Supplemental West Area Characterization Report

Joslyn Manufacturing Company Site Brooklyn Center, Minnesota

May 2001 Revised October 2001

Supplemental West Area Characterization Report

Joslyn Manufacturing Company Site Brooklyn Center, Minnesota

May 2001 Revised October 2001

4700 West 77th Street Minneapolis, MN 55435 Phone: (952) 832-2600 Fax: (952) 832-2601

Supplemental West Area Characterization Report Joslyn Manufacturing Company Site Brooklyn Center, Minnesota

Table of Contents

1.0	Introd	luction1	
2.0	Invest	igative Activities	
	2.1	Surficial Soil Sampling	5
	2.2	Sediment Sampling	ŀ
	2.3	Surface Water Sampling	ļ
	2.4	Decontamination	1
3.0	Result	ts and Discussion	
	3.1	Analytical Results	
	3.2	Data Quality Assurance/Quality Control	
		3.2.1 Laboratory Procedures	
		3.2.1.1 Precision and Accuracy Data	
		3.2.1.2 Duplicate Results	
		3.2.1.3 Laboratory Split Results	
		3.2.1.4 Internal Standards	
		3.2.1.5 Method Blanks	
		3.2.1.6 Completeness	
		3.2.2 QA/QC Review Conclusions	
	3.3	Discussion	
Refe	erences		

List of Tables

Table 1 Analytical Parameters and Detection Limits
Table 2 Analytical Results: Surficial Soil Samples
Table 3 Analytical Results: Sediment Samples
Table 4 Analytical Results: Water Samples

 Table 5
 Analytical Results: Soil-Water Leach Samples

List of Figures

- Figure 1Site LocationFigure 2Site MapFigure 3West Area Sampling Subareas
- Figure 4 West Area Soil and Sediment Sample Locations

List of Appendices

Appendix A Detailed Description of the West Areas—Area/Subarea

- Appendix B Laboratory Reports
- Appendix C RPD Calculations

::ODMA\PCDOCS\DOCS\228150\1

1.0 Introduction

The Joslyn Manufacturing Co. Site is a former wood-treating facility located in Brooklyn Center, Minnesota (Figure 1). Several site investigations and response actions have been implemented for the site in accordance with the May 1985 Response Order by Consent between Joslyn Manufacturing Co. (Joslyn) and the Minnesota Pollution Control Agency (MPCA [1985]) and the July 1989 Record of Decision (1989 ROD [MPCA, 1989]). Approximately 70 percent of the site has been remediated, deleted from the MPCA's Permanent List of Priority Sites and is being developed as industrial/commercial property. This portion is being considered for deletion from the U.S. EPA's National Priority List.

The 30 percent of the site that has not been deleted from the MPCA's Permanent List of Priority Sites is referred to as the West Area (Figure 2). The West Area is approximately 10 acres in area, and consists primarily of shallow-to-deep water marsh and with forested hills. Approximately 75 percent of the West Area is Minnesota DNR-regulated wetland and virtually all of the West Area is below the 100-year frequency flood level of Twin Lakes. The West Area is located adjacent to Twin Lakes to the west, residential property to the south, and railroad tracks to the north.

The West Area was removed from the delisting process because residual contamination was identified in the West Area soils during the site-wide release sampling (Earthtech, 1999). The release sampling, conducted by Earthtech for Real Estate Recycling (the developer of the delisted portion of the site), identified pentachlorophenol (PCP), polycyclic aromatic hydrocarbons (PAHs), and dioxin/furan in the top 3-feet of soil in portions of the West Area.

Previous investigations and response actions within the West Area are summarized in the "Sampling and Analysis Plan—Supplemental West Area Characterization" (Barr, 2000). In 1981, 1986, 1997, 1998 and 1999 investigations were conducted to address, or partially address, the West Area. Three areas of visibly contaminated soils were excavated from the West Area during site remediation—one in 1989, one in 1997, and the last in 1999. These investigation and remediation areas are shown in Figure 3. While the investigation conducted in 2000 and described in this report focused on surficial soil, sediment, and surface water, previous investigations and sample collection efforts have identified contaminants of concern in some of the subsurface soils within the West Area.

Dioxin/furan compounds were not identified as primary chemicals of concern in the 1989 ROD. However, soil samples collected during release sampling had been analyzed for dioxin/furan to

::ODMA\PCDOCS\DOCS\228150\1

characterize the risk associated with limited exposure to residual soils in the context of future industrial/commercial land uses. For the West Area, where samples had been analyzed for PCP but not dioxin/furan, the MPCA developed a correlation between PCP and dioxin/furan, which was then used to estimate dioxin/furan concentrations for a limited risk assessment (MPCA, 1999). Using estimated dioxin/furan concentrations, the MPCA risk assessment staff concluded that the residual contamination in some of the West Area samples potentially exceeded industrial risk-based screening criteria.

The lack of dioxin/furan data was identified as a data gap that should be filled to better characterize the West Area. This and other data gaps were summarized in the 1999 report *Wetland Delineation and Identification of Data Gaps* (Data Gaps Report [Barr, 1999]). This Supplemental West Area Characterization Report provides a summary of the data that have been collected to fill the data gaps for the West Area that were identified in the Data Gaps Report.

The report consists of three sections, including this introduction (Section 1). Section 2 describes sample collection procedures. Section 3 describes the analytical results from the sampling activities and presents a preliminary discussion of the significance of these findings.

Soil, sediment, and surface water samples were collected to more completely characterize the West Area. The investigative activities completed for the West Area were outlined in the Sampling and Analysis Plan (SAP [Barr, 2000]). The sampling activities were developed to address site-specific data needs that were enumerated in the Data Gaps Report (Barr, 1999). The objective of the West Area investigative activities was to characterize the residual contamination in the surficial soil, surface water and sediment to determine whether additional action will be warranted to protect human health and the environment. This investigation did not include further characterizing potential risks and assessing potential remedial actions were PCP, PAHs, and dioxin/furan. Analytical parameters, methods, and detection limits are listed in Table 1.

Sampling activities were conducted within designated subareas that were defined in the SAP based on assessment of historical uses, the extent of filling, wetland classification, results of previous investigative activities, and discussions with the MPCA (Figure 3). In general, the subareas are consistent with those used during the 1999 release sampling to facilitate direct comparison of the results from the two sampling programs. Some of the larger subareas were further subdivided to better characterize the variability of soil chemistry within those areas. Appendix A contains a detailed description of each subarea.

2.1 Surficial Soil Sampling

Surficial soil samples were collected on October 6, 2000. Discrete surficial soil samples were collected from several locations within the subareas (Figure 4). Surficial soil samples were collected from zero to 6 inches below the surface, with the exception of West Areas 1 and 2. The surficial soil samples for West Area 1 (WA-1) and West Area 2 (WA-2) were collected from a depth of 0 to 18 inches to correspond with surficial soil samples collected in this area during the release sampling. The soil sample for West Area 3 (WA-3) was a composite of 7 subsamples. The sample for the northern one-third of West Area 6 (WA-6N) was a composite from 5 subsamples. The sample for the southern one-third of West Area 6 (WA-6S) was a composite from 5 subsamples. The sample for the southern one-third of West Area 6 (WA-6S) was a composite from 5 subsamples. The sample for the southern one-third of West Area 6 (WA-6S) was a composite from 5 subsamples. The sample for the southern one-third of West Area 6 (WA-6S) was a composite from 5 subsamples. The sample for the southern one-third of West Area 6 (WA-6S) was a composite from 5 subsamples. The sample for the southern one-third of West Area 6 (WA-6S) was a composite from 5 subsamples. The sample for the southern one-third of West Area 6 (WA-6S) was a composite from 5 subsamples. The sample for the southern one-third of West Area 6 (WA-6S) was a composite from 5 subsamples. The sample for the southern one-third of West Area 6 (WA-6S) was a composite from 5 subsamples. The sample for the Subsamples.

::ODMA\PCDOCS\DOCS\228150\1

Revised 10/23/01

Discrete subsamples were acquired using pre-cleaned stainless steel hand tools. The composite samples were formed by placing equal amounts of the appropriate subsamples into a pre-cleaned stainless steel mixing bowl and thoroughly mixing the soil with a pre-cleaned stainless steel spoon. A portion of the soil from the mixing bowl was then selected and placed in the appropriate laboratory-supplied sample container and marked with a sample designation (i.e., WA-3). The composite surficial soil sample from WA-7M was split into two samples, one for standard analysis and the second for water leaching and analysis of the leachate. All applicable standard operating procedures for soil sample collections were followed during this field event (Barr, 2000). A portion of the soil at each discrete sampling location was also placed into jars and stored at 4°C for future recompositing and reanalysis, as necessary.

The composited surficial soil samples for each area were submitted to Columbia Analytical Services, inc. (CAS) via overnight shipment for analysis of the chemicals of concern. Soil and sediment samples were also analyzed for total organic carbon (TOC) and pH to evaluate the potential fate of the chemicals of concern within these materials. Samples collected from areas WA-1 and WA-2 were analyzed for TOC and pH only in accordance with the SAP.

After the laboratory results from the analysis of the composite samples were received and reviewed, it was determined that the results from West Area 6-Mid and 6-South were significantly different than the results from other areas to obtain duplicate results of the original analysis. The stored discrete samples for these two areas were composited and submitted to CAS and Severn Trent Services (STS). A water leach test (ASTM D 3987) was also conducted on the WA-6Mid and WA-6S samples submitted to CAS to help define the availability of the chemicals of concern to the ecological community.

2.2 Sediment Sampling

One composite sediment sample was collected on November 2, 2000 from the open water portion of West Area 7 (WA-7OW). A pre-cleaned piston sampler was used to collect five subsamples (Figure 4) from a depth interval of 0 to 6 inches. The subsamples were placed in a stainless-steel mixing bowl, mixed thoroughly, and the composite was divided into two equal parts. One part of the composite sediment sample was submitted to CAS for analysis of the chemicals of concern, while the other portion of the composite sample was submitted to CAS for a water leach test. A portion of each of the discrete subsamples was placed in laboratory-cleaned glass containers, labeled, and stored for future analysis if necessary.

::ODMA\PCDOCS\DOCS\228150\1

2.3 Surface Water Sampling

One surface water sample was collected on November 2, 2000 from the open water portion of West Area (WA-7OW). Because the depth of water in this area was less than 1 foot, the sample was collected from just below the water surface by submerging a sample container (free of preservative) two inches below the water line and then filling all the sample jars.

2.4 Decontamination

All equipment used for sampling was new, disposable equipment or was decontaminated prior to use on-site and between subsampling locations. The composite sampling equipment was cleaned between sampling locations using an Alconox and water solution followed by a double de-ionized water rinse. Equipment cleaning was completed away from the sampling locations. Field personnel used disposable gloves while performing decontamination procedures, in accordance with standard operating procedures for decontamination (Barr 2000).

3.1 Analytical Results

The analytical results for the surficial soil samples are summarized in Table 2, including the results from this sampling and the results from the previous release sampling in areas WA-1, WA-2, WA-3, WA-4, and WA-5. Table 3 summarizes the analytical results for the sediment sample from West Area 7. Analytical results from the surface water sample for West Area 7 are summarized in Table 4. The water leach test results are summarized on Table 5. The laboratory analytical reports for the West Area sampling are in Appendix B.

3.2 Data Quality Assurance/Quality Control

A quality assurance and quality control review was conducted to assess the integrity of the sampling and analytical procedures performed on samples collected for the site. This review was performed in accordance with the Barr Engineering Standard Operating Procedure for data validation, which is based on the *National Functional Guidelines for Organic Data Review* (EPA, 1999). CAS, Alta Analytical Laboratories Inc. (a subcontract laboratory to CAS), and STS performed the analysis for the West Area samples.

3.2.1 Laboratory Procedures

Laboratory procedures were evaluated by examining precision and accuracy data, duplicate samples, laboratory split samples, internal standards, method blanks, and data package completeness.

3.2.1.1 Precision and Accuracy Data

The precision and accuracy data reviewed for the site included laboratory matrix spike and matrix spike duplicate data. The accuracy was evaluated by comparing laboratory percent recoveries from matrix spikes to laboratory control limits. Laboratory precision was evaluated using the percent recoveries from the matrix spikes and spike duplicates, and calculating the relative percent difference (RPD) according to the following equation:

 $RPD = \underline{Amount in Spike 1 - Amount in Spike 2}_{0.5(Amount in Spike 1 + Amount in Spike 2)} X 100$

::ODMA\PCDOCS\DOCS\228150\1

All matrix spikes and matrix spike duplicates met all laboratory acceptance criteria.

3.2.1.2 Duplicate Results

One duplicate sample was collected and submitted to the laboratory with the project samples. The data were evaluated using positive values in both the sample and its masked duplicate and calculating the RPD of those values. The RPD calculations for the duplicate analytical results are included in Appendix C. Three dioxin/furan congeners analyzed in the sample WA-8 Duplicate displayed poor correlation (RPD >40 percent) with the WA-8 sample. The most likely cause of this variation is non-homogeneity between the soil sample and its duplicate. All other target compounds displayed acceptable correlation.

3.2.1.3 Laboratory Split Results

Including the recomposited samples at WA-6Mid and WA-6S, a total of three composite samples were split and submitted to two separate laboratories. The data from each separate analysis were evaluated using positive values in both the sample and each duplicate and calculating the RPD. The RPD calculations for the laboratory split analytical results are included in Appendix C. The two composites submitted for analysis on October 10, 2000 are referred to as Sample #1. The samples composited on January 8, 2001 and sent to CAS are referred to as Sample #2 and the samples composited on January 8, 2001 and sent to STS are referred to as Sample #3.

WA-6MID: Sample #2 and Sample #3 displayed acceptable correlation (RPD <40 percent) for five of eighteen of the target dioxin/furan congeners. In addition, the TCDD equivalent values had a RPD of 4.9 percent, showing overall good correlation. When compared to Sample #1, Sample #2 had ten of eighteen target dioxin/furan congeners and Sample #3 had fourteen of eighteen target dioxin/furan congeners and Sample #3 had fourteen of eighteen target dioxin/furan congeners with RPD values greater that 40 percent, indicating relatively poor precision. In general, Sample #1 had values lower than those in Sample #2 and Sample #3. The most likely cause of this variation is that Sample #1 was composited at a different date than Sample #2 and Sample #3, which were split from the same composite. Due to the sample matrix (lightweight and high organic content) potentially different weights of individual discrete samples could have been incorporated in the separate composites. Therefore, one of the split samples may have had a larger percentage of one of the discrete samples added at the second compositing event, which might have biased the values enough to explain the resulting variation.

WA-6S: Sample #2 and Sample #3 displayed acceptable correlation (RPD <40 percent) for six of eighteen of the target dioxin/furan congeners. The TCDD equivalent values for these two samples had a RPD of 9.2 percent. Sample #1 and Sample #2 displayed acceptable correlation (RPD <40 percent) for four of eighteen of the target dioxin/furan congeners. The TCDD equivalent values for these two samples had a RPD of 21.2 percent. Sample #1 and Sample #1 and Sample #3 displayed acceptable correlation (RPD <40 percent) for four of eighteen of the target dioxin/furan congeners. The TCDD equivalent values for these two samples had a RPD of 21.2 percent. Sample #1 and Sample #3 displayed acceptable correlation (RPD <40 percent) for four of eighteen of the target dioxin/furan congeners. The TCDD equivalent values for these two samples had a RPD of 12.0 percent. Overall these sample splits displayed good correlation.

3.2.1.4 Internal Standards

Internal standards were evaluated by calculating the percent recovery and comparing them to laboratory criteria. All internal standards fell within acceptable laboratory limits.

3.2.1.5 Method Blanks

Several dioxin/furan congeners were detected at low levels in all method blanks associated with this project. All sample values within five times the blank values were qualified as potential false positives.

3.2.1.6 Completeness

Data completeness is evaluated by comparing the analysis requested with the data package as received. The data was received complete.

3.2.2 QA/QC Review Conclusions

The variation in some of the laboratory split samples can most likely be tied to sampling procedures and the sample matrix. This data should be considered valid without qualification. All data met the data project requirements and are deemed acceptable for the purposes of this project, with the above qualifications.

3.3 Discussion

The results from sampling and analysis of the surficial soil within the West Area show significant differences in the results within the sub-areas. These results are not unexpected as the sub-areas were defined, in part, by the site operating history as observed by aerial photographs and summarized in the Data Gaps Report.

References

- Barr Engineering Company, 1999. Joslyn Brooklyn Center Site West Area Wetland Delineation and Identification