/161	13B Cleanu	p Working Standard	l	Inventory ID 80227		Logbook Ref: 8	80227 04/09/201	5/CID	Expires On: 10/06/2015
	-	00.00µL 00.00µL	EQ1500276-02 K1503395-004	100.00μL 100.00μL	EQ1500276-03 100.00	μL	K1503395-001	100.00µL	K1503395-002 100.00µL	K1503395-002.F 100.00µL
P	reparation Mate	erials								
Ca	arbon, High Purity		LM 3/25/15 (79883)		Ethyl Acetate 99.9% Minim EtOAc	um	LM 2/27/15 (79153)		Glass Wool	AL 2/17/15 (78802)
	Ilfuric Acid Reagent	Grade	LM 3/4/15 (79265)		Hexanes 95%		AL 03/24/15 (79848)		Dichloromethane (Methylene Chloride) 99.9% MeCl2	LM 2/20/15 (78906)
Sc	odium Chloride Reag aCl	ent Grade	C2-65-5 (38670)		Sodium Sulfate Anhydrous Reagent Grade Na2SO4		LM 11/25/14 (76864)	1	Tridecane (n-Tridecane)	AL 03/10/15 (79360)
	lica Gel Reagent Gra	ıde	AL 03/13/15 (79494)		Toluene 99.9% Minimum		DE 3/23/15 (79829)		Sodium Hydroxide Reagent Grade NaOH	LM 09/02/14 (74232)

Preparation Information Benchsheet

Prep Run#: 233132 Semivoa GCMS/DEDWARDS Team:

Prep WorkFlow: OrgExtDioxS(30) Prep Method: Method

Status: Prepped Prep Date/Time: 4/8/15 12:00 PM

Preparation Steps

Step:	Extraction	Step:	Acid Clean
Started:	4/8/15 12:00	Started:	4/9/15 11:00
Finished:	4/9/15 04:15	Finished:	4/9/15 11:20
By:	DEDWARDS	By:	CDIAZ
Comments		Comments	

Step:	Silica Gel Clean
Started:	4/10/15 06:50
Finished:	4/10/15 08:45
By:	CDIAZ
Comments	

Step: Final Volume Started: 4/10/15 12:00 Finished: 4/10/15 12:25 By: CDIAZ Comments

Comments:

Reviewed By:	LM	Date:	4/17/15		
Chain of Custody					
Relinquished By:			Date:	Extracts Examined	
Received By:			Date:	Yes No	
Printed 4/17/15 7:54			Preparation Info	rmation Benchsheet	Page 2

Analytical Results

ALS Environmental - Houston HRMS 10450 Stancliff Rd., Suite 210, Houston, TX 77099 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 39 of 66

Analytical Report

	Analytical R	eport	
Client:	Barr Engineering Company	Service Request:	K1503395
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 14:20
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	B-3 6.5-9'	Units:	ng/Kg
Lab Code:	K1503395-001	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlor	inated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	04/11/15 03:01
Prep Method:	Method	Date Extracted:	4/8/15
Sample Amount:	10.230g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235508	Blank File Name:	P235507

ICAL Date: 10/28/14

Native Analyte Results

					Ion		Dilution
Analyte Name	Result	Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	ND	U	0.592	1.77			1
1,2,3,7,8-PeCDD	ND	U	0.755	8.85			1
1,2,3,4,7,8-HxCDD	ND	U	0.454	8.85			1
1,2,3,6,7,8-HxCDD	2.37 J	K	0.454	8.85	0.71	1.001	1
1,2,3,7,8,9-HxCDD	ND	U	0.435	8.85			1
1,2,3,4,6,7,8-HpCDD	72.3		0.850	8.85	0.91	1.000	1
OCDD	828		0.756	17.7	0.92	1.000	1
2,3,7,8-TCDF	ND	U	1.64	1.77			1
1,2,3,7,8-PeCDF	ND	U	0.379	8.85			1
2,3,4,7,8-PeCDF	ND	U	0.368	8.85			1
1,2,3,4,7,8-HxCDF	1.09 JH	K	0.379	8.85	2.30	1.001	1
1,2,3,6,7,8-HxCDF	ND	U	0.354	8.85			1
1,2,3,7,8,9-HxCDF	ND	U	0.471	8.85			1
2,3,4,6,7,8-HxCDF	ND	U	0.372	8.85			1
1,2,3,4,6,7,8-HpCDF	25.7 K		0.683	8.85	1.39	1.000	1
1,2,3,4,7,8,9-HpCDF	ND	U	0.812	8.85			1
OCDF	153		1.33	17.7	0.88	1.005	1

Cal Ver. File Name: P235504

Analytical Report

	Analytical Repor	1				
Client:	Barr Engineering Company	Service Request: K1503395				
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected: 02/02/15 14:	20			
Sample Matrix:	Soil	Date Received: 02/04/15 09:-	40			
Sample Name:	B-3 6.5-9'	Units: ng/Kg				
Lab Code:	K1503395-001	Basis: Dry				
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS						
Analysis Method:	8290	Date Analyzed: 04/11/15 03:	01			
Prep Method:	Method	Date Extracted: 4/8/15				
Sample Amount:	10.230g	Instrument Name: E-HRMS-04				
		GC Column: DB-5MSUI				

ICAL Date: 10/28/14

Native Analyte Results

				Ion		Dilution
Result	Q	EDL	MRL	Ratio	RRT	Factor
ND	U	0.592	1.77			1
ND	U	0.755	8.85			1
5.66 J		0.447	8.85	1.35		1
72.3		0.850	8.85	0.91		1
ND	U	1.64	1.77			1
ND	U	0.652	8.85			1
22.3		0.390	8.85	1.30		1
96.7		0.744	8.85	1.11		1
	ND ND 5.66 J 72.3 ND ND 22.3	ND U ND U 5.66J 72.3 ND U ND U 22.3	ND U 0.592 ND U 0.755 5.66J 0.447 72.3 0.850 ND U 1.64 ND U 0.652 22.3 0.390	ND U 0.592 1.77 ND U 0.755 8.85 5.66J 0.447 8.85 72.3 0.850 8.85 ND U 1.64 1.77 ND U 0.652 8.85 22.3 0.390 8.85	Result Q EDL MRL Ratio ND U 0.592 1.77 ND U 0.755 8.85 5.66J 0.447 8.85 1.35 72.3 0.850 8.85 0.91 ND U 1.64 1.77 ND U 0.652 8.85 22.3 0.390 8.85 1.30	Result Q EDL MRL Ratio RRT ND U 0.592 1.77

Cal Ver. File Name: P235504

Analytical Report

	Analytica	пкерон				
Client:	Barr Engineering Company	Service Request:	K1503395			
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 14:20			
Sample Matrix:	Soil	Date Received:	02/04/15 09:40			
Sample Name:	B-3 6.5-9'	Units:	Percent			
Lab Code:	K1503395-001	Basis:	Dry			
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS						
Analysis Method:	8290	Date Analyzed:	04/11/15 03:01			
Prep Method:	Method	Date Extracted:	4/8/15			
Sample Amount:	10.230g	Instrument Name:	E-HRMS-04			
		GC Column:	DB-5MSUI			
Data File Name:	P235508	Blank File Name:	P235507			
ICAL Date:	10/28/14	Cal Ver. File Name:	P235504			

Spike Conc. Control Ion Conc.(pg) % Rec Q Limits Ratio RRT Labeled Compounds Found (pg) 13C-2,3,7,8-TCDD 2000 1239.767 62 40-135 0.77 1.023 13C-1,2,3,7,8-PeCDD 2000 1463.638 73 40-135 1.60 1.203 13C-1,2,3,4,7,8-HxCDD 2000 1103.924 55 40-135 1.26 0.991 2000 1205.427 40-135 1.29 0.993 13C-1,2,3,6,7,8-HxCDD 60 13C-1,2,3,4,6,7,8-HpCDD 2000 1145.915 57 40-135 1.06 1.068 13C-OCDD 4000 2005.131 50 40-135 0.89 1.140 2000 1210.250 0.82 0.993 13C-2,3,7,8-TCDF 61 40-135 13C-1,2,3,7,8-PeCDF 2000 1394.427 70 40-135 1.63 1.158 13C-2,3,4,7,8-PeCDF 2000 1457.582 73 40-135 1.59 1.192 13C-1,2,3,4,7,8-HxCDF 2000 1070.171 54 40-135 0.49 0.970 13C-1,2,3,6,7,8-HxCDF 2000 1150.238 58 40-135 0.51 0.973 2000 1153.946 13C-1,2,3,7,8,9-HxCDF 58 40-135 0.50 1.008 13C-2,3,4,6,7,8-HxCDF 2000 1201.178 60 40-135 0.51 0.988 13C-1,2,3,4,6,7,8-HpCDF 2000 1015.224 51 40-135 0.43 1.043 13C-1,2,3,4,7,8,9-HpCDF 2000 1241.171 40-135 0.46 1.081 62 1.024 37Cl-2,3,7,8-TCDD 800 697.205 87 40-135 NA

Labeled Standard Results

Analytical Report

Client:	Barr Engineering Company	Service Request:	K1503395		
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 14:20		
Sample Matrix:	Soil	Date Received:	02/04/15 09:40		
Sample Name:	B-3 6.5-9'	Units:	ng/Kg		
Lab Code:	K1503395-001	Basis:	Dry		
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS					

Analysis Method: Prep Method:

8290 Method

Toxicity Equivalency Quotient

Analyte Name	Result	DL	MRL	Dilution Factor	TEF	TEF - Adjusted Concentration
2,3,7,8-TCDD	ND	0.592	1.77	1	1	concentration
1,2,3,7,8-PeCDD	ND	0.755	8.85	1	1	
1,2,3,4,7,8-HxCDD	ND	0.454	8.85	1	0.1	
1,2,3,6,7,8-HxCDD	2.37	0.454	8.85	1	0.1	0.237
1,2,3,7,8,9-HxCDD	ND	0.435	8.85	1	0.1	
1,2,3,4,6,7,8-HpCDD	72.3	0.850	8.85	1	0.01	0.723
OCDD	828	0.756	17.7	1	0.0003	0.248
2,3,7,8-TCDF	ND	1.64	1.77	1	0.1	
1,2,3,7,8-PeCDF	ND	0.379	8.85	1	0.03	
2,3,4,7,8-PeCDF	ND	0.368	8.85	1	0.3	
1,2,3,4,7,8-HxCDF	1.09	0.379	8.85	1	0.1	0.109
1,2,3,6,7,8-HxCDF	ND	0.354	8.85	1	0.1	
1,2,3,7,8,9-HxCDF	ND	0.471	8.85	1	0.1	
2,3,4,6,7,8-HxCDF	ND	0.372	8.85	1	0.1	
1,2,3,4,6,7,8-HpCDF	25.7	0.683	8.85	1	0.01	0.257
1,2,3,4,7,8,9-HpCDF	ND	0.812	8.85	1	0.01	
OCDF	153	1.33	17.7	1	0.0003	0.0459
	Te	otal TEQ				1.62

2005 WHO TEFs, ND = 0

Analytical Report

	Analytical Report	
Client:	Barr Engineering Company	Service Request: K1503395
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected: 02/02/15 13:45
Sample Matrix:	Soil	Date Received: 02/04/15 09:40
Sample Name:	C-3 6.5-9'	Units: ng/Kg
Lab Code:	K1503395-002	Basis: Dry
	Polychlorinated Dibenzodioxins and Polychlorinated I	Dibenzofurans by HRGC/HRMS
Analysis Method:	8290	Date Analyzed: 04/11/15 03:49
Prep Method:		
i rep Methou.	Method	Date Extracted: 4/8/15
Sample Amount:	Method 10.137g	Date Extracted: 4/8/15 Instrument Name: E-HRMS-04
-		

ICAL Date: 10/28/14

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	ND U	2.50	2.64			1
1,2,3,7,8-PeCDD	29.4	3.09	13.2	1.44	1.001	1
1,2,3,4,7,8-HxCDD	111	2.87	13.2	1.39	1.000	1
1,2,3,6,7,8-HxCDD	1280	3.04	13.2	1.30	1.000	1
1,2,3,7,8,9-HxCDD	284	2.84	13.2	1.26	1.007	1
1,2,3,4,6,7,8-HpCDD	73200	327	327	1.05	1.000	20
OCDD	725000	34.8	528	0.90	1.000	20
2,3,7,8-TCDF	17.3 K	1.85	2.64	1.21	1.001	1
1,2,3,7,8-PeCDF	85.6	14.5	14.5	1.71	1.001	1
2,3,4,7,8-PeCDF	200	14.7	14.7	1.65	1.002	1
1,2,3,4,7,8-HxCDF	890	52.9	52.9	1.34	1.000	1
1,2,3,6,7,8-HxCDF	205	48.6	48.6	1.28	1.000	1
1,2,3,7,8,9-HxCDF	288	61.7	61.7	1.32	1.001	1
2,3,4,6,7,8-HxCDF	344	55.0	55.0	1.20	1.001	1
1,2,3,4,6,7,8-HpCDF	35600	295	295	1.05	1.000	20
1,2,3,4,7,8,9-HpCDF	1060	22.0	22.0	1.05	1.000	1
OCDF	147000	76.9	528	0.90	1.005	20

Analytical Report

	Anarytical Report					
Client:	Barr Engineering Company	Service Request: K	K1503395			
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected: 0	02/02/15 13:45			
Sample Matrix:	Soil	Date Received: 0	02/04/15 09:40			
Sample Name:	C-3 6.5-9'	Units: n	ng/Kg			
Lab Code:	K1503395-002	Basis: I	Dry			
	Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS					
		-				
Analysis Method:	8290	Date Analyzed: 0	04/11/15 03:49			
Analysis Method: Prep Method:	8290 Method	Date Analyzed: 0 Date Extracted: 4				
·		•	4/8/15			
Prep Method:	Method	Date Extracted: 4	4/8/15 E-HRMS-04			

ICAL Date: 10/28/14

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
Total Tetra-Dioxins	44.2	2.50	2.64	0.70		1
Total Penta-Dioxins	349	3.09	13.2	1.59		1
Total Hexa-Dioxins	6230	2.92	13.2	1.27		1
Total Hepta-Dioxins	80000	80.6	80.6	1.05		1
Total Tetra-Furans	60.6	1.85	2.64	0.88		1
Total Penta-Furans	1500	1.04	13.2	1.54		1
Total Hexa-Furans	20800	54.1	54.1	1.30		1
Total Hepta-Furans	94700	22.1	22.1	1.05		1

Analytical Report

	Allaly	lical Report	
Client:	Barr Engineering Company	Service Request:	K1503395
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 13:45
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	C-3 6.5-9'	Units:	Percent
Lab Code:	K1503395-002	Basis:	Dry
	Polychlorinated Dibenzodioxins and Poly	ychlorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	04/11/15 03:49
Prep Method:	Method	Date Extracted:	4/8/15
Sample Amount:	10.137g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235509	Blank File Name:	P235507
ICAL Date:	10/28/14	Cal Ver. File Name:	P235504

