

Barr Engineering Company 4700 West 77th Street • Minneapolis, MN 55435-4803 Phone: 952-832-2600 • Fax: 952-832-2601 • www.barr.com An EEO Employer

Minneapolis, MN • Hibbing, MN • Duluth, MN • Ann Arbor, MI • Jefferson City, MO • Bismarck, ND

December 2, 2009

Mr. Steve Schoff Minnesota Pollution Control Agency Metro District Office Site Remediation Section 520 Lafayette Road North St. Paul, MN 55155-4194

Re: Southern Lot Soil Quality – Joslyn Manufacturing Site

Dear Mr. Schoff:

On behalf of Joslyn Manufacturing Company, this submittal presents information related to the background and current status of soil quality issues associated with two parcels of land located immediately south of that portion of the Joslyn Manufacturing & Supply Co. site known as the West Area in Brooklyn Center, Minnesota. The parcels are owned by Joslyn and are collectively known as the Southern Lots. As discussed in greater detail in the following paragraphs, soil quality in an area adjacent to the two parcels was investigated in 2003 and 2004. The parcels were first sampled in 2005. A second soil quality investigation was conducted on both parcels in 2009.

2003 West Area Remedial Investigation

As part of the 2003 remedial investigation of the West Area, soil samples were collected from four locations along a transect established just north of the property boundary between the West Area and what is now known as the north parcel of the Southern Lots. These samples were designated A-1 through A-4. Location A-1 fell within the WA-3 subarea of the West Area, locations A-2 and A-3 fell within the WA-6S subarea, and location A-4 fell within the WA-4 subarea (see Attachment A, "Figure 2 – Actual Sampling Locations" excerpted from the January 2005 data submittal related to the utility soil characterization). At all four locations, a soil sample was collected from the upper 6 inches of soil. At location A-3, additional soil samples were collected from three deeper intervals (0.5 - 1.5 ft bgs, 1.5 - 2.5 ft bgs, and 2.5 - 4.0 ft bgs). All soil samples were submitted for dioxin/furan analysis, polynuclear aromatic hydrocarbons (PAHs), pentachlorophenol (PCP), total organic carbon (TOC), and pH.

As shown in Table 1, analytical results indicated that the PAHs/PCP concentrations and pH values for the soil samples collected from all four locations along transect A were not of concern. The dioxin/furan concentrations (expressed as the Tetrachlorodibenzo-p-dioxin Toxicity Equivalent Quotient, or TCDD-TEQ) in samples collected from the 0 to 6-inch interval ranged from 40 ng/kg at A-1 to 229 ng/kg at A-4. At sampling location A-3, the TCDD-TEQ concentration ranged from 227 ng/kg at the ground surface to 106 ng/kg at 2.5 – 4 ft bgs.

P:\Mpls\23 MN\27\2327110\WorkFiles\West Area\Borrow Area Soil Quality\Southern Lots\2009-11-25 Southern Lot Soil Quality Letter-FINAL.doc

2004 City Utility Soil Characterization

In conjunction with a City of Brooklyn Center street improvement project planned for the 4800 block of Twin Lake Avenue North, Joslyn conducted additional soil characterization in the vicinity of the Southern Lots in September 2004. A total of seven composite samples were prepared from soils collected from the 0 to 5 feet bgs interval at thirty-nine discrete boring locations located along Twin Lake Avenue North (see Attachment A, "Figure 2 – Actual Sampling Locations" excerpted from the January 2005 data submittal related to the utility soil characterization). The seven samples were analyzed for dioxin/furans and PCP.

Pentachlorophenol was not detected in any of the seven samples collected in 2004 and the TCDD-TEQ concentrations for all seven samples were reported to be less than 2 ng/kg (Table 2).

2005 Southern Lot Investigation

Because the TCDD-TEQ values observed for the 2003 "transect A" soil samples exceeded the MPCA's proposed Soil Reference Value (SRV) for residential land use scenarios of 20 ng/kg, the decision was made to consider assessing the soil quality on the Southern Lots, if access could be obtained. Joslyn ultimately purchased two parcels immediately south of the West Area that are now known as the "north parcel" and the "south parcel" (collectively, the Southern Lots). A work plan proposing a scope of soil sampling activities for these two parcels was originally submitted to MPCA in August 2004. Joslyn met with MPCA in September 2004 to discuss the proposed scope of work and this discussion led to the submittal of a revised work plan in January 2005. MPCA approved the revised work plan on January 11, 2005.

Initial sampling activities on the Southern Lots were conducted in March 2005. The purpose of the investigation was to determine TCDD-TEQ concentrations in the upper four feet of the areas of north and south parcels located within the 100-year flood plain of Middle Twin Lake. A total of ten four-foot-deep borings were advanced on the two parcels (see Attachment A, "Figure 1 – Residential Sampling Locations" excerpted from the May 2005 Report of Investigation Results – Residential Lots South of the West Area). The results of the 2005 soil investigation were submitted to MPCA in May 2005. As shown in Table 3, the TCDD-TEQ concentrations reported for the surficial soil samples collected from both parcels met the MPCA's residential SRV. Based upon these data, Joslyn proposed that the soil on the Southern Lots be managed through the use of institutional controls rather than remediation. The MPCA's July 2005 response included the conclusion that the upper four feet of soil on the north parcel would require remediation and a request that Joslyn conduct further sampling of the subsurface peat observed on the south parcel.

2009 Soil Investigation

Since 2005, Joslyn has continued planning the West Area remedy. Remediation of the soil on the north parcel has been included in these planning efforts. The need to better define the extent of potential soil excavation on the north parcel and the need to address the MPCA's July 2005 request for peat-specific soil quality data for the south parcel led to the development of a soil sampling work plan for the Southern Lots. The scope of the soil quality investigation on the Southern Lots was

described in a June 29, 2009 work plan letter submitted to you. You approved the proposed scope via e-mail on July 7, 2009.

A series of soil borings were advanced to a depth of four feet below ground surface on the north and south parcels at locations shown on the attached Figure 1. Logs for each boring are included in Attachment B. In accordance with the approved sampling plan, one composite sample was prepared from the soils recovered from the five Tier 1 sampling locations. A second composite sample was prepared from the seven Tier 2 boring locations. A third composite sample was prepared from the four Tier 3 boring locations. At each of the five boring locations advanced on the south parcel, the portion of the soil core determined to consist of organic soil or peat (based upon visual characterization) was segregated from the soil core and used to prepare a fourth composite sample (identified as the Tier 4 sample).

As shown on Table 4, the TCDD-TEQ concentration for the four composite samples ranged from 107 to 636 ng/kg. Analytical laboratory reports are included as Attachment C.

Conclusion

Based upon these data, we conclude that the Focused Feasibility Study currently in preparation for the West Area remedy should include provisions to excavate the area of the north parcel that falls below the 100-year floodplain elevation (853.1 ft msl) to a depth of 4 feet (a total of ~1200 cubic yards of soil) and manage the excavated soils as part of Operable Unit 5. The 2009 data for the Tier 4 composite peat sample reinforce the conclusion first made in 2005 that remedial action will not be required on the south parcel and that the 2009 data can be incorporated into a uniform environmental covenant for both parcels as appropriate.

Please contact me if you have any questions or concerns about this submittal.

Sincerely,

Cale W. Finningpord

Dale Finnesgaard, PE Vice President

Enclosures (4) DWF/jeh

cc: Carl Grabinski Jim Payne Carlos Stern

Tables

Table 1Soil Quality Data - 2003 West Area InvestigationJoslyn Manufacturing and Supply Company SiteBrooklyn Center, Minnesota

Sys Loc Code	A-1	A-2	A-3 0-0.5'	A-3 0.5-1.5'	A-3	1.5-2.5'	A-3 2.5-4'	A-4
Sample Date	02/04/2003	02/04/2003	02/04/2003	02/04/2003	02/	04/2003	02/04/2003	02/04/2003
Depth Interval	0-0.5	0-0.5	0-0.5	0.5-1.5	1.5-2.5	1.5-2.5	2.5-4	0-0.5
Depth Unit	ft							
Sample Type Code	N	N	N	N	N	FD	N	N
Chemical Name								
General Parameters								
Carbon, total organic	0.44%	5.08%	9.63%	3.36%	0.51%	0.61%	0.65%	5.38%
SVOCs	011170	0.0070	010070				010070	010070
2-Chloronaphthalene	< 0.36 mg/kg	< 0.42 mg/kg	< 0.61 mg/kg	< 0.47 mg/kg	< 0.40 mg/kg	< 0.33 mg/kg	< 0.39 mg/kg	< 0.48 mg/kg
2-Methylnaphthalene	< 0.36 mg/kg	< 0.42 mg/kg	< 0.61 mg/kg	< 0.47 mg/kg	< 0.40 mg/kg	< 0.33 mg/kg	< 0.39 mg/kg	< 0.48 mg/kg
Acenaphthene	< 0.36 mg/kg	< 0.42 mg/kg	< 0.61 mg/kg	< 0.47 mg/kg	< 0.40 mg/kg	< 0.33 mg/kg	< 0.39 mg/kg	< 0.48 mg/kg
Acenaphthylene	< 0.36 mg/kg	< 0.42 mg/kg	< 0.61 mg/kg	< 0.47 mg/kg	< 0.40 mg/kg	< 0.33 mg/kg	< 0.39 mg/kg	< 0.48 mg/kg
Anthracene	< 0.36 mg/kg	< 0.42 mg/kg	< 0.61 mg/kg	< 0.47 mg/kg	< 0.40 mg/kg	< 0.33 mg/kg	< 0.39 mg/kg	< 0.48 mg/kg
Benzo(a)anthracene	< 0.36 mg/kg	< 0.42 mg/kg	< 0.61 mg/kg	< 0.47 mg/kg	< 0.40 mg/kg	< 0.33 mg/kg	< 0.39 mg/kg	< 0.48 mg/kg
Benzo(a)pyrene	< 0.36 mg/kg	< 0.42 mg/kg	< 0.61 mg/kg	< 0.47 mg/kg	< 0.40 mg/kg	< 0.33 mg/kg	< 0.39 mg/kg	< 0.48 mg/kg
Benzo(b)fluoranthene	< 0.36 mg/kg	< 0.42 mg/kg	< 0.61 mg/kg	< 0.47 mg/kg	< 0.40 mg/kg	< 0.33 mg/kg	< 0.39 mg/kg	< 0.48 mg/kg
Benzo(g,h,i)perylene	< 0.36 mg/kg	< 0.42 mg/kg	< 0.61 mg/kg	< 0.47 mg/kg	< 0.40 mg/kg	< 0.33 mg/kg	< 0.39 mg/kg	< 0.48 mg/kg
Benzo(k)fluoranthene	< 0.36 mg/kg	< 0.42 mg/kg	< 0.61 mg/kg	< 0.47 mg/kg	< 0.40 mg/kg	< 0.33 mg/kg	< 0.39 mg/kg	< 0.48 mg/kg
Chrysene	< 0.36 mg/kg	< 0.42 mg/kg	< 0.61 mg/kg	< 0.47 mg/kg	< 0.40 mg/kg	< 0.33 mg/kg	< 0.39 mg/kg	< 0.48 mg/kg
Dibenz(a,h)anthracene	< 0.36 mg/kg	< 0.42 mg/kg	< 0.61 mg/kg	< 0.47 mg/kg	< 0.40 mg/kg	< 0.33 mg/kg	< 0.39 mg/kg	< 0.48 mg/kg
Fluoranthene	< 0.36 mg/kg	< 0.42 mg/kg	< 0.61 mg/kg	< 0.47 mg/kg	< 0.40 mg/kg	< 0.33 mg/kg	< 0.39 mg/kg	0.63 mg/kg
Fluorene	< 0.36 mg/kg	< 0.42 mg/kg	< 0.61 mg/kg	< 0.47 mg/kg	< 0.40 mg/kg	< 0.33 mg/kg	< 0.39 mg/kg	< 0.48 mg/kg
Indeno(1,2,3-cd)pyrene	< 0.36 mg/kg	< 0.42 mg/kg	< 0.61 mg/kg	< 0.47 mg/kg	< 0.40 mg/kg	< 0.33 mg/kg	< 0.39 mg/kg	< 0.48 mg/kg
Naphthalene	< 0.36 mg/kg	< 0.42 mg/kg	< 0.61 mg/kg	< 0.47 mg/kg	< 0.40 mg/kg	< 0.33 mg/kg	< 0.39 mg/kg	< 0.48 mg/kg
Pentachlorophenol	< 2.2 mg/kg	< 2.6 mg/kg	< 3.7 mg/kg	< 2.8 mg/kg	< 2.4 mg/kg	< 2.0 mg/kg	18 mg/kg	< 2.9 mg/kg
Phenanthrene	< 0.36 mg/kg	< 0.42 mg/kg	< 0.61 mg/kg	< 0.47 mg/kg	< 0.40 mg/kg	< 0.33 mg/kg	< 0.39 mg/kg	< 0.48 mg/kg
Pyrene	< 0.36 mg/kg	< 0.42 mg/kg	< 0.61 mg/kg	< 0.47 mg/kg	< 0.40 mg/kg	< 0.33 mg/kg	< 0.39 mg/kg	0.57 mg/kg
Chlorinated Dioxins / Furans								
Dioxin TEQ (by method 4425)	40 b ng/kg	194 ng/kg	227 ng/kg	189 ng/kg	56 * ng/kg	15 b* ng/kg	106 ng/kg	229 ng/kg

Table 2Soil Quality Data - 2004 City Utility InvestigationJoslyn Manufacturing and Supply Company SiteBrooklyn Center, Minnesota

Sys Loc Code	SA1-Comp	SA2-Comp	SA3-Comp	SA4-Comp	SA5-Comp	SA6-Comp	SA7-Comp
Sample Date	09/02/2004	09/02/2004	09/02/2004	09/02/2004	09/02/2004	09/02/2004	09/02/2004
Depth Interval	0-5	0-5	0-5	0-5	0-5	0-5	0-5
Denth Unit	ft	ft	ft	ft	ft	ft	f t
Depth onic	R	n	n	it.	n.	it.	it.
Chemical Name							
Herbicides							
Pentachlorophenol	< 0.0061 mg/kg	< 0.0062 mg/kg	<0.0067 h mg/kg	<0.0073 h mg/kg	<0.0050 h mg/kg	<0.0058 h mg/kg	<0.0056 h mg/kg
Chlorinated Dioxins / Furans							
2,3,7,8-Dioxin, tetra	< 1.0 ng/kg	< 1.0 ng/kg	<1.0 h ng/kg	<1.0 h ng/kg	< 1.0 ng/kg	< 1.0 ng/kg	0.165 jEMPC ng/kg
1,2,3,7,8-Dioxin penta	< 2.5 ng/kg	< 2.5 ng/kg	0.280 hj ng/kg	<2.5 h ng/kg	0.214 j ng/kg	0.179 jEMPC ng/kg	0.317 j ng/kg
1,2,3,4,7,8-Dioxin, hexa	< 2.5 ng/kg	< 2.5 ng/kg	0.471 hjEMPC ng/kg	0.078 hj ng/kg	0.455 j ng/kg	0.313 jEMPC ng/kg	0.347 jEMPC ng/kg
1,2,3,6,7,8-Dioxin, hexa	< 2.5 ng/kg	< 2.5 ng/kg	1.277 hj ng/kg	0.306 hj ng/kg	1.255 j ng/kg	0.948 j ng/kg	1.206 j ng/kg
1,2,3,7,8,9-Dioxin, hexa	< 2.5 ng/kg	< 2.5 ng/kg	1.134 hj ng/kg	0.224 hjEMPC ng/kg	1.128 j ng/kg	1.003 j ng/kg	1.227 j ng/kg
1,2,3,4,6,7,8-Dioxin, hepta	132.713 ng/kg	46.878 ng/kg	39.439 h ng/kg	7.937 h ng/kg	35.232 ng/kg	27.327 ng/kg	29.941 ng/kg
Dioxin octa	1073.116 e ng/kg	341.913 ng/kg	280.959 h ng/kg	49.565 h ng/kg	294.493 ng/kg	244.150 ng/kg	228.059 ng/kg
2,3,7,8-Dibenzofuran, tetra	< 1.0 ng/kg	< 1.0 ng/kg	<0.345 ng/kg	<1.0 h ng/kg	< 0.443 ng/kg	< 0.350 ng/kg	< 0.464 ng/kg
1,2,3,7,8-Dibenzofuran, penta	< 2.5 ng/kg	< 2.5 ng/kg	0.149 hj ng/kg	<2.5 h ng/kg	0.158 j ng/kg	< 2.5 ng/kg	< 2.5 ng/kg
2,3,4,7,8-Dibenzofuran, penta	< 2.5 ng/kg	< 2.5 ng/kg	0.276 hj ng/kg	<2.5 h ng/kg	0.284 j ng/kg	0.342 j ng/kg	0.420 j ng/kg
1,2,3,4,7,8-Dibenzofuran, hexa	< 2.5 ng/kg	< 2.5 ng/kg	0.998 hj ng/kg	0.218 bhj ng/kg	0.635 jEMPC ng/kg	0.563 jEMPC ng/kg	0.605 j ng/kg
1,2,3,6,7,8-Dibenzofuran, hexa	< 2.5 ng/kg	< 2.5 ng/kg	0.430 hj ng/kg	0.120 hj ng/kg	0.521 j ng/kg	0.395 jEMPC ng/kg	0.654 j ng/kg
1,2,3,7,8,9-Dibenzofuran, hexa	< 2.5 ng/kg	< 2.5 ng/kg	<2.5 h ng/kg	<2.5 h ng/kg	< 2.5 ng/kg	< 2.5 ng/kg	< 2.5 ng/kg
2,3,4,6,7,8-Dibenzofuran, hexa	< 2.5 ng/kg	< 2.5 ng/kg	0.490 hj ng/kg	0.191 hj ng/kg	1.093 j ng/kg	1.000 j ng/kg	1.611 j ng/kg
1,2,3,4,6,7,8-Dibenzofuran, hepta	23.134 ng/kg	8.163 ng/kg	10.748 h ng/kg	1.736 hj ng/kg	14.027 ng/kg	9.191 ng/kg	10.379 ng/kg
1,2,3,4,7,8,9-Dibenzofuran, hepta	< 2.5 ng/kg	< 2.5 ng/kg	0.958 hj ng/kg	0.159 hj ng/kg	0.677 j ng/kg	0.581 j ng/kg	0.512 j ng/kg
Dibenzofuran octa	98.848 ng/kg	32.620 ng/kg	35.586 h ng/kg	5.404 h ng/kg	49.653 ng/kg	31.620 ng/kg	41.648 ng/kg
TEQ $_{DF}$ WHO05, non-detects at zero for the							
detection limit ¹	1.91 a ng/kg	0.663 ng/kg	1.43 a ng/kg	0.196 a ng/kg	1.38 a ng/kg	1.00 a ng/kg	1.56 a ng/kg
TEQ $_{DF}$ WHO05, non-detects at half of the							
detection limit ²	5.01 a ng/kg	3.76 ng/kg	2.07 a ng/kg	2.53 a ng/kg	2.03 a ng/kg	1.68 a ng/kg	1.75 a ng/kg
Dibenzofuran penta, Total	15.470 ng/kg	12.721 ng/kg	14.947 h ng/kg	2.689 h ng/kg	19.191 ng/kg	17.687 ng/kg	45.684 ng/kg
Dibenzofuran tetra, Total	7.500 ng/kg	3.380 ng/kg	6.025 h ng/kg	0.743 h ng/kg	5.075 ng/kg	4.683 ng/kg	14.857 ng/kg
Dibenzofuran, hepta, Total	87.233 ng/kg	8.163 ng/kg	40.598 h ng/kg	6.008 h ng/kg	46.088 ng/kg	30.598 ng/kg	35.417 ng/kg
Dibenzofuran, hexa, Total	37.516 ng/kg	17.675 ng/kg	18.083 h ng/kg	3.107 h ng/kg	11.080 ng/kg	15.554 ng/kg	23.924 ng/kg
Dioxin penta, Total	< 2.5 ng/kg	1.022 ng/kg	2.301 h ng/kg	0.143 h ng/kg	1.884 ng/kg	1.071 ng/kg	2.930 ng/kg
Dioxin tetra, Total	< 1.0 ng/kg	< 1.0 ng/kg	0.459 h ng/kg	<1.0 h ng/kg	0.375 ng/kg	0.517 ng/kg	0.840 ng/kg
Dioxin, hepta, Total	273.906 ng/kg	97.446 ng/kg	73.431 h ng/kg	15.335 h ng/kg	69.897 ng/kg	57.529 ng/kg	70.534 ng/kg
Dioxin, hexa, Total	< 2.5 ng/kg	10.032 ng/kg	10.030 h ng/kg	1.877 h ng/kg	10.448 ng/kg	8.627 ng/kg	12.559 ng/kg

Table 3Soil Quality Data - 2005 Southern Lot InvestigationJoslyn Manufacturing and Supply Company SiteBrooklyn Center, Minnesota