	G., 1.	Game			Control	T	
Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	% Rec	0	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	2000	1074.000	54	L	40-135	0.73	1.023
13C-1,2,3,7,8-PeCDD	2000	1269.755	63		40-135	1.57	1.202
13C-1,2,3,4,7,8-HxCDD	2000	1048.311	52		40-135	1.31	0.991
13C-1,2,3,6,7,8-HxCDD	2000	1015.579	51		40-135	1.24	0.993
13C-1,2,3,4,6,7,8-HpCDD	2000	1007.932	50		40-135	1.11	1.067
13C-OCDD	4000	1744.223	44		40-135	0.92	1.141
13C-2,3,7,8-TCDF	2000	1024.216	51		40-135	0.82	0.992
13C-1,2,3,7,8-PeCDF	2000	1243.242	62		40-135	1.59	1.157
13C-2,3,4,7,8-PeCDF	2000	1250.670	63		40-135	1.63	1.192
13C-1,2,3,4,7,8-HxCDF	2000	980.292	49		40-135	0.51	0.970
13C-1,2,3,6,7,8-HxCDF	2000	1032.342	52		40-135	0.50	0.973
13C-1,2,3,7,8,9-HxCDF	2000	1036.297	52		40-135	0.53	1.008
13C-2,3,4,6,7,8-HxCDF	2000	1012.225	51		40-135	0.52	0.987
13C-1,2,3,4,6,7,8-HpCDF	2000	718.508	36	Y	40-135	0.42	1.043
13C-1,2,3,4,7,8,9-HpCDF	2000	1089.097	54		40-135	0.44	1.080
37CI-2,3,7,8-TCDD	800	650.179	81		40-135	NA	1.024

Labeled Standard Results

Analytical Report

Client:	Barr Engineering Company	Service Request:	K1503395		
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 13:45		
Sample Matrix:	Soil	Date Received:	02/04/15 09:40		
Sample Name:	C-3 6.5-9'	Units:	ng/Kg		
Lab Code:	K1503395-002	Basis:	Dry		
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS					

IY Iy)y

Analysis Method: Prep Method:

8290 Method

Toxicity Equivalency Quotient

Angleta Noma	Result	DL	MRL	Dilution	TEF	TEF - Adjusted Concentration
Analyte Name 2,3,7,8-TCDD	ND	2.50	2.64	Factor	1 EF 1	Concentration
1,2,3,7,8-PeCDD	29.4	3.09	13.2	1	1	29.4
1,2,3,4,7,8-HxCDD	111	2.87	13.2	1	0.1	11.1
1,2,3,6,7,8-HxCDD	1280	3.04	13.2	1	0.1	128
1,2,3,7,8,9-HxCDD	284	2.84	13.2	1	0.1	28.4
1,2,3,4,6,7,8-HpCDD	73200	327	327	20	0.01	732
OCDD	725000	34.8	528	20	0.0003	218
2,3,7,8-TCDF	17.3	1.85	2.64	1	0.1	1.73
1,2,3,7,8-PeCDF	85.6	14.5	14.5	1	0.03	2.57
2,3,4,7,8-PeCDF	200	14.7	14.7	1	0.3	60.0
1,2,3,4,7,8-HxCDF	890	52.9	52.9	1	0.1	89.0
1,2,3,6,7,8-HxCDF	205	48.6	48.6	1	0.1	20.5
1,2,3,7,8,9-HxCDF	288	61.7	61.7	1	0.1	28.8
2,3,4,6,7,8-HxCDF	344	55.0	55.0	1	0.1	34.4
1,2,3,4,6,7,8-HpCDF	35600	295	295	20	0.01	356
1,2,3,4,7,8,9-HpCDF	1060	22.0	22.0	1	0.01	10.6
OCDF	147000	76.9	528	20	0.0003	44.1
	Te	otal TEQ				1790

2005 WHO TEFs, ND = 0

Analytical Report

	Analytical Report	
Client:	Barr Engineering Company	Service Request: K1503395
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected: 02/02/15 11:10
Sample Matrix:	Soil	Date Received: 02/04/15 09:40
Sample Name:	D-1 3.5-9'	Units: ng/Kg
Lab Code:	K1503395-003	Basis: Dry
	Polychlorinated Dibenzodioxins and Polychlorinated I	Dibenzofurans by HRGC/HRMS
Analysis Method:	8290	Date Analyzed: 04/11/15 04:38
Prep Method:	Method	Date Extracted: 4/8/15
r	Wethod	Dute Extracted 1/0/15
Sample Amount:	10.313g	Instrument Name: E-HRMS-04
-		

ICAL Date: 10/28/14

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	ND U	0.824	1.22			1
1,2,3,7,8-PeCDD	1.72 JK	0.492	6.08	2.30	1.001	1
1,2,3,4,7,8-HxCDD	7.17	0.397	6.08	1.42	1.000	1
1,2,3,6,7,8-HxCDD	52.3	0.425	6.08	1.19	1.000	1
1,2,3,7,8,9-HxCDD	13.5 K	0.394	6.08	1.01	1.007	1
1,2,3,4,6,7,8-HpCDD	1860	7.20	7.20	1.04	1.000	1
OCDD	25300 E	0.863	12.2	0.90	1.000	1
2,3,7,8-TCDF	ND U	0.863	1.22			1
1,2,3,7,8-PeCDF	3.03 JK	1.68	6.08	1.12	1.000	1
2,3,4,7,8-PeCDF	5.14 J	1.72	6.08	1.52	1.001	1
1,2,3,4,7,8-HxCDF	41.6	2.69	6.08	1.35	1.000	1
1,2,3,6,7,8-HxCDF	9.58 K	2.55	6.08	1.68	1.000	1
1,2,3,7,8,9-HxCDF	10.5	3.16	6.08	1.21	1.001	1
2,3,4,6,7,8-HxCDF	13.5	2.78	6.08	1.11	1.000	1
1,2,3,4,6,7,8-HpCDF	547	4.52	6.08	1.04	1.000	1
1,2,3,4,7,8,9-HpCDF	38.0	4.71	6.08	1.01	1.000	1
OCDF	2750	0.996	12.2	0.88	1.005	1

Analytical Report

	Analytical Repor				
Client:	Barr Engineering Company	Service Request: K1503395			
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected: 02/02/15 11	1:10		
Sample Matrix:	Soil	Date Received: 02/04/15 09	9:40		
Sample Name:	D-1 3.5-9'	Units: ng/Kg			
Lab Code:	K1503395-003	Basis: Dry			
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS					
Analysis Method:	8290	Date Analyzed: 04/11/15 04	4:38		
Prep Method:	Method	Date Extracted: 4/8/15			
Sample Amount:	10.313g	Instrument Name: E-HRMS-0	4		
		GC Column: DB-5MSUI	[
Data File Name:	P235510	Blank File Name: P235507			

ICAL Date: 10/28/14

Native Analyte Results

					Ion		Dilution
Analyte Name	Result	Q	EDL	MRL	Ratio	RRT	Factor
Total Tetra-Dioxins	ND	U	0.824	1.22			1
Total Penta-Dioxins	2.41 J		0.492	6.08	1.73		1
Total Hexa-Dioxins	206		0.406	6.08	1.25		1
Total Hepta-Dioxins	3610		7.20	7.20	1.03		1
Total Tetra-Furans	ND	U	0.863	1.22			1
Total Penta-Furans	49.2		0.390	6.08	1.46		1
Total Hexa-Furans	612		2.78	6.08	1.25		1
Total Hepta-Furans	2680		4.60	6.08	1.04		1

Analytical Report

	Allaly	ical Report			
Client:	Barr Engineering Company	Service Request:	K1503395		
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 11:10		
Sample Matrix:	Soil	Date Received:	02/04/15 09:40		
Sample Name:	D-1 3.5-9'	Units:	Percent		
Lab Code:	K1503395-003	Basis:	Dry		
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS					
Analysis Method:	8290	Date Analyzed:	04/11/15 04:38		
Prep Method:	Method	Date Extracted:	4/8/15		
Sample Amount:	10.313g	Instrument Name:	E-HRMS-04		
		GC Column:	DB-5MSUI		
Data File Name:	P235510	Blank File Name:	P235507		
ICAL Date:	10/28/14	Cal Ver. File Name:	P235504		

Spike	Conc.			Control	Ion	
Conc.(pg)	Found (pg)	% Rec	Q	Limits	Ratio	RRT
2000	1340.355	67		40-135	0.83	1.023
2000	1575.277	79		40-135	1.63	1.202
2000	1231.223	62		40-135	1.27	0.991
2000	1229.820	61		40-135	1.25	0.993
2000	1226.566	61		40-135	1.06	1.067
4000	2225.152	56		40-135	0.88	1.140
2000	1263.566	63		40-135	0.77	0.993
2000	1503.643	75		40-135	1.62	1.157
2000	1532.670	77		40-135	1.57	1.192
2000	1169.706	58		40-135	0.52	0.970
2000	1212.757	61		40-135	0.53	0.973
2000	1289.187	64		40-135	0.50	1.008
2000	1256.326	63		40-135	0.52	0.988
2000	954.832	48		40-135	0.45	1.043
2000	1333.337	67		40-135	0.43	1.080
800	722.559	90		40-135	NA	1.024
	Conc.(pg) 2000	Conc.(pg)Found (pg)20001340.35520001575.27720001231.22320001229.82020001226.56640002225.15220001263.56620001503.64320001532.67020001212.75720001289.18720001256.3262000954.83220001333.337	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Labeled Standard Results

Analytical Report

Client:	Barr Engineering Company	Service Request: K1503395		
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected: 02/02/15 11:10		
Sample Matrix:	Soil	Date Received: 02/04/15 09:40		
Sample Name:	D-1 3.5-9'	Units: ng/Kg		
Lab Code:	K1503395-003	Basis: Dry		
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS				

Analysis Method: Prep Method:

8290 Method

Toxicity Equivalency Quotient

Analyte Name	Result	DL	MRL	Dilution Factor	TEF	TEF - Adjusted Concentration
2,3,7,8-TCDD	ND	0.824	1.22	1	1	Concentration
1,2,3,7,8-PeCDD	1.72	0.492	6.08	1	1	1.72
1,2,3,4,7,8-HxCDD	7.17	0.397	6.08	1	0.1	0.717
1,2,3,6,7,8-HxCDD	52.3	0.425	6.08	1	0.1	5.23
1,2,3,7,8,9-HxCDD	13.5	0.394	6.08	1	0.1	1.35
1,2,3,4,6,7,8-HpCDD	1860	7.20	7.20	1	0.01	18.6
OCDD	25300	0.863	12.2	1	0.0003	7.59
2,3,7,8-TCDF	ND	0.863	1.22	1	0.1	
1,2,3,7,8-PeCDF	3.03	1.68	6.08	1	0.03	0.0909
2,3,4,7,8-PeCDF	5.14	1.72	6.08	1	0.3	1.54
1,2,3,4,7,8-HxCDF	41.6	2.69	6.08	1	0.1	4.16
1,2,3,6,7,8-HxCDF	9.58	2.55	6.08	1	0.1	0.958
1,2,3,7,8,9-HxCDF	10.5	3.16	6.08	1	0.1	1.05
2,3,4,6,7,8-HxCDF	13.5	2.78	6.08	1	0.1	1.35
1,2,3,4,6,7,8-HpCDF	547	4.52	6.08	1	0.01	5.47
1,2,3,4,7,8,9-HpCDF	38.0	4.71	6.08	1	0.01	0.380
OCDF	2750	0.996	12.2	1	0.0003	0.825
	Te	otal TEQ				51.0

2005 WHO TEFs, ND = 0

Analytical Report

	Analytical Report				
Client:	Barr Engineering Company	Service Request: K1503395			
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected: 02/02/15 12:30			
Sample Matrix:	Soil	Date Received: 02/04/15 09:40			
Sample Name:	F-3 5.5-9'	Units: ng/Kg			
Lab Code:	K1503395-004	Basis: Dry			
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS					
Analysis Method:	8290	Date Analyzed: 04/11/15 05:26			
Analysis Method: Prep Method:	8290 Method	Date Analyzed: 04/11/15 05:26 Date Extracted: 4/8/15			
v		·			
Prep Method:	Method	Date Extracted: 4/8/15			

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	17.7	1.47	3.69	0.72	1.001	1
1,2,3,7,8-PeCDD	98.3	2.25	18.5	1.66	1.001	1
1,2,3,4,7,8-HxCDD	265	2.46	18.5	1.31	1.000	1
1,2,3,6,7,8-HxCDD	480	2.65	18.5	1.31	1.000	1
1,2,3,7,8,9-HxCDD	301	2.45	18.5	1.30	1.008	1
1,2,3,4,6,7,8-HpCDD	11500	30.2	30.2	1.05	1.000	1
OCDD	145000 E	2.36	36.9	0.90	1.000	1
2,3,7,8-TCDF	18.6	1.38	3.69	0.76	1.001	1
1,2,3,7,8-PeCDF	61.2	3.52	18.5	1.78	1.001	1
2,3,4,7,8-PeCDF	136	3.57	18.5	1.66	1.001	1
1,2,3,4,7,8-HxCDF	379	14.5	18.5	1.35	1.000	1
1,2,3,6,7,8-HxCDF	106	13.4	18.5	1.33	1.000	1
1,2,3,7,8,9-HxCDF	164	13.9	18.5	1.36	1.000	1
2,3,4,6,7,8-HxCDF	162	15.4	18.5	1.12	1.000	1
1,2,3,4,6,7,8-HpCDF	3150	10.3	18.5	1.06	1.000	1
1,2,3,4,7,8,9-HpCDF	298	10.7	18.5	0.99	1.000	1
OCDF	7960	1.73	36.9	0.89	1.005	1

Native Analyte Results

ICAL Date:

10/28/14

Analytical Report

	Anarytical Report				
Client:	Barr Engineering Company	Service Request:	K1503395		
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 12:30		
Sample Matrix:	Soil	Date Received:	02/04/15 09:40		
Sample Name:	F-3 5.5-9'	Units:	ng/Kg		
Lab Code:	K1503395-004	Basis:	Dry		
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS					
Analysis Method:	8290	Date Analyzed:	04/11/15 05:26		
Prep Method:	Method	Date Extracted:	4/8/15		
Sample Amount:	10.108g	Instrument Name:	E-HRMS-04		
		GC Column:	DB-5MSUI		
Data File Name:	P235511				

ICAL Date: 10/28/14

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
Total Tetra-Dioxins	690	1.47	3.69	0.73		1
Total Penta-Dioxins	2090	2.25	18.5	1.50		1
Total Hexa-Dioxins	7220	2.52	18.5	1.31		1
Total Hepta-Dioxins	28800	30.2	30.2	1.04		1
Total Tetra-Furans	151	1.38	3.69	0.82		1
Total Penta-Furans	835	0.669	18.5	1.54		1
Total Hexa-Furans	6130	14.3	18.5	1.30		1
Total Hepta-Furans	13900	10.5	18.5	1.06		1

Analytical Report

	7 marytear	(cpoit			
Client:	Barr Engineering Company	Service Request:	K1503395		
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 12:30		
Sample Matrix:	Soil	Date Received:	02/04/15 09:40		
Sample Name:	F-3 5.5-9'	Units:	Percent		
Lab Code:	K1503395-004	Basis:	Dry		
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS					
Analysis Method:	8290	Date Analyzed:	04/11/15 05:26		
Prep Method:	Method	Date Extracted:	4/8/15		
Sample Amount:	10.108g	Instrument Name:	E-HRMS-04		
		GC Column:	DB-5MSUI		
Data File Name:	P235511	Blank File Name:	P235507		
ICAL Date:	10/28/14	Cal Ver. File Name:	P235504		

Spike Conc. Control Ion Conc.(pg) % Rec Q Limits Ratio RRT Labeled Compounds Found (pg) 13C-2,3,7,8-TCDD 2000 1545.026 77 40-135 0.77 1.024 13C-1,2,3,7,8-PeCDD 2000 1880.662 94 40-135 1.202 1.61 13C-1,2,3,4,7,8-HxCDD 2000 1508.146 75 40-135 1.29 0.990 2000 1368.556 40-135 1.31 0.992 13C-1,2,3,6,7,8-HxCDD 68 2000 13C-1,2,3,4,6,7,8-HpCDD 1371.042 69 40-135 1.05 1.064 4000 13C-OCDD 2370.585 59 40-135 0.92 1.137 2000 1501.026 0.80 0.993 13C-2,3,7,8-TCDF 75 40-135 2000 13C-1,2,3,7,8-PeCDF 1768.418 88 40-135 1.56 1.157 13C-2,3,4,7,8-PeCDF 2000 1840.899 92 40-135 1.57 1.192 13C-1,2,3,4,7,8-HxCDF 2000 1394.495 70 40-135 0.51 0.968 13C-1,2,3,6,7,8-HxCDF 2000 1400.569 70 40-135 0.53 0.971 2000 1291.425 0.53 13C-1,2,3,7,8,9-HxCDF 65 40-135 1.007 13C-2,3,4,6,7,8-HxCDF 2000 1506.820 75 40-135 0.53 0.986 13C-1,2,3,4,6,7,8-HpCDF 2000 1149.630 57 40-135 0.43 1.040 13C-1,2,3,4,7,8,9-HpCDF 2000 1531.509 77 40-135 0.43 1.077 37Cl-2,3,7,8-TCDD 800 712.331 89 40-135 NA 1.024

Labeled Standard Results

Analytical Report

Client:	Barr Engineering Company	Service Request: K1503395			
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected: 02/02/15 12:30			
Sample Matrix:	Soil	Date Received: 02/04/15 09:40			
Sample Name:	F-3 5.5-9'	Units: ng/Kg			
Lab Code:	K1503395-004	Basis: Dry			
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS					

Analysis Method:82Prep Method:Method:

8290 Method

Toxicity Equivalency Quotient

Analyte Name	Result	DL	MRL	Dilution Factor	TEF	TEF - Adjusted Concentration
2,3,7,8-TCDD	17.7	1.47	3.69	1	1	17.7
1,2,3,7,8-PeCDD	98.3	2.25	18.5	1	1	98.3
1,2,3,4,7,8-HxCDD	265	2.46	18.5	1	0.1	26.5
1,2,3,6,7,8-HxCDD	480	2.65	18.5	1	0.1	48.0
1,2,3,7,8,9-HxCDD	301	2.45	18.5	1	0.1	30.1
1,2,3,4,6,7,8-HpCDD	11500	30.2	30.2	1	0.01	115
OCDD	145000	2.36	36.9	1	0.0003	43.5
2,3,7,8-TCDF	18.6	1.38	3.69	1	0.1	1.86
1,2,3,7,8-PeCDF	61.2	3.52	18.5	1	0.03	1.84
2,3,4,7,8-PeCDF	136	3.57	18.5	1	0.3	40.8
1,2,3,4,7,8-HxCDF	379	14.5	18.5	1	0.1	37.9
1,2,3,6,7,8-HxCDF	106	13.4	18.5	1	0.1	10.6
1,2,3,7,8,9-HxCDF	164	13.9	18.5	1	0.1	16.4
2,3,4,6,7,8-HxCDF	162	15.4	18.5	1	0.1	16.2
1,2,3,4,6,7,8-HpCDF	3150	10.3	18.5	1	0.01	31.5
1,2,3,4,7,8,9-HpCDF	298	10.7	18.5	1	0.01	2.98
OCDF	7960	1.73	36.9	1	0.0003	2.39
	Te	otal TEQ				542

2005 WHO TEFs, ND = 0

Analytical Report

	Allaly	ical Report	
Client:	Barr Engineering Company	Service Request:	K1503395
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Method Blank	Units:	ng/Kg
Lab Code:	EQ1500276-01	Basis:	Dry
	Polychlorinated Dibenzodioxins and Poly	chlorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	04/11/15 02:13
Prep Method:	Method	Date Extracted:	4/8/15
Sample Amount:	10.260g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235507	Blank File Name:	P235507

ICAL Date: 10/28/14

Native Analyte Results

Angluta Nama	D	0	FDI	MDI	Ion Datia	RRT	Dilution
Analyte Name	Result	<u>Q</u>	EDL	MRL	Ratio	KKI	Factor
2,3,7,8-TCDD	ND	U	0.353	0.487			1
1,2,3,7,8-PeCDD	ND	U	0.0694	2.44			1
1,2,3,4,7,8-HxCDD	ND	U	0.0548	2.44			1
1,2,3,6,7,8-HxCDD	ND	U	0.0587	2.44			1
1,2,3,7,8,9-HxCDD	ND	U	0.0545	2.44			1
1,2,3,4,6,7,8-HpCDD	0.143 JK	Σ	0.0863	2.44	1.80	1.000	1
OCDD	ND	U	0.125	4.87			1
2,3,7,8-TCDF	ND	U	0.323	0.487			1
1,2,3,7,8-PeCDF	ND	U	0.0984	2.44			1
2,3,4,7,8-PeCDF	ND	U	0.0960	2.44			1
1,2,3,4,7,8-HxCDF	ND	U	0.0885	2.44			1
1,2,3,6,7,8-HxCDF	ND	U	0.0781	2.44			1
1,2,3,7,8,9-HxCDF	0.190 JK	Σ	0.106	2.44	3.81	1.001	1
2,3,4,6,7,8-HxCDF	ND	U	0.0840	2.44			1
1,2,3,4,6,7,8-HpCDF	ND	U	0.0601	2.44			1
1,2,3,4,7,8,9-HpCDF	ND	U	0.0726	2.44			1
OCDF	ND	U	0.247	4.87			1

Analytical Report

	7 that y te		
Client:	Barr Engineering Company	Service Request:	K1503395
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Method Blank	Units:	ng/Kg
Lab Code:	EQ1500276-01	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polycl	hlorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	04/11/15 02:13
Prep Method:	Method	Date Extracted:	4/8/15
Sample Amount:	10.260g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235507	Blank File Name:	P235507

ICAL Date: 10/28/14

Native Analyte Results

				Ion		Dilution
Result	Q	EDL	MRL	Ratio	RRT	Factor
ND	U	0.353	0.487			1
ND	U	0.0694	2.44			1
ND	U	0.0561	2.44			1
ND	U	0.0863	2.44			1
ND	U	0.323	0.487			1
ND	U	0.110	2.44			1
ND	U	0.0882	2.44			1
ND	U	0.0659	2.44			1
	ND ND ND ND ND ND	ND U ND U ND U ND U ND U ND U ND U ND U	ND U 0.353 ND U 0.0694 ND U 0.0561 ND U 0.0863 ND U 0.323 ND U 0.110 ND U 0.0882	ND U 0.353 0.487 ND U 0.0694 2.44 ND U 0.0561 2.44 ND U 0.0863 2.44 ND U 0.323 0.487 ND U 0.323 0.487 ND U 0.110 2.44 ND U 0.110 2.44	Result Q EDL MRL Ratio ND U 0.353 0.487 ND U 0.0694 2.44 ND U 0.0561 2.44 ND U 0.0863 2.44 ND U 0.0863 2.44 ND U 0.323 0.487 ND U 0.110 2.44 ND U 0.244	Result Q EDL MRL Ratio RRT ND U 0.353 0.487

Analytical Report

	111	alytical report	
Client:	Barr Engineering Company	Service Request:	K1503395
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Method Blank	Units:	Percent
Lab Code:	EQ1500276-01	Basis:	Dry
	Polychlorinated Dibenzodioxins and F	olychlorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	04/11/15 02:13
Prep Method:	Method	Date Extracted:	4/8/15
Sample Amount:	10.260g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235507	Blank File Name:	P235507

Cal Ver. File Name: P235504

Labeled Standard Results

	Spike	Conc.			Control	Ion	
Labeled Compounds	Conc.(pg)	Found (pg)	% Rec	Q	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1462.592	73		40-135	0.77	1.023
13C-1,2,3,7,8-PeCDD	2000	1715.119	86		40-135	1.56	1.202
13C-1,2,3,4,7,8-HxCDD	2000	1354.912	68		40-135	1.31	0.991
13C-1,2,3,6,7,8-HxCDD	2000	1418.637	71		40-135	1.30	0.993
13C-1,2,3,4,6,7,8-HpCDD	2000	1423.902	71		40-135	1.04	1.068
13C-OCDD	4000	2610.449	65		40-135	0.87	1.140
13C-2,3,7,8-TCDF	2000	1383.849	69		40-135	0.77	0.992
13C-1,2,3,7,8-PeCDF	2000	1642.614	82		40-135	1.62	1.157
13C-2,3,4,7,8-PeCDF	2000	1681.144	84		40-135	1.60	1.192
13C-1,2,3,4,7,8-HxCDF	2000	1265.640	63		40-135	0.50	0.970
13C-1,2,3,6,7,8-HxCDF	2000	1364.076	68		40-135	0.53	0.973
13C-1,2,3,7,8,9-HxCDF	2000	1352.905	68		40-135	0.53	1.008
13C-2,3,4,6,7,8-HxCDF	2000	1391.655	70		40-135	0.51	0.988
13C-1,2,3,4,6,7,8-HpCDF	2000	1236.325	62		40-135	0.46	1.043
13C-1,2,3,4,7,8,9-HpCDF	2000	1439.680	72		40-135	0.43	1.081
37Cl-2,3,7,8-TCDD	800	682.388	85		40-135	NA	1.023

ICAL Date:

10/28/14

Accuracy & Precision

ALS Environmental - Houston HRMS 10450 Stancliff Rd., Suite 210, Houston TX 77099 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 59 of 66

QA/QC Report

Client:	Barr Engineering Company	Service Request:	K1503395
Project:	Joslyn OU5 2015 Soil/23270110	Date Analyzed:	04/10/15
Sample Matrix:	Soil	Date Extracted:	04/08/15

Duplicate Lab Control Sample Summary

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analysis Method:	8290	Units:	ng/Kg
Prep Method:	Method	Basis:	Dry
		Analysis Lot:	440493

	Lab Control SampleDuplicate Lab Control SampleEQ1500276-02EQ1500276-03														
Analyte Name	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit						
1,2,3,4,6,7,8-HpCDD	98.8	95.9	103	98.4	96.3	102	70-130	<1	25						
1,2,3,4,7,8-HxCDD	99.5	95.9	104	99.4	96.3	103	70-130	<1	25						
1,2,3,6,7,8-HxCDD	101	95.9	106	101	96.3	105	70-130	<1	25						
1,2,3,7,8,9-HxCDD	105	95.9	110	105	96.3	109	70-130	<1	25						
1,2,3,7,8-PeCDD	106	95.9	111	107	96.3	111	70-130	<1	25						
2,3,7,8-TCDD	19.6	19.2	102	20.3	19.3	105	70-130	3	25						
OCDD	202	192	105	198	193	103	70-130	2	25						
1,2,3,4,6,7,8-HpCDF	98.8	95.9	103	106	96.3	110	70-130	7	25						
1,2,3,4,7,8,9-HpCDF	97.1	95.9	101	101	96.3	105	70-130	4	25						
1,2,3,4,7,8-HxCDF	108	95.9	112	105	96.3	109	70-130	2	25						
1,2,3,6,7,8-HxCDF	101	95.9	106	106	96.3	110	70-130	4	25						
1,2,3,7,8,9-HxCDF	101	95.9	105	101	96.3	105	70-130	<1	25						
1,2,3,7,8-PeCDF	103	95.9	108	105	96.3	109	70-130	1	25						
2,3,4,6,7,8-HxCDF	102	95.9	106	101	96.3	105	70-130	<1	25						
2,3,4,7,8-PeCDF	103	95.9	107	103	96.3	107	70-130	<1	25						
2,3,7,8-TCDF	20.8	19.2	108	20.4	19.3	106	70-130	2	25						
OCDF	215	192	112	207	193	107	70-130	4	25						

Analytical Report

	Analytical Repo	ort	
Client:	Barr Engineering Company	Service Request:	K1503395
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Lab Control Sample	Units:	ng/Kg
Lab Code:	EQ1500276-02	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlorin	ated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	04/10/15 20:35
Prep Method:	Method	Date Extracted:	4/8/15
Sample Amount:	10.428g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235500	Blank File Name:	P235507

ICAL Date: 10/28/14

Native Analyte Results

Analyte Name	Result () EDL	MRL	Ion Ratio	RRT	Dilution Factor
2,3,7,8-TCDD	19.6	0.227	0.479	0.81	1.001	1
1,2,3,7,8-PeCDD	106	0.167	2.40	1.55	1.000	1
1,2,3,4,7,8-HxCDD	99.5	0.0477	2.40	1.29	1.000	1
1,2,3,6,7,8-HxCDD	101	0.0499	2.40	1.23	1.000	1
1,2,3,7,8,9-HxCDD	105	0.0468	2.40	1.32	1.007	1
1,2,3,4,6,7,8-HpCDD	98.8	0.0865	2.40	1.06	1.000	1
OCDD	202	0.121	4.79	0.88	1.000	1
2,3,7,8-TCDF	20.8	0.288	0.479	0.74	1.001	1
1,2,3,7,8-PeCDF	103	0.0634	2.40	1.55	1.000	1
2,3,4,7,8-PeCDF	103	0.0612	2.40	1.54	1.001	1
1,2,3,4,7,8-HxCDF	108	0.0576	2.40	1.27	1.000	1
1,2,3,6,7,8-HxCDF	101	0.0539	2.40	1.29	1.000	1
1,2,3,7,8,9-HxCDF	101	0.0712	2.40	1.28	1.000	1
2,3,4,6,7,8-HxCDF	102	0.0582	2.40	1.26	1.000	1
1,2,3,4,6,7,8-HpCDF	98.8	0.247	2.40	1.05	1.000	1
1,2,3,4,7,8,9-HpCDF	97.1	0.286	2.40	1.02	1.000	1
OCDF	215	0.312	4.79	0.94	1.005	1

Analytical Report

	Anaryt	cal Report				
Client:	Barr Engineering Company	Service Request:	K1503395			
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA			
Sample Matrix:	Soil	Date Received:	NA			
Sample Name:	Lab Control Sample	Units:	ng/Kg			
Lab Code:	EQ1500276-02	Basis:	Dry			
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS						
Analysis Method:	8290	Date Analyzed:	04/10/15 20:35			
Prep Method:	Method	Date Extracted:	4/8/15			
Sample Amount:	10.428g	Instrument Name:	E-HRMS-04			
		GC Column:	DB-5MSUI			
Data File Name:	P235500	Blank File Name:	P235507			

ICAL Date: 10/28/14

Native Analyte Results

				Ion		Dilution
Result	Q	EDL	MRL	Ratio	RRT	Factor
19.8		0.227	0.479	0.70		1
106		0.167	2.40	1.55		1
306		0.0482	2.40	1.29		1
98.8		0.0865	2.40	1.06		1
20.8		0.288	0.479	0.74		1
209		0.136	2.40			1
412		0.0597	2.40	1.27		1
196		0.265	2.40	1.05		1
	19.8 106 306 98.8 20.8 209 412	19.8 106 306 98.8 20.8 209 412	19.8 0.227 106 0.167 306 0.0482 98.8 0.0865 20.8 0.288 209 0.136 412 0.0597	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Result Q EDL MRL Ratio 19.8 0.227 0.479 0.70 106 0.167 2.40 1.55 306 0.0482 2.40 1.29 98.8 0.0865 2.40 1.06 20.8 0.288 0.479 0.74 209 0.136 2.40 1.27	Result Q EDL MRL Ratio RRT 19.8 0.227 0.479 0.70 0.70 106 0.167 2.40 1.55 106 0.0482 2.40 1.29 106 0.0865 2.40 1.06 1.06 1.06 1.06 1.06 1.29 1.06 1.29 1.06 1.29 1.06 1.29 1.06 1.21 1.06 1.21

Analytical Report

7 11141 9	iour report					
Barr Engineering Company	Service Request:	K1503395				
Joslyn OU5 2015 Soil/23270110	Date Collected:	NA				
Soil	Date Received:	NA				
Lab Control Sample	Units:	Percent				
EQ1500276-02	Basis:	Dry				
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS						
8290	Date Analyzed:	04/10/15 20:35				
Method	Date Extracted:	4/8/15				
10.428g	Instrument Name:	E-HRMS-04				
	GC Column:	DB-5MSUI				
P235500	Blank File Name:	P235507				
10/28/14	Cal Ver. File Name:	P235491				
	Barr Engineering Company Joslyn OU5 2015 Soil/23270110 Soil Lab Control Sample EQ1500276-02 Polychlorinated Dibenzodioxins and Poly 8290 Method 10.428g P235500	Joslyn OU5 2015 Soil/23270110Date Collected:SoilDate Received:Lab Control SampleUnits:EQ1500276-02Basis:Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS8290Date Analyzed:MethodDate Extracted:10.428gInstrument Name:GC Column:P235500Blank File Name:				

	Spike	Conc.			Control	Ion	
Labeled Compounds	Conc.(pg)	Found (pg)	% Rec	Q	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1594.818	80		40-135	0.77	1.023
13C-1,2,3,7,8-PeCDD	2000	1828.477	91		40-135	1.57	1.202
13C-1,2,3,4,7,8-HxCDD	2000	1415.582	71		40-135	1.29	0.991
13C-1,2,3,6,7,8-HxCDD	2000	1464.951	73		40-135	1.29	0.994
13C-1,2,3,4,6,7,8-HpCDD	2000	1461.252	73		40-135	1.07	1.068
13C-OCDD	4000	2578.425	64		40-135	0.89	1.140
13C-2,3,7,8-TCDF	2000	1501.532	75		40-135	0.78	0.992
13C-1,2,3,7,8-PeCDF	2000	1747.738	87		40-135	1.57	1.157
13C-2,3,4,7,8-PeCDF	2000	1813.223	91		40-135	1.57	1.192
13C-1,2,3,4,7,8-HxCDF	2000	1363.773	68		40-135	0.55	0.970
13C-1,2,3,6,7,8-HxCDF	2000	1407.904	70		40-135	0.50	0.973
13C-1,2,3,7,8,9-HxCDF	2000	1411.793	71		40-135	0.52	1.009
13C-2,3,4,6,7,8-HxCDF	2000	1449.451	72		40-135	0.51	0.988
13C-1,2,3,4,6,7,8-HpCDF	2000	1272.754	64		40-135	0.45	1.043
13C-1,2,3,4,7,8,9-HpCDF	2000	1558.997	78		40-135	0.44	1.081
37Cl-2,3,7,8-TCDD	800	689.748	86		40-135	NA	1.024

Labeled Standard Results

Analytical Report

	Апа	lytical Report			
Client:	Barr Engineering Company	Service Request:	K1503395		
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA		
Sample Matrix:	Soil	Date Received:	NA		
Sample Name:	Duplicate Lab Control Sample	Units:	ng/Kg		
Lab Code:	EQ1500276-03	Basis:	Dry		
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS					
Analysis Method:	8290	Date Analyzed:	04/10/15 21:24		
Prep Method:	Method	Date Extracted:	4/8/15		
Sample Amount:	10.381g	Instrument Name:	E-HRMS-04		
		GC Column:	DB-5MSUI		
Data File Name:	P235501	Blank File Name:	P235507		
ICAL Date:	10/28/14	Cal Ver. File Name:	P235491		

Native Analyte Results

Analyte Name	Result	0	EDL	MRL	Ion Ratio	RRT	Dilution Factor
2,3,7,8-TCDD	20.3	Q	0.323	0.482	0.80	1.001	1
1,2,3,7,8-PeCDD	107		0.159	2.41	1.62	1.001	1
1,2,3,4,7,8-HxCDD	99.4		0.0513	2.41	1.24	1.000	1
1,2,3,6,7,8-HxCDD	101		0.0524	2.41	1.29	1.000	1
1,2,3,7,8,9-HxCDD	105		0.0497	2.41	1.30	1.007	1
1,2,3,4,6,7,8-HpCDD	98.4		0.0657	2.41	1.03	1.000	1
OCDD	198		0.111	4.82	0.88	1.000	1
2,3,7,8-TCDF	20.4		0.339	0.482	0.74	1.001	1
1,2,3,7,8-PeCDF	105		0.189	2.41	1.53	1.000	1
2,3,4,7,8-PeCDF	103		0.186	2.41	1.53	1.001	1
1,2,3,4,7,8-HxCDF	105		0.0274	2.41	1.22	1.000	1
1,2,3,6,7,8-HxCDF	106		0.0257	2.41	1.27	1.000	1
1,2,3,7,8,9-HxCDF	101		0.0324	2.41	1.29	1.000	1
2,3,4,6,7,8-HxCDF	101		0.0263	2.41	1.27	1.000	1
1,2,3,4,6,7,8-HpCDF	106		0.199	2.41	1.03	1.000	1
1,2,3,4,7,8,9-HpCDF	101		0.226	2.41	1.11	1.000	1
OCDF	207		0.321	4.82	0.88	1.005	1

Analytical Report

	Alla	ilyucal Report			
Client:	Barr Engineering Company	Service Request:	K1503395		
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA		
Sample Matrix:	Soil	Date Received:	NA		
Sample Name:	Duplicate Lab Control Sample	Units:	ng/Kg		
Lab Code:	EQ1500276-03	Basis:	Dry		
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS					
Analysis Method:	8290	Date Analyzed:	04/10/15 21:24		
Prep Method:	Method	Date Extracted:	4/8/15		
Sample Amount:	10.381g	Instrument Name:	E-HRMS-04		
		GC Column:	DB-5MSUI		
Data File Name:	P235501	Blank File Name:	P235507		
ICAL Date:	10/28/14	Cal Ver. File Name:	P235491		

Cal Ver. File Name: P235491

Native Analy	te Results
--------------	------------

			Ion		Dilution
Result (Q EDL	MRL	Ratio	RRT	Factor
20.3	0.323	0.482	0.80		1
107	0.159	2.41	1.62		1
305	0.0511	2.41	1.24		1
98.4	0.0657	2.41	1.03		1
20.7	0.339	0.482	0.74		1
208	0.0951	2.41			1
414	0.0277	2.41	1.22		1
207	0.211	2.41	1.03		1
	20.3 107 305 98.4 20.7 208 414	20.3 0.323 107 0.159 305 0.0511 98.4 0.0657 20.7 0.339 208 0.0951 414 0.0277	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ResultQEDLMRLRatio20.30.3230.4820.801070.1592.411.623050.05112.411.2498.40.06572.411.0320.70.3390.4820.742080.09512.411.22	Result Q EDL MRL Ratio RRT 20.3 0.323 0.482 0.80 0.80 107 0.159 2.41 1.62 0.305 0.0511 2.41 1.24 0.984 0.0657 2.41 1.24 0.984 0.0657 2.41 1.03 0.482 0.74 0.339 0.482 0.74 0.74 208 0.0951 2.41 1.22 0.74 1.22 0.74 0.0277 2.41 1.22 0.74 0.241 0.22 0.74 0.241 0.22 0.74

Analytical Report

	7 110	ilyitear Report			
Client:	Barr Engineering Company	Service Request:	K1503395		
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA		
Sample Matrix:	Soil	Date Received:	NA		
Sample Name:	Duplicate Lab Control Sample	Units:	Percent		
Lab Code:	EQ1500276-03	Basis:	Dry		
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS					
Analysis Method:	8290	Date Analyzed:	04/10/15 21:24		
Prep Method:	Method	Date Extracted:	4/8/15		
Sample Amount:	10.381g	Instrument Name:	E-HRMS-04		
		GC Column:	DB-5MSUI		
Data File Name:	P235501	Blank File Name:	P235507		
ICAL Date:	10/28/14	Cal Ver. File Name:	P235491		

Labeled Standard Results

	Spike	Conc.			Control	Ion	
Labeled Compounds	Conc.(pg)	Found (pg)	% Rec	Q	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1631.421	82		40-135	0.79	1.023
13C-1,2,3,7,8-PeCDD	2000	1885.105	94		40-135	1.56	1.202
13C-1,2,3,4,7,8-HxCDD	2000	1400.629	70		40-135	1.23	0.991
13C-1,2,3,6,7,8-HxCDD	2000	1505.855	75		40-135	1.27	0.993
13C-1,2,3,4,6,7,8-HpCDD	2000	1461.607	73		40-135	1.08	1.068
13C-OCDD	4000	2722.278	68		40-135	0.92	1.140
13C-2,3,7,8-TCDF	2000	1541.859	77		40-135	0.78	0.992
13C-1,2,3,7,8-PeCDF	2000	1804.592	90		40-135	1.56	1.157
13C-2,3,4,7,8-PeCDF	2000	1852.790	93		40-135	1.56	1.192
13C-1,2,3,4,7,8-HxCDF	2000	1347.253	67		40-135	0.52	0.970
13C-1,2,3,6,7,8-HxCDF	2000	1390.139	70		40-135	0.53	0.973
13C-1,2,3,7,8,9-HxCDF	2000	1435.637	72		40-135	0.51	1.009
13C-2,3,4,6,7,8-HxCDF	2000	1453.614	73		40-135	0.52	0.988
13C-1,2,3,4,6,7,8-HpCDF	2000	1268.590	63		40-135	0.44	1.043
13C-1,2,3,4,7,8,9-HpCDF	2000	1558.491	78		40-135	0.44	1.081
37Cl-2,3,7,8-TCDD	800	716.713	90		40-135	NA	1.024

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T** : +1 360 577 7222 **F** : +1 360 636 1068 www.alsglobal.com

Analytical Report for Service Request No: K1504931

May 29, 2015

Terri Olson Barr Engineering 4700 West 77th Street Minneapolis, MN 55435

RE: Joslyn OU5 2015 Soil / 23270110

Dear Terri,

Enclosed are the results of the sample(s) submitted to our laboratory February 04, 2015 For your reference, these analyses have been assigned our service request number **K1504931**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3363. You may also contact me via email at Lisa.Domenighini@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

sa & Jomenighin Lisa Domenighin

Lisa Domenighini Project Manager

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 3 of 54

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	Not available	-
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx	-
ISO 17025	http://www.pjlabs.com/	L14-50
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPer mitSupport/LouisianaLaboratoryAccreditationProgram.aspx	03016
Maine DHS	Not available	WA01276
Michigan DEQ	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 5 of 54

ALS ENVIRONMENTAL

Client:Barr Engineering CompanyProject:Joslyn OU5 2015 Soil/ 23270110Sample Matrix:Soil

Service Request No.: Date Received:

K1504931 02/04/15

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), and Matrix/Duplicate Matrix Spike (MS/DMS).

Sample Receipt

Two soil samples were received for analysis at ALS Environmental on 02/04/15. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory. These samples were originally logged under Service Request K1501100.

General Chemistry Parameters

Total Organic Carbon by ASTM D4129-05 Modified:

All samples were received past holding time. The analysis was performed as soon as possible after receipt by the laboratory. The data was flagged to indicate the holding time violation.

No other anomalies associated with the analysis of these samples were observed.

Dioxins and Furans by EPA Method 8290

The analysis for Dioxins and Furans was performed at ALS Environmental in Houston, Texas. The data for this analysis is included in the corresponding section of this report.

Approved by Jusa & Jomenighin

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 7 of 54

]	KI!	101	\overline{u}	
Chain of 4700 West 77		ody											umb 'ater		f Cont	aine	rs/P		vativ Soil	/e		T	СС	ЭС	1	of	2
BARR 4700 West 77 Minneapolis, (952) 832-260	MN 5543.	5-4803																					Proj Man	ect lager:		Hun	{
Project Number: 232	70110										ч., н.,											rs		0 _			
Project Name: Josly									#2		#3 (HCI)	SO4) #4		1	H)#I	(pa	#2	npres.)		ntainei	Proj QC	ect Conta	n: Ter	-r: 01	son		
Sample Origination State M N (use two letter postal state abbreviation)								rved) s (HN	(FON	erved)	54115 (†)		FIHO	d McO	reserv rved)	rved) 4	vial. u		Of Co			٨	0	,			
COC Number:						N	<u>0</u> 4	38	00	CI) #1	Metal	als (H	al (unpres Range O	(H ₂ SC		red Me	X (tare	ed unp npresei	nprese	plastic		mber (Sam	pled b	y: <u>H</u>	lex P.	<u>etz</u>
Location	Start Depth	Stop Depth	Depth Unit (m./ft. or in.)	Collect Date (mm/dd/	e	Collection Time (hh:mm)	Matrix Soil	Grab .	Type	VOCs (H	SVOCs (unpreserved) #2 Dissolved Metals (HNO3)	Total Metals (HNO3)	General (Diesel Ra	Nutrients (H ₂ SO ₄) #4		VOCs (ta	GRO, BTE	DRO (tared unpreserved) Metals (unpreserved)	SVOCs (u	% Solids (plastic vial. unpres.)	Toc	Total Number Of Containers	Labo	orato r y	f	LS	
^{1.} B-1	2	3.5	ft	02/02/	2015	10:35	X		X											1		2]			
^{2.} B-1	3.5	5				11:40	X		X													2					
^{3.} B-1	5	6.5				11:45	X		X												1	2					
^{4.} B-1	6.5	9				11:50	X		X													2					
^{5.} B-1	9	10				12:00	X		X												1	2		-	HO	LD	
°. B-3	5	6.5				14:15	X		X													2			ALI		
^{7.} B-3	6.5	٩				14:20	X		X												1	2			SAN	IPLE	S
^{8.} B-3	9	10				14:25	X		X													2					
9. C-3	5	6.5				13:40	X		X													2					
^{10.} C - 3	6.5	9	V			13:45	X		X													2	-	J			
Common Parameter/Container - Preservation Key Relinquished By://				Date			'ime :15		Receiy	l^{-}			KL	the					Date 2/15	Tir 16.1	ne 15						
 #1 - Volatile Organics = BTEX, GRO, TPH, 8260 Full List #2 - Semivolatile Organics = PAHs, PCP, Dioxins, 8270 Full List, Herbicide/Pesticide/PCBs #3 - General = pH, Chloride, Fluoride, Alkalinity, TSS, 				d By:	$\frac{1}{\sqrt{2}} \qquad $			Datc 03/	15	т 1ч	`ime : 1 <u>7</u>		Received by:						L, L	arc 115	Tin ()94	ne					
TDS, TS, Sulfate #4 - Nutrients = COD, TOC, Phenols. Ammonia Nutrogen, TKN				gmples Shi	ipped V	IA: CAir Fi	-	Jrec	ieral I	expro	ess (5a	inple		Air Bill Number:												

K1504931

Distribution: White-Original Accompanies Shipment to Lab: Yellow - Field Copy; Pink - Lab Coordinator

									_												_	KIJUII	\mathcal{U}
Chain of (4700 West 77th 5	Street											umbe /ater	er of C	Contai	iners	/Pres	serva So					$\cos 2$	
BARR Minneapolis, MN (952) 832-2600		5-4803														-					Pro Ma	oject anager: John	Hunt
Project Number: 2327011	0																			2			
Project Name: Joslyn OUS 2015 Soil						_	#2)#3 s (HC			#1	(H) #/		#2 npres.)		ntaine	Pro Q0	oject C Contact: <u>[er</u>	ri Olson			
Sample Origination State \underline{M} N (use two letter postal state abbreviation)							s (HNO3)	NO ₃)	rganic)4) #4		(HOa	d MeO	rved)	rved). vial. u		ŭ JO		N,	0			
COC Number:						N	<u>0</u> 4	3801	CI) #1	Metal	als (H	(unpreserved) ange Organies	(H2SC		red M	X (tare ed unj	nprese	n prese plastic		mber	Sa	mpled by: He	X Puetz
Location	Start Depth	Stop Depth	Depth Unit (m./ft. or in.)	- Cone	ection ate d/yyyy)	Collection Time (hh:mm)	Matrix Soil	3801 Type	VOCs (H	SVOCs (unpreser Dissolved Metals	Total Metals	General (unpreserved) #3 Diesel Range Organics (HCI)	Nutrients (H ₂ SO ₄) #4		VOCs (tared McOH) #1	GRO, BTE DRO (lai	Metals (u	SVUCs (u	Diexin	Total Nu	La	oject Contact: <u>c</u> r mpled by: <u>Al</u> e	LS
^{1.} C-3 ^{2.} D-1	٩	10	f+	02/02	2/2015	13:50	X	X											1	12	٦		
^{2.} D-1	2	3.5				11:05	X	X											1	12			**************************************
^{3.} D-1	3.5	9				11:10	X	X											1	12			
^{4.} D-1	9	10				11:20	X	X								-			1	12			
^{5.} E-4	5	6.5				13:00	X	X											1	12		- HOLI	
^{6.} E-4	6.5	٩				13:65	X	X											1	12		ALL	
"E-4	٩	10				13:10	X	X											1	12		SAMP	'LES
^{8.} F-3	4	5.5				12:25	X	X											1	12			ανέγκατα που δε το δεί το μαγοριάζου − − − − − − − − − − − − − − − − − − −
^{8.} F-3 ^{9.} F-3	5.5	9				12:30	X	X												12			
^{10.} F - 3	9	10	V	J	1	12:35	X	X											1	12	-]	
Common Parameter/Container - Preservation Key #1. Volution Communication = PTEX CR0_TRH_8260 Full List) N 02	Dat /02	15	к	`ime •.15	(ceivec Mi	m; M	4	Ju.	k.	<u> </u>			Date 02/02/15	Time 16:15				
#2 - Semivolatile Organics = PAHs, PCP. Dioxins, 8270 Full List. Herbicide/Pesticide/PCBs #3 - General = pH. Chloride, Fluoride, Alkalinity, TSS.									15	14	"ime 1 . 1 2 mpler	2) 	_			Date 2/4/15	Time 044 []		

K1507931

Distribution: White-Original Accompanies Shipment to Lab; Yellow - Field Copy; Pink - Lab Coordinator

(ALS)	PChisa
Cooler Receipt and Preservation Form	. 1
Client / Project: Bary Service Request $K15$ H Received: $2/4/15$ Opened: $2/4/15$ By: Service Unloaded: $2/4/15$	<u>+0 К15049</u> 27 ву: Тре
 Samples were received via? Mail Fed Ex UPS DHL PDX Courier Hand Deli Samples were received in: (circle) Cooler Box Envelope Other Were custody seals on coolers? NA Y N If yes, how many and where? Offer If present, were custody seals intact? Y N If present, were they signed and dated 	-fiont NA
, the first	king Number NA Filed
5.7 5.8 5.6 5.6 40.1 347 43799 6275 164	14 7472
4. Packing material: Inserts Baggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves	
5. Were custody papers properly filled out (ink, signed, etc.)?	NA (Ŷ, N
6. Did all bottles arrive in good condition (unbroken)? Indicate in the table below.	NA V N
7. Were all sample labels complete (i.e analysis, preservation, etc.)?	NA (Y) N
8. Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2	2. NA Y N
9. Were appropriate bottles/containers and volumes received for the tests indicated?	NA (Y) N

10.	see SMO GEN SOP) received at th	he appropriate pH?	Indicate in the table below	V
10.	see SMO GEN SOP) received at th	he appropriate pH?	Indicate in the table be	elon

11. Were VOA vials received without headspace? Indicate in the table below.

12. Was C12/Res negative?

Sample ID on Bottle	Sample ID on COC	Identified by:

Sample ID	Bottle Count Bottle Type	Out of Temp	Head- space	Broke	рH	Reagent	Volume added	Reagent Lot Number	Initials	Time
· · · · · · · · · · · · · · · · · · ·	}									
										·····

Notes, Discrepancies, & Resolutions:

Y

Y

Y

Ν

Ν

Ν

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 11 of 54

Analytical Report

Client:	Barr Engineering Company		Service Request:	K1504931
Project:	Joslyn OU5 2015 Soil/23270110		Date Collected:	02/2/15
Sample Matrix:	Soil		Date Received:	02/4/15
Analysis Method:	160.3 Modified		Units:	Percent
Prep Method:	None		Basis:	As Received
		Solids, Total		

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
C-3 9-10'	K1504931-001	35.5	-	1	05/11/15 16:49	
F-3 9-10'	K1504931-002	30.6	-	1	05/11/15 16:49	

QA/QC Report

Client:	Barr Engineering Company
Project	Joslyn OU5 2015 Soil/23270110
Sample Matrix:	Soil

Service Request:K1504931 Date Collected:NA Date Received:NA

Units:Percent

Basis: As Received

Analysis Method:160.3 ModifiedPrep Method:None

Replicate Sample Summary Solids, Total

Sample Name:	Lab Code:	MRL	Sample Result	Duplicate Result	Average	RPD	RPD Limit	Date Analyzed
Batch QC	K1504876-001DUP	-	51.8	49.0	50.4	6	20	05/11/15
Batch QC	K1504878-001DUP	-	52.8	52.1	52.5	1	20	05/11/15
Batch QC	K1504963-001DUP	-	38.0	37.8	37.9	<1	20	05/11/15
Batch QC	K1504966-006DUP	-	82.9	82.7	82.8	<1	20	05/11/15

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Analytical Report

Client:	Barr Engineering Company
Project:	Joslyn OU5 2015 Soil/23270110
Sample Matrix:	Soil
Analysis Method: Prep Method:	ASTM D4129-05 Modified ALS SOP

 Service Request:
 K1504931

 Date Collected:
 02/2/15

 Date Received:
 02/4/15

Units: Percent Basis: Dry, per Method

Carbon, Total Organic (TOC)

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
C-3 9-10'	K1504931-001	7.33	0.050	1	05/22/15 10:10	5/21/15	*
F-3 9-10'	K1504931-002	11.8	0.050	1	05/22/15 10:10	5/21/15	*
Method Blank	K1504931-MB	ND U	0.050	1	05/22/15 10:10	5/21/15	

QA/QC Report

Client:	Barr Engineering Company	Service Request:K1504931
Project	Joslyn OU5 2015 Soil/23270110	Date Collected:NA
Sample Matrix:	Soil	Date Received:NA
Analysis Method:	ASTM D4129-05 Modified	Units:Percent
Prep Method:	ALS SOP	Basis:Dry, per Method

Replicate Sample Summary Carbon, Total Organic (TOC)

Sample Name:	Lab Code:	MRL	Sample Result	Duplicate Result	Average	RPD	RPD Limit	Date Analyzed
Batch QC	K1504599-029DUP	0.050	0.948	1.01	0.980	6	20	05/22/15
Batch QC	K1504634-002DUP	0.050	1.16	1.17	1.17	<1	20	05/22/15

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:	Barr Engineering Comp	any				Service	Request:	K150	4931	
Project:	Joslyn OU5 2015 Soil/2	3270110				Date Co	llected:	N/A		
Sample Matrix:	Soil					Date Re	ceived:	N/A		
						Date An	alyzed:	05/22	/15	
						Date Ex	tracted:	05/21	/15	
		Dup	licate Matri	x Spike S	ummary					
		Ca	arbon, Total	Organic	(TOC)					
Sample Name:	Batch QC						Units:	Perce	nt	
Lab Code:	K1504599-029						Basis:	Dry, j	per Meth	od
Analysis Method:	ASTM D4129-05 Modi	fied								
Prep Method:	ALS SOP									
			latrix Spike 04599-029N		-	l icate Matri 504599-029	-			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Carbon, Total Organi	c (TOC) 0.948	3.66	2.99	91	3.91	3.24	91	70-122	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client: Project: Sample Matrix:	Barr Engineering Comp Joslyn OU5 2015 Soil/2 Soil	•				Service Date Co Date Re		K150 N/A N/A	4931	
						Date An	alyzed:	05/22	/15	
						Date Ex	tracted:	05/21	/15	
		-	licate Matri	-	•					
		Ca	rbon, Total	Organic	(TOC)					
Sample Name:	Batch QC						Units:	Perce	nt	
Lab Code:	K1504634-002						Basis:	Dry, j	per Meth	od
Analysis Method:	ASTM D4129-05 Mod	ified								
Prep Method:	ALS SOP									
			l atrix Spike 04634-002N		-	l icate Matri 504634-002	-			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Carbon, Total Organi	c (TOC) 1.16	4.89	3.88	96	5.09	4.00	98	70-122	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client: Project: Sample Matrix:	Barr Engineering Company Joslyn OU5 2015 Soil/23270110 Soil		Service Req Date Analyz Date Extrac	zed:	K1504931 05/22/15 05/21/15
		ontrol Sample Summary n, Total Organic (TOC)			
Analysis Method: Prep Method:	ASTM D4129-05 Modified ALS SOP		Units: Basis: Analysis Lo	t:	Percent Dry, per Method 446119
Sample Name Lab Control Sample	Lab Code K1504931-LCS	Result 0.522	Spike Amount 0.543	% Rec 96	% Rec Limits 72-122

Subcontract Lab Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 19 of 54

10450 Stancliff Rd., Suite 210 Houston, TX 77099 T: +1 713 266 1599 F: +1 713 266 1599 www.alsglobal.com

May 21, 2015.

Service Request No: K1504931

Lisa Domenighini ALS Environmental 1317 South 13th Avenue Kelso, WA 98626

Laboratory Result for: Barr Engineering.

Dear Lisa:

Enclosed are the results of the sample(s) submitted to our laboratory on May 12, 2015. For Your reference, these analyses have been assigned our service request number: **K1504931**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current TNI standards, where applicable, and considered in their entirety, and ALS Environmental is not responsible for use of less than the final complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the TNI 2009 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My direct line is 281-575-2279. You may also contact me via email at Arthi.Kodur@alsglobal.com

Respectfully submitted,

ALS Group USA Corp., dba ALS Environmental

Arthi Kodur Project Manager

Page 1 of _____

For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com.

REPRI AMERITMAN | RIPHT PRINTING

Certificate of Analysis

ALS Environmental - Houston HRMS 10450 Stancliff Rd, Suite 210, Houston TX 77099 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

K1504931

Page 21 of 54 2 of 35

ALS ENVIRONMENTAL

Client:Barr Engineering CompanyProject:Joslyn OU5 2015 Soil/23270110Sample Matrix:Soil

 Service Request No.:
 K1504931

 Date Received:
 5/12/15

ALS ENVIRONMENTAL NARRATIVE

All analyses were performed in adherence to the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Two soil samples were received for analysis at ALS Environmental on 5/12/15.

Please note the reporting forms are currently referencing the date ALS Environmental-Kelso received the samples (2/4/15) and not the date ALS Environmental-Houston received the samples (5/12/15).

The samples were received at 1.7°C in good condition and are consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Data Validation Notes and Discussion

B flags – Method Blanks

The Method Blank EQ1500362-01 contained low levels of various analytes at or below the Method Reporting Limit (MRL).

MS/MSD/Duplicate

EQ1500362: Laboratory Control Spike (LCS) sample was analyzed and reported in addition to an MS/MSD for this extraction batch. The batch quality control criteria were met. The batch precision (MS/DMS/DUP) measurements were determined on another order in the extraction batch. The MS/DMS results are not included in this report.

2378-TCDF

Samples analyzed on the DB-5MSUI column were analyzed under conditions were sufficient separation between 2,3,7,8-TCDF and its closest eluter was achieved. Confirmation of this result was not required.

<u>K flags</u>

EMPC - When the ion abundance ratios associated with a particular compound are outside the QC limits, samples are flagged with a 'K' flag. A 'K' flag indicates an estimated maximum possible concentration for the associated compound.

Detection Limits

Detection limits are calculated for each analyte in each sample by measuring the height of the noise level for each quantitation ion for the associated labeled standard. The concentration equivalent to 2.5 times the height of the noise is then calculated using the appropriate response factor and the weight of the sample. The calculated concentration equals the detection limit.

The TEQ Summary results for each sample have been calculated by ALS ENVIRONMENTAL/Houston to include:

- WHO-2005 TEFs, The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds (M. Van den Berg et al., Toxicological
- > Non-detected compounds are not included in the 'Total'

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS group USA Corp dba ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

SAMPLE CROSS-REFERENCE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	DATE	TIME
K1504931-001	C-3 9-10'	2/2/2015	1350
K1504931-002	F-3 9-10'	2/2/2015	1235

Service Request Summary

Folder #: Client Name: Project Name: Project Number:	K1504931 Barr Engineering Compa Joslyn OU5 2015 Soil 23270110	ny		Or	iginatii Log	hemist: ng Lab: ged By: ceived:	KELSO SWOLF
Report To: Phone Number:	Terri Olson Barr Engineering 4700 West 77th Street Minneapolis, MN 55435 USA 952-842-3578			Intern	nal Du Qualif Fi Me port to	e Date: QAP: ier Set: ormset: erged?: MDL?:	5/25/2015 LAB QAP Lab Standard Lab Standard Y
Cell Number: Fax Number: E-mail:	tolson@barr.com				2.0. N	EDD:	BARR - EQUIS
					LSO Pa	HOUST ON 06	
				TOC/ASTM D4129-05 Modified	TS/160.3 Modified	PCDD PCDF/8290	
Lab Samp No.	Client Samp No	Matrix	Collected				

Soil

Soil

4 4 oz-Glass Jar WM CLEAR Teflon Liner Unpreserved Location: EHRMS-WIC 4D, K-Delilah-41 Pressure Gas: NPDES

Folder Comments:

C-3 9-10'

F-3 9-10'

K1504931-001

K1504931-002

Tier II except when requested otherwise. Add narrative note that Benzo(b)fluoranthene cannot be separated from Benzo(j)fluoranthene.

Ш

Ш

Ш

Ш

Ш

Ш

02/02/15 1350

02/02/15 1235

Service Request Summary

Folder #: Client Name: Project Name: Project Number:	K1504931 Barr Engineering Company Joslyn OU5 2015 Soil 23270110	Project Chemist: Originating Lab: Logged By: Date Received:	Lisa Domenighini KELSO SWOLF 02/04/15
Report To:	Terri Olson Barr Engineering 4700 West 77th Street Minneapolis, MN 55435 USA	Formset:	5/25/2015 LAB QAP Lab Standard Lab Standard Y
Phone Number: Cell Number: Fax Number: E-mail:	952-842-3578 tolson@barr.com	Report to MDL?: P.O. Number: EDD:	N, Y BARR - EQUIS

4 4 oz-Glass Jar WM CLEAR Teflon Liner Unpreserved Location: EHRMS-WIC 4D, K-Delilah-41 Pressure Gas: NPDES

Test Comments:

Group	Test/Method	Samples	Comments		
Semivoa GCMS	PCDD PCDF/8290	2	full list (ak 5/12/15)		

- **B** Indicates the associated analyte is found in the method blank, as well as in the sample
- C 2378-TCDF is detected on the DB-5 column above the MRL, confirmation analysis was performed on a second column (DB-225.) The results from both the DB-5 column and the DB-225 column are included in this data package. The results from the DB-225 analyses should be used to evaluate the 2378-TCDF in the samples. The confirmed result are used in determining the TEQ value for TCDF.
- **E** The reported result is above the instrument calibration range and is an estimated value.
- J Indicates an estimated value used when the analyte concentration is below the method reporting limit (MRL) and above the estimated detection limit (EDL)
- **K** Ion abundance ratios between the primary and secondary ions were outside of theoretical acceptance limits. The reported result is an estimated maximum possible concentration (EMPC)
- i The associated MRL/MDL has been elevated due to matrix interference.
- U Indicates the compound was analyzed for, but not detected (ND)
- Y C13-Labeled standard percent recoveries are outside of method acceptance limits
- **S** Peak is saturated; data not reportable
- **P** Indicates chlorodiphenyl ether interference present at the retention time of the target compound.
- **X** See case narrative

ALS Laboratory Group

Acronyms

Cal	Calibration
Conc	CONCentration
Dioxin(s)	Polychlorinated dibenzo-p-dioxin(s)
EDL	Estimated Detection Limit
EMPC	Estimated Maximum Possible Concentration
Flags	Data qualifiers
Furan(s)	Polychlorinated dibenzofuran(s)
g	Grams
ICAL	Initial CALibration
ID	IDentifier
Ions	Masses monitored for the analyte during data acquisition
L	Liter (s)
LCS	Laboratory Control Sample
DLCS	Duplicate Laboratory Control Sample
MB	Method Blank
MCL	Method Calibration Limit
MDL	Method Detection Limit
mL	Milliliters
MS	Matrix Spiked sample
DMS	Duplicate Matrix Spiked sample
NO	Number of peaks meeting all identification criteria
PCDD(s)	Polychlorinated dibenzo-p-dioxin(s)
PCDF(s)	Polychlorinated dibenzofuran(s)
ppb	Parts per billion
ppm	Parts per million
ppq	Parts per quadrillion
ppt	Parts per trillion
QA	Quality Assurance
QC	Quality Control
Ratio	Ratio of areas from monitored ions for an analyte
% Rec.	Percent recovery
RPD	Relative Percent Difference
RRF	Relative Response Factor
RT	Retention Time
SDG	Sample Delivery Group
S/N	Signal-to-noise ratio
TEF	Toxicity Equivalence Factor
TEQ	Toxicity Equivalence Quotient

State Certifications, Accreditations, and Licenses

Agency	Number	Expire Date
American Association for Laboratory Accreditation	2897.01	11/30/2015
Arizona Department of Health Services	AZ0793	5/27/2016
Arkansas Department of Environmental Quality	14-038-0	6/16/2016
Florida Department of Health	E87611	6/30/2015
Hawaii Department of Health	TX02694	6/30/2015
Illinois Environmental Protection Agency	200057	10/6/2015
Louisiana Department of Environmental Quality	03048	6/30/2015
Louisiana Department of Health and Hospitals	LA150026	12/31/2015
Maine Center for Disease Control and Prevention	2014019	6/5/2016
Maryland Department of the Environment	343	6/30/2015
Michigan Depratment of Environmental Quality	9971	6/30/2015
Minnesota Department of Health	840911	12/31/2015
Nebraska Department of Health and Human Services	NE-OS-25-13	6/30/2015
Nevada Department of Concervation and Natural Resources	TX014112013-2	7/31/2015
New Jersey Department of Environmental Protection	NLC140001	6/30/2015
New Mexico Environment Department	TX02694	6/30/2015
New York Department of Health	11707	4/1/2016
Oklahoma Department of Environmental Quality	2014 124	8/31/2015
Oregon Environmental Laboratory Accreditation Program	TX200002	3/24/2016
Pennsylvania Department of Environmental Protection	68-03441	6/30/2015
Tennessee Department of Environment and Concervation	04016	6/30/2015
Texas Commision on Environmental Quality	TX104704216-14-5	6/30/2015
United States Department of Agriculture	P330-14-00067	2/21/2017
Utah Department of Health Environmental Laboratory Certification	TX02694	7/31/2015
Washington Department of Health	c819	11/14/2015
West Virginia Department of Environmental Protection	347	6/30/2015

Data Pr	ALS ENVIRON ocessing/Form Produ			gnatures
SR# Unique ID	504931		DB-5MSUI	SPB-Octyl
Date: 0520	el - Data Processing - t	o be filled by pe	erson generating	the forms
Second Date: 05 20/07	I Level - Data Review – Analyst:	to be filled by p Samples:	erson doing peel <i>OO</i> (, DO 7	review

Chain of Custody

ALS Environmental - Houston HRMS 10450 Stancliff Rd, Suite 210, Houston TX 77099 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

K1504931

Page 31 of 54 12 of 35

Intra-Network Chain of Custody 1317 South 13th Avenue • Kelso, WA 98626 • 1-360-577-7222 • FAX 1-360-636-1068

Project Name:	Joslyn OU5 2015 Soil							
Project Number:	23270110							
Project Manager:	Terri Olson							OF
Company: Lab Code	Barr Engineering Client Sample ID	# of Cont.	Matrix	Samj Date	ple Time	Date Received	Send To	PCDD PCDF 8290
K1504931-001	C-3 9-10'	1	Soil	2/2/15	1350	2/4/15	HOUSTON	I
K1504931-002	F-3 9-10'	1	Soil	2/2/15	1235	2/4/15	HOUSTON	TY

Folder Comments:

Tier II except when requested otherwise. Add narrative note that Benzo(b)fluoranthene cannot be separated from Benzo(j)fluoranthene.

Special Instructions/Comments Please provide the electronic (PDF and EDD) report to the following e-mail address: ALKLS.Data@alsglobal.com.	Turnaround RequirementsRUSH (Surcharges Apply)PLEASE CIRCLE WORK DAYS12345	Report Requirements I. Results Only II. Results + QC Summaries III. Results + QC and Calibration Summaries	Invoice Information PO# 51K1504931
pH Checked	Requested FAX Date:	IV. Data Validation Report with Raw Data PQL/MDL/J <u>N</u> EDD <u>Y</u>	Bill to

1036 Received By: Relinquished By: 15 an

5/12/15 Page 32 of 54 13 of 35

Airbill Number:

K1504931

Cooler Receipt Form

Project Chemist

Client/Project Barr Engineering	_		Ther	mometer ID . -	5140 4	
Date/Time Received: 5/12/15 925	Initi	als: AL Dat	e/Time Logge	ed in: 5/12	lis Initia	als AL
. Method of delivery: C US Mail	Fed Ex	C UPS	C DHL C	Courier (Client	
2. Samples received in: Cooler C B	ox (Env	elope C Othe	r			
3. Were custody seals on coolers? Yes Were they intact? Yes Were they signed and dated? Yes	C No		yes, how mar nd where?	ny 1 Sea		
4. Packing Material: C Inserts C Baggies	Bubble Wr	ap Gel Pack	s (~ Wet lc	e 🤇 Sleeves	C Other	
5. Foreign or Regulated Soil? C Yes	(Mo	Location of S	ampling:			
Cooler Tracking Number	COC ID	Date Opened	Time Opened	Opened By	Temp. °C	Temp Blank?
5478 9744 3949		5/12/15	945	AI.	0.6/1.7	Г
	1					Г
						Г
		-				5
c Management of the state of th					(No (No	1
 6. Were custody papers properly filled out (ink, s 7. Did all bottles arrive in good condition (not br 8. Were all sample labels complete (i.e., sample II 9. Were appropriate bottles/containers and volu 10. Did sample labels and tags agree with custod 	D, analysis, mes receiv	preservation, etc ed for the reques		Nes	(^ No (^ No (^ No	
7. Did all bottles arrive in good condition (not br 8. Were all sample labels complete (i.e., sample II 9. Were appropriate bottles/containers and volu	D, analysis, mes receiv	preservation, etc ed for the reques		Nes	CNO	

Service request Label:

Effective 10/04/2013

ALS Environmental - Houston HRMS

K1504931 5 Barr Engineering Joslyn OU6 2015 Soli

Environmental

Page 33 of 54 14 of 35

10450 Stancliff Rd., Suite 210 Houston, TX 77099 T: +1 713 266 1599 F: +1 713 266 1599 www.alsglobal.com

SAMPLE ACCEPTANCE POLICY

This policy outlines the criteria samples must meet to be accepted by ALS Environmental - Houston HRMS.

Cooler Custody Seals (desirable, mandatory if specified in SAP):

 \checkmark Intact on outside of cooler, signed and dated

Chain-of-Custody (COC) documentation (mandatory):

The following is required on each COC:

- ✓ Sample ID, the location, date and time of collection, collector's name, preservation type, sample type, and any other special remarks concerning the sampleThe COC must be completed in ink.
- ✓ Signature and date of relinquishing party.

In the absence of a COC at sample receipt, the COC will be requested from the client.

Sample Integrity (mandatory):

Samples are inspected upon arrival to ensure that sample integrity was not compromised during transfer to the laboratory.

- ✓ Sample containers must arrive in good condition (not broken or leaking).
- ✓ Samples must be labeled appropriately, including Sample IDs, and requested test using durable labels and indelible ink.
- \checkmark The correct type of sample bottle must be used for the method requested.
- ✓ An appropriate sample volume, or weight, must be received.
- ✓ Sample IDs and number of containers must reconcile with the COC.
- ✓ Samples must be received within the method defined holding time.

Temperature Requirement (varies by sample matrix):

- \checkmark Aqueous and Non-aqueous samples must be shipped and stored cold, at 0 to 6°C.
- \checkmark Tissue samples must be shipped and stored frozen, at -20 to -10°C.
- \checkmark Air samples are shipped and stored cold, at 0 to 6°C
- \checkmark The sample temperature must be recorded on the COC

All cooler inspections are documented on the Cooler Receipt Form (CRF). A separate CRF is completed for each service request. Any samples not meeting the above criteria are noted on the CRF and the Project Manager notified. The Project Manager must resolve any sample integrity issues with the client prior to proceeding with the analysis. Such resolutions are documented in writing and filed with the project folder. Data associated with samples received outside of this acceptance policy will be qualified on the case narrative of the final report

RIGHT SOLUTIONS | RIGHT PARTNER

Preparation Information Benchsheets

ALS Environmental - Houston HRMS 10450 Stancliff Rd., Suite 210, Houston, TX 77099 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

K1504931

Page 35 of 54 16 of 35

Preparation Information Benchsheet

Prep Run#:236086Team:Semivoa GCMS/DEDWARDS

Prep WorkFlow: OrgExtDioxS(30)
 Prep Method: Method

Status: Prepped Prep Date/Time: 5/18/15 11:00 AM

#	Lab Code	Client ID	B#	Method /Test	рН	Matrix	Amt. Ext.	Sample Description	
1	EQ1500362-01	MB		8290/PCDD PCDF		Solid	10.244g		
2	EQ1500362-02	DMMU1 MS	.05	8290/PCDD PCDF		Solid	10.104g		
3	EQ1500362-03	DMMU1 DMS	.05	8290/PCDD PCDF		Solid	10.131g		
4	EQ1500362-04	DMMU1 DUP	.05	8290/PCDD PCDF		Solid	10.061g		
5	EQ1500362-05	LCS		8290/PCDD PCDF		Solid	10.261g		
6	K1504876-001	DMMU1	.05	8290/PCDD PCDF		Sediment	10.014g	Watery Green Sludge	
7	K1504876-002	DMMU2	.05	8290/PCDD PCDF		Sediment	10.215g	Watery Green Sludge	
8	K1504931-001	C-3 9-10'	.02	8290/PCDD PCDF		Soil	10.484g	Moist Soil Brown	
9	K1504931-002	F-3 9-10'	.02	8290/PCDD PCDF		Soil	10.346g	Moist Soil Brown	
Г	iking Solutions Name: 1613B M	atrix Working Standard		Inventory ID 80458		Logbook Ref: 2	2-20ng/mL 80458	3 LM 4/21/15	Expires On: 04/21/2016
L	EQ1500362-02 100.00μL EQ1500362-05 100.00μL EQ1500362-05 100.00μL								
	Name: 1613B La	beled Working Standard		Inventory ID 80832		Logbook Ref: 8	80832 DE 2-4ng/	mL 5/5/15	Expires On: 02/18/2016
		00.00μL EQ1500362-02 00.00μL	1,000.00µL	EQ1500362-03 1,000.00)μL	EQ1500362-04	1,000.00µL	EQ1500362-05 1,000.00µL	K1504876-001 1,000.00µL
Γ	Name: 1613B La	beled Working Standard		Inventory ID 80874		Logbook Ref: 8	30874 LM 2-4ng/	/mL 5/6/15	Expires On: 10/24/2015
-	K1504931-001 1,0	00.00µL K1504931-002	1,000.00µL						
	Name: 8290/161	3B Cleanup Working Standard		Inventory ID 80976		Logbook Ref: 8	30976 CID 05/12	/2015	Expires On: 11/08/2015
		0.00μL EQ1500362-02 0.00μL K1504931-001	100.00μL 100.00μL	EQ1500362-03 100.00µ K1504931-002 100.00µ		EQ1500362-04	100.00µL	EQ1500362-05 100.00µL	K1504876-001 100.00µL
P	reparation Mate	rials							
C	arbon, High Purity	LM 4/27/15 (80629)		Ethyl Acetate 99.9% Minimu EtOAc	ım	LM 2/27/15 (79153)		Glass Wool	AL 04/17/15 (80420)
	ulfuric Acid Reagent C 2SO4	Grade LM 3/4/15 (79265)		Hexanes 95%		LM 3/27/15 (79967)		Sodium Chloride Reagent Grade NaCl	C2-65-5 (38670)
	odium Sulfate Anhydr eagent Grade Na2SO4			Tridecane (n-Tridecane)		AL 03/31/15 (79997)		Silica Gel Reagent Grade	AL 04/17/15 (80421)
Т	oluene 99.9% Minimu	m AL 04/10/15 (80254)		Sodium Hydroxide Reagent Grade NaOH		LM 09/02/14 (74232))		

Preparation Information Benchsheet

Prep Run#: 236086 Semivoa GCMS/DEDWARDS Team:

Prep WorkFlow: OrgExtDioxS(30) Prep Method: Method

Step:

By: Comments

Started:

Finished:

Final Volume

5/19/15 16:27

5/19/15 17:04 AKODUR

Status: Prepped **Prep Date/Time:** 5/18/15 11:00 AM

Preparation Steps

Step:	Extraction	Step:	Acid Clean	Step:	Silica Gel Clean
Started:	5/18/15 11:00	Started:	5/19/15 09:00	Started:	5/19/15 11:15
Finished:	5/19/15 07:00	Finished:	5/19/15 09:15	Finished:	5/19/15 13:35
By:	DEDWARDS	By:	CDIAZ	By:	CDIAZ
Comments		Comments		Comments	

Comments:

Reviewed By:	ak	Date:	5/20/15		
Chain of Custody					
Relinquished By:			Date:	Extracts Examined	
Received By:			Date:	Yes No	
Printed 5/20/15 14:4	3		Preparation Information	tion Banchsheet	Page 2

K1504931

Analytical Results

ALS Environmental - Houston HRMS 10450 Stancliff Rd., Suite 210, Houston, TX 77099 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

K1504931

Page 38 of 54 19 of 35

Analytical Report

	Analytical Report		
Client:	Barr Engineering Company	Service Request:	K1504931
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 13:50
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	C-3 9-10'	Units:	ng/Kg
Lab Code:	K1504931-001	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlorinat	ed Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	05/19/15 20:49
Prep Method:	Method	Date Extracted:	5/18/15
Sample Amount:	10.484g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235854	Blank File Name:	P178117

ICAL Date: 10/28/14

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	ND U	0.224	1.34			1
1,2,3,7,8-PeCDD	0.268 JK	0.146	6.72	0.97	1.000	1
1,2,3,4,7,8-HxCDD	1.11 JK	0.194	6.72	1.66	1.000	1
1,2,3,6,7,8-HxCDD	8.76	0.211	6.72	1.25	1.000	1
1,2,3,7,8,9-HxCDD	1.78 J	0.194	6.72	1.20	1.006	1
1,2,3,4,6,7,8-HpCDD	351	0.519	6.72	1.03	1.000	1
OCDD	3750	0.240	13.4	0.90	1.000	1
2,3,7,8-TCDF	ND U	0.291	1.34			1
1,2,3,7,8-PeCDF	0.700 J	0.192	6.72	1.36	1.001	1
2,3,4,7,8-PeCDF	1.22 J	0.185	6.72	1.48	1.001	1
1,2,3,4,7,8-HxCDF	4.90 J	0.291	6.72	1.15	1.000	1
1,2,3,6,7,8-HxCDF	1.45 J	0.287	6.72	1.05	1.000	1
1,2,3,7,8,9-HxCDF	1.71 J	0.303	6.72	1.28	1.001	1
2,3,4,6,7,8-HxCDF	2.34 J	0.287	6.72	1.12	1.001	1
1,2,3,4,6,7,8-HpCDF	101	0.482	6.72	0.98	1.000	1
1,2,3,4,7,8,9-HpCDF	5.89 J	0.677	6.72	1.10	1.000	1
OCDF	571	0.459	13.4	0.90	1.005	1

Cal Ver. File Name: P235849

Analytical Report

	Anarytical Report		
Client:	Barr Engineering Company	Service Request: K1504	931
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected: 02/02/1	15 13:50
Sample Matrix:	Soil	Date Received: 02/04/1	15 09:40
Sample Name:	C-3 9-10'	Units: ng/Kg	
Lab Code:	K1504931-001	Basis: Dry	
	Polychlorinated Dibenzodioxins and Polychlorinate	d Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed: 05/19/1	15 20:49
Prep Method:	Method	Date Extracted: 5/18/15	5
Sample Amount:	10.484g	Instrument Name: E-HRM	/IS-04
		GC Column: DB-5N	1SUI
Data File Name:	P235854	Blank File Name: P17811	-

ICAL Date: 10/28/14

Native Analyte Results

					Ion		Dilution
Analyte Name	Result	Q	EDL	MRL	Ratio	RRT	Factor
Total Tetra-Dioxins	ND	U	0.224	1.34			1
Total Penta-Dioxins	ND	U	0.146	6.72			1
Total Hexa-Dioxins	78.8		0.200	6.72	1.28		1
Total Hepta-Dioxins	934		0.519	6.72	1.06		1
Total Tetra-Furans	ND	U	0.291	1.34			1
Total Penta-Furans	7.88		0.125	6.72	1.52		1
Total Hexa-Furans	117		0.291	6.72	1.17		1
Total Hepta-Furans	552		0.571	6.72	0.98		1

Cal Ver. File Name: P235849

Analytical Report

		port	
Client:	Barr Engineering Company	Service Request:	K1504931
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 13:50
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	C-3 9-10'	Units:	Percent
Lab Code:	K1504931-001	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlori	nated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	05/19/15 20:49
Prep Method:	Method	Date Extracted:	5/18/15
Sample Amount:	10.484g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235854	Blank File Name:	P178117
ICAL Date:	10/28/14	Cal Ver. File Name:	P235849

	Spike	Conc.			Control	Ion	
Labeled Compounds	Conc.(pg)	Found (pg)	% Rec	Q	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1418.732	71		40-135	0.78	1.020
13C-1,2,3,7,8-PeCDD	2000	1615.859	81		40-135	1.58	1.176
13C-1,2,3,4,7,8-HxCDD	2000	1286.117	64		40-135	1.29	0.991
13C-1,2,3,6,7,8-HxCDD	2000	1185.144	59		40-135	1.30	0.994
13C-1,2,3,4,6,7,8-HpCDD	2000	1118.906	56		40-135	1.07	1.066
13C-OCDD	4000	1778.362	44		40-135	0.92	1.141
13C-2,3,7,8-TCDF	2000	1340.960	67		40-135	0.81	0.993
13C-1,2,3,7,8-PeCDF	2000	1536.441	77		40-135	1.61	1.136
13C-2,3,4,7,8-PeCDF	2000	1635.194	82		40-135	1.60	1.166
13C-1,2,3,4,7,8-HxCDF	2000	1216.141	61		40-135	0.53	0.972
13C-1,2,3,6,7,8-HxCDF	2000	1165.637	58		40-135	0.53	0.974
13C-1,2,3,7,8,9-HxCDF	2000	1372.936	69		40-135	0.52	1.008
13C-2,3,4,6,7,8-HxCDF	2000	1259.807	63		40-135	0.53	0.987
13C-1,2,3,4,6,7,8-HpCDF	2000	997.322	50		40-135	0.44	1.041
13C-1,2,3,4,7,8,9-HpCDF	2000	1066.934	53		40-135	0.44	1.079
37Cl-2,3,7,8-TCDD	800	611.513	76		40-135	NA	1.020

Labeled Standard Results

Analytical Report

Client:	Barr Engineering Company	Service Request:	K1504931			
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 13:50			
Sample Matrix:	Soil	Date Received:	02/04/15 09:40			
Sample Name:	C-3 9-10'	Units:	ng/Kg			
Lab Code:	K1504931-001	Basis:	Dry			
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS						

Analysis Method: Prep Method:

8290 Method

Toxicity Equivalency Quotient

Analyte Name	Result	DL	MRL	Dilution Factor	TEF	TEF - Adjusted Concentration
2,3,7,8-TCDD	ND	0.224	1.34	1	1	
1,2,3,7,8-PeCDD	0.268	0.146	6.72	1	1	0.268
1,2,3,4,7,8-HxCDD	1.11	0.194	6.72	1	0.1	0.111
1,2,3,6,7,8-HxCDD	8.76	0.211	6.72	1	0.1	0.876
1,2,3,7,8,9-HxCDD	1.78	0.194	6.72	1	0.1	0.178
1,2,3,4,6,7,8-HpCDD	351	0.519	6.72	1	0.01	3.51
OCDD	3750	0.240	13.4	1	0.0003	1.13
2,3,7,8-TCDF	ND	0.291	1.34	1	0.1	
1,2,3,7,8-PeCDF	0.700	0.192	6.72	1	0.03	0.0210
2,3,4,7,8-PeCDF	1.22	0.185	6.72	1	0.3	0.366
1,2,3,4,7,8-HxCDF	4.90	0.291	6.72	1	0.1	0.490
1,2,3,6,7,8-HxCDF	1.45	0.287	6.72	1	0.1	0.145
1,2,3,7,8,9-HxCDF	1.71	0.303	6.72	1	0.1	0.171
2,3,4,6,7,8-HxCDF	2.34	0.287	6.72	1	0.1	0.234
1,2,3,4,6,7,8-HpCDF	101	0.482	6.72	1	0.01	1.01
1,2,3,4,7,8,9-HpCDF	5.89	0.677	6.72	1	0.01	0.0589
OCDF	571	0.459	13.4	1	0.0003	0.171
	Te	otal TEQ				8.74

2005 WHO TEFs, ND = 0

Analytical Report

	Analytical Report		
Client:	Barr Engineering Company	Service Request:	K1504931
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 12:35
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	F-3 9-10'	Units:	ng/Kg
Lab Code:	K1504931-002	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlorinated Diben	zofurans by HRGC/HRMS	
Analysis Method:	Polychlorinated Dibenzodioxins and Polychlorinated Diben 8290	zofurans by HRGC/HRMS Date Analyzed: (05/19/15 21:37
Analysis Method: Prep Method:	·	·	
·	8290	Date Analyzed: (5/18/15
Prep Method:	8290 Method	Date Analyzed: (Date Extracted: 4	5/18/15 E-HRMS-04

10/28/14

ICAL Date:

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	ND U	0.298	1.58			1
1,2,3,7,8-PeCDD	0.850 J	0.171	7.90	1.61	1.000	1
1,2,3,4,7,8-HxCDD	0.826 JK	0.143	7.90	1.02	1.000	1
1,2,3,6,7,8-HxCDD	2.63 JK	0.149	7.90	1.45	1.000	1
1,2,3,7,8,9-HxCDD	1.37 J	0.140	7.90	1.07	1.007	1
1,2,3,4,6,7,8-HpCDD	62.7	0.315	7.90	1.04	1.000	1
OCDD	685	0.312	15.8	0.91	1.000	1
2,3,7,8-TCDF	ND U	0.312	1.58			1
1,2,3,7,8-PeCDF	1.01 JK	0.256	7.90	1.18	1.001	1
2,3,4,7,8-PeCDF	0.732 J	0.252	7.90	1.67	1.000	1
1,2,3,4,7,8-HxCDF	1.53 J	0.158	7.90	1.25	1.001	1
1,2,3,6,7,8-HxCDF	0.844 JK	0.149	7.90	1.48	1.000	1
1,2,3,7,8,9-HxCDF	1.57 J	0.173	7.90	1.20	1.000	1
2,3,4,6,7,8-HxCDF	1.08 J	0.155	7.90	1.25	1.000	1
1,2,3,4,6,7,8-HpCDF	16.7	0.325	7.90	0.99	1.000	1
1,2,3,4,7,8,9-HpCDF	2.02 BJ	0.501	7.90	1.14	1.000	1
OCDF	106	0.428	15.8	0.87	1.005	1

Cal Ver. File Name: P235849

Analytical Report

	Analytical Report		
Client:	Barr Engineering Company	Service Request:	K1504931
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 12:35
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	F-3 9-10'	Units:	ng/Kg
Lab Code:	K1504931-002	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychlorinate	d Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	05/19/15 21:37
Prep Method:	Method	Date Extracted:	5/18/15
Sample Amount:	10.346g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:		Blank File Name:	

ICAL Date: 10/28/14

Native Analyte Results

					Ion		Dilution
Analyte Name	Result	Q	EDL	MRL	Ratio	RRT	Factor
Total Tetra-Dioxins	ND	U	0.298	1.58			1
Total Penta-Dioxins	0.850 J		0.171	7.90	1.61		1
Total Hexa-Dioxins	4.27 J		0.144	7.90	1.35		1
Total Hepta-Dioxins	120		0.315	7.90	1.04		1
Total Tetra-Furans	ND	U	0.312	1.58			1
Total Penta-Furans	0.732 J		0.176	7.90			1
Total Hexa-Furans	19.5		0.158	7.90	1.12		1
Total Hepta-Furans	97.6		0.401	7.90	0.99		1

Cal Ver. File Name: P235849

Analytical Report

	Ана	yildar Keport	
Client:	Barr Engineering Company	Service Request:	K1504931
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 12:35
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	F-3 9-10'	Units:	Percent
Lab Code:	K1504931-002	Basis:	Dry
	Polychlorinated Dibenzodioxins and Po	ychlorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	05/19/15 21:37
Prep Method:	Method	Date Extracted:	5/18/15
Sample Amount:	10.346g	Instrument Name:	E-HRMS-04
		GC Column:	DB-5MSUI
Data File Name:	P235855	Blank File Name:	P178117
ICAL Date:	10/28/14	Cal Ver. File Name:	P235849

	Spike	Conc.			Control	Ion	
Labeled Compounds	Conc.(pg)	Found (pg)	% Rec	0	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1568.133	78		40-135	0.77	1.019
13C-1,2,3,7,8-PeCDD	2000	1730.765	87		40-135	1.57	1.176
13C-1,2,3,4,7,8-HxCDD	2000	1412.435	71		40-135	1.28	0.991
13C-1,2,3,6,7,8-HxCDD	2000	1375.518	69		40-135	1.25	0.993
13C-1,2,3,4,6,7,8-HpCDD	2000	1352.152	68		40-135	1.07	1.066
13C-OCDD	4000	2184.399	55		40-135	0.93	1.141
13C-2,3,7,8-TCDF	2000	1483.752	74		40-135	0.81	0.993
13C-1,2,3,7,8-PeCDF	2000	1658.457	83		40-135	1.60	1.135
13C-2,3,4,7,8-PeCDF	2000	1722.700	86		40-135	1.61	1.166
13C-1,2,3,4,7,8-HxCDF	2000	1377.189	69		40-135	0.53	0.971
13C-1,2,3,6,7,8-HxCDF	2000	1335.831	67		40-135	0.52	0.974
13C-1,2,3,7,8,9-HxCDF	2000	1527.107	76		40-135	0.53	1.008
13C-2,3,4,6,7,8-HxCDF	2000	1438.238	72		40-135	0.53	0.988
13C-1,2,3,4,6,7,8-HpCDF	2000	1173.506	59		40-135	0.45	1.041
13C-1,2,3,4,7,8,9-HpCDF	2000	1141.182	57		40-135	0.44	1.079
37Cl-2,3,7,8-TCDD	800	689.344	86		40-135	NA	1.020

Labeled Standard Results

Analytical Report

Client:	Barr Engineering Company	Service Request:	K1504931
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	02/02/15 12:35
Sample Matrix:	Soil	Date Received:	02/04/15 09:40
Sample Name:	F-3 9-10'	Units:	ng/Kg
Lab Code:	K1504931-002	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polychloring	ated Dibenzofurans by HRGC/HRMS	

Analysis Method: Prep Method:

8290 Method

Toxicity Equivalency Quotient

Analyte Name	Result	DL	MRL	Dilution Factor	TEF	TEF - Adjusted Concentration
2,3,7,8-TCDD	ND	0.298	1.58	1	1	
1,2,3,7,8-PeCDD	0.850	0.171	7.90	1	1	0.850
1,2,3,4,7,8-HxCDD	0.826	0.143	7.90	1	0.1	0.0826
1,2,3,6,7,8-HxCDD	2.63	0.149	7.90	1	0.1	0.263
1,2,3,7,8,9-HxCDD	1.37	0.140	7.90	1	0.1	0.137
1,2,3,4,6,7,8-HpCDD	62.7	0.315	7.90	1	0.01	0.627
OCDD	685	0.312	15.8	1	0.0003	0.206
2,3,7,8-TCDF	ND	0.312	1.58	1	0.1	
1,2,3,7,8-PeCDF	1.01	0.256	7.90	1	0.03	0.0303
2,3,4,7,8-PeCDF	0.732	0.252	7.90	1	0.3	0.220
1,2,3,4,7,8-HxCDF	1.53	0.158	7.90	1	0.1	0.153
1,2,3,6,7,8-HxCDF	0.844	0.149	7.90	1	0.1	0.0844
1,2,3,7,8,9-HxCDF	1.57	0.173	7.90	1	0.1	0.157
2,3,4,6,7,8-HxCDF	1.08	0.155	7.90	1	0.1	0.108
1,2,3,4,6,7,8-HpCDF	16.7	0.325	7.90	1	0.01	0.167
1,2,3,4,7,8,9-HpCDF	2.02	0.501	7.90	1	0.01	0.0202
OCDF	106	0.428	15.8	1	0.0003	0.0318
	Te	otal TEQ				3.14

2005 WHO TEFs, ND = 0

Analytical Report

	Allarytical F	Report				
Client:	Barr Engineering Company	Service Request:	K1504931			
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA			
Sample Matrix:	Soil	Date Received:	NA			
Sample Name:	Method Blank	Units:	ng/Kg			
Lab Code:	EQ1500362-01	Basis:	Dry			
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS						
Analysis Method:	8290	Date Analyzed:	05/20/15 15:35			
Prep Method:	Method	Date Extracted:	5/18/15			
Sample Amount:	10.244g	Instrument Name:	E-HRMS-03			
		GC Column:	DB-5MSUI			
Data File Name:	P178117	Blank File Name:	P178117			

Native Analyte Results

				Ion		Dilution
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	ND U	0.334	0.488			1
1,2,3,7,8-PeCDD	ND U	0.331	2.44			1
1,2,3,4,7,8-HxCDD	ND U	0.254	2.44			1
1,2,3,6,7,8-HxCDD	ND U	0.269	2.44			1
1,2,3,7,8,9-HxCDD	ND U	0.243	2.44			1
1,2,3,4,6,7,8-HpCDD	0.656 J	0.271	2.44	1.05	1.000	1
OCDD	2.36 JK	0.800	4.88	1.30	1.000	1
2,3,7,8-TCDF	ND U	0.641	0.641			1
1,2,3,7,8-PeCDF	ND U	0.297	2.44			1
2,3,4,7,8-PeCDF	ND U	0.287	2.44			1
1,2,3,4,7,8-HxCDF	ND U	0.248	2.44			1
1,2,3,6,7,8-HxCDF	ND U	0.231	2.44			1
1,2,3,7,8,9-HxCDF	ND U	0.319	2.44			1
2,3,4,6,7,8-HxCDF	ND U	0.246	2.44			1
1,2,3,4,6,7,8-HpCDF	0.379 J	0.172	2.44	0.99	1.000	1
1,2,3,4,7,8,9-HpCDF	0.320 JK	0.229	2.44	1.70	1.000	1
OCDF	ND U	0.638	4.88			1

Cal Ver. File Name: P178115

10/18/14

ICAL Date:

Analytical Report

	7 mary ti	cal Report	
Client:	Barr Engineering Company	Service Request:	K1504931
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Method Blank	Units:	ng/Kg
Lab Code:	EQ1500362-01	Basis:	Dry
	Polychlorinated Dibenzodioxins and Polyc	chlorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	05/20/15 15:35
Prep Method:	Method	Date Extracted:	5/18/15
Sample Amount:	10.244g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5MSUI

Native Analyte Results

					Ion		Dilution
Analyte Name	Result	Q	EDL	MRL	Ratio	RRT	Factor
Total Tetra-Dioxins	ND	U	0.334	0.488			1
Total Penta-Dioxins	ND	U	0.331	2.44			1
Total Hexa-Dioxins	ND	U	0.255	2.44			1
Total Hepta-Dioxins	0.656 J		0.271	2.44	1.05		1
Total Tetra-Furans	ND	U	0.641	0.641			1
Total Penta-Furans	ND	U	0.176	2.44			1
Total Hexa-Furans	ND	U	0.258	2.44			1
Total Hepta-Furans	0.782 J		0.198	2.44	0.99		1

Data File Name:

ICAL Date:

P178117

10/18/14

Blank File Name: P178117

Cal Ver. File Name: P178115

Analytical Report

	7 1114		
Client:	Barr Engineering Company	Service Request:	K1504931
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Method Blank	Units:	Percent
Lab Code:	EQ1500362-01	Basis:	Dry
	Polychlorinated Dibenzodioxins and Po	lychlorinated Dibenzofurans by HRGC/HRMS	
Analysis Method:	8290	Date Analyzed:	05/20/15 15:35
Prep Method:	Method	Date Extracted:	5/18/15
Sample Amount:	10.244g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5MSUI
Data File Name:	P178117	Blank File Name:	P178117

ICAL Date: 10/18/14

Labeled Standard Results

	Spike	Conc.			Control	Ion	
Labeled Compounds	Conc.(pg)	Found (pg)	% Rec	Q	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1339.239	67		40-135	0.82	1.022
13C-1,2,3,7,8-PeCDD	2000	1668.407	83		40-135	1.54	1.193
13C-1,2,3,4,7,8-HxCDD	2000	1347.898	67		40-135	1.31	0.991
13C-1,2,3,6,7,8-HxCDD	2000	1340.832	67		40-135	1.27	0.993
13C-1,2,3,4,6,7,8-HpCDD	2000	1191.142	60		40-135	1.03	1.066
13C-OCDD	4000	2038.055	51		40-135	0.88	1.139
13C-2,3,7,8-TCDF	2000	1324.795	66		40-135	0.79	0.993
13C-1,2,3,7,8-PeCDF	2000	1583.466	79		40-135	1.61	1.149
13C-2,3,4,7,8-PeCDF	2000	1598.827	80		40-135	1.61	1.183
13C-1,2,3,4,7,8-HxCDF	2000	1343.478	67		40-135	0.55	0.970
13C-1,2,3,6,7,8-HxCDF	2000	1392.275	70		40-135	0.52	0.973
13C-1,2,3,7,8,9-HxCDF	2000	1396.189	70		40-135	0.53	1.008
13C-2,3,4,6,7,8-HxCDF	2000	1363.926	68		40-135	0.52	0.987
13C-1,2,3,4,6,7,8-HpCDF	2000	1090.097	55		40-135	0.43	1.042
13C-1,2,3,4,7,8,9-HpCDF	2000	1248.010	62		40-135	0.45	1.079
37Cl-2,3,7,8-TCDD	800	616.243	77		40-135	NA	1.022

Cal Ver. File Name: P178115

Accuracy & Precision

ALS Environmental - Houston HRMS 10450 Stancliff Rd., Suite 210, Houston TX 77099 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

K1504931

Page 50 of 54 31 of 35

QA/QC Report

Client:	Barr Engineering Company	Service Request:	K1504931
Project:	Joslyn OU5 2015 Soil/23270110	Date Analyzed:	05/19/15
Sample Matrix:	Soil	Date Extracted:	05/18/15

Lab Control Sample Summary

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analysis Method:	8290	Units:	ng/Kg
Prep Method:	Method	Basis:	Dry
		Analysis Lot:	445679

Lab Control Sample EQ1500362-05

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
1,2,3,4,6,7,8-HpCDD	104	97.5	106	70-130
1,2,3,4,7,8-HxCDD	112	97.5	114	70-130
1,2,3,6,7,8-HxCDD	109	97.5	111	70-130
1,2,3,7,8,9-HxCDD	107	97.5	109	70-130
1,2,3,7,8-PeCDD	112	97.5	115	70-130
2,3,7,8-TCDD	21.2	19.5	109	70-130
OCDD	219	195	113	70-130
1,2,3,4,6,7,8-HpCDF	102	97.5	105	70-130
1,2,3,4,7,8,9-HpCDF	95.2	97.5	98	70-130
1,2,3,4,7,8-HxCDF	101	97.5	104	70-130
1,2,3,6,7,8-HxCDF	94.6	97.5	97	70-130
1,2,3,7,8,9-HxCDF	98.5	97.5	101	70-130
1,2,3,7,8-PeCDF	102	97.5	105	70-130
2,3,4,6,7,8-HxCDF	98.5	97.5	101	70-130
2,3,4,7,8-PeCDF	103	97.5	105	70-130
2,3,7,8-TCDF	21.1	19.5	108	70-130
OCDF	202	195	104	70-130

Analytical Report

	Analytical Repo	ort				
Client:	Barr Engineering Company	Service Request:	K1504931			
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA			
Sample Matrix:	Soil	Date Received:	NA			
Sample Name:	Lab Control Sample	Units:	ng/Kg			
Lab Code:	EQ1500362-05	Basis:	Dry			
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS						
Analysis Method:	8290	Date Analyzed:	05/19/15 18:56			
Prep Method:	Method	Date Extracted:	5/18/15			
Sample Amount:	10.261g	Instrument Name:	E-HRMS-03			
		GC Column:	DB-5MSUI			
Data File Name:	D170110	Diards Ello Morros	D170117			
Data File Name:	P178110	Blank File Name:	P1/811/			

Native Analyte Results

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor
2,3,7,8-TCDD	21.2		0.154	0.487	0.76	1.001	1
1,2,3,7,8-PeCDD	112		0.0760	2.44	1.58	1.001	1
1,2,3,4,7,8-HxCDD	112		0.118	2.44	1.28	1.000	1
1,2,3,6,7,8-HxCDD	109		0.125	2.44	1.26	1.000	1
1,2,3,7,8,9-HxCDD	107		0.113	2.44	1.28	1.007	1
1,2,3,4,6,7,8-HpCDD	104		0.111	2.44	1.08	1.000	1
OCDD	219		1.05	4.87	0.88	1.000	1
2,3,7,8-TCDF	21.1		0.190	0.487	0.74	1.001	1
1,2,3,7,8-PeCDF	102		0.112	2.44	1.54	1.001	1
2,3,4,7,8-PeCDF	103		0.108	2.44	1.60	1.001	1
1,2,3,4,7,8-HxCDF	101		0.0690	2.44	1.24	1.000	1
1,2,3,6,7,8-HxCDF	94.6		0.0650	2.44	1.26	1.000	1
1,2,3,7,8,9-HxCDF	98.5		0.0880	2.44	1.29	1.001	1
2,3,4,6,7,8-HxCDF	98.5		0.0702	2.44	1.24	1.000	1
1,2,3,4,6,7,8-HpCDF	102		0.302	2.44	1.02	1.000	1
1,2,3,4,7,8,9-HpCDF	95.2		0.378	2.44	1.02	1.000	1
OCDF	202		0.751	4.87	0.91	1.005	1

ICAL Date:

10/18/14

Cal Ver. File Name: P178103

Analytical Report

	Analytical Report						
Client:	Barr Engineering Company	Service Request:	K1504931				
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA				
Sample Matrix:	Soil	Date Received:	NA				
Sample Name:	Lab Control Sample	Units:	ng/Kg				
Lab Code:	EQ1500362-05	Basis:	Dry				
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS							
Analysis Method:	8290	Date Analyzed:	05/19/15 18:56				
Prep Method:	Method	Date Extracted:	5/18/15				
a i i i							
Sample Amount:	10.261g	Instrument Name:	E-HRMS-03				
Sample Amount:	10.261g	Instrument Name: GC Column:					

Cal Ver. File Name: P178103

A 1 4 NT	D K	0	EDI	MDI	Ion	ррт	Dilution
Analyte Name	Result	Q	EDL	MRL	Ratio	RRT	Factor
Total Tetra-Dioxins	21.2		0.154	0.487	0.76		1
				• • • •			
Total Penta-Dioxins	112		0.0760	2.44	1.58		1
Total Hexa-Dioxins	327		0.119	2.44	1.28		1
Total Hepta-Dioxins	104		0.111	2.44	1.12		1
Total Tetra-Furans	21.3		0.190	0.487	0.74		1
Total Penta-Furans	208		0.0614	2.44			1
Total Hexa-Furans	393		0.0722	2.44	1.24		1
Total Hepta-Furans	198		0.337	2.44	1.02		1

Native Analyte Results

ICAL Date:

10/18/14

Analytical Report

	7 thaty tear is	epon				
Client:	Barr Engineering Company	Service Request:	K1504931			
Project:	Joslyn OU5 2015 Soil/23270110	Date Collected:	NA			
Sample Matrix:	Soil	Date Received:	NA			
Sample Name:	Lab Control Sample	Units:	Percent			
Lab Code:	EQ1500362-05	Basis:	Dry			
Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS						
Analysis Method:	8290	Date Analyzed:	05/19/15 18:56			
Prep Method:	Method	Date Extracted:	5/18/15			
Sample Amount:	10.261g	Instrument Name:	E-HRMS-03			
		GC Column:	DB-5MSUI			
Data File Name:	P178110	Blank File Name:	P178117			
ICAL Date:	10/18/14	Cal Ver. File Name:	P178103			

Labeled Standard Results

	Spike	Conc.			Control	Ion	
Labeled Compounds	Conc.(pg)	Found (pg)	% Rec	Q	Limits	Ratio	RRT
13C-2,3,7,8-TCDD	2000	1377.335	69		40-135	0.77	1.022
13C-1,2,3,7,8-PeCDD	2000	1714.764	86		40-135	1.56	1.193
13C-1,2,3,4,7,8-HxCDD	2000	1393.897	70		40-135	1.27	0.991
13C-1,2,3,6,7,8-HxCDD	2000	1316.672	66		40-135	1.28	0.993
13C-1,2,3,4,6,7,8-HpCDD	2000	1218.353	61		40-135	1.08	1.066
13C-OCDD	4000	1967.558	49		40-135	0.90	1.139
13C-2,3,7,8-TCDF	2000	1342.490	67		40-135	0.77	0.992
13C-1,2,3,7,8-PeCDF	2000	1635.652	82		40-135	1.61	1.149
13C-2,3,4,7,8-PeCDF	2000	1656.976	83		40-135	1.61	1.183
13C-1,2,3,4,7,8-HxCDF	2000	1341.510	67		40-135	0.53	0.970
13C-1,2,3,6,7,8-HxCDF	2000	1375.905	69		40-135	0.53	0.973
13C-1,2,3,7,8,9-HxCDF	2000	1396.435	70		40-135	0.51	1.008
13C-2,3,4,6,7,8-HxCDF	2000	1374.731	69		40-135	0.54	0.987
13C-1,2,3,4,6,7,8-HpCDF	2000	1054.570	53		40-135	0.44	1.042
13C-1,2,3,4,7,8,9-HpCDF	2000	1257.000	63		40-135	0.44	1.079
37Cl-2,3,7,8-TCDD	800	646.565	81		40-135	NA	1.022