Sys Loc Code	RES1-SI1	RES1-SI2	RES	1-SI3	RES2-SI1	RES2-SI3	RES2-SI4
Sample Date	03/04/2005	03/04/2005	03/04	/2005	03/04/2005	03/04/2005	03/04/2005
Depth Interval	0-0.5				0-0.5	0.5-1.5	1.5-4
Depth Unit	ft				ft	ft	ft
Sample Type Code	N	N	N	FD	N	N	N
Chemical Name							
Chlorinated Dioxins / Furans							
2,3,7,8-Dioxin, tetra	< 1.0 ng/kg	< 1.0 ng/kg	2.725 EMPC ng/kg	< 1.0 ng/kg	< 1.0 ng/kg	< 1.0 ng/kg	< 0.992 ng/kg
1,2,3,7,8-Dioxin, penta	0.642 j ng/kg	1.956 j ng/kg	4.333 ng/kg	5.957 ng/kg	< 2.5 ng/kg	< 2.5 ng/kg	< 2.481 ng/kg
1,2,3,4,7,8-Dioxin, hexa	1.944 j ng/kg	7.194 ng/kg	77.327 ng/kg	102.864 ng/kg	0.232 j ng/kg	0.285 j ng/kg	< 2.481 ng/kg
1,2,3,6,7,8-Dioxin, hexa	7.813 ng/kg	62.854 ng/kg	390.921 * ng/kg	719.823 * ng/kg	0.660 j ng/kg	0.911 j ng/kg	2.830 j ng/kg
1,2,3,7,8,9-Dioxin, hexa	5.529 ng/kg	25.329 ng/kg	58.555 * ng/kg	122.937 * ng/kg	0.490 j ng/kg	0.708 j ng/kg	< 2.481 ng/kg
1,2,3,4,6,7,8-Dioxin, hepta	248.611 ng/kg	2656.809 ng/kg	16540.965 ng/kg	36059.420 ng/kg	21.136 ng/kg	29.226 ng/kg	145.291 ng/kg
Dioxin octa	1843.382 e ng/kg	19942.814 e ng/kg	271822.016 e* ng/kg	570865.629 e* ng/kg	145.517 ng/kg	193.481 ng/kg	1002.516 e ng/kg
2,3,7,8-Dibenzofuran, tetra	< 1.0 ng/kg	7.499 ng/kg	6.097 ng/kg	6.274 ng/kg	< 1.0 ng/kg	< 1.0 ng/kg	< 0.992 ng/kg
1,2,3,7,8-Dibenzofuran, penta	< 2.5 ng/kg	0.969 j ng/kg	33.480 ng/kg	37.517 ng/kg	< 2.5 ng/kg	< 2.5 ng/kg	< 2.481 ng/kg
2,3,4,7,8-Dibenzofuran, penta	< 2.5 ng/kg	1.930 j ng/kg	27.610 ng/kg	31.845 ng/kg	< 2.5 ng/kg	< 2.5 ng/kg	< 2.481 ng/kg
1,2,3,4,7,8-Dibenzofuran, hexa	2.945 jEMPC ng/kg	11.841 ng/kg	246.71 ng/kg	300.766 ng/kg	0.464 j ng/kg	0.458 j ng/kg	0.572 jEMPC ng/kg
1,2,3,6,7,8-Dibenzofuran, hexa	0.923 jEMPC ng/kg	3.356 ng/kg	47.883 ng/kg	60.483 ng/kg	< 2.5 ng/kg	< 2.5 ng/kg	< 2.481 ng/kg
1,2,3,7,8,9-Dibenzofuran, hexa	< 2.5 ng/kg	< 2.5 ng/kg	< 2.5 ng/kg	15.142 ng/kg	< 2.5 ng/kg	< 2.5 ng/kg	< 2.481 ng/kg
2,3,4,6,7,8-Dibenzofuran, hexa	2.278 j ng/kg	2.871 ng/kg	64.604 ng/kg	48.965 ng/kg	< 2.5 ng/kg	< 2.5 ng/kg	< 2.481 ng/kg
1,2,3,4,6,7,8-Dibenzofuran, hepta	73.351 ng/kg	441.851 ng/kg	4050.639 ng/kg	6750.237 ng/kg	4.831 ng/kg	6.755 ng/kg	37.458 ng/kg
1,2,3,4,7,8,9-Dibenzofuran, hepta	5.477 ng/kg	37.704 ng/kg	311.2 ng/kg	524.085 ng/kg	0.469 j ng/kg	0.486 jEMPC ng/kg	< 2.481 ng/kg
Dibenzofuran octa	360.604 ng/kg	2142.915 ng/kg	20242.349 e* ng/kg	42579.379 * ng/kg	15.455 ng/kg	22.554 ng/kg	250.824 ng/kg
TEQ _{DF} WHO05, non-detects at zero for							
the detection limit ¹	6.53 a ng/kg	52.6 a ng/kg	401 a ng/kg	772 a ng/kg	0.497 a ng/kg	0.663 a ng/kg	2.52 a ng/kg
TEQ _{DF} WHO05, non-detects at half of							
the detection limit ²	7.61 a ng/kg	53.3 a ng/kg	401 a ng/kg	772 a ng/kg	3.08 a ng/kg	3.25 a ng/kg	5.34 a ng/kg
Dioxin tetra, Total	< 1.0 ng/kg	19.906 ng/kg	26.967 ng/kg	22.178 ng/kg	< 1.0 ng/kg	< 1.0 ng/kg	1.339 ng/kg
Dioxin penta, Total	3.711 ng/kg	37.399 ng/kg	288.515 ng/kg	257.642 ng/kg	< 2.5 ng/kg	< 2.5 ng/kg	3.001 ng/kg
Dioxin, hexa, Total	46.092 ng/kg	296.388 ng/kg	2399.680 ng/kg	3720.876 ng/kg	4.277 ng/kg	6.053 ng/kg	22.031 ng/kg
Dioxin, hepta, Total	442.846 ng/kg	4597.630 ng/kg	31891.597 * ng/kg	74784.606 * ng/kg	38.794 ng/kg	53.523 ng/kg	275.698 ng/kg
Dibenzofuran tetra, Total	0.673 ng/kg	43.011 ng/kg	22.011 ng/kg	24.997 ng/kg	< 1.0 ng/kg	< 1.0 ng/kg	1.049 ng/kg
Dibenzofuran penta, Total	9.554 ng/kg	13.972 ng/kg	167.055 ng/kg	186.219 ng/kg	0.897 ng/kg	1.735 ng/kg	4.747 ng/kg
Dibenzofuran, hexa, Total	75.446 ng/kg	289.357 ng/kg	4021.176 ng/kg	6064.566 ng/kg	5.641 ng/kg	8.013 ng/kg	41.508 ng/kg
Dibenzofuran, hepta, Total	329.597 ng/kg	2052.993 ng/kg	21606.141 ng/kg	37127.903 ng/kg	18.030 ng/kg	23.520 ng/kg	238.014 ng/kg

RES1-SI2: Composite prepared from fill located between 6" and top of peat. This varied by boring location from 33 to 42 inches below ground surface.

RES1-SI3: Composite prepared from peat located immediately below fill, down to a maximum depth of 48 inches. This thickness varied by boring location from 6 to 15 inches.

Table 4 Soil Quality Data - 2009 Southern Lot Investigation Joslyn Manufacturing and Supply Company Site Brooklyn Center, Minnesota

Svs Loc Code	T1-Comp	T2-Comp	T3-Comp	T4-1
Semula Data	07/20/2000	07/20/2000	07/20/2000	07/20/2000
Sample Date	0112912009	01129/2009	0112512005	0112512005
Depth Interval	0-4	0-4	0-4	0-4
Depth Unit	ft	ft	ft	ft
Chemical Name				
General Parameters				
Carbon, total organic	19.30%	7.15%	5.75%	28.80%
Chlorinated Dioxins / Furans				
2,3,7,8-Dioxin, tetra	2.26 ng/kg	0.913 j ng/kg	0.610 jEMPC ng/kg	< 0.167 ng/kg
1,2,3,7,8-Dioxin penta	10.8 ng/kg	8.07 ng/kg	4.47 ng/kg	3.57 j ng/kg
1,2,3,4,7,8-Dioxin, hexa	34.7 ng/kg	26.7 ng/kg	12.6 ng/kg	5.78 ng/kg
1,2,3,6,7,8-Dioxin, hexa	794 e ng/kg	471 ng/kg	108 ng/kg	169 ng/kg
1,2,3,7,8,9-Dioxin, hexa	123 ng/kg	83.6 ng/kg	35.1 ng/kg	25.4 ng/kg
1,2,3,4,6,7,8-Dioxin, hepta	32900 ng/kg	17300 ng/kg	5360 ng/kg	10100 ng/kg
Dioxin octa	234000 e ng/kg	132000 ng/kg	44700 ng/kg	97400 ng/kg
2,3,7,8-Dibenzofuran, tetra	1.49 EMPC ng/kg	4.26 ng/kg	0.772 j ng/kg	< 0.558 ng/kg
1,2,3,7,8-Dibenzofuran, penta	5.34 P ng/kg	11.8 P ng/kg	2.12 jEMPC ng/kg	1.67 j EMPCP ng/kg
2,3,4,7,8-Dibenzofuran, penta	6.18 ng/kg	10.6 ng/kg	1.52 j ng/kg	0.471 j ng/kg
1,2,3,4,7,8-Dibenzofuran, hexa	170 ng/kg	154 P ng/kg	22.5 ng/kg	28.0 ng/kg
1,2,3,6,7,8-Dibenzofuran, hexa	27.7 ng/kg	36.5 ng/kg	5.82 ng/kg	4.64 j ng/kg
1,2,3,7,8,9-Dibenzofuran, hexa	4.38 P ng/kg	10.2 P ng/kg	2.15 j ng/kg	< 1.37 ng/kg
2,3,4,6,7,8-Dibenzofuran, hexa	70.0 ng/kg	66.3 P ng/kg	14.1 ng/kg	13.7 ng/kg
1,2,3,4,6,7,8-Dibenzofuran, hepta	7540 ng/kg	4310 ng/kg	1120 ng/kg	1880 ng/kg
1,2,3,4,7,8,9-Dibenzofuran, hepta	529 ng/kg	331 ng/kg	71.2 ng/kg	119 ng/kg
Dibenzofuran octa	63000 ng/kg	32400 ng/kg	7640 ng/kg	15400 ng/kg
TEQ _{DF} WHO05, non-detects at zero for				
the detection limit ¹	636 a ng/kg	367 a ng/kg	107 a ng/kg	183 a ng/kg
TEQ _{DF} WHO05, non-detects at half of				
the detection limit ²	636 a ng/kg	367 a ng/kg	107 a ng/kg	183 a ng/kg
Dioxin tetra, Total	75.7 ng/kg	42.0 ng/kg	16.5 ng/kg	62.5 ng/kg
Dioxin penta, Total	256 ng/kg	101 ng/kg	52.3 ng/kg	1230 ng/kg
Dioxin, hexa, Total	2930 ng/kg	1610 ng/kg	523 ng/kg	8710 ng/kg
Dioxin, hepta, Total	39000 ng/kg	23700 ng/kg	6560 ng/kg	15300 ng/kg
Dibenzofuran tetra, Total	53.2 ng/kg	56.2 ng/kg	18.8 ng/kg	4.18 ng/kg
Dibenzofuran penta, Total	244 ng/kg	239 ng/kg	64.9 ng/kg	21.3 ng/kg
Dibenzofuran, hexa, Total	1390 ng/kg	1290 ng/kg	264 ng/kg	233 ng/kg
Dibenzofuran, hepta, Total	7960 ng/kg	4880 ng/kg	1100 ng/kg	1820 ng/kg

	Data Qualifiers/Footnotes
Qualifier	Definition
	Not analyzed/not available.
а	Estimated value, calculated using some or all values that are estimates.
b	Potential false positive value based on blank data validation procedures.
с	Coeluting compound.
е	Estimated value, exceeded the instrument calibration range.
h	EPA recommended sample preservation, extraction or analysis holding time was exceeded.
I	Indeterminate value based on failure of blind duplicate data to meet quality assurance criteria.
j	Reported value is less than the stated laboratory quantitation limit and is considered an estimated value.
р	Relative percent difference is >40% (25% CLP pesticides) between primary and confirmation GC columns.
рр	Small peak in chromatogram below method detection limit.
r	The presence of the compound is suspect based on the ID criteria of the retention time and relative retention time obtained from the examination of the chromatograms.
R	Rejected, associated value is unusable.
s	Potential false positive value based on statistical analysis of blank sample data.
U	Not detected.
*	Estimated value, QA/QC criteria not met.
**	Unusable value, QA/QC criteria not met.
АТ	Sample chromatogram is noted to be atypical of a petroleum product.
DLND	Not detected, detection limit not determined.
DNF	Did not flash
EMPC	Estimated maximum possible concentration.
FD	Field duplicate sample.
N	Normal sample.
NA – (Not applicable)	NA indicates that a fractional portion of the sample is not part of the analytical testing or field collection procedures.
ND	Not detected.
TIC	Tentatively identified compound
BQA	Barr-applied project specific qualifier: extraction and/or analyses conducted using an alternative method and/or procedure.
BQC	Barr-applied project specific qualifier: plant shut down.
BQD	Barr-applied project specific qualifier: equipment malfunction.
BQE	Barr-applied project specific qualifier: equipment adjustment.
BQM	Barr-applied project specific qualifier: manual measurement.
BQN	Barr-applied project specific qualifier: unable to be sampled or measured due to various reasons.
BQP	Barr-applied project specific qualifier: atypical chromatographic pattern.
BQQ	Barr-applied project specific qualifier: some aspect of QA/QC was not met.
BQR	Barr-applied project specific qualifier: location was re-sampled.
BQS	Barr-applied project specific qualifier: data is considered suspect.
BQT	Barr-applied project specific qualifier: summed value not displayed due to insufficient field length.
BQU	Barr-applied project specific qualifier: historical qualifier - definition unknown.
BQV	Barr-applied project specific qualifier: estimated value.
BQX	Barr-applied project specific qualifier: see notes for qualifier definition.
BQZ	Barr-applied project specific qualifier: data is considered unusable.

1 Total TEQ _{DF} equivalents calculated using zero for the detection limit on the non detected compounds.

2 Total TEQ _{DF} equivalents calculated using half of the detection limit on the non detected compounds.

	Site Conc.	Toxicity	TEQ DF
		Equivalency	
		Factor	
		(WHO05) ^q	
2,3,7,8-TCDD	0.000	1	0.000
1,2,3,7,8-Dioxin penta	0.000	1	0.000
1,2,3,4,7,8-Dioxin, hexa	0.000	0.1	0.000
1,2,3,6,7,8-Dioxin, hexa	0.000	0.1	0.000
1,2,3,7,8,9-Dioxin, hexa	0.000	0.1	0.000
1,2,3,4,6,7,8-Dioxin, hepta	0.000	0.01	0.000
Dioxin octa	0.000	0.0003	0.000
2,3,7,8-TCDF	0.000	0.1	0.000
1,2,3,7,8-Dibenzofuran, penta	0.000	0.03	0.000
2,3,4,7,8-Dibenzofuran, penta	0.000	0.3	0.000
1,2,3,4,7,8-Dibenzofuran, hexa	0.000	0.1	0.000
1,2,3,6,7,8-Dibenzofuran, hexa	0.000	0.1	0.000
2,3,4,6,7,8-Dibenzofuran, hexa	0.000	0.1	0.000
1,2,3,7,8,9-Dibenzofuran, hexa	0.000	0.1	0.000
1,2,3,4,6,7,8-Dibenzofuran, hepta	0.000	0.01	0.000
1,2,3,4,7,8,9-Dibenzofuran, hepta	0.000	0.01	0.000
Dibenzofuran octa	0.000	0.0003	0.000
	Total TEQ _{DF} =		0.000

q Van den Berg, et al., The 2005 World Health Organization Re-evaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds. ToxSci Advance Access published July 7, 2006.

Figures

12:19:54

Attachment A

200 400

0

 Soil Composite Sample Location (5 boreholes per parcel) RESIDENTIAL SAMPLING LOCATION Joslyn Manufacturing Co. Site Brooklyn Center, Minnesota

Attachment B

Client Joslyn	Drill Contractor Matrix	LOG OF Boring SB-T1-1 SHEET 1 OF 1
Project Name Joslyn	Drill Method Geoprobe	
Number <u>23/27-110</u>	Drilling Started 7/29/09 Ended 7/29/09 Ele	evation
Location Brooklyn Center, Minnesota	Logged By AMD2/LCM To	tal Depth _4.0
DEPTH H K H H K H H K H H K H H K H H K H H K H H K H H K H	MTSA VOLUME DESCRIPTION	DEPTH FEET
None Moist Organic Organic None Moist Organic Moist Organic Moist Organic Moist - None - None - None None Moist - None - None None Moist	SP 0-0.5': Brown, fine to medium-grained silty sand 0.5-2.1': Brown to light brown, fine to coarse-grastyrofoam and plastic. SP 2.1-3.2': Tan, fine to medium grained-sand, precession	ined sand with klinker,
A A A A A A A A A A A A A A A A A A A	PT 3.2-3.7': Black peat with organics, no shells. End of Boring - 4 feet	4
Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601	Remarks: Additional data may have been collected in the field where the field	ich is not included on this log.

Client Joslyn		Drill Cor	ntractor <u>Matrix</u>	LOG OF Boring SB	3-T2-2 T 1 OF 1
Number 23/27-110		Drilling	Started 7/20/00 Ended 7/20/00	-	
Location Brooklyn Center. Minnes	ota	Loaaed	By AMD2/LCM	- Elevation <u></u>	
, <u></u> ,,,,,,				- Total Depth <u>4.0</u>	
DEPTH LLSN = Harmonic Discoloration FEET AWD Odor- Sheen	Moisture	ASTM	DESCRI	PTION	DEPTH FEET
A - None None Organic None Organic None Organic None None None Organic Organic A - A - A - A - A - A - A - A - A - A	Moist Moist Moist	PT	0-0.5': Grayish-brown, fine to coarse gra medium-grained sand (70%). 0.5-2.4': Reddish-brown, fine to coarse- to medium-grained sand (~20% cg), Klin fragments. 2.4-2.5': Gray fine to medium-grained sa 2.5-4': Black peat with organics, cohesix	ained sand, predominantly fine to grained sand with predominantly fine nker and glass fragments, clay pot and. // ve organic weave.	- 2
BARR BARR BARR BARR BARR BARR Fax: 952-862-2	ng Co. t. Suite 200 35 2-832-2600 2601		Additional data may have been collected in th	ne field which is not included on this log.	-

Client Joslyn	Drill Contractor Matrix	LOG OF Boring SB-T2-5 SHEET 1 OF 1
Project Name <u>Joslyn</u>	Drill Method Geoprobe	
Number <u>23/27-110</u>	Drilling Started 7/29/09 Ended 7/29/09	Elevation
Location Brooklyn Center, Minnesota	_ Logged By AMD2/LCM	Total Depth _4.0
DEPTH K S & W D S C O C A C A C A C A C A C A C A C A C A	MTSA DESCLID	TION FEET
0 0 None Moist None None None None None Moist None None Moist	SP 0-1.7': Light brown, fine to medium-graine SP 1.7-2': Light brown, fine to medium-graine 2-4': Black, disturbed peat, with sand mixe PT PT End of Boring - 4 feet	ed sand with brick fragments.
Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601	Additional data may have been collected in the	field which is not included on this log.

ENVIRO LOG 5 (5/27/04)

Client Joslyn Project Name Josly	/n		Drill Drill	Cont Meth	tractor Matrix LOG OF Boring S hod Geoprobe	B-T3-1 ET 1 OF 1
Number 23/27-110			Drill	ing S	Started 7/29/09 Ended 7/29/09 Elevation	
Location Brooklyn	Center, Minnesota		Log	ged E	By _AMD2/LCM Total Depth 4.0	
LEEL SAMP. LENGTH & RECOVERY SAMP. NUMBER	Discoloration- Odor- Sheen	Moisture	ASTM	ГІТНОГОСУ	DESCRIPTION	DEPTH FEET
	None Organic None None None Organic Organic Organic	Moist Moist	SP PT		 0-0.5: Brown, fine to medium-grained sand, predominantly medium-grained sand, contains organics. 0.5-2.3: Brown, fine to coarse-grained sand, predominantly fine to medium-grained, 15-29" contains ~10% coarse grained, contains klinker, glass, pottery and tile/piping. 2.3-4: Black peat with organics, no sand or shells. End of Boring - 4 feet 	
BARR BARR Fax	r Engineering Co. 00 W 77th St. Suite na, MN 55435 ephone: 952-832-2 <: 952-862-2601	200 2600			Remarks: Additional data may have been collected in the field which is not included on this log.	

2327110.GPJ BARR JAN06.GDT 11/16/09 ENVIRO LOG 5 (5/27/04)

Attachment C

August 13, 2009

Service Request No: E0900587

Michael Dupay Barr Engineering 4700 West 77th Street Minneapolis, MN 55435

Laboratory Results for: Joslyn Site/23/27-1102009448

Dear Michael:

Enclosed are the results of the sample(s) submitted to our laboratory on July 31, 2009. For your reference, these analyses have been assigned our service request number **E0900587**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided.

All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the NELAC 2003 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My extension is 2957. You may also contact me via email at JFreemyer@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Jane Freemyer Project Manager; GC/HRMS

Page 1 of

For a specific list of NELAP-accredited analytes, refer to the certifications section at

Certificate of Analysis

19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 <u>www.caslab.com</u>

An Employee Owned Company

Client:Barr EngineeringProject:Joslyn Site/23/27-1102009448Sample Matrix:Soil

Service Request No.: E0900587 **Date Received:** 07/31/09

CASE NARRATIVE

All analyses were performed in adherence to the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Six soil samples were received for analysis at Columbia Analytical Services on 07/31/09. The remaining samples on the coc were placed on 'hold' status and are archived in the freezer at -20°C. Freezing the soil sample extends the holding time from 30-days to one year.

The samples were received at 0°C in good condition and are consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Data Validation Notes and Discussion

<u> B flags – Method Blanks</u>

The Method Blank EQ0900289-01/U132365 contained low levels of OCDD at or below the Method Reporting Limit (MRL).

The Method Blank EQ0900291-01/U132415 contained low levels of 1234678-HpCDD, OCDD and 1234678-HpCDF at or below the Method Reporting Limit (MRL).

The associated compounds in the samples are flagged with 'B' flags.

Y flags – Labeled Standards

Samples that had recoveries of labeled standards outside the acceptance limits are flagged with 'Y' flags on the Labeled Compound summary pages. In all cases, the signal-to-noise ratios are greater than 10:1, making these data acceptable.

MS/DMS

EQ0900289: Laboratory Control Spike/Duplicate Laboratory Control Spike (LCS/DLCS) samples were analyzed and reported in lieu of an MS/DMS for this extraction batch.

EQ0900291: Laboratory Control Spike/Duplicate Laboratory Control Spike (LCS/DLCS) samples were analyzed and reported in lieu of an MS/DMS for this extraction batch.

Approved by_

_Date_08/17/09

Xiangqiu Liang, Laboratory Director

<u>C flags – 2378-TCDF Confirmation</u>

Confirmation of the TCDF compound: When 2378-TCDF is detected on the DB-5 column, confirmation analyses are performed on a second column (DB-225.) The results from both the DB-5 column and the DB-225 column are included in this data package.

The valid result for the 2378-TCDF compound is reported from the confirmation column.

The confirmation results have been included on the Total TEQ summary pages.

MRL

Four samples, T2-Comp, T1-Comp, T3-Comp and T4-1, required dilutions due to the presence of elevated levels of target analytes. The undiluted and diluted results were combined into one Total TEQ summary report for each sample. This reports a 'Total' result that includes the most appropriate concentration found for the associated target analyte.

The 1234678-HpCDD was slightly over-range for one sample; Line A-U. The test results are flagged as 'E.' Dilutions less than 1:5 are not routinely performed by CAS-Houston, because the HRMS instrument is linear above the calibration range. No further corrective action was required.

<u>E flags</u>

When OCDD and/or OCDF exceed the upper method calibration limit (MCL), Method 8290 Section 7.9.3 advises the chemist to "report the measured concentration and indicate that the value exceeds the MCL." We use 'E' flag on the Form 1 results to indicate a compound has exceeded the MCL.

<u>K flags</u>

EMPC - When the ion abundance ratios associated with a particular compound are outside the QC limits, samples are flagged with a 'K' flag. A 'K' flag indicates an estimated maximum possible concentration for the associated compound.

Detection Limits

Detection limits are calculated for each congener in each sample by measuring the height of the noise level for each quantitation ion for the associated labeled standard. The concentration equivalent to 2.5 times the height of the noise is then calculated using the appropriate response factor and the weight of the sample. The calculated concentration equals the detection limit.

Approved by_

Xiangqiu Liang, Laboratory Director

The TEQ Summary results for each sample have been calculated by CAS/Houston to include:

- The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds (M. Van den Berg et al., Toxicological Sciences 93(2):223-241, 2006)
- > 2378-TCDF from the DB-225 column, when confirmation required
- > Non-detected compounds are not included in the 'Total'

Approved by___

_Date____

Xiangqiu Liang, Laboratory Director

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
E0900587-001	SBA1-U	7/29/09	09:00
E0900587-002	SBA1-L	7/29/09	09:05
E0900587-003	SBA2-U	7/29/09	09:30
E0900587-004	SBA2-L	7/29/09	09:35
E0900587-005	SBA3-U	7/29/09	09:45
E0900587-006	SBA3-L	7/29/09	09:50
E0900587-007	SBA4-U	7/29/09	09:55
E0900587-008	SBA4-L	7/29/09	10:00
E0900587-009	SBA5-U	7/29/09	10:20
E0900587-010	SBA5-L	7/29/09	10:25
E0900587-011	Line A-U	7/29/09	10:30
E0900587-012	Line A-L	7/29/09	10:35
E0900587-013	T2-Comp	7/29/09	12:30
E0900587-014	T1-Comp	7/29/09	14:00
E0900587-015	T4-1	7/29/09	14:45
E0900587-016	T3-Comp	7/29/09	15:30

Laboratory Certifications 2009-2010

STATE/PROGRAM	AGENCY	CERTIFICATION ID	EXP DATE
ARIZONA	AZ-DHS	AZ0725	05/26/10
ARKANSAS	ADEQ	09-048-0	06/16/10
CALIFORNIA	CA-ELAP	2452	02/28/11
FLORIDA/NELAP	FL-DOHS	E87611	06/30/10
HAWAII	HI-DOH	N/A	06/30/10
ILLINOIS/NELAP	IL-EPA	002122	10/06/09
LOUISIANA/NELAP	LELAP	03048	06/30/10
MAINE	ME-DOHS	2008031	06/05/10
MICHIGAN	MIDEQ	9971	06/30/10
MINNESOTA	MDH	048-999-427	03/25/10
NEVADA	NDEP	TX014112009A	07/31/10
NEW JERSEY	NJDEP	TX008	06/30/10
NEW MEXICO	NMED-DWB	N/A	06/30/10
NEW YORK/NELAP	NY-DOH	11707	03/31/10
NFESC/NAVY	NFESC	N/A	01/09/10
OKLAHOMA	OKDEQ	D9925, 9962	08/31/09
OREGON/NELAP	ORELAP	TX200002-006	03/24/10
TENNESSEE	TNDEC	04016	06/30/10
TEXAS/NELAP	TCEQ	T104704216-09-TX	06/30/10
UTAH/NELAP	UTELCP	COLU2	06/30/10
SOIL IMPORT PERMIT	USDA	P330-09-00067	03/27/12
WASHINGTON/NELAP	WA-Ecology	C1855	11/14/09
WEST VIRGINIA	WVDEP	347	06/30/10

Abbreviations, Acronyms & Definitions

Cal	Calibration
Conc	CONCentration
Dioxin(s)	Polychlorinated dibenzo-p-dioxin(s)
EDL	Estimated Detection Limit
ЕМРС	Estimated Maximum Possible Concentration
Flags	Data qualifiers
Furan(s)	Polychlorinated dibenzofuran(s)
g	Grams
ICAL	Initial CALibration
ID	IDentifier
lons	Masses monitored for the analyte during data acquisition
L	Liter (s)
LCS	Laboratory Control Sample
DLCS	Duplicate Laboratory Control Sample
МВ	Method Blank
MCL	Method Calibration Limit
MDL	Method Detection Limit
MRL	Method Reporting Limit
mL	Milliliters
MS	Matrix Spiked sample
DMS	Duplicate Matrix Spiked sample
NO	Number of peaks meeting all identification criteria
PCDD(s)	Polychlorinated dibenzo-p-dioxin(s)
PCDF(s)	Polychlorinated dibenzofuran(s)
ppb	Parts per billion
ppm	Parts per million
ppq	Parts per quadrillion
ppt	Parts per trillion
QA	Quality Assurance
QC	Quality Control
Ratio	Ratio of areas from monitored ions for an analyte
% Rec.	Percent Recovery
RPD	Relative Percent Difference
RRF	Relative Response Factor
RT	Retention Time
RRT	Relative Retention Time
SDG	Sample Delivery Group
S/N	Signal-to-Noise ratio
TEF	Toxicity Equivalence Factor
TEQ	Toxicity Equivalence Quotient

- o **B** Indicates the associated analyte is found in the method blank, as well as in the sample.
- C Confirmation of the TCDF compound: When 2378-TCDF is detected on the DB-5 column, confirmation analyses are performed on a second column (DB-225). The results from both the DB-5 column and the DB-225 column are included in this data package. The results from the DB-225 analyses should be used to evaluate the 2378-TCDF in the samples. The confirmed result should be used in determining the TEQ value for TCDF.
- E Indicates an estimated value used when the analyte concentration exceeds the upper end of the linear calibration range.
- J Indicates an estimated value used when the analyte concentration is below the method reporting limit (MRL) and above the estimated detection limit (EDL).
- **K** EMPC When the ion abundance ratios associated with a particular compound are outside the QC limits, samples are flagged with a 'K' flag. A 'K' flag indicates an estimated maximum possible concentration for the associated compound.
- **U** Indicates the compound was analyzed and not detected.
- Y Samples that had recoveries of labeled standards outside the acceptance limits are flagged with 'Y'. In all cases, the signal-to-noise ratios are greater than 10:1, making these data acceptable.
- o ND Indicates concentration is reported as 'Not Detected.'
- **S** Peak is saturated; data not reportable.
- P Indicates chlorodiphenyl ether interference present at the retention time of the target compound.
- **Q** Lock-mass interference by chlorodiphenyl ether compounds.

9 of 78

CAS	S/HOU - Form P	roduction, Peer Re	view &	& Proje	ect Review	Signatur	es
SR# Unic	que ID E090058	7	Сс	onfirm	nation	debudgis virtus un virtu debudgis entropy de la constru	refrant en son an a General Inger Lagestrijg
	First Level -	Data Processing - to be fill	ed by pe	rson gene	rating the form		
Date	08/10/09	Person 1	ZZ (-013.	-014, -0	15, -016)
Date		Person 2	(y have a second descent and the second descent des
	Second Leve	-Data Review - to be filled	I by pers	on doing i	peer review		
Date	8/11/09	Primary Data Reviewer	ar.1	013	-010)		
Date	1	Secondary Data Reviewer	V			an 1,499 e da an an Alban (a chun an Alban) an Alban (a bha an Alban)	
	Project Level -	-Review - to be filled by per	son dain	g project c	ompliance revi	ew	
Date	08/14/09	Reviewer			an a		

 δ_{f}

CAS/HOU - Form Production, Peer Review & Project Review Signatures

CD# Uniqu	D Fall	m	······			
SK# Ulliqu	EID ECHO	0087	ing to be fille	d by porces accord		
Dete		el - Dala Process	Domon 4			
Date Date	00/11/09		Person 1	(0 (013-1	016)	
Date	· L Second L	evel - Data Revie	w - to be filled	by person doing	neer review	
Date (2112100	Primary Da	ata Reviewer	Aniz	DUN	¢ e
Date	011010-1	Secondary Da	ata Reviewer	yeus	-010)	
		-		V		
	Project Lev	/el - Review - to b	e filled by pers	on doing project o	compliance review	$\ldots, x_{n-1} + \frac{1}{2} + \frac$
Date	08/14/09		Reviewer	8000 M 2010 M		

	CA	S/HOU - I	Form Pr	oduction	n, Peer Re	view & Proj	ect Review	Signature	S
] >	SR# Uni	que ID	698(0587					
	Date	Firs	t Level - D	ata Process	sing - to be fil Person 1	ed by person gen MC+OI3D	erating the form	s	
	Date	Sec	ond Level	- Data Revie	Person 2 ew – to be fille	d by person doing	peer review	•)	
	Date	08	13/09	Secondary D	ata Reviewer	SKI			
a de la companya de	Date	Proje 08/14/09	ct Level - F	Review - to t	pe filled by per Reviewer	son doing project	compliance revi	ew	
L	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· · ·							
					12 of 7	8			

Analytical Results

19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 <u>www.caslab.com</u>

An Employee Owned Company

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1030
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name: Lab Code:	Line A-U E0900587-011	Units: Basis: Percent Solids:	ng/Kg Dry 48.9

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: Prep Method: Sample Amount: Data File Name: ICAL Date:	8290 Method 10.230g P104301 07/02/08							Date Analyzed: Date Extracted: Instrument Name: GC Column: Blank File Name: Cal Ver. File Name:	8/4/09 2249 7/31/09 E-HRMS-03 DB-5 U132365 P104294
Analyte Name		Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD		ND	U	0.198	2.00			1	
1,2,3,7,8-PeCDD		3.49	J	0.299	5.00	1.78	1.000	1	
1,2,3,4,7,8-HxCDD		9.30		0.535	5.00	1.11	0.998	1	
1,2,3,6,7,8-HxCDD		42.1		0.437	5.00	1.29	1.000	1	
1,2,3,7,8,9-HxCDD		24.8		0.478	5.00	1.28	1.008	1	
1,2,3,4,6,7,8-HpCDD		1190	Е	1.17	5.00	1.04	1.000	1	
OCDD		11000	BE	0.891	10.0	0.89	1.000	1	
2,3,7,8-TCDF		2.42	С	0.136	2.00	0.83	1.001	1	
1,2,3,7,8-PeCDF		4.56	J	0.293	5.00	1.52	1.000	1	
2,3,4,7,8-PeCDF		3.66	JK	0.286	5.00	1.85	1.022	1	
1,2,3,4,7,8-HxCDF		35.9		0.895	5.00	1.23	1.000	1	
1,2,3,6,7,8-HxCDF		11.2		0.835	5.00	1.15	1.003	1	
1,2,3,7,8,9-HxCDF		1.20	J	1.03	5.00	1.19	1.035	1	
2,3,4,6,7,8-HxCDF		15.8		0.946	5.00	1.31	1.015	1	
1,2,3,4,6,7,8-HpCDF		308		1.94	5.00	1.04	1.000	1	
1,2,3,4,7,8,9-HpCDF		31.2		2.56	5.00	1.06	1.034	1	
OCDF		1230		0.720	10.0	0.89	1.004	1	
Total Tetra-Dioxins		14.4		0.198	2.00	0.68		1	
Total Penta-Dioxins		34.6		0.299	5.00	1.56		1	
Total Hexa-Dioxins		239		0.437	5.00	1.21		1	
Total Hepta-Dioxins		2010		1.17	5.00	1.04		1	

Total Hexa-Furans Total Hepta-Furans 23.2

75.6

573

995

Total Tetra-Furans

Total Penta-Furans

Comments:

0.136

0.286

0.835

1.94

2.00

5.00

5.00

5.00

0.79

1.65

1.19

1.04

1

1

1

1

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1030
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name: Lab Code:	Line A-U E0900587-011	Units: Basis: Percent Solids:	Percent Dry 48.9

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/4/09 2249
Prep Method:	Method	Date Extracted:	7/31/09
Sample Amount:	10.230g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P104301	Blank File Name:	U132365
ICAL Date:	07/02/08	Cal Ver. File Name:	P104294

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDD	1000	610.925	61	40-135	0.77	1.007	
13C-1,2,3,7,8-PeCDD	1000	514.820	51	40-135	1.54	1.160	
13C-1,2,3,6,7,8-HxCDD	2500	1696.201	68	40-135	1.25	0.993	
13C-1,2,3,4,6,7,8-HpCDD	2500	1544.119	62	40-135	1.06	1.069	
13C-OCDD	5000	2640.004	53	40-135	0.88	1.151	
13C-2,3,7,8-TCDF	1000	673.605	67	40-135	0.77	0.979	
13C-1,2,3,7,8-PeCDF	1000	558.740	56	40-135	1.58	1.124	
13C-1,2,3,4,7,8-HxCDF	2500	1522.215	61	40-135	0.52	0.972	
13C-1,2,3,4,6,7,8-HpCDF	2500	1303.845	52	40-135	0.44	1.044	
37C1-2,3,7,8-TCDD	800	601.249	75	40-135	NA	1.008	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1030
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name:	Line A-U	Units:	ng/Kg
Lab Code:	E0900587-011	Basis:	Dry

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:8290Prep Method:Method

			Dilution		TEF - Adjusted	
Analyte Name	Result	DL	Factor	TEF	Concentration	
2,3,7,8-TCDD	ND	0.198	1	1		
1,2,3,7,8-PeCDD	3.49	0.299	1	1	3.49	
1,2,3,4,7,8-HxCDD	9.30	0.535	1	0.1	0.930	
1,2,3,6,7,8-HxCDD	42.1	0.437	1	0.1	4.21	
1,2,3,7,8,9-HxCDD	24.8	0.478	1	0.1	2.48	
1,2,3,4,6,7,8-HpCDD	1190	1.17	1	0.01	11.9	
OCDD	11000	0.891	1	0.0003	3.30	
2,3,7,8-TCDF	1.60	0.159	1	0.1	0.160	
1,2,3,7,8-PeCDF	4.56	0.293	1	0.03	0.137	
2,3,4,7,8-PeCDF	3.66	0.286	1	0.3	1.10	
1,2,3,4,7,8-HxCDF	35.9	0.895	1	0.1	3.59	
1,2,3,6,7,8-HxCDF	11.2	0.835	1	0.1	1.12	
1,2,3,7,8,9-HxCDF	1.20	1.03	1	0.1	0.120	
2,3,4,6,7,8-HxCDF	15.8	0.946	1	0.1	1.58	
1,2,3,4,6,7,8-HpCDF	308	1.94	1	0.01	3.08	
1,2,3,4,7,8,9-HpCDF	31.2	2.56	1	0.01	0.312	
OCDF	1230	0.720	1	0.0003	0.369	

Total TEQ

37.9

2005 WHO TEFs, ND = 0

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1030
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name:	Line A-U	Units:	ng/Kg
Lab Code:	E0900587-011	Basis:	Dry
Run Type:	Reanalysis	Percent Solids:	48.9

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: Prep Method: Sample Amount: Data File Name:	8290 Method 10.230g P203585					l I Inst Bl:	Date Analyzed: Date Extracted: trument Name: GC Column: ank File Name:	8/5/09 2031 7/31/09 E-HRMS-04 DB-225 P203583
ICAL Date:	03/16/09					Cal V	Ver. File Name:	P203581
Analyte Name		Result Q	EDL	MRL	Ion Ratio	D RRT j	ilution Factor	
2,3,7,8-TCDF		1.60 J	0.159	2.00	0.75	1.001	1	
Labeled Compounds		Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDF		1000	714.267	71	40-135	0.76	1.059	
37Cl-2,3,7,8-TCDD		800	793.543	99	40-135	NA	0.987	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1035
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name: Lab Code:	Line A-L E0900587-012	Units: Basis: Percent Solids:	ng/Kg Dry 42.5

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/4/09 2336
Prep Method:	Method	Date Extracted:	7/31/09
Sample Amount:	10.181g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P104302	Blank File Name:	U132365
ICAL Date:	07/02/08	Cal Ver. File Name:	P104294

	Darrelt O		MDI	lon Datia	ррт	Dilution	
Analyte Name	Result Q	2 EDI		Katio	KKI	Factor	
2,3,7,8-TCDD	ND U	J 0.18	3 2.31			1	
1,2,3,7,8-PeCDD	ND U	J 0.24	1 5.78			1	
1,2,3,4,7,8-HxCDD	ND U	J 0.52	2 5.78			1	
1,2,3,6,7,8-HxCDD	ND U	J 0.42	6 5.78			1	
1,2,3,7,8,9-HxCDD	ND U	J 0.46	6 5.78			1	
1,2,3,4,6,7,8-HpCDD	11.8	0.49	8 5.78	1.12	1.000	1	
OCDD	117 B	3 1.01	11.6	0.88	1.000	1	
2,3,7,8-TCDF	ND U	J 0.11	8 2.31			1	
1,2,3,7,8-PeCDF	ND U	J 0.17	5 5.78			1	
2,3,4,7,8-PeCDF	ND U	J 0.17	1 5.78			1	
1,2,3,4,7,8-HxCDF	ND U	J 0.28	8 5.78			1	
1,2,3,6,7,8-HxCDF	ND U	J 0.26	9 5.78			1	
1,2,3,7,8,9-HxCDF	ND U	J 0.33	1 5.78			1	
2,3,4,6,7,8-HxCDF	ND U	J 0.30	5 5.78			1	
1,2,3,4,6,7,8-HpCDF	3.03 J	0.66	5 5.78	1.14	1.000	1	
1,2,3,4,7,8,9-HpCDF	ND U	J 0.87	8 5.78			1	
OCDF	10.6 JH	K 0.60	9 11.6	1.03	1.004	1	
Total Tetra-Dioxins	1.79 J	0.18	3 2.31	0.70		1	
Total Penta-Dioxins	ND U	J 0.24	1 5.78			1	
Total Hexa-Dioxins	1.31 J	0.42	6 5.78	1.16		1	
Total Hepta-Dioxins	19.6	0.49	8 5.78	1.08		1	
Total Tetra-Furans	1.35 J	0.11	8 2.31	0.85		1	
Total Penta-Furans	0.531 J	0.17	1 5.78	1.76		1	
Total Hexa-Furans	2.61 J	0.26	9 5.78	1.29		1	
Total Hepta-Furans	8.38	0.66	5 5.78	1.14		1	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1035
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name: Lab Code:	Line A-L E0900587-012	Units: Basis: Percent Solids:	Percent Dry 42.5

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/4/09 2336
Prep Method:	Method	Date Extracted:	7/31/09
Sample Amount:	10.181g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P104302	Blank File Name:	U132365
ICAL Date:	07/02/08	Cal Ver. File Name:	P104294

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDD	1000	676.630	68	40-135	0.78	1.007	
13C-1,2,3,7,8-PeCDD	1000	573.846	57	40-135	1.58	1.160	
13C-1,2,3,6,7,8-HxCDD	2500	1896.388	76	40-135	1.26	0.993	
13C-1,2,3,4,6,7,8-HpCDD	2500	1686.321	67	40-135	1.07	1.069	
13C-OCDD	5000	3110.607	62	40-135	0.89	1.151	
13C-2,3,7,8-TCDF	1000	763.072	76	40-135	0.78	0.979	
13C-1,2,3,7,8-PeCDF	1000	610.765	61	40-135	1.58	1.124	
13C-1,2,3,4,7,8-HxCDF	2500	1688.142	68	40-135	0.52	0.973	
13C-1,2,3,4,6,7,8-HpCDF	2500	1437.244	57	40-135	0.44	1.044	
37Cl-2,3,7,8-TCDD	800	650.579	81	40-135	NA	1.008	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1035
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name:	Line A-L	Units:	ng/Kg
Lab Code:	E0900587-012	Basis:	Dry

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:8290Prep Method:Method

			Dilution		TEF - Adjusted	
Analyte Name	Result	DL	Factor	TEF	Concentration	
2,3,7,8-TCDD	ND	0.183	1	1		
1,2,3,7,8-PeCDD	ND	0.241	1	1		
1,2,3,4,7,8-HxCDD	ND	0.522	1	0.1		
1,2,3,6,7,8-HxCDD	ND	0.426	1	0.1		
1,2,3,7,8,9-HxCDD	ND	0.466	1	0.1		
1,2,3,4,6,7,8-HpCDD	11.8	0.498	1	0.01	0.118	
OCDD	117	1.01	1	0.0003	0.0351	
2,3,7,8-TCDF	ND	0.118	1	0.1		
1,2,3,7,8-PeCDF	ND	0.175	1	0.03		
2,3,4,7,8-PeCDF	ND	0.171	1	0.3		
1,2,3,4,7,8-HxCDF	ND	0.288	1	0.1		
1,2,3,6,7,8-HxCDF	ND	0.269	1	0.1		
1,2,3,7,8,9-HxCDF	ND	0.331	1	0.1		
2,3,4,6,7,8-HxCDF	ND	0.305	1	0.1		
1,2,3,4,6,7,8-HpCDF	3.03	0.665	1	0.01	0.0303	
1,2,3,4,7,8,9-HpCDF	ND	0.878	1	0.01		
OCDF	10.6	0.609	1	0.0003	0.00318	
		Total TEQ	2		0.187	

2005 WHO TEFs, ND = 0

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1230
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name: Lab Code:	T2-Comp E0900587-013	Units: Basis: Percent Solids:	ng/Kg Dry 74.0

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/7/09 1058
Prep Method:	Method	Date Extracted:	8/3/09
Sample Amount:	10.508g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P104367	Blank File Name:	U132415
ICAL Date:	07/02/08	Cal Ver. File Name:	P104361

.

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	0.913	J	0.0564	1.29	0.69	1.001	1	
1,2,3,7,8-PeCDD	8.07		0.0995	3.22	1.58	1.000	1	
1,2,3,4,7,8-HxCDD	26.7		0.0798	3.22	1.18	0.998	1	
1,2,3,6,7,8-HxCDD	471		0.0736	3.22	1.25	1.000	1	
1,2,3,7,8,9-HxCDD	83.6		0.0740	3.22	1.25	1.008	1	
1,2,3,4,6,7,8-HpCDD	16600	BE	2.49	3.22	1.04	1.001	1	
OCDD	148000	BE	0.360	6.43	0.94	1.000	1	
2,3,7,8-TCDF	11.1	С	0.0589	1.29	0.76	1.001	1	
1,2,3,7,8-PeCDF	11.8	Р	0.170	3.22	1.63	1.001	1	
2,3,4,7,8-PeCDF	10.6		0.158	3.22	1.58	1.023	1	
1,2,3,4,7,8-HxCDF	154	Р	1.03	3.22	1.25	1.000	1	
1,2,3,6,7,8-HxCDF	36.5		0.963	3.22	1.30	1.003	1	
1,2,3,7,8,9-HxCDF	10.2	Р	1.12	3.22	1.26	1.035	1	
2,3,4,6,7,8-HxCDF	66.3	Р	1.01	3.22	1.29	1.015	1	
1,2,3,4,6,7,8-HpCDF	4550	BE	1.17	3.22	1.05	1.000	1	
1,2,3,4,7,8,9-HpCDF	331		1.48	3.22	1.05	1.034	1	
OCDF	41500	EP	0.351	6.43	0.89	1.004	1	
Total Tetra-Dioxins	42.0		0.0564	1.29	0.76		1	
Total Penta-Dioxins	101		0.0995	3.22	1.53		1	
Total Hexa-Dioxins	1610		0.0736	3.22	1.26		1	
Total Hepta-Dioxins	23700		2.49	3.22	1.04		1	
Total Tetra-Furans	56.2		0.0589	1.29	0.75		1	
Total Penta-Furans	239		0.158	3.22	1.59		1	
Total Hexa-Furans	1290		0.963	3.22	1.26		1	
Total Hepta-Furans	4880		1.17	3.22	1.05		1	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1230
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name: Lab Code:	T2-Comp E0900587-013	Units: Basis: Percent Solids:	Percent Dry 74.0

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/7/09 1058
Prep Method:	Method	Date Extracted:	8/3/09
Sample Amount:	10.508g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P104367	Blank File Name:	U132415
ICAL Date:	07/02/08	Cal Ver. File Name:	P104361

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDD	1000	724.424	72	40-135	0.78	1.008	
13C-1,2,3,7,8-PeCDD	1000	534.918	53	40-135	1.54	1.160	
13C-1,2,3,6,7,8-HxCDD	2500	1954.383	78	40-135	1.24	0.993	
13C-1,2,3,4,6,7,8-HpCDD	2500	1501.473	60	40-135	1.07	1.069	
13C-OCDD	5000	2568.677	51	40-135	0.90	1.153	
13C-2,3,7,8-TCDF	1000	771.283	77	40-135	0.78	0.979	
13C-1,2,3,7,8-PeCDF	1000	662.064	66	40-135	1.58	1.124	
13C-1,2,3,4,7,8-HxCDF	2500	2010.900	80	40-135	0.52	0.973	
13C-1,2,3,4,6,7,8-HpCDF	2500	1529.987	61	40-135	0.44	1.045	
37Cl-2,3,7,8-TCDD	800	677.002	85	40-135	NA	1.008	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1230
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name:	T2-Comp	Units:	ng/Kg
Lab Code:	E0900587-013	Basis:	Dry

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:8290Prep Method:Method

			Dilution		TEF - Adjusted	
Analyte Name	Result	DL	Factor	TEF	Concentration	
2,3,7,8-TCDD	0.913	0.0564	1	1	0.913	
1,2,3,7,8-PeCDD	8.07	0.0995	1	1	8.07	
1,2,3,4,7,8-HxCDD	26.7	0.0798	1	0.1	2.67	
1,2,3,6,7,8-HxCDD	471	0.0736	1	0.1	47.1	
1,2,3,7,8,9-HxCDD	83.6	0.0740	1	0.1	8.36	
1,2,3,4,6,7,8-HpCDD	17300	34.6	80	0.01	173	
OCDD	132000	20.6	80	0.0003	39.6	
2,3,7,8-TCDF	4.26	0.0860	1	0.1	0.426	
1,2,3,7,8-PeCDF	11.8	0.170	1	0.03	0.354	
2,3,4,7,8-PeCDF	10.6	0.158	1	0.3	3.18	
1,2,3,4,7,8-HxCDF	154	1.03	1	0.1	15.4	
1,2,3,6,7,8-HxCDF	36.5	0.963	1	0.1	3.65	
1,2,3,7,8,9-HxCDF	10.2	1.12	1	0.1	1.02	
2,3,4,6,7,8-HxCDF	66.3	1.01	1	0.1	6.63	
1,2,3,4,6,7,8-HpCDF	4310	34.7	80	0.01	43.1	
1,2,3,4,7,8,9-HpCDF	331	1.48	1	0.01	3.31	
OCDF	32400	19.5	80	0.0003	9.72	

Total TEQ

367

2005 WHO TEFs, ND = 0

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1230
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name:	T2-Comp	Units:	ng/Kg
Lab Code:	E0900587-013	Basis:	Dry
Run Type:	Dilution	Percent Solids:	74.0

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/10/09 1954
Prep Method:	Method	Date Extracted:	8/3/09
Sample Amount:	10.508g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P104400	Blank File Name:	U132415
ICAL Date:	07/02/08	Cal Ver. File Name:	P104397

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	ND	U	7.59	103			80	
1,2,3,7,8-PeCDD	ND	U	11.3	257			80	
1,2,3,4,7,8-HxCDD	32.1	JK	9.69	257	1.00	0.998	80	
1,2,3,6,7,8-HxCDD	399		8.83	257	1.22	1.000	80	
1,2,3,7,8,9-HxCDD	122	J	8.97	257	1.09	1.008	80	
1,2,3,4,6,7,8-HpCDD	17300	В	34.6	257	1.04	1.000	80	
OCDD	132000	В	20.6	514	0.90	1.000	80	
2,3,7,8-TCDF	ND	U	6.93	103			80	
1,2,3,7,8-PeCDF	ND	U	9.54	257			80	
2,3,4,7,8-PeCDF	ND	U	9.01	257			80	
1,2,3,4,7,8-HxCDF	135	J	30.0	257	1.36	1.000	80	
1,2,3,6,7,8-HxCDF	38.0	J	28.1	257	1.08	1.003	80	
1,2,3,7,8,9-HxCDF	ND	U	33.5	257			80	
2,3,4,6,7,8-HxCDF	85.9	J	30.4	257	1.14	1.015	80	
1,2,3,4,6,7,8-HpCDF	4310	В	34.7	257	1.05	1.000	80	
1,2,3,4,7,8,9-HpCDF	430		43.8	257	1.04	1.034	80	
OCDF	32400		19.5	514	0.89	1.004	80	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1230
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name:	T2-Comp	Units:	Percent
Lab Code:	E0900587-013	Basis:	Dry
Run Type:	Dilution	Percent Solids:	74.0

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/10/09 1954
Prep Method:	Method	Date Extracted:	8/3/09
Sample Amount:	10.508g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P104400	Blank File Name:	U132415
ICAL Date:	07/02/08	Cal Ver. File Name:	P104397

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec	Control Q Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDD	1390	1317.292	95	40-135	0.80	1.007	
13C-1,2,3,7,8-PeCDD	1890	1221.865	65	40-135	1.60	1.161	
13C-1,2,3,6,7,8-HxCDD	3210	3235.253	101	40-135	1.26	0.992	
13C-1,2,3,4,6,7,8-HpCDD	4170	3407.649	82	40-135	1.07	1.068	
13C-OCDD	9800	7431.767	76	40-135	0.90	1.150	
13C-2,3,7,8-TCDF	1300	1299.280	100	40-135	0.80	0.980	
13C-1,2,3,7,8-PeCDF	1520	1280.758	85	40-135	1.59	1.125	
13C-1,2,3,4,7,8-HxCDF	3130	3219.796	103	40-135	0.52	0.972	
13C-1,2,3,4,6,7,8-HpCDF	4100	3220.639	79	40-135	0.45	1.044	
37C1-2,3,7,8-TCDD	800	9.616	96	40-135	NA	1.008	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1230
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name:	T2-Comp	Units:	ng/Kg
Lab Code:	E0900587-013	Basis:	Dry
Run Type:	Reanalysis	Percent Solids:	74.0

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: Prep Method: Sample Amount: Data File Name:	8290 Method 10.508g P203631					I D Inst Bla	Date Analyzed: Date Extracted: rument Name: GC Column: unk File Name:	8/7/09 2153 8/3/09 E-HRMS-04 DB-225 P203627
ICAL Date:	03/16/09					Cal V	er. File Name:	P203625
Analyte Name		Result Q	EDL	MRL	Ion Ratio	Di RRT I	ilution Factor	
2,3,7,8-TCDF		4.26	0.0860	1.29	0.75	1.001	1	
Labeled Compounds		Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDF		1000	757.524	76	40-135	0.75	1.059	
37Cl-2,3,7,8-TCDD		800	790.765	99	40-135	NA	0.987	

Analytical Report

Client: Project: Sample Matrix:	NA						Service R Date Col Date Re	equest: llected: N. ceived: N.	A A
Sample Name: Lab Code: Bun Type:							Parcant	Units: Basis: Solids:	
Kun Type.							rereem	i Sonus.	
Analytical Method: Prep Method:									
Analytical Method:							Date An	alyzed:	
Prep Method:							Date Ext	racted:	
Sample Amount:							Instrument	Name:	
							GC C	olumn:	
Data File Name:							Blank File	Name:	
ICAL Date:						(Cal Ver. File	Name:	
Analyte Name		Result Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	Date Analyzed	Date Extracted
Analyte Name		Result Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor		
Labeled Compounds		Spike Conc.()	Conc. Found ()	%Rec Q	Control Limits	Io Ra	n tio R	RT	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1400
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name: Lab Code:	T1-Comp E0900587-014	Units: Basis: Percent Solids:	ng/Kg Dry 65.6

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/7/09 1145
Prep Method:	Method	Date Extracted:	8/3/09
Sample Amount:	10.283g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P104368	Blank File Name:	U132415
ICAL Date:	07/02/08	Cal Ver. File Name:	P104361

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	2.26		0.105	1.48	0.75	1.001	1	
1,2,3,7,8-PeCDD	10.8		0.125	3.71	1.56	1.000	1	
1,2,3,4,7,8-HxCDD	34.7		0.189	3.71	1.21	0.998	1	
1,2,3,6,7,8-HxCDD	794	Е	0.175	3.71	1.25	1.000	1	
1,2,3,7,8,9-HxCDD	123		0.176	3.71	1.29	1.008	1	
1,2,3,4,6,7,8-HpCDD	27400	BE	5.75	3.71	1.04	1.000	1	
OCDD	189000	BE	0.694	7.41	0.95	1.000	1	
2,3,7,8-TCDF	7.48	CK	0.0865	1.48	0.62	1.001	1	
1,2,3,7,8-PeCDF	5.34	Р	0.183	3.71	1.53	1.000	1	
2,3,4,7,8-PeCDF	6.18		0.171	3.71	1.48	1.022	1	
1,2,3,4,7,8-HxCDF	170		1.17	3.71	1.25	1.000	1	
1,2,3,6,7,8-HxCDF	27.7		1.10	3.71	1.21	1.003	1	
1,2,3,7,8,9-HxCDF	4.38	Р	1.28	3.71	1.10	1.035	1	
2,3,4,6,7,8-HxCDF	70.0		1.15	3.71	1.22	1.015	1	
1,2,3,4,6,7,8-HpCDF	7430	BE	1.94	3.71	1.05	1.000	1	
1,2,3,4,7,8,9-HpCDF	529		2.47	3.71	1.05	1.034	1	
OCDF	71200	EP	0.528	7.41	0.90	1.004	1	
Total Tetra-Dioxins	75.7		0.105	1.48	0.74		1	
Total Penta-Dioxins	256		0.125	3.71	1.55		1	
Total Hexa-Dioxins	2930		0.175	3.71	1.25		1	
Total Hepta-Dioxins	39000		5.75	3.71	1.04		1	
Total Tetra-Furans	53.2		0.0865	1.48	0.70		1	
Total Penta-Furans	244		0.171	3.71	1.57		1	
Total Hexa-Furans	1390		1.10	3.71	1.27		1	
Total Hepta-Furans	7960		1.94	3.71	1.05		1	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1400
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name: Lab Code:	T1-Comp E0900587-014	Units: Basis: Percent Solids:	Percent Dry 65.6

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/7/09 1145
Prep Method:	Method	Date Extracted:	8/3/09
Sample Amount:	10.283g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P104368	Blank File Name:	U132415
ICAL Date:	07/02/08	Cal Ver. File Name:	P104361

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDD	1000	706.676	71	40-135	0.77	1.007	
13C-1,2,3,7,8-PeCDD	1000	520.647	52	40-135	1.54	1.160	
13C-1,2,3,6,7,8-HxCDD	2500	1909.287	76	40-135	1.26	0.993	
13C-1,2,3,4,6,7,8-HpCDD	2500	1378.282	55	40-135	1.06	1.069	
13C-OCDD	5000	2698.701	54	40-135	0.90	1.153	
13C-2,3,7,8-TCDF	1000	753.082	75	40-135	0.78	0.979	
13C-1,2,3,7,8-PeCDF	1000	658.762	66	40-135	1.58	1.124	
13C-1,2,3,4,7,8-HxCDF	2500	1951.475	78	40-135	0.52	0.972	
13C-1,2,3,4,6,7,8-HpCDF	2500	1529.950	61	40-135	0.44	1.044	
37C1-2,3,7,8-TCDD	800	665.951	83	40-135	NA	1.008	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1400
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name:	T1-Comp	Units:	ng/Kg
Lab Code:	E0900587-014	Basis:	Dry

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:8290Prep Method:Method

			Dilution		TEF - Adjusted	
Analyte Name	Result	DL	Factor	TEF	Concentration	
2,3,7,8-TCDD	2.26	0.105	1	1	2.26	
1,2,3,7,8-PeCDD	10.8	0.125	1	1	10.8	
1,2,3,4,7,8-HxCDD	34.7	0.189	1	0.1	3.47	
1,2,3,6,7,8-HxCDD	708	15.8	80	0.1	70.8	
1,2,3,7,8,9-HxCDD	123	0.176	1	0.1	12.3	
1,2,3,4,6,7,8-HpCDD	32900	78.2	80	0.01	329	
OCDD	234000	14.3	80	0.0003	70.2	
2,3,7,8-TCDF	1.49	0.310	1	0.1	0.149	
1,2,3,7,8-PeCDF	5.34	0.183	1	0.03	0.160	
2,3,4,7,8-PeCDF	6.18	0.171	1	0.3	1.85	
1,2,3,4,7,8-HxCDF	170	1.17	1	0.1	17.0	
1,2,3,6,7,8-HxCDF	27.7	1.10	1	0.1	2.77	
1,2,3,7,8,9-HxCDF	4.38	1.28	1	0.1	0.438	
2,3,4,6,7,8-HxCDF	70.0	1.15	1	0.1	7.00	
1,2,3,4,6,7,8-HpCDF	7540	62.4	80	0.01	75.4	
1,2,3,4,7,8,9-HpCDF	529	2.47	1	0.01	5.29	
OCDF	63000	12.6	80	0.0003	18.9	

Total TEQ

628

2005 WHO TEFs, ND = 0

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1400
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name:	T1-Comp	Units:	ng/Kg
Lab Code:	E0900587-014	Basis:	Dry
Run Type:	Dilution	Percent Solids:	65.6

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/10/09 2042
Prep Method:	Method	Date Extracted:	8/3/09
Sample Amount:	10.283g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P104401	Blank File Name:	U132415
ICAL Date:	07/02/08	Cal Ver. File Name:	P104397

Analyte Name	Result	0	FDL	MRL	Ion Ratio	RRT	Dilution Factor	
	Result	Y	LDE	MAL	Itutio	KK1	Factor	
2,3,7,8-TCDD	ND	U	10.8	119			80	
1,2,3,7,8-PeCDD	ND	U	10.6	296			80	
1,2,3,4,7,8-HxCDD	47.4	J	17.3	296	1.23	0.999	80	
1,2,3,6,7,8-HxCDD	708		15.8	296	1.22	1.000	80	
1,2,3,7,8,9-HxCDD	173	J	16.0	296	1.34	1.008	80	
1,2,3,4,6,7,8-HpCDD	32900	В	78.2	296	1.03	1.001	80	
OCDD	234000	BE	14.3	593	0.89	1.000	80	
2,3,7,8-TCDF	ND	U	8.58	119			80	
1,2,3,7,8-PeCDF	ND	U	9.92	296			80	
2,3,4,7,8-PeCDF	ND	U	9.37	296			80	
1,2,3,4,7,8-HxCDF	164	J	20.0	296	1.15	1.000	80	
1,2,3,6,7,8-HxCDF	ND	U	18.7	296			80	
1,2,3,7,8,9-HxCDF	ND	U	22.3	296			80	
2,3,4,6,7,8-HxCDF	91.3	J	20.3	296	1.33	1.015	80	
1,2,3,4,6,7,8-HpCDF	7540	В	62.4	296	1.06	1.000	80	
1,2,3,4,7,8,9-HpCDF	620		78.8	296	1.10	1.034	80	
OCDF	63000		12.6	593	0.90	1.005	80	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1400
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name:	T1-Comp	Units:	Percent
Lab Code:	E0900587-014	Basis:	Dry
Run Type:	Dilution	Percent Solids:	65.6

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/10/09 2042
Prep Method:	Method	Date Extracted:	8/3/09
Sample Amount:	10.283g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P104401	Blank File Name:	U132415
ICAL Date:	07/02/08	Cal Ver. File Name:	P104397

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDD	1410	1459.133	104	40-135	0.80	1.007	
13C-1,2,3,7,8-PeCDD	1920	1427.321	74	40-135	1.55	1.161	
13C-1,2,3,6,7,8-HxCDD	3290	3488.251	106	40-135	1.26	0.992	
13C-1,2,3,4,6,7,8-HpCDD	4550	3578.771	79	40-135	1.06	1.068	
13C-OCDD	9260	8189.591	88	40-135	0.90	1.150	
13C-2,3,7,8-TCDF	1330	1466.599	110	40-135	0.78	0.980	
13C-1,2,3,7,8-PeCDF	1520	1512.890	100	40-135	1.60	1.125	
13C-1,2,3,4,7,8-HxCDF	3210	3499.284	109	40-135	0.52	0.972	
13C-1,2,3,4,6,7,8-HpCDF	4100	4098.920	100	40-135	0.45	1.044	
37Cl-2,3,7,8-TCDD	800	10.740	107	40-135	NA	1.008	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1400
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name:	T1-Comp	Units:	ng/Kg
Lab Code:	E0900587-014	Basis:	Dry
Run Type:	Reanalysis	Percent Solids:	65.6

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: Prep Method: Sample Amount: Data File Name:	8290 Method 10.283g P203632								Date Analyzed: Date Extracted: Instrument Name: GC Column: Blank File Name:	8/7/09 2230 8/3/09 E-HRMS-04 DB-225 P203627
ICAL Date:	03/16/09							(Cal Ver. File Name:	P203625
Analyte Name		Result	Q	EDL	М	RL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDF		1.49	K	0.310	1	.48	0.61	1.001	1	
Labeled Compounds		Spike Conc.(pg)		Conc. Found (pg)	%Rec	Q	Control Limits	Io Ra	n tio RRT	
13C-2,3,7,8-TCDF		1000		583.545	58		40-135	0.	75 1.059	
37Cl-2,3,7,8-TCDD		800		818.715	102		40-135	N	A 0.987	

Analytical Report

Client: Project: Sample Matrix:	NA							Service R Date Co Date Re	Request: ollected: eceived:	NA NA
Sample Name: Lab Code: Run Type:								Percen	Units: Basis: t Solids:	
Analytical Method: Prep Method:										
Analytical Method: Prep Method: Sample Amount:								Date An Date Ext Instrument	nalyzed: tracted: t Name:	
Data File Name: ICAL Date:							GC Column: Blank File Name: Cal Ver. File Name:			
Analyte Name		Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	Date Analyz	Date ed Extracted
Analyte Name		Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor		
Labeled Compounds		Spike Conc.()		Conc. Found ()	%Rec Q	Control Limits	Io Ra	on atio R	RT	
Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1445
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name: Lab Code:	T4-1 E0900587-015	Units: Basis: Percent Solids:	ng/Kg Dry 43.1

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: Prep Method: Sample Amount: Data File Name: ICAL Date:	8290 Method 10.545g P104369 07/02/08							Date Analyzed: Date Extracted: Instrument Name: GC Column: Blank File Name: Cal Ver. File Name:	8/7/09 1233 8/3/09 E-HRMS-03 DB-5 U132415 P104361
Analyte Name		Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD		ND	U	0.167	2.20			1	
1,2,3,7,8-PeCDD		3.57	J	0.214	5.50	1.49	1.000	1	
1,2,3,4,7,8-HxCDD		5.78		0.395	5.50	1.31	0.998	1	
1,2,3,6,7,8-HxCDD		169		0.364	5.50	1.26	1.000	1	
1,2,3,7,8,9-HxCDD		25.4		0.366	5.50	1.26	1.008	1	
1,2,3,4,6,7,8-HpCDD		7790	BE	4.62	5.50	1.04	1.000	1	
OCDD		99600	BE	0.745	11.0	0.89	1.000	1	
2,3,7,8-TCDF		0.539	CJP	0.147	2.20	0.73	1.001	1	
1,2,3,7,8-PeCDF		1.67	JKP	0.318	5.50	1.93	1.001	1	
2,3,4,7,8-PeCDF		0.471	J	0.296	5.50	1.68	1.023	1	
1,2,3,4,7,8-HxCDF		28.0		1.26	5.50	1.26	1.000	1	
1,2,3,6,7,8-HxCDF		4.64	J	1.18	5.50	1.18	1.003	1	
1,2,3,7,8,9-HxCDF		ND	U	1.37	5.50			1	
2,3,4,6,7,8-HxCDF		13.7		1.23	5.50	1.27	1.015	1	
1,2,3,4,6,7,8-HpCDF		1700	BE	2.14	5.50	1.05	1.000	1	
1,2,3,4,7,8,9-HpCDF		119		2.72	5.50	1.06	1.035	1	
OCDF		16000	Е	0.503	11.0	0.89	1.004	1	
Total Tetra-Dioxins		62.5		0.167	2.20	0.76		1	
Total Penta-Dioxins		1230		0.214	5.50	1.57		1	
Total Hexa-Dioxins		8710		0.364	5.50	1.26		1	
Total Hepta-Dioxins		15300		4.62	5.50	1.04		1	

Total Penta-Furans21.3Total Hexa-Furans233Total Hepta-Furans1820

4.18

Comments:

Total Tetra-Furans

0.147

0.296

1.18

2.14

2.20

5.50

5.50

5.50

0.68

1.61

1.30

1.05

1

1

1

1

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1445
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name: Lab Code:	T4-1 E0900587-015	Units: Basis: Percent Solids:	Percent Dry 43.1

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/7/09 1233
Prep Method:	Method	Date Extracted:	8/3/09
Sample Amount:	10.545g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P104369	Blank File Name:	U132415
ICAL Date:	07/02/08	Cal Ver. File Name:	P104361

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDD	1000	702.411	70	40-135	0.76	1.008	
13C-1,2,3,7,8-PeCDD	1000	517.099	52	40-135	1.56	1.160	
13C-1,2,3,6,7,8-HxCDD	2500	1914.971	77	40-135	1.25	0.993	
13C-1,2,3,4,6,7,8-HpCDD	2500	1422.766	57	40-135	1.05	1.069	
13C-OCDD	5000	2938.259	59	40-135	0.89	1.152	
13C-2,3,7,8-TCDF	1000	731.582	73	40-135	0.79	0.979	
13C-1,2,3,7,8-PeCDF	1000	635.688	64	40-135	1.60	1.124	
13C-1,2,3,4,7,8-HxCDF	2500	1973.736	79	40-135	0.52	0.973	
13C-1,2,3,4,6,7,8-HpCDF	2500	1470.068	59	40-135	0.44	1.044	
37C1-2,3,7,8-TCDD	800	671.166	84	40-135	NA	1.008	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1445
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name:	T4-1	Units:	ng/Kg
Lab Code:	E0900587-015	Basis:	Dry

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:8290Prep Method:Method

			Dilution		TEF - Adjusted	
Analyte Name	Result	DL	Factor	TEF	Concentration	
2,3,7,8-TCDD	ND	0.167	1	1		
1,2,3,7,8-PeCDD	3.57	0.214	1	1	3.57	
1,2,3,4,7,8-HxCDD	5.78	0.395	1	0.1	0.578	
1,2,3,6,7,8-HxCDD	169	0.364	1	0.1	16.9	
1,2,3,7,8,9-HxCDD	25.4	0.366	1	0.1	2.54	
1,2,3,4,6,7,8-HpCDD	10100	28.0	30	0.01	101	
OCDD	97400	9.10	30	0.0003	29.2	
2,3,7,8-TCDF	ND	0.558	1	0.1		
1,2,3,7,8-PeCDF	1.67	0.318	1	0.03	0.0501	
2,3,4,7,8-PeCDF	0.471	0.296	1	0.3	0.141	
1,2,3,4,7,8-HxCDF	28.0	1.26	1	0.1	2.80	
1,2,3,6,7,8-HxCDF	4.64	1.18	1	0.1	0.464	
1,2,3,7,8,9-HxCDF	ND	1.37	1	0.1		
2,3,4,6,7,8-HxCDF	13.7	1.23	1	0.1	1.37	
1,2,3,4,6,7,8-HpCDF	1880	34.6	30	0.01	18.8	
1,2,3,4,7,8,9-HpCDF	119	2.72	1	0.01	1.19	
OCDF	15400	8.07	30	0.0003	4.62	
		Total TEQ	2		183	

2005 WHO TEFs, ND = 0

Analytical Report

8/
1445
14

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/10/09 2129
Prep Method:	Method	Date Extracted:	8/3/09
Sample Amount:	10.545g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P104402	Blank File Name:	U132415
ICAL Date:	07/02/08	Cal Ver. File Name:	P104397

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	ND	U	4.64	66.0			30	
1,2,3,7,8-PeCDD	ND	U	7.18	165			30	
1,2,3,4,7,8-HxCDD	ND	U	4.18	165			30	
1,2,3,6,7,8-HxCDD	179		3.81	165	1.36	1.000	30	
1,2,3,7,8,9-HxCDD	53.2	J	3.87	165	1.16	1.008	30	
1,2,3,4,6,7,8-HpCDD	10100	В	28.0	165	1.04	1.000	30	
OCDD	97400	В	9.10	330	0.90	1.000	30	
2,3,7,8-TCDF	ND	U	4.26	66.0			30	
1,2,3,7,8-PeCDF	ND	U	5.05	165			30	
2,3,4,7,8-PeCDF	ND	U	4.77	165			30	
1,2,3,4,7,8-HxCDF	31.2	JK	19.1	165	1.43	1.000	30	
1,2,3,6,7,8-HxCDF	ND	U	17.9	165			30	
1,2,3,7,8,9-HxCDF	ND	U	21.3	165			30	
2,3,4,6,7,8-HxCDF	25.3	J	19.4	165	1.18	1.015	30	
1,2,3,4,6,7,8-HpCDF	1880	В	34.6	165	1.05	1.000	30	
1,2,3,4,7,8,9-HpCDF	154	J	43.7	165	1.05	1.034	30	
OCDF	15400		8.07	330	0.88	1.004	30	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1445
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name:	T4-1	Units:	Percent
Lab Code:	E0900587-015	Basis:	Dry
Run Type:	Dilution	Percent Solids:	43.1

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/10/09 2129
Prep Method:	Method	Date Extracted:	8/3/09
Sample Amount:	10.545g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P104402	Blank File Name:	U132415
ICAL Date:	07/02/08	Cal Ver. File Name:	P104397

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDD	1430	1273.651	89	40-135	0.78	1.007	
13C-1,2,3,7,8-PeCDD	1920	1170.691	61	40-135	1.58	1.161	
13C-1,2,3,6,7,8-HxCDD	3250	2992.571	92	40-135	1.27	0.993	
13C-1,2,3,4,6,7,8-HpCDD	4390	3124.884	71	40-135	1.07	1.068	
13C-OCDD	8470	6984.650	82	40-135	0.90	1.150	
13C-2,3,7,8-TCDF	1370	1286.590	94	40-135	0.79	0.979	
13C-1,2,3,7,8-PeCDF	1560	1234.335	79	40-135	1.59	1.125	
13C-1,2,3,4,7,8-HxCDF	3160	3030.028	96	40-135	0.53	0.972	
13C-1,2,3,4,6,7,8-HpCDF	4240	3556.048	84	40-135	0.45	1.044	
37Cl-2,3,7,8-TCDD	800	29.063	109	40-135	NA	1.007	

Analytical Report

rr Engineering Company	Service Request:	E0900587
slyn Site/23/27-1102009448	Date Collected:	7/29/09 1445
il	Date Received:	7/31/09
-1	Units:	ng/Kg
900587-015	Basis:	Dry
analysis	Percent Solids:	43 1
	rr Engineering Company Slyn Site/23/27-1102009448 il -1 900587-015 analysis	rr Engineering Company Service Request: Slyn Site/23/27-1102009448 Date Collected: il Date Received: -1 Units: 900587-015 Basis: analysis Percent Solids:

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: Prep Method: Sample Amount:	8290 Method 10.545g							Date Analyzed: Date Extracted: Instrument Name: GC Column:	8/7/09 2307 8/3/09 E-HRMS-04 DB-225
Data File Name:	P203633							Blank File Name:	P203627
ICAL Date:	03/16/09							Cal Ver. File Name:	P203625
Analyte Name		Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDF		ND	U	0.558	2.20			1	
Labeled Compounds		Spike Conc.(pg)		Conc. Found (pg)	%Rec Q	Control Limits	I R	on atio RRT	

57

102

1000

800

565.098

819.035

Comments:

13C-2,3,7,8-TCDF

37Cl-2,3,7,8-TCDD

0.75

NA

1.059

0.987

40-135

40-135

Analytical Report

Client: Project: Sample Matrix:	NA							Service F Date Co Date R	Request: ollected: eceived:	NA NA	
Sample Name: Lab Code: Run Type:								Percen	Units: Basis: at Solids:		
Analytical Method: Prep Method:											
Analytical Method: Prep Method: Sample Amount:								Date Ar Date Ex Instrumen	nalyzed: tracted: t Name:		
Data File Name: ICAL Date:								GC C Blank File Cal Ver. File	Column: e Name: e Name:		
Analyte Name		Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	Date Analyz	zed	Date Extracted
Analyte Name		Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor			
Labeled Compounds		Spike Conc.()		Conc. Found ()	%Rec Q	Control Limits	Io Ra	on atio R	RT		

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1530
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name: Lab Code:	T3-Comp E0900587-016	Units: Basis: Percent Solids:	ng/Kg Dry 77.2

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/7/09 1321
Prep Method:	Method	Date Extracted:	8/3/09
Sample Amount:	10.895g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P104370	Blank File Name:	U132415
ICAL Date:	07/02/08	Cal Ver. File Name:	P104361

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	0.610	JK	0.146	1.19	0.63	1.000	1	
1,2,3,7,8-PeCDD	4.47		0.240	2.97	1.61	1.000	1	
1,2,3,4,7,8-HxCDD	12.6		0.320	2.97	1.26	0.998	1	
1,2,3,6,7,8-HxCDD	108		0.296	2.97	1.25	1.000	1	
1,2,3,7,8,9-HxCDD	35.1		0.297	2.97	1.24	1.008	1	
1,2,3,4,6,7,8-HpCDD	4240	BE	3.55	2.97	1.04	1.000	1	
OCDD	47500	BE	0.400	5.94	0.90	1.000	1	
2,3,7,8-TCDF	2.05	С	0.0759	1.19	0.67	1.001	1	
1,2,3,7,8-PeCDF	2.12	JK	0.176	2.97	1.79	1.000	1	
2,3,4,7,8-PeCDF	1.52	J	0.164	2.97	1.61	1.022	1	
1,2,3,4,7,8-HxCDF	22.5		0.932	2.97	1.24	1.000	1	
1,2,3,6,7,8-HxCDF	5.82		0.874	2.97	1.24	1.003	1	
1,2,3,7,8,9-HxCDF	2.15	J	1.02	2.97	1.33	1.035	1	
2,3,4,6,7,8-HxCDF	14.1		0.911	2.97	1.29	1.015	1	
1,2,3,4,6,7,8-HpCDF	1020	BE	1.26	2.97	1.04	1.000	1	
1,2,3,4,7,8,9-HpCDF	71.2		1.60	2.97	1.03	1.034	1	
OCDF	7940	Е	0.365	5.94	0.89	1.004	1	
Total Tetra-Dioxins	16.5		0.146	1.19	0.81		1	
Total Penta-Dioxins	52.3		0.240	2.97	1.56		1	
Total Hexa-Dioxins	523		0.296	2.97	1.23		1	
Total Hepta-Dioxins	6560		3.55	2.97	1.04		1	
Total Tetra-Furans	18.8		0.0759	1.19	0.86		1	
Total Penta-Furans	64.9		0.164	2.97	1.61		1	
Total Hexa-Furans	264		0.874	2.97	1.26		1	
Total Hepta-Furans	1100		1.26	2.97	1.04		1	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1530
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name: Lab Code:	T3-Comp E0900587-016	Units: Basis: Percent Solids:	Percent Dry 77.2

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/7/09 1321
Prep Method:	Method	Date Extracted:	8/3/09
Sample Amount:	10.895g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P104370	Blank File Name:	U132415
ICAL Date:	07/02/08	Cal Ver. File Name:	P104361

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDD	1000	721.291	72	40-135	0.77	1.007	
13C-1,2,3,7,8-PeCDD	1000	524.218	52	40-135	1.56	1.160	
13C-1,2,3,6,7,8-HxCDD	2500	1916.147	77	40-135	1.25	0.993	
13C-1,2,3,4,6,7,8-HpCDD	2500	1398.464	56	40-135	1.07	1.069	
13C-OCDD	5000	2898.781	58	40-135	0.89	1.151	
13C-2,3,7,8-TCDF	1000	765.598	77	40-135	0.78	0.979	
13C-1,2,3,7,8-PeCDF	1000	641.579	64	40-135	1.57	1.124	
13C-1,2,3,4,7,8-HxCDF	2500	1970.036	79	40-135	0.51	0.972	
13C-1,2,3,4,6,7,8-HpCDF	2500	1428.437	57	40-135	0.44	1.044	
37C1-2,3,7,8-TCDD	800	679.643	85	40-135	NA	1.008	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1530
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name:	T3-Comp	Units:	ng/Kg
Lab Code:	E0900587-016	Basis:	Dry

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:8290Prep Method:Method

			Dilution		TEF - Adjusted	
Analyte Name	Result	DL	Factor	TEF	Concentration	
2,3,7,8-TCDD	0.610	0.146	1	1	0.610	
1,2,3,7,8-PeCDD	4.47	0.240	1	1	4.47	
1,2,3,4,7,8-HxCDD	12.6	0.320	1	0.1	1.26	
1,2,3,6,7,8-HxCDD	108	0.296	1	0.1	10.8	
1,2,3,7,8,9-HxCDD	35.1	0.297	1	0.1	3.51	
1,2,3,4,6,7,8-HpCDD	5360	5.70	30	0.01	53.6	
OCDD	44700	3.92	30	0.0003	13.4	
2,3,7,8-TCDF	0.772	0.315	1	0.1	0.0772	
1,2,3,7,8-PeCDF	2.12	0.176	1	0.03	0.0636	
2,3,4,7,8-PeCDF	1.52	0.164	1	0.3	0.456	
1,2,3,4,7,8-HxCDF	22.5	0.932	1	0.1	2.25	
1,2,3,6,7,8-HxCDF	5.82	0.874	1	0.1	0.582	
1,2,3,7,8,9-HxCDF	2.15	1.02	1	0.1	0.215	
2,3,4,6,7,8-HxCDF	14.1	0.911	1	0.1	1.41	
1,2,3,4,6,7,8-HpCDF	1120	18.7	30	0.01	11.2	
1,2,3,4,7,8,9-HpCDF	71.2	1.60	1	0.01	0.712	
OCDF	7640	4.39	30	0.0003	2.29	

Total TEQ

107

2005 WHO TEFs, ND = 0

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1530
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name:	T3-Comp	Units:	ng/Kg
Lab Code:	E0900587-016	Basis:	Dry
Run Type:	Dilution	Percent Solids:	77.2

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/10/09 2217
Prep Method:	Method	Date Extracted:	8/3/09
Sample Amount:	10.895g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P104403	Blank File Name:	U132415
ICAL Date:	07/02/08	Cal Ver. File Name:	P104397

Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	ND	U	2.74	35.7			30	
1,2,3,7,8-PeCDD	ND	U	3.15	89.2			30	
1,2,3,4,7,8-HxCDD	17.7	J	3.44	89.2	1.32	0.998	30	
1,2,3,6,7,8-HxCDD	103		3.13	89.2	1.19	1.000	30	
1,2,3,7,8,9-HxCDD	45.5	J	3.18	89.2	1.28	1.008	30	
1,2,3,4,6,7,8-HpCDD	5360	В	5.70	89.2	1.05	1.000	30	
OCDD	44700	В	3.92	178	0.90	1.000	30	
2,3,7,8-TCDF	ND	U	2.00	35.7			30	
1,2,3,7,8-PeCDF	ND	U	3.36	89.2			30	
2,3,4,7,8-PeCDF	ND	U	3.18	89.2			30	
1,2,3,4,7,8-HxCDF	25.8	J	4.50	89.2	1.16	1.000	30	
1,2,3,6,7,8-HxCDF	8.16	J	4.21	89.2	1.11	1.003	30	
1,2,3,7,8,9-HxCDF	ND	U	5.03	89.2			30	
2,3,4,6,7,8-HxCDF	23.5	J	4.57	89.2	1.41	1.015	30	
1,2,3,4,6,7,8-HpCDF	1120	В	18.7	89.2	1.08	1.000	30	
1,2,3,4,7,8,9-HpCDF	95.9		23.7	89.2	1.19	1.034	30	
OCDF	7640		4.39	178	0.88	1.004	30	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1530
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name:	T3-Comp	Units:	Percent
Lab Code:	E0900587-016	Basis:	Dry
Run Type:	Dilution	Percent Solids:	77.2

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/10/09 2217
Prep Method:	Method	Date Extracted:	8/3/09
Sample Amount:	10.895g	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P104403	Blank File Name:	U132415
ICAL Date:	07/02/08	Cal Ver. File Name:	P104397

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDD	1390	1291.894	93	40-135	0.78	1.007	
13C-1,2,3,7,8-PeCDD	1920	1174.526	61	40-135	1.57	1.161	
13C-1,2,3,6,7,8-HxCDD	3250	3057.368	94	40-135	1.26	0.993	
13C-1,2,3,4,6,7,8-HpCDD	4460	3185.122	71	40-135	1.08	1.068	
13C-OCDD	8620	7178.636	83	40-135	0.91	1.150	
13C-2,3,7,8-TCDF	1300	1290.576	99	40-135	0.79	0.979	
13C-1,2,3,7,8-PeCDF	1560	1213.971	78	40-135	1.57	1.125	
13C-1,2,3,4,7,8-HxCDF	3160	3114.612	98	40-135	0.52	0.972	
13C-1,2,3,4,6,7,8-HpCDF	4390	3705.172	84	40-135	0.45	1.044	
37Cl-2,3,7,8-TCDD	800	29.434	110	40-135	NA	1.007	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	7/29/09 1530
Sample Matrix:	Soil	Date Received:	7/31/09
Sample Name:	T3-Comp	Units:	ng/Kg
Lab Code:	E0900587-016	Basis:	Dry
Run Type:	Reanalysis	Percent Solids:	77.2

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method: Prep Method: Sample Amount: Data File Name:	8290 Method 10.895g P203634								Date Analyzed: Date Extracted: Instrument Name: GC Column: Blank File Name:	8/7/09 2343 8/3/09 E-HRMS-04 DB-225 P203627
ICAL Date:	03/16/09							(Cal Ver. File Name:	P203625
Analyte Name		Result	Q	EDL	М	IRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDF		0.772	J	0.315	1	.19	0.75	1.001	1	
Labeled Compounds		Spike Conc.(pg)		Conc. Found (pg)	%Rec	Q	Control Limits	Io Ra	n tio RRT	
13C-2,3,7,8-TCDF		1000		591.059	59		40-135	0.	75 1.059	
37Cl-2,3,7,8-TCDD		800		843.490	105		40-135	N	A 0.988	

Analytical Report

Client: Project: Sample Matrix:	NA							Service R Date Co Date Re	Request: ollected: eceived:	NA NA
Sample Name: Lab Code: Run Type:								Percen	Units: Basis: t Solids:	
Analytical Method: Prep Method:										
Analytical Method: Prep Method: Sample Amount:								Date An Date Ext Instrument	nalyzed: tracted: t Name:	
Data File Name: ICAL Date:								GC C Blank File Cal Ver. File	Column: e Name: e Name:	
Analyte Name		Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	Date Analyz	Date ed Extracted
Analyte Name		Result	Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor		
Labeled Compounds		Spike Conc.()		Conc. Found ()	%Rec Q	Control Limits	Ic Ra	on atio R	RT	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name: Lab Code:	Method Blank FO0900289-01	Units: Basis:	ng/Kg Dry
Lab Cout.		Dasis.	DIY

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/4/09 1858
Prep Method:	Method	Date Extracted:	7/31/09
Sample Amount:	10.000g	Instrument Name:	E-HRMS-01
		GC Column:	DB-5
Data File Name:	U132365	Blank File Name:	U132365
ICAL Date:	07/31/09	Cal Ver. File Name:	U132363

					Ion		Dilution	
Analyte Name	Result	Q	EDL	MRL	Ratio	RRT	Factor	
2,3,7,8-TCDD	ND	U	0.126	1.00			1	
1,2,3,7,8-PeCDD	ND	U	0.101	2.50			1	
1,2,3,4,7,8-HxCDD	ND	U	0.182	2.50			1	
1,2,3,6,7,8-HxCDD	ND	U	0.173	2.50			1	
1,2,3,7,8,9-HxCDD	ND	U	0.178	2.50			1	
1,2,3,4,6,7,8-HpCDD	ND	U	0.238	2.50			1	
OCDD	2.23	J	0.288	5.00	0.89	1.000	1	
2,3,7,8-TCDF	ND	U	0.108	1.00			1	
1,2,3,7,8-PeCDF	ND	U	0.0623	2.50			1	
2,3,4,7,8-PeCDF	ND	U	0.0601	2.50			1	
1,2,3,4,7,8-HxCDF	ND	U	0.134	2.50			1	
1,2,3,6,7,8-HxCDF	ND	U	0.132	2.50			1	
1,2,3,7,8,9-HxCDF	ND	U	0.161	2.50			1	
2,3,4,6,7,8-HxCDF	ND	U	0.143	2.50			1	
1,2,3,4,6,7,8-HpCDF	ND	U	0.179	2.50			1	
1,2,3,4,7,8,9-HpCDF	ND	U	0.227	2.50			1	
OCDF	ND	U	0.362	5.00			1	
Total Tetra-Dioxins	ND	U	0.126	1.00			1	
Total Penta-Dioxins	ND	U	0.101	2.50			1	
Total Hexa-Dioxins	ND	U	0.173	2.50			1	
Total Hepta-Dioxins	ND	U	0.238	2.50			1	
Total Tetra-Furans	ND	U	0.108	1.00			1	
Total Penta-Furans	ND	U	0.0601	2.50			1	
Total Hexa-Furans	ND	U	0.132	2.50			1	
Total Hepta-Furans	ND	U	0.179	2.50			1	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Method Blank	Units:	Percent
Lab Code:	EQ0900289-01	Basis:	Dry

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/4/09 1858
Prep Method:	Method	Date Extracted:	7/31/09
Sample Amount:	10.000g	Instrument Name:	E-HRMS-01
		GC Column:	DB-5
Data File Name:	U132365	Blank File Name:	U132365
ICAL Date:	07/31/09	Cal Ver. File Name:	U132363

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDD	1000	689.976	69	40-135	0.76	1.008	
13C-1,2,3,7,8-PeCDD	1000	760.404	76	40-135	1.58	1.167	
13C-1,2,3,6,7,8-HxCDD	2500	1700.578	68	40-135	1.22	0.992	
13C-1,2,3,4,6,7,8-HpCDD	2500	1549.192	62	40-135	1.05	1.069	
13C-OCDD	5000	2903.306	58	40-135	0.90	1.152	
13C-2,3,7,8-TCDF	1000	735.752	74	40-135	0.82	0.979	
13C-1,2,3,7,8-PeCDF	1000	731.360	73	40-135	1.57	1.129	
13C-1,2,3,4,7,8-HxCDF	2500	1598.948	64	40-135	0.52	0.972	
13C-1,2,3,4,6,7,8-HpCDF	2500	1697.986	68	40-135	0.44	1.045	
37Cl-2,3,7,8-TCDD	800	678.132	85	40-135	NA	1.008	

Analytical Report

st: E0900587
d: NA
d: NA
ts: ng/Kg is: Dry
es :e re nit

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/6/09 1756
Prep Method:	Method	Date Extracted:	8/3/09
Sample Amount:	10.000g	Instrument Name:	E-HRMS-01
		GC Column:	DB-5
Data File Name:	U132415	Blank File Name:	U132415
ICAL Date:	07/31/09	Cal Ver. File Name:	U132413

					lon		Dilution	
Analyte Name	Result	Q	EDL	MRL	Ratio	RRT	Factor	
2,3,7,8-TCDD	ND	U	0.0670	1.00			1	
1,2,3,7,8-PeCDD	ND	U	0.0800	2.50			1	
1,2,3,4,7,8-HxCDD	ND	U	0.112	2.50			1	
1,2,3,6,7,8-HxCDD	ND	U	0.107	2.50			1	
1,2,3,7,8,9-HxCDD	ND	U	0.110	2.50			1	
1,2,3,4,6,7,8-HpCDD	1.14	J	0.273	2.50	0.91	1.000	1	
OCDD	2.26	JK	0.220	5.00	1.18	1.000	1	
2,3,7,8-TCDF	ND	U	0.108	1.00			1	
1,2,3,7,8-PeCDF	ND	U	0.0765	2.50			1	
2,3,4,7,8-PeCDF	ND	U	0.0738	2.50			1	
1,2,3,4,7,8-HxCDF	ND	U	0.0782	2.50			1	
1,2,3,6,7,8-HxCDF	ND	U	0.0770	2.50			1	
1,2,3,7,8,9-HxCDF	ND	U	0.0939	2.50			1	
2,3,4,6,7,8-HxCDF	ND	U	0.0832	2.50			1	
1,2,3,4,6,7,8-HpCDF	0.395	JK	0.222	2.50	1.24	1.000	1	
1,2,3,4,7,8,9-HpCDF	ND	U	0.282	2.50			1	
OCDF	ND	U	0.213	5.00			1	
Total Tetra-Dioxins	ND	U	0.0670	1.00			1	
Total Penta-Dioxins	ND	U	0.0800	2.50			1	
Total Hexa-Dioxins	ND	U	0.107	2.50			1	
Total Hepta-Dioxins	2.51		0.273	2.50	0.91		1	
Total Tetra-Furans	ND	U	0.108	1.00			1	
Total Penta-Furans	ND	U	0.0738	2.50			1	
Total Hexa-Furans	ND	U	0.0770	2.50			1	
Total Hepta-Furans	ND	U	0.222	2.50			1	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Method Blank	Units:	Percent
Lab Code:	EQ0900291-01	Basis:	Dry

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/6/09 1756
Prep Method:	Method	Date Extracted:	8/3/09
Sample Amount:	10.000g	Instrument Name:	E-HRMS-01
		GC Column:	DB-5
Data File Name:	U132415	Blank File Name:	U132415
ICAL Date:	07/31/09	Cal Ver. File Name:	U132413

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDD	1000	646.861	65	40-135	0.76	1.007	
13C-1,2,3,7,8-PeCDD	1000	757.130	76	40-135	1.60	1.167	
13C-1,2,3,6,7,8-HxCDD	2500	1549.136	62	40-135	1.29	0.992	
13C-1,2,3,4,6,7,8-HpCDD	2500	1419.633	57	40-135	1.08	1.069	
13C-OCDD	5000	2611.598	52	40-135	0.91	1.152	
13C-2,3,7,8-TCDF	1000	669.133	67	40-135	0.79	0.978	
13C-1,2,3,7,8-PeCDF	1000	740.419	74	40-135	1.65	1.129	
13C-1,2,3,4,7,8-HxCDF	2500	1580.967	63	40-135	0.53	0.972	
13C-1,2,3,4,6,7,8-HpCDF	2500	1662.723	67	40-135	0.45	1.045	
37C1-2,3,7,8-TCDD	800	627.928	78	40-135	NA	1.008	

Accuracy and Precision

19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 <u>www.caslab.com</u>

An Employee Owned Company

QA/QC Report

Client:Barr Engineering CompanyProject:Joslyn Site/23/27-1102009448Sample Matrix:Soil

Service Request: E0900587 Date Analyzed: 8/ 5/09

Lab Control Sample Summary

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	
Prep Method:	

8290 Method Units: ng/Kg Basis: Dry

Extraction Lot: 92275

La	b Control San	iple	Duplicat	te Lab Contro	l Sample			
	EQ0900289-02	2		EQ0900289-03	3	% Rec		RPD
Result	Expected	% Rec	Result	Expected	% Rec	Limits	RPD	Limit
20.4	20.0	102	20.6	20.0	103	79 - 128	1	20
42.7	50.0	85	43.2	50.0	86	78 - 126	1	20
50.2	50.0	100	49.6	50.0	99	71 - 130	1	20
47.2	50.0	94	47.9	50.0	96	80 - 128	2	20
49.8	50.0	100	48.3	50.0	97	70 - 130	3	20
50.5	50.0	101	51.3	50.0	103	70 - 130	2	20
101	100	101	101	100	101	80 - 130	0	20
20.5	20.0	103	20.1	20.0	101	73 - 126	2	20
51.8	50.0	104	53.0	50.0	106	71 - 130	2	20
43.6	50.0	87	44.2	50.0	88	72 - 121	1	20
49.8	50.0	100	50.4	50.0	101	74 - 129	1	20
54.6	50.0	109	54.6	50.0	109	73 - 128	0	20
47.4	50.0	95	44.8	50.0	90	70 - 130	5	20
48.3	50.0	97	48.4	50.0	97	71 - 125	0	20
40.2	50.0	80	40.4	50.0	81	70 - 130	1	20
43.3	50.0	87	42.4	50.0	85	78 - 130	2	20
99.9	100	100	104	100	104	70 - 130	4	20
	La Result 20.4 42.7 50.2 47.2 49.8 50.5 101 20.5 51.8 43.6 49.8 54.6 47.4 48.3 40.2 43.3 99.9	Lab Control Sam EQ0900289-02 Result Expected 20.4 20.0 42.7 50.0 50.2 50.0 47.2 50.0 49.8 50.0 50.5 50.0 101 100 20.5 20.0 51.8 50.0 49.8 50.0 43.6 50.0 47.4 50.0 47.4 50.0 43.3 50.0 43.3 50.0 40.2 50.0 43.3 50.0	Lab Control Sample EQ0900289-02 Result Expected % Rec 20.4 20.0 102 42.7 50.0 85 50.2 50.0 100 47.2 50.0 94 49.8 50.0 100 50.5 50.0 101 101 100 101 20.5 20.0 103 51.8 50.0 104 43.6 50.0 87 49.8 50.0 100 54.6 50.0 95 48.3 50.0 97 40.2 50.0 80 43.3 50.0 87	Lab Control Sample EQ0900289-02Duplicat DuplicatResultExpected% RecResult20.420.010220.642.750.08543.250.250.010049.647.250.09447.949.850.010048.350.550.010151.310110010110120.520.010320.151.850.010453.043.650.08744.249.850.010050.454.650.010954.647.450.09544.848.350.09748.440.250.08040.443.350.08742.499.9100100104	Lab Control Sample EQ0900289-02 Duplicate Lab Contro EQ0900289-02 Result Expected % Rec Result Expected 20.4 20.0 102 20.6 20.0 42.7 50.0 85 43.2 50.0 50.2 50.0 100 49.6 50.0 47.2 50.0 94 47.9 50.0 49.8 50.0 100 48.3 50.0 101 100 101 100 101 20.5 20.0 103 20.1 20.0 43.6 50.0 104 53.0 50.0 49.8 50.0 100 50.4 50.0 43.6 50.0 87 44.2 50.0 43.6 50.0 109 54.6 50.0 48.3 50.0 109 54.6 50.0 48.3 50.0 97 48.4 50.0 40.2 50.0 80 40.4 50.0	Lab Control Sample EQ0900289-02 Duplicate Lab Control Sample EQ0900289-03 Result Expected % Rec Result Expected % Rec 20.4 20.0 102 20.6 20.0 103 42.7 50.0 85 43.2 50.0 86 50.2 50.0 100 49.6 50.0 99 47.2 50.0 94 47.9 50.0 96 49.8 50.0 100 48.3 50.0 97 50.5 50.0 101 51.3 50.0 103 101 100 101 101 101 101 20.5 20.0 103 20.1 20.0 101 51.8 50.0 104 53.0 50.0 106 43.6 50.0 87 44.2 50.0 88 49.8 50.0 109 54.6 50.0 109 47.4 50.0 95 44.8 50.0	Lab Control Sample Duplicate Lab Control Sample W Rec EQ0900289-02 EQ0900289-03 % Rec Result Expected % Rec Result Expected % Rec 20.4 20.0 102 20.6 20.0 103 79 - 128 42.7 50.0 85 43.2 50.0 86 78 - 126 50.2 50.0 100 49.6 50.0 99 71 - 130 47.2 50.0 94 47.9 50.0 96 80 - 128 49.8 50.0 100 48.3 50.0 97 70 - 130 50.5 50.0 101 51.3 50.0 103 70 - 130 101 100 101 100 101 73 - 126 51.8 50.0 103 20.1 20.0 101 73 - 126 51.4 50.0 104 53.0 50.0 106 71 - 130 43.6 50.0 109 54.6 5	Lab Control Sample Duplicate Lab Control Sample EQ0900289-02 % Rec Result Expected % Rec Result Expected % Rec Limits RPD 20.4 20.0 102 20.6 20.0 103 79 - 128 1 42.7 50.0 85 43.2 50.0 86 78 - 126 1 50.2 50.0 100 49.6 50.0 99 71 - 130 1 47.2 50.0 94 47.9 50.0 96 80 - 128 2 49.8 50.0 100 48.3 50.0 97 70 - 130 3 50.5 50.0 101 51.3 50.0 103 70 - 130 2 101 100 101 101 100 101 80 - 130 0 20.5 20.0 103 20.1 20.0 101 73 - 126 2 51.8 50.0 104 53.0 50.0 106

QA/QC Report

Client:Barr Engineering CompanyProject:Joslyn Site/23/27-1102009448Sample Matrix:Soil

8290

Method

Lab Control Sample Summary

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	
Prep Method:	

Units: ng/Kg Basis: Dry

Extraction Lot: 92470

Service Request: E0900587

Date Analyzed: 8/ 7/09

La	b Control Sam	ple	
]	EQ0900291-02	2	% Rec
Result	Expected	% Rec	Limits
21.6	20.0	108	79 - 128
45.4	50.0	91	78 - 126
49.6	50.0	99	71 - 130
49.9	50.0	100	80 - 128
50.9	50.0	102	70 - 130
49.1	50.0	98	70 - 130
100	100	100	80 - 130
21.3	20.0	107	73 - 126
52.4	50.0	105	71 - 130
49.0	50.0	98	72 - 121
49.9	50.0	100	74 - 129
57.2	50.0	114	73 - 128
50.2	50.0	100	70 - 130
50.1	50.0	100	71 - 125
42.3	50.0	85	70 - 130
47.7	50.0	95	78 - 130
105	100	105	70 - 130
	Lal Result 21.6 45.4 49.6 49.9 50.9 49.1 100 21.3 52.4 49.0 49.9 57.2 50.2 50.1 42.3 47.7 105	Lab Control Sam EQ0900291-02 Result Expected 21.6 20.0 45.4 50.0 49.6 50.0 49.9 50.0 49.9 50.0 49.1 50.0 100 100 21.3 20.0 52.4 50.0 49.9 50.0 49.9 50.0 50.2 50.0 50.2 50.0 50.1 50.0 42.3 50.0 47.7 50.0 105 100	Lab Control Sample EQ0900291-02 Result Expected % Rec 21.6 20.0 108 45.4 50.0 91 49.6 50.0 99 49.9 50.0 100 50.9 50.0 102 49.1 50.0 98 100 100 100 21.3 20.0 107 52.4 50.0 98 49.9 50.0 100 57.2 50.0 100 57.2 50.0 100 50.1 50.0 100 50.2 50.0 100 50.1 50.0 100 50.1 50.0 100 42.3 50.0 85 47.7 50.0 95 105 100 105

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Lab Control Sample	Units:	ng/Kg
Lab Code:	EQ0900289-02	Basis:	Dry

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/5/09 1144
Prep Method:	Method	Date Extracted:	7/31/09
Sample Amount:	10.000g	Instrument Name:	E-HRMS-01
		GC Column:	DB-5
Data File Name:	U132384	Blank File Name:	U132365
ICAL Date:	07/31/09	Cal Ver. File Name:	U132377

.

Analyte Name	Result Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	20.4	0.0481	1.00	0.80	1.001	1	
1,2,3,7,8-PeCDD	42.7	0.0435	2.50	1.55	1.000	1	
1,2,3,4,7,8-HxCDD	50.2	0.116	2.50	1.21	0.998	1	
1,2,3,6,7,8-HxCDD	47.2	0.110	2.50	1.27	1.000	1	
1,2,3,7,8,9-HxCDD	49.8	0.113	2.50	1.25	1.008	1	
1,2,3,4,6,7,8-HpCDD	50.5	0.120	2.50	1.06	1.000	1	
OCDD	101	0.397	5.00	0.92	1.000	1	
2,3,7,8-TCDF	20.5	0.0404	1.00	0.76	1.001	1	
1,2,3,7,8-PeCDF	51.8	0.0307	2.50	1.57	1.001	1	
2,3,4,7,8-PeCDF	43.6	0.0296	2.50	1.50	1.023	1	
1,2,3,4,7,8-HxCDF	49.8	0.0769	2.50	1.23	1.001	1	
1,2,3,6,7,8-HxCDF	54.6	0.0757	2.50	1.26	1.004	1	
1,2,3,7,8,9-HxCDF	47.4	0.0924	2.50	1.24	1.036	1	
2,3,4,6,7,8-HxCDF	48.3	0.0818	2.50	1.25	1.017	1	
1,2,3,4,6,7,8-HpCDF	40.2	0.306	2.50	1.01	1.000	1	
1,2,3,4,7,8,9-HpCDF	43.3	0.388	2.50	1.02	1.034	1	
OCDF	99.9	0.331	5.00	0.89	1.004	1	
Total Tetra-Dioxins	20.4	0.0481	1.00	0.80		1	
Total Penta-Dioxins	42.7	0.0435	2.50	1.55		1	
Total Hexa-Dioxins	147	0.110	2.50	1.21		1	
Total Hepta-Dioxins	50.5	0.120	2.50	1.06		1	
Total Tetra-Furans	20.5	0.0404	1.00	0.76		1	
Total Penta-Furans	95.4	0.0296	2.50	1.57		1	
Total Hexa-Furans	200	0.0757	2.50	1.23		1	
Total Hepta-Furans	83.5	0.306	2.50	1.01		1	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Lab Control Sample	Units:	Percent
Lab Code:	EQ0900289-02	Basis:	Dry

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/5/09 1144
Prep Method:	Method	Date Extracted:	7/31/09
Sample Amount:	10.000g	Instrument Name:	E-HRMS-01
		GC Column:	DB-5
Data File Name:	U132384	Blank File Name:	U132365
ICAL Date:	07/31/09	Cal Ver. File Name:	U132377

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec	Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDD	1000	618.300	62		40-135	0.79	1.008	
13C-1,2,3,7,8-PeCDD	1000	642.141	64		40-135	1.61	1.167	
13C-1,2,3,6,7,8-HxCDD	2500	1774.359	71		40-135	1.26	0.992	
13C-1,2,3,4,6,7,8-HpCDD	2500	1473.149	59		40-135	1.07	1.069	
13C-OCDD	5000	2457.088	49		40-135	0.90	1.152	
13C-2,3,7,8-TCDF	1000	696.008	70		40-135	0.78	0.979	
13C-1,2,3,7,8-PeCDF	1000	679.585	68		40-135	1.60	1.129	
13C-1,2,3,4,7,8-HxCDF	2500	1665.773	67		40-135	0.52	0.971	
13C-1,2,3,4,6,7,8-HpCDF	2500	1639.855	66		40-135	0.44	1.045	
37Cl-2,3,7,8-TCDD	800	605.247	76		40-135	NA	1.009	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Lab Control Sample	Units:	ng/Kg
Lab Code:	EQ0900291-02	Basis:	Dry

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/7/09 0154
Prep Method:	Method	Date Extracted:	8/3/09
Sample Amount:	10.000g	Instrument Name:	E-HRMS-01
		GC Column:	DB-5
Data File Name:	U132425	Blank File Name:	U132415
ICAL Date:	07/31/09	Cal Ver. File Name:	U132413

.

Analyte Name	Result Q	EDL	MRL	lon Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	21.6	0.0790	1.00	0.77	1.001	1	
1,2,3,7,8-PeCDD	45.4	0.0711	2.50	1.57	1.000	1	
1,2,3,4,7,8-HxCDD	49.6	0.0964	2.50	1.19	0.998	1	
1,2,3,6,7,8-HxCDD	49.9	0.0916	2.50	1.24	1.000	1	
1,2,3,7,8,9-HxCDD	50.9	0.0943	2.50	1.31	1.008	1	
1,2,3,4,6,7,8-HpCDD	49.1	0.165	2.50	1.01	1.000	1	
OCDD	100	0.384	5.00	0.89	1.000	1	
2,3,7,8-TCDF	21.3	0.0448	1.00	0.77	1.001	1	
1,2,3,7,8-PeCDF	52.4	0.0513	2.50	1.60	1.001	1	
2,3,4,7,8-PeCDF	49.0	0.0494	2.50	1.57	1.023	1	
1,2,3,4,7,8-HxCDF	49.9	0.0658	2.50	1.24	1.000	1	
1,2,3,6,7,8-HxCDF	57.2	0.0648	2.50	1.24	1.003	1	
1,2,3,7,8,9-HxCDF	50.2	0.0790	2.50	1.27	1.036	1	
2,3,4,6,7,8-HxCDF	50.1	0.0700	2.50	1.29	1.016	1	
1,2,3,4,6,7,8-HpCDF	42.3	0.322	2.50	1.03	1.000	1	
1,2,3,4,7,8,9-HpCDF	47.7	0.409	2.50	0.99	1.034	1	
OCDF	105	0.316	5.00	0.91	1.004	1	
Total Tetra-Dioxins	21.6	0.0790	1.00	0.77		1	
Total Penta-Dioxins	45.4	0.0711	2.50	1.57		1	
Total Hexa-Dioxins	150	0.0916	2.50	1.19		1	
Total Hepta-Dioxins	49.1	0.165	2.50	1.01		1	
Total Tetra-Furans	21.3	0.0448	1.00	0.77		1	
Total Penta-Furans	101	0.0494	2.50	1.60		1	
Total Hexa-Furans	207	0.0648	2.50	1.24		1	
Total Hepta-Furans	90.1	0.322	2.50	1.03		1	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Lab Control Sample	Units:	Percent
Lab Code:	EQ0900291-02	Basis:	Dry

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/7/09 0154
Prep Method:	Method	Date Extracted:	8/3/09
Sample Amount:	10.000g	Instrument Name:	E-HRMS-01
		GC Column:	DB-5
Data File Name:	U132425	Blank File Name:	U132415
ICAL Date:	07/31/09	Cal Ver. File Name:	U132413

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	1000	627.899	63	40-135	0.80	1.008
13C-1,2,3,7,8-PeCDD	1000	685.557	69	40-135	1.60	1.167
13C-1,2,3,6,7,8-HxCDD	2500	1492.993	60	40-135	1.27	0.992
13C-1,2,3,4,6,7,8-HpCDD	2500	1405.858	56	40-135	1.05	1.070
13C-OCDD	5000	2645.439	53	40-135	0.91	1.152
13C-2,3,7,8-TCDF	1000	691.266	69	40-135	0.80	0.979
13C-1,2,3,7,8-PeCDF	1000	684.739	68	40-135	1.59	1.130
13C-1,2,3,4,7,8-HxCDF	2500	1500.145	60	40-135	0.53	0.972
13C-1,2,3,4,6,7,8-HpCDF	2500	1585.233	63	40-135	0.44	1.045
37C1-2,3,7,8-TCDD	800	607.441	76	40-135	NA	1.009

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Lab Control Sample Dup	Units:	ng/Kg
Lab Code:	EQ0900289-03	Basis:	Dry

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/5/09 1232
Prep Method:	Method	Date Extracted:	7/31/09
Sample Amount:	10.000g	Instrument Name:	E-HRMS-01
		GC Column:	DB-5
Data File Name:	U132385	Blank File Name:	U132365
ICAL Date:	07/31/09	Cal Ver. File Name:	U132377

Analyte Name	Result Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	20.6	0.0671	1.00	0.74	1.001	1	
1,2,3,7,8-PeCDD	43.2	0.0405	2.50	1.61	1.000	1	
1,2,3,4,7,8-HxCDD	49.6	0.129	2.50	1.27	0.999	1	
1,2,3,6,7,8-HxCDD	47.9	0.123	2.50	1.20	1.000	1	
1,2,3,7,8,9-HxCDD	48.3	0.126	2.50	1.23	1.008	1	
1,2,3,4,6,7,8-HpCDD	51.3	0.0975	2.50	1.06	1.000	1	
OCDD	101	0.396	5.00	0.87	1.000	1	
2,3,7,8-TCDF	20.1	0.0388	1.00	0.79	1.001	1	
1,2,3,7,8-PeCDF	53.0	0.0323	2.50	1.53	1.001	1	
2,3,4,7,8-PeCDF	44.2	0.0312	2.50	1.52	1.023	1	
1,2,3,4,7,8-HxCDF	50.4	0.104	2.50	1.22	1.000	1	
1,2,3,6,7,8-HxCDF	54.6	0.102	2.50	1.23	1.003	1	
1,2,3,7,8,9-HxCDF	44.8	0.124	2.50	1.19	1.036	1	
2,3,4,6,7,8-HxCDF	48.4	0.110	2.50	1.22	1.016	1	
1,2,3,4,6,7,8-HpCDF	40.4	0.316	2.50	1.04	1.000	1	
1,2,3,4,7,8,9-HpCDF	42.4	0.401	2.50	1.04	1.034	1	
OCDF	104	0.306	5.00	0.90	1.004	1	
Total Tetra-Dioxins	20.6	0.0671	1.00	0.74		1	
Total Penta-Dioxins	43.2	0.0405	2.50	1.61		1	
Total Hexa-Dioxins	146	0.123	2.50	1.27		1	
Total Hepta-Dioxins	51.3	0.0975	2.50	1.06		1	
Total Tetra-Furans	20.1	0.0388	1.00	0.79		1	
Total Penta-Furans	97.2	0.0312	2.50	1.53		1	
Total Hexa-Furans	198	0.102	2.50	1.22		1	
Total Hepta-Furans	82.8	0.316	2.50	1.04		1	

Analytical Report

Client:	Barr Engineering Company	Service Request:	E0900587
Project:	Joslyn Site/23/27-1102009448	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Lab Control Sample Dup	Units:	Percent
Lab Code:	EQ0900289-03	Basis:	Dry

Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analytical Method:	8290	Date Analyzed:	8/5/09 1232
Prep Method:	Method	Date Extracted:	7/31/09
Sample Amount:	10.000g	Instrument Name:	E-HRMS-01
		GC Column:	DB-5
Data File Name:	U132385	Blank File Name:	U132365
ICAL Date:	07/31/09	Cal Ver. File Name:	U132377

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDD	1000	608.563	61	40-135	0.77	1.008	
13C-1,2,3,7,8-PeCDD	1000	625.651	63	40-135	1.57	1.167	
13C-1,2,3,6,7,8-HxCDD	2500	1828.753	73	40-135	1.26	0.992	
13C-1,2,3,4,6,7,8-HpCDD	2500	1502.294	60	40-135	1.06	1.069	
13C-OCDD	5000	2445.654	49	40-135	0.91	1.152	
13C-2,3,7,8-TCDF	1000	700.586	70	40-135	0.78	0.979	
13C-1,2,3,7,8-PeCDF	1000	651.807	65	40-135	1.56	1.129	
13C-1,2,3,4,7,8-HxCDF	2500	1723.353	69	40-135	0.52	0.972	
13C-1,2,3,4,6,7,8-HpCDF	2500	1707.187	68	40-135	0.44	1.045	
37Cl-2,3,7,8-TCDD	800	593.167	74	40-135	NA	1.008	

Chain of Custody

19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 <u>www.caslab.com</u>

An Employee Owned Company

									0.0000000000000000000000000000000000000]	Num	ıber	of	Con	tainers	/Pro	eser	vati	ve		Potra and a second second	~~~~~		_		COC	1	of	Y	
4700 West Minneapolis (952) 832-2	77th Street s, MN 55435 2600	4803					·.) *I	2)3)	*3			Wat						<i>I</i> * (H(MeUH)*1	ed)	res.) *2 10	unpres.)		rs	P	rojec	Mar	nager:	John	<u> </u>	lut
Project Number $\frac{1}{2}, \frac{3}{2}, \frac{7}{2}, \frac{7}$. (.) . 0 .	20,0	0.'	9 0	4.4.	8	ics (Pres	rganics *	HNO.	eserved)	(04) *4	e (H ₂ SO	cetate)	(-0-1	1507			red MeC	oz tared h	npreserv	4-oz unp	stic vial,	(~)	Containe	P	rojec	t Con	tact:_	Mid	nael	Dupa
Project Name		Ν	١ō	2	795	5	Organ	tile O	d Meta	(Unpr	(NaOH	s (H ₂ S	Greas	Zn Ad	SceN)	(I)			-oz ta	EX (2-0	-02 141 2-02 U	2 or 4	re (pla	2/5	of of	5 S	ampl	ed by	: <u>Al</u>	ec C	kini	dson
Sample Identification	Colle	ection	ater U	Matrix	Typ		olatile	mivola	15SOLVE	eneral	/anide	utrient	il and	Ifide	<u>ctnane</u> acteria	RO (H			OCs (2	XU, BT	etals (/OCs	Moistu	U iok.	tal No		abora	tory:	<u> </u>	t-S		
1	Date	Time	Ä	S S	<u> 5</u> 3	ŏ	ž	S		15	0	Ìź	0	is is	≅ œ				Š	5 4		S	%	-	T		20160-000000		Rema	arks:		
SBAI-U	7-29-09	0900		X	X											_									ĺ							
2. SBAI-L		6905		X	X																			-	(
3.5BAZ-U		0930		¥	X																			c para								
4.SBAZ-L		0935	-	X	X																											
5.5BA3-U		0945	-	X	X																			, and the second second	California							
6. SBA3-L		0950		X	Y																			(\sum	· 1+1	X			
7. SBAH-U		0955		X	X																			-		T						
8. SBAH-L		1000		X	X																				1							
9. SBAS-U		1020		K	X																											
10. SBAS-L		1075		X	X																			-			J					
11. Cine A-U		1030		X	X																			(and the second	C.metalana	(internet	ZA	indy	122	for		
12. Line A-L		1035		X	X																				1)	ſ	Drox	iv->['	CJ10	<u>≈∽ }</u>
Common Parameter/Cont	ainer - Preserva	ation Key	Re	elinqui	shed By	: ()	اح ن	6.	~	1	On Ø	Ice? N		Dat	te 19		ime		Re	ceive	ed b	y:					****		Date	Τ	Time
 1 - Volatile Organics = BTEX, 2 - Semivolatile Organics = PA Herbicide/Pesticide/PCRs 	GRO, TPH, Full AHs, PCP, Dioxins	List , Full List,	Re	elinqui	shed By	· ·	- <u>C.V.</u> 8	110	V	**		On 1 Y	Ice? N		Dat	e l	T	ime		Re 7	ceive	ed by	y:	ę	Ľ	3	-oc	s~.	7	Date 31/0	909	Time 40
 '3 - General = pH, Chloride, Fl TDS, TS, Sulfate 	louride, Alkalinity,	, <i>TSS</i> ,	Sar	mples Sh	ipped VIA	.: []. []	Air I Othe	Freigh	at [Fed	eral 63	Expro Of]San	npler					Áir	Bil	1 Nu 75 S	imbe ?	er: ⊋ () 6 (034	189		Cust	-sed	-fre	out or
4 - Nutrients = COD, TOC, Pl Nitrogen, TKN	henols, Ammonia		Dist	tributio	on: Whit	te-Or	rigin	nal A	Acco	ompa	anie	s Sh	nipme	ent	to I	Lab;	Yellow	7 - I	Field	Сс	opy;	Pinl	< -]	Lab	Coo	ordina	tor					

Rev. 07\01

RLG Form ^p_C ត ð ain <u>N</u>S

						<u> </u>		naainaa kazantaa	NORTH MARKADO MARKAD		Nu	Number of Containers/Pres				reservative Soil					COC of					
ATOO West 77 ATOO West 77 Minneapolis, Minneapolis,	4700 West 77th Street Minneapolis, MN 55435-4803 (952) 832-2600										W	/ater					<u> Г* (Н</u>	eOH)*I	grams (b)	es.) *2	inpres.)		s	Project Mana	ager: John	Hont
Project Number 23/2, 27-1	$\frac{1}{2}, 7, -1, 1, 0, 2, 0, 0, 9, 4, 4, 4$										2SO4) *4 se (H,SO4	Acetate)		20203)			ared MeO	-oz tared M	unpreserve	4-oz unpr	lastic vial, 1	(MAIN)	Container	Project Cont	Al (al Dipe
Joslyn		N	10	27	956	Orea	tile (I Me	(Unp	NaOl	Grea	Zn /	/Mo	CI)			-0Z [EX (2	02 16 2-02	2 or	re (p		. Of	Sampled by:	Hec I	knila
Sample Identification	Colle	ction	Mat:	rix	Type dub	C	emivola	issolved	eneral	yanide (utrients il and	ulfide (lethane	RO (H			0Cs (2	RO, BTI	letals (:	VOCs (Moistu	くえのうち	otal No	Laboratory: _	<u>(</u> 4)	
1	Date	Time	× ×	, (2 2	S			0;		S S	Σc			-	>	5	<u>צ</u> ונ	ŝ	8		Ĕ	Δι	Remarks:	ilink youk tangangka pakatak kapata shar
1.2 -Comp	7-29-09	1230	X		<u> </u>																			The	The co	
T1-Comp		1400	X		X																		Ś	<u> </u>	5/1010	
· T4-1		1445	1 χ		X																		(
T3-Comp	V	1530	X		X.																1					
					1																					
				+					-																1949/0979. And Anno 1967 (1979) and an	
•												_									_	+				
															1											
			<u></u>												į.											
						CONCERNMENT OF THE OWNER																				
									-							-						-			11 Feb 2001 and Alexandric II. In Later and Anna Propagation	
ommon Parameter/Contai	ner - Preservat	tion Key	Reling	Juishe	d By:						n Ice	2?	Da	te		Time		Re	ceive	l d by	:			an ar an	Date	Time
Volatile Organics = BTEX, G Semivolatile Organics = PAH	RO, TPH, Full I Is, PCP, Dioxins,	List Full List,	Reling	luishe	HR. d By:	<u>- </u>	ani	<u>, U.Z</u>	21			2	Da	te	129	DU Time	2	Re	ceive	d by	:li		2	d G	Date	Time
Herbicide/Pesticide/PCBs General = pH, Chloride, Flow TDS, TS, Sulfate	ed VIA:	Air	Freiş	ght [Fede	eral Ex	press		ampler		1			<u>ر</u> Air	Bill	Nur Nur	nber	: 61	<u>}</u>	3489 Jas	+. seal-fr	ort n				
• Nutrients = COD, TOC, Pher Nitrogen TKN	nols, Ammonia	l	Distribu	tion:	White	Orig	inal	Acco	ompa	04 nies	UL / Shipi	/ ♂ ment	t to 1	 Lab;	Yello	w -	Field	d Co	py;	Pink	- L	ab (Coord	dinator		U

Columbia Analytical Services, Inc. Cooler Receipt Form

Client	/Project:E	arr Engineering / Jos	lyn Site	Service Req	uest:	E0900587	_
Receiv	ved: 07/31/09	Opened (Date/Tim	ne): <u>07/31/09</u>	By:		NAB	
1.	Samples were receiv	ved via? $\Box US M$	ail 🖌 Fedex		DHL Courier	• Hand Delivered	
2.	Samples were receiv	ved in: (circle)	Cooler Box	x 🗌 Other_		<i>NA</i>	
3.	Were <u>custody seals</u>	present on coolers?	✓Y	□N If yes, h	low many and where	?1 front	_
	If present, were cust	ody seals intact? [✓Y □N	If present, were	they signed and date	d?	[
4.	Is shipper's air-bill	filed?	Y √N	If not, record air	bill number:	958120603489	_
5.	Temperature of cool	ler(s) upon receipt (°C	C):0				_
6.	If applicable, list Ch	ain of Custody numb	ers:				_
7.	Were custody paper	s properly filled our (ink, signed, etc.)?		\square NA \checkmark Y \square N	-
8.	Packing material us	ed: \Box Inserts \checkmark Bu	ıbble Wrap 🗌	Blue Ice 🗹 We	et Ice Sleeves	Other	-
9.	Were the correct typ	bes of bottles used for	the tests indicat	ted?		✓Y □N	
	Did all bottles arrive	e in good condition (u	nbroken)? India	cate in the table l	below.	✓Y □N	-
	Sample ID	Bottle Count	Bottle Type	Out of Temp	Broken	Initials	
10.	Were all bottle labe	s complete (i.e. analy	vsis, ID, etc.)?			✓Y □N	[
	Did all bottle labels	and tags agree with c	ustody papers?	Indicate in the to	able below.	□Y VN	[
San	nple ID on Bottle	Sample ID on	COC	Sample I	D on Bottle	Sample ID on COC	
	SOA1-L	SBA1-L					
		1		I			

11. Additional notes, discrepancies, and resolutions:

Sample Acceptance Policy

Custody Seals (desirable, mandatory if specified in SAP):

- ✓ On outside of cooler
- ✓ Seals intact, signed and dated

Chain-of-Custody documentation (mandatory):

- ✓ Properly filled out in ink & signed by the client
- ✓ Sign and date the coc for CAS/HOU upon cooler receipt
- ✓ Coc must list method number
- ✓ If no coc was submitted with the samples, complete a CAS/HOU coc for the client

Sample Integrity (mandatory):

- ✓ Sample containers must arrive in good condition (not broken or leaking)
- ✓ Sample IDs on the bottles must match the sample IDs on the coc
- ✓ The correct type of sample bottle must be used for the method requested
- ✓ The correct number of sample containers received must agree with the documentation on the coc
- ✓ The correct sample matrix must appear on the coc
- ✓ An appropriate sample volume or weight must be received

Temperature Preservatives (varies by sample matrix):

- ✓ Aqueous and Non-aqueous samples must be shipped and stored cold, at 0 to 6°C
- ✓ Tissue samples must be shipped and stored frozen, at -20 to -10°C
- ✓ Air samples can be shipped and stored at ambient temperature, ~23°C
- ✓ The sample temperature must be recorded on the coc
- ✓ Notify a Project Chemist if any samples are outside the acceptance temperature or have compromised sample integrity – the client must decide re: replacement sample submittal or continue with the analysis

Cooler Receipt Form, CRF (mandatory):

- ✓ Cooler receipt forms must be completed for each coc & SR#
- ✓ Sample integrity issues must be documented on the CRF
- ✓ A scan of the carrier and the airbill number must be recorded in CAS LIMS

Sample Integrity Issues/Resolutions (mandatory):

- ✓ Sample integrity issues are documented on the CRF and given to the Project Chemist for resolution with the client
- ✓ Client resolution is documented in writing (typically email or on the CRF) and filed in the project folder(s)

Prep Run#:92275Team:Semivoa GCMS/AKODUR

Prep WorkFlow: OrgExtDioxS(30)
Prep Method: Method

 Status:
 Prepped

 Prep Date/Time:
 7/31/09 02:00 PM

#	Lab Code	Client ID	B#	Method /Test	рН	Matrix	Amt. Ext.	Sample Description
1	E0900545-001	AIR FILTER	.01	8290/PCDD PCDF		Filter	1.000g	blue air filter with brown dust
2	E0900557-001	0901784-02	.01	8290/PCDD PCDF		Soil	10.286g	tan sand
3	E0900557-002	0901784-03	.01	8290/PCDD PCDF		Soil	10.723g	wet tan sand
4	E0900557-003	0901784-10	.01	8290/PCDD PCDF		Soil	10.630g	tan sand
5	E0900573-011	Zone E-U	.01	8290/PCDD PCDF		Soil	10.905g	black dirt
6	E0900573-012	Zone E-L	.01	8290/PCDD PCDF		Soil	10.480g	dark brown soil with beige debris
7	E0900574-011	LineD-U	.01	8290/PCDD PCDF		Soil	10.206g	dark brown soil with plant debris
8	E0900574-012	LineD-L	.01	8290/PCDD PCDF		Soil	10.942g	dark brown soil with wood debris
9	E0900576-001	Line C-U	.01	8290/PCDD PCDF		Soil	11.819g	dark brown soil with wood debris
10	E0900576-002	Line C-L	.01	8290/PCDD PCDF		Soil	11.436g	dark brown soil with wood debris
11	E0900576-015	Line B-U	.01	8290/PCDD PCDF		Soil	11.039g	dark brown soil with wood debris
12	E0900576-016	Line B-L	.01	8290/PCDD PCDF		Soil	11.268g	dark brown soil with beige debris
13	E0900582-001	SS-55B	.01	8290/PCDD PCDF		Soil	12.700g	grey/tan wet sand
14	E0900582-002	SS-56B	.01	8290/PCDD PCDF		Soil	10.954g	red/brown clay
15	E0900582-003	SS-57B	.01	8290/PCDD PCDF		Soil	13.044g	damp grey/tan sand
16	E0900583-001	SS-55A	.01	8290/PCDD PCDF		Soil	12.989g	red/dark grey clay
17	E0900583-002	SS-56A	.01	8290/PCDD PCDF		Soil	10.083g	tan sand/dark grey clay mixture
18	E0900583-003	SS-57A	.01	8290/PCDD PCDF		Soil	10.566g	damp grey/tan sand
19	E0900587-011	Line A-U	.01	8290/PCDD PCDF		Soil	10.230g	dark brown soil with plant debris
20	E0900587-012	Line A-L	.01	8290/PCDD PCDF		Soil	10.181g	dark brown soil with beige debris
21	EQ0900289-01	MB		8290/PCDD PCDF		Solid	10.000g	
22	EQ0900289-02	LCS		8290/PCDD PCDF		Solid	10.000g	
23	EQ0900289-03	DLCS		8290/PCDD PCDF		Solid	10.000g	

Prep Run#:92275Team:Semivoa GCMS/AKODUR

Prep WorkFlow: OrgExtDioxS(30)
Prep Method: Method

 Status:
 Prepped

 Prep Date/Time:
 7/31/09 02:00 PM

Spiking Solutions

Name:	8290 Matrix Workin	ng Standard	I	Inventory ID 8514		Logbook Ref:	D10-31-5A			Expires On: 02	2/27/2019
EQ090028	39-02 100.00μL	EQ0900289-03	100.00µL								
Name:	8290/1613B Cleanup	p Working Standard	I	Inventory ID 11104		Logbook Ref:	D10-55-1A	/B		Expires On: 0	1/20/2010
E0900545- E0900574- E0900582- E0900587-	-001 100.00μL -011 100.00μL -001 100.00μL -011 100.00μL	E0900557-001 E0900574-012 E0900582-002 E0900587-012	100.00μL 100.00μL 100.00μL 100.00μL	E0900557-00210E0900576-00110E0900582-00310EQ0900289-0110	00.00µL 00.00µL 00.00µL 00.00µL	E0900557-003 E0900576-002 E0900583-001 EQ0900289-02	100.00µ 100.00µ 100.00µ 100.00µ	L E0900573-011 L E0900576-015 L E0900583-002 L EQ0900289-03	100.00μL 100.00μL 100.00μL 100.00μL	E0900573-012 E0900576-016 E0900583-003	100.00μL 100.00μL 100.00μL
Name:	8290 Internal Worki	ng Standard	I	Inventory ID 11297		Logbook Ref:	D10-57-1A			Expires On: 0'	7/31/2014
E0900545- E0900574- E0900582- E0900587-	-001 100.00μL -011 100.00μL -001 100.00μL -011 100.00μL	E0900557-001 E0900574-012 E0900582-002 E0900587-012	100.00μL 100.00μL 100.00μL 100.00μL	E0900557-00210E0900576-00110E0900582-00310EQ0900289-0110	00.00µL 00.00µL 00.00µL 00.00µL	E0900557-003 E0900576-002 E0900583-001 EQ0900289-02	100.00µ 100.00µ 100.00µ 100.00µ	L E0900573-011 L E0900576-015 L E0900583-002 L EQ0900289-03	100.00µL 100.00µL 100.00µL 100.00µL	E0900573-012 E0900576-016 E0900583-003	100.00μL 100.00μL 100.00μL
Preparati	ion Materials										
Acetone 99.5	5% Minimum	C2-16-007 (7199)		Carbon, High Purity		C2-22-003 (9451)		Ethyl Acetate 99.9% EtOAc	Minimum	C2-23-006 (9462)	
Extraction TI	himbles 43 x123	(1577)		Glass Wool		C2-13-005 (7198)		Sulfuric Acid Reage	nt Grade	C2-24-003 (9461)	
Dichlorometh Chloride) 99	hane (Methylene 9% MeCl2	C2-25-001 (9449)		Sodium Chloride Reagen NaCl	t Grade	C1-104-2 (3306)		Sodium Hydroxide F Grade NaOH	Reagent	C2-24-002 (9463)	
Sodium Sulfa Reagent Grad	ate Anhydrous de Na2SO4	C2-19-006 (7201)		Tridecane (n-Tridecane)		C2-21-002 (9459)		Hexane (n-Hexane) Minimum	98.5%	C2-25-002 (9440)	
Nonane (n-N Toluene 99.9 Preparati	Jonane) 99% 9% Minimum ion Steps	C2-21-004 (9457) C2-25-003 (9446)		Sand Reagent Grade		C1-99-1 (345)		Silica Gel Reagent C	Grade	C2-22-006 (9454)	
Step:	Extraction	Step:	Acid Clean	Step:	Silica Gel	Clean	Step:	Final Volume			
Started:	7/31/09 14:00	Started:	8/3/09 09:00	Started:	8/3/09 13:	00	Started:	8/4/09 09:00			
Finished:	7/31/09 17:30	Finished:	8/3/09 12:00	Finished:	8/3/09 17:	00	Finished:	8/4/09 11:00			
By:	AKODUR	By:	AKODUR	By:	AKODUR		By:	AKODUR			

Prep Run#:92275Team:Semivoa GCMS/AKODUR

Prep WorkFlow: OrgExtDioxS(30)
Prep Method: Method

 Status:
 Prepped

 Prep Date/Time:
 7/31/09 02:00 PM

Reviewed By:	Arthi	Kodur	Date:	8/6/09							
Chain of Custody											
Relinquished H	By:			Date:	Fxt	racts Exar	mined				
Received By:				Date:	Yes	S	No				

Prep Run#:92470Team:Semivoa GCMS/AKODUR

Prep WorkFlow: OrgExtDioxS(30)
Prep Method: Method

Status: Prepped Prep Date/Time: 8/3/09 02:00 PM

#	Lab Code	Client ID	B#	Method /Test	рН	Matrix	Amt. Ext.	Sample Description
1	E0900557-004	0901784-11	.01	8290/PCDD PCDF		Soil	10.499g	tan sand
2	E0900557-005	0901784-22	.01	8290/PCDD PCDF		Soil	10.773g	very wet tan sand
3	E0900557-006	0901784-23	.01	8290/PCDD PCDF		Soil	10.159g	tan sand
4	E0900557-007	0901784-25	.01	8290/PCDD PCDF		Soil	10.140g	tan sand
5	E0900561-001	ASH-4-D-TCLP	.01	8290/PCDD PCDF		Solid	10.292g	black dirt
6	E0900578-001	AOC328T1TRENCHE4-S0.5	.01	8290/PCDD PCDF		Soil	10.618g	brown dirt with pebbles
7	E0900578-002	AOC328T1SBPH1-S02	.01	8290/PCDD PCDF		Soil	10.408g	brown dirt with pebbles
8	E0900578-003	AOC328T1SBPH1-S02B	.01	8290/PCDD PCDF		Soil	10.461g	brown dirt with pebbles
9	E0900578-004	AOC328T1SBPH2-S0.5	.01	8290/PCDD PCDF		Soil	10.344g	brown dirt with pebbles
10	E0900578-005	AOC328T3SB007-S04	.01	8290/PCDD PCDF		Soil	10.636g	reddish brown soil
11	E0900578-006	AOC328T3SBPH3-S0.5	.01	8290/PCDD PCDF		Soil	10.185g	brown dirt with pebbles
12	E0900578-007	AOC328T3SBPH4-S0.5	.01	8290/PCDD PCDF		Soil	10.735g	reddish brown very hard dirt in clumps
13	E0900587-013	T2-Comp	.01	8290/PCDD PCDF		Soil	10.508g	dark brown soil
14	E0900587-014	T1-Comp	.01	8290/PCDD PCDF		Soil	10.283g	dark brown soil
15	E0900587-015	T4-1	.01	8290/PCDD PCDF		Soil	10.545g	dark brown soil
16	E0900587-016	T3-Comp	.01	8290/PCDD PCDF		Soil	10.895g	dark brown soil
17	E0900592-001	SS58B	.01	8290/PCDD PCDF		Soil	11.225g	dark grey mud/tan sand mixture
18	E0900592-002	SS59B	.01	8290/PCDD PCDF		Soil	11.171g	grey sand with red streaks
19	E0900593-001	SS-58A	.01	8290/PCDD PCDF		Soil	11.098g	wet grey muddy sand
20	E0900593-002	SS-59A	.01	8290/PCDD PCDF		Soil	12.297g	grey sand with red streaks
21	EQ0900291-01	MB		8290/PCDD PCDF		Solid	10.000g	
22	EQ0900291-02	LCS		8290/PCDD PCDF		Solid	10.000g	
23	EQ0900291-03	AOC328T1SBPH1-S02 MS	.01	8290/PCDD PCDF		Solid	10.491g	
24	EQ0900291-04	AOC328T1SBPH1-S02 DMS	.01	8290/PCDD PCDF		Solid	10.988g	
Preparation Information Benchsheet

Prep Run#:92470Team:Semivoa GCMS/AKODUR

Prep WorkFlow: OrgExtDioxS(30)
Prep Method: Method

Status: Prepped Prep Date/Time: 8/3/09 02:00 PM

Spiking Solutions

Name:	8290 Matrix Workin	ng Standard	In	wentory ID 8514		Logbook Ref:	D10-31-5A			Expires On: 02	2/27/2019
EQ090029	91-02 100.00µL	EQ0900291-03	100.00µL	EQ0900291-04 10	00.00µL						
Name:	8290/1613B Cleanu	p Working Standard	In	ventory ID 11295		Logbook Ref:	D10-57-2A	/B		Expires On: 08	8/04/2014
E0900557 E0900578 E0900587 E0900593	7-004 100.00μL 8-002 100.00μL 7-013 100.00μL 8-001 100.00μL	E0900557-005 E0900578-003 E0900587-014 E0900593-002	100.00µL 100.00µL 100.00µL 100.00µL	E0900557-00610E0900578-00410E0900587-01510EQ0900291-0110	00.00µL 00.00µL 00.00µL 00.00µL	E0900557-007 E0900578-005 E0900587-016 EQ0900291-02	100.00µ] 100.00µ] 100.00µ] 100.00µ]	L E0900561-001 L E0900578-006 L E0900592-001 L EQ0900291-03	100.00µL 100.00µL 100.00µL 100.00µL	E0900578-001 E0900578-007 E0900592-002 EQ0900291-04	100.00μL 100.00μL 100.00μL 100.00μL
Name:	8290 Internal Worki	ng Standard	In	ventory ID 11297		Logbook Ref:	D10-57-1A			Expires On: 0'	7/31/2014
E0900557 E0900578 E0900587 E0900593	7-004 100.00μL 8-002 100.00μL 7-013 100.00μL 8-001 100.00μL	E0900557-005 E0900578-003 E0900587-014 E0900593-002	100.00µL 100.00µL 100.00µL 100.00µL	E0900557-00610E0900578-00410E0900587-01510EQ0900291-0110	00.00µL 00.00µL 00.00µL 00.00µL	E0900557-007 E0900578-005 E0900587-016 EQ0900291-02	100.00µ] 100.00µ] 100.00µ] 100.00µ]	L E0900561-001 L E0900578-006 L E0900592-001 L EQ0900291-03	100.00μL 100.00μL 100.00μL 100.00μL	E0900578-001 E0900578-007 E0900592-002 EQ0900291-04	100.00μL 100.00μL 100.00μL 100.00μL
Preparat	ion Materials										
Acetone 99.	5% Minimum	C2-16-007 (7199)		Carbon, High Purity		C2-22-003 (9451)		Ethyl Acetate 99.9% EtOAc	Minimum	C2-23-006 (9462)	
Extraction T mm	Thimbles 43 x123	(1577)		Glass Wool		C2-13-005 (7198)		Sulfuric Acid Reager H2SO4	nt Grade	C2-24-003 (9461)	
Dichloromet Chloride) 99	thane (Methylene 9.9% MeCl2	C2-24-005 (9448)		Sodium Chloride Reagent NaCl	t Grade	C1-104-2 (3306)		Sodium Hydroxide R Grade NaOH	eagent	C2-24-002 (9463)	
Sodium Sulf Reagent Gra	fate Anhydrous ade Na2SO4	C2-19-006 (7201)		Tridecane (n-Tridecane)		C2-24-001 (9460)		Hexane (n-Hexane) 9 Minimum	98.5%	C2-25-002 (9440)	
Nonane (n-N Toluene 99.9	Nonane) 99% 9% Minimum	C2-21-004 (9457) C2-24-006 (9445)		Sand Reagent Grade		C1-99-1 (345)		Silica Gel Reagent G	rade	C2-27-007 (9456)	
Preparat	ion Steps										
Step:	Extraction	Step:	Acid Clean	Step:	Silica Gel	Clean	Step:	Final Volume			
Started:	8/3/09 14:00	Started:	8/5/09 09:00	Started:	8/6/09 08:0	00	Started:	8/6/09 08:00			
Finishea: By:	8/3/09 1/:30 AKODUR	Finished: By:	8/5/09 12:00 AKODUR	Finished: By:	8/6/09 10:0 AKODUR		Finisnea: By:	8/0/09 10:00 AKODUR			

Preparation Information Benchsheet

Prep Run#:92470Team:Semivoa GCMS/AKODUR

Prep WorkFlow: OrgExtDioxS(30) Prep Method: Method Status:PreppedPrep Date/Time:8/3/09 02:00 PM

Comments: ak	Note 8/7/09	Silcia	Clean	was	not	done (on	8/6/09	from	8-10	am.	It	was	done	on	8/5/09	was	from	12p-5p	
Reviewed By:	Arth	i Kodur		I	Date:	8/7/09	9		_											
Chain of Custo	dy																			
Relinquished	l By:					Date	: 				Ext	racts Ex	amined							
Received By:	:					Date	:				Yes	s	No							
									72 of 7	8										

Nonconformity and Corrective Action Report

NONCONFORMITY

PROCEDURE (SOP or METHO	DD): 8290 SOLID								
EVENT: Missed Holding Time QC Failure Lab Error (spilled sample, spiking error, etc.) Method Blank Contamination Login Error Project Management Error Equipment Failure Unacceptable PT Sample Result SOP Deviation Other (describe):									
SAMPLES / PROJECTS / CUSTO	OMERS / SYSTEMS AFFECTED:								
EQ0900291 – E0900587-013 DILUTIONS NEEDED	3,-014,-015-,016: HPCDD/H	PCDF LEVELS EXCEED UPPER CALIBRATION:							
DETAILED DESCRIPTION:	E0900587-013 1:80	E0900587-014 1:80							
	E0900587-015 1:30	E0900587-016 1:30							
ORIGINATOR: JEREMIAH BECK DATE: 08/10/09									

CORRECTIVE ACTION AND OUTCOME

Re-establishment of conformity must be demonstrated and documented. Describe the steps that were taken, or are planned to be taken, to correct the particular Nonconformity and prevent its reoccurrence. Include any Project Manager instructions here.

USE INTERNAL STANDARD TO DILUTE EXTRACTS

Is the data to be flagged in the Analytical Report with an appropriate qualifier? \square No \square Yes

APPROVAL AND NOTIFICATION

Supervisor Verification and Approval of Corrective Action <u>Darren Biles</u> Comments:	Date: <u>08/10/09</u>
QA PM Verification and Approval of Corrective Action Andrew Biddle 08/14/09 Comments:	Date:
Customer Notified by 🗌 Telephone 🗌 Fax 📄 E-mail 🕱 Narrative 🗌 Not notified	
Project Manager Verification and Approval of Corrective Action Date: Jane Freemyer Comments:	08/14/09
(Attach record or cite reference where record is located.) Project folder archive	

Total Solids, (Gravimetric, Dried at 110 Deg C)

Group ID: Analyst:	92958 JDIAZ			Reviewed By:	Arthi Kodur 8/6/09		
Date Acquired:	7/31/09		Date Reviewed:				
Lab Code	Client Sample Name	Test	Tare Weight	Wet Weight + Tare	Dry Weight + Tare	Percent Solids	
E0900557-001	0901784-02	8290/Total Solids	13.0530g	21.6900g	21.0200g	92.2	
E0900557-002	0901784-03	8290/Total Solids	13.0770g	25.7570g	23.4300g	81.6	
E0900557-003	0901784-10	8290/Total Solids	13.1540g	20.2800g	19.7390g	92.4	
E0900573-011	Zone E-U	8290/Total Solids	13.1030g	19.1700g	16.7410g	60.0	
E0900573-012	Zone E-L	8290/Total Solids	13.1300g	17.5490g	15.2020g	46.9	
E0900574-011	LineD-U	8290/Total Solids	13.1380g	18.3060g	16.2980g	61.1	
E0900574-012	LineD-L	8290/Total Solids	13.1400g	18.1570g	15.1960g	41.0	
E0900576-001	Line C-U	8290/Total Solids	13.1190g	17.0090g	15.7320g	67.2	
E0900576-002	Line C-L	8290/Total Solids	13.1220g	18.7190g	16.4530g	59.5	
E0900576-015	Line B-U	8290/Total Solids	13.0690g	18.8490g	15.7560g	46.5	
E0900576-016	Line B-L	8290/Total Solids	13.1240g	18.8640g	16.5950g	60.5	
E0900582-001	SS-55B	8290/Total Solids	13.1110g	35.4690g	30.3360g	77.0	
E0900582-002	SS-56B	8290/Total Solids	13.1310g	30.3280g	26.7140g	79.0	
E0900582-003	SS-57B	8290/Total Solids	13.0180g	21.0820g	19.9580g	86.1	
E0900583-001	SS-55A	8290/Total Solids	13.0940g	21.8350g	19.7850g	76.5	
E0900583-002	SS-56A	8290/Total Solids	13.0990g	18.7120g	17.3850g	76.4	
E0900583-003	SS-57A	8290/Total Solids	13.1510g	21.8810g	20.7230g	86.7	
E0900587-011	Line A-U	8290/Total Solids	13.0410g	17.8130g	15.3760g	48.9	
E0900587-012	Line A-L	8290/Total Solids	13.1490g	19.0970g	15.6780g	42.5	

Total Solids, (Gravimetric, Dried at 110 Deg C)

Group ID:	93066			Reviewed By:	Arthi Kodur	
Analyst:	AKODUR					
Date Acquired:	8/3/09			Date Reviewed:	8/7/09	
Lab Code	Client Sample Name	Test	Tare Weight	Wet Weight + Tare	Dry Weight + Tare	Percent Solids
E0900557-004	0901784-11	8290/Total Solids	13.1120g	17.9470g	17.5110g	91.0
E0900557-005	0901784-22	8290/Total Solids	13.0930g	23.6210g	21.2870g	77.8
E0900557-006	0901784-23	8290/Total Solids	13.0280g	20.9710g	20.4080g	92.9
E0900557-007	0901784-25	8290/Total Solids	13.0670g	18.9820g	18.3660g	89.6
E0900561-001	ASH-4-D-TCLP	8290/Total Solids	13.1020g	18.0770g	16.6890g	72.1
E0900578-001	AOC328T1TRENCHE4-S0.5	8290/Total Solids	13.1200g	18.6970g	18.3390g	93.6
E0900578-002	AOC328T1SBPH1-S02	8290/Total Solids	13.1450g	20.4070g	19.9570g	93.8
E0900578-003	AOC328T1SBPH1-S02B	8290/Total Solids	13.1860g	18.9580g	18.5720g	93.3
E0900578-004	AOC328T1SBPH2-S0.5	8290/Total Solids	13.1060g	18.7880g	18.4300g	93.7
E0900578-005	AOC328T3SB007-S04	8290/Total Solids	13.0110g	17.4300g	16.9780g	89.8
E0900578-006	AOC328T3SBPH3-S0.5	8290/Total Solids	13.0780g	18.3950g	18.1550g	95.5
E0900578-007	AOC328T3SBPH4-S0.5	8290/Total Solids	13.1160g	18.0330g	17.7570g	94.4
E0900587-013	T2-Comp	8290/Total Solids	13.0630g	18.1800g	16.8520g	74.0
E0900587-014	T1-Comp	8290/Total Solids	13.1470g	16.9970g	15.6720g	65.6
E0900587-015	T4-1	8290/Total Solids	13.1590g	16.2070g	14.4740g	43.1
E0900587-016	T3-Comp	8290/Total Solids	13.0900g	18.4040g	17.1930g	77.2
E0900592-001	SS58B	8290/Total Solids	13.1930g	24.0300g	22.2440g	83.5
E0900592-002	SS59B	8290/Total Solids	13.0600g	21.0960g	19.9030g	85.2
E0900593-001	SS-58A	8290/Total Solids	13.1560g	23.8510g	21.9760g	82.5
E0900593-002	SS-59A	8290/Total Solids	13.1690g	22.0110g	20.8090g	86.4
			-	-	-	

Chromatograms and Selected Ion Monitoring

19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 <u>www.caslab.com</u>

An Employee Owned Company

76 of 78

Continuing Calibration

19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 <u>www.caslab.com</u>

An Employee Owned Company

77 of 78

Initial Calibration

19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 <u>www.caslab.com</u>

An Employee Owned Company

78 of 78

August 14, 2009

Analytical Report for Service Request No: K0906873

Michael Dupay Barr Engineering 4700 West 77th Street Minneapolis, MN 55435

RE: Joslyn/23/27-1102009448

Dear Michael:

Enclosed are the results of the samples submitted to our laboratory on July 31, 2009. For your reference, these analyses have been assigned our service request number K0906873.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3358. You may also contact me via Email at LHuckestein@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

de Del

Lynda Huckestein Client Services Manager

LH/ln

Page 1 of

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	_

Barr Engineering Company Client: **Project:** Joslyn Sample Matrix: Soil

Service Request No.: K0906873 Date Received:

7/31/2009

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), and Laboratory Control Sample (LCS).

Sample Receipt

Six soil samples were received for analysis at Columbia Analytical Services on 7/31/2009. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry Parameters

No anomalies associated with the analysis of these samples were observed.

Date 8/17/09 IN Approved by

Analytical Report

Client :Barr Engineering CompanyProject Name :JoslynProject Number :23/27-1102009448Sample Matrix :SOIL

Service Request : K0906873 Date Collected : 07/29/09 Date Received : 07/31/09

Carbon, Total Organic (TOC)

Prep Method : Analysis Method	SOP ASTM D4129-82M				Units : Perc Basis : Dry	ent	
Test Notes :							
Sample Name	Lab Code	MRL	Dilution Factor	Date Prepared	Date Analyzed	Result	Result Notes
Line A-U	K0906873-001	0.05	1	8/3/2009	08/06/09	20.1	
Line A-L	K0906873-002	0.05	1	8/3/2009	08/06/09	14.4	
T2-Comp	K0906873-003	0.05	1	8/3/2009	08/06/09	7.15	
T4-1	K0906873-005	0.05	1	8/3/2009	08/06/09	28.8	
T3-Comp	K0906873-006	0.05	1	8/3/2009	08/06/09	5.75	
Method Blank	K0906873-MB	0.05	1	NA	08/06/09	ND	

QA/QC Report

Client :	Barr Engineering Comp	any			Service	Request :	K090687	73	
Project Name :	Joslyn				Date (Collected :	NA		
Project Number :	23/27-1102009448				Date 1	Received :	NA		
Sample Matrix :	SOIL				Date H	Prepared :	NA		
					Date A	Analyzed :	08/06/09	1	
			Duplicate Summary Inorganic Parameter	5					
Sample Name : Lab Code :	BatchQC K0906718-021DUP					Units : Basis :	Percent Dry		
Analyte		Prep Method	Analysis Method	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
Carbon, Total Organic	c(TOC)	SOP	ASTM D4129-82M	0.05	1.25	1.25	1.25	<1	

QA/QC Report

Client : Project Name : Project Number : Sample Matrix :	Barr Engine Joslyn 23/27-1102 SOIL	eering Compar 009448	ny Service Request : F Date Collected : M Date Received : M Date Prepared : M Date Analyzed : C						K0906873 NA NA NA 08/06/09		
			Matrix Spi Inorganic	ke Summ Paramete	ary ers						
Sample Name : Lab Code : Test Notes :	BatchQC K0906718	3-021MS					Units Basis	Percent Dry			
Analyte		Prep Method	Analysis Method	MRL	Spike Level	Sample Result	Spiked Sample Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes	
Carbon, Total Organi	c (TOC)	SOP	ASTM D4129-82M	0.05	5.19	1.25	6.26	97	75-114		

QA/QC Report

Client : Project Name : Project Number : Sample Matrix :	Barr Engineering Compar Joslyn 23/27-1102009448 SOIL	Ŋ		Service Date Date Date Date	e Reques Collected Received Prepared Analyzed	t: K0906 d: NA d: NA d: NA d: NA d: 08/06/	6873 709	
		Laborate	ory Control Sample So Inorganic Parameters	ummary				
Sample Name : Lab Code : Test Notes :	Laboratory Control Sampl K0906873-LCS	e			Unit Basi	s : Percer s : Dry	nt	
		Pren	Analysis			Percent	CAS Percent Recovery Accentance	Result
Analyte		Method	Method	True Value	Result	Recovery	Limits	Notes
Carbon, Total Organic	(TOC)	SOP	ASTM D4129-82M	0.55	0.57	104	74-123	

*4 - Nutrients = COD, 10C, Phenoi. Nitrogen, TKN	*3 - General = pH, Chloride, Flouria TDS, TS, Sulfate	*2 - Semivolatile Organics = PAHs, 1 Herbicide/Pesticide/PCBs	Common Parameter/Container	12.	11.	10.	9.	 7. V	6. TS-Comp	574-1	4. TI-Comp	3.TJ-Comp	2. Cone A-L	"Cine A-U	Chain of C 4700 West 77th BARR 4700 West 77th Project Number Project Number Jost / Jacobia Project Name Sample Identification
s, Ammonua	le, Alkalinity, TSS,	^p CP, Dioxins, Full 1	r - Preservation]) TPH Full List						4 15	14	14	el	07	23/09/10	$\frac{ustody}{Street}$ $\frac{Street}{N 55435-4803}$ $Collection$ $Date 1$
Distribution: W	Samples Shipped	List, Relinquished	Key Relinquished						30 1	45 1	X 00/	130 X	35 X	30 1	Water Matrix 279
White-Original Accompanies Shipment to Lab; Yellow - Field Copy; Pink - Lab Co	VIA: Air Freight Federal Express Sampler	By:	By: Q. n. Klowy						×		× · · · · · · · · · · · · · · · · · · ·		×	X	Comp. J QC J Volatile Organics (Pres.)*1 Semivolatile Organics *2 Dissolved Metals (HNO3) Total Metals (HNO3) Comp. Comp. Openation Openation Openation Openation Semivolatile Organics *2 Openation Op
		Un Ice? Date Time	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												Cyanide (Onpreserved) '3Cyanide (NaOH)Nutrients (H_2SO_4) *4Oil and Grease (H_2SO_4)Sulfide (Zn Acetate)MethaneBacteria ($Na_2S_2O_3$)
			of 1700												DRO (HCl) VOCs (2-oz tared MeOH)*1 GRO, BTEX (2-oz tared MeOH)*1
	Air Bill Number:	Received by	Received by:												DRO (2-oz tared) - 25 grams Metals (2-oz unpreserved) SVOCs (2 or 4-oz unpres.)*2 % Moisture (plastic vial, unpres.) To C
ordinator		(() S									P-1-1			An	Project Mana Project Conta Laboratory:
		Author Mallet	Date Time											ye for toc	010873 tor t ger: John Hunt ger: Micheel Depy ct: Micheel Depy ct: Micheel Depy Atles Danielser CAS

H:RLG\STDFORMS\Chain Of Custody Form RLG Rev. 07\01\05

	PC_	PC_ <u>k</u> Y									
Clie	ent / Project: Bervice Bequest/K09	73									
Rec	veived: <u>HMO9</u> Opened: <u>HMO9</u> By: <u>HULL</u>										
1.	Samples were received via? US Mail Fed Ex UPS DHL UGH GS PDX Co	ourier Ha	nd Deliv	ered							
2.	Samples were received in: (circle) Cooler Box Envelope Other	etimen ,	NA								
3.	Were <u>custody seals</u> on coolers? NA \bigotimes N If yes, how many and where?	F									
	If present, were custody seals intact? N If present, were they signed and dated	?	Ì	Ν							
4.	Is shipper's air-bill filed? If not, record air-bill number: <u>4581201e03459</u>	NA	Y	N							
5.	Temperature of cooler(s) upon receipt (°C):			-							
	Temperature Blank (°C): <u>5.9(TB</u> <u>IN BWAP</u> <u>NOT NEAV</u>	<u>jee)</u>		-							
	Thermometer ID:			-							
6.	If applicable, list Chain of Custody Numbers:			-							
7.	Packing material used. Inserts Baggies Bubble Wrap Gel Packs Wet Ice Sleeves Other										
8.	Were custody papers properly filled out (ink, signed, etc.)?										
9.	Did all bottles arrive in good condition (unbroken)? Indicate in the table below.	NA	Q	Ν							
10.	10. Were all sample labels complete (i.e analysis, preservation, etc.)?										
11.	11. Did all sample labels and tags agree with custody papers? Indicate in the table below										
12.	12. Were appropriate bottles/containers and volumes received for the tests indicated?										
13.	13. Were the pH-preserved bottles tested* received at the appropriate pH? Indicate in the table below										
14.	14. Were VOA vials received without headspace? Indicate in the table below.										
15.	Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection?	MA	Y	Ν							
16.	Was C12/Res negative?	<u> </u>	Y	N							
	Sample ID on Bottle Sample ID on COC Sample ID on Bottle	Sample ID on	pie ID on COC								

Sample ID	Bottle Count Bottle Type	Out of Temp	Head- space	Broke	pН	Reagent	Volume added	Reagent Lot Number	Initials	Time

*Does not include all pH preserved sample aliquots received. See sample receiving SOP (SMO-GEN). Additional Notes, Discrepancies, & Resolutions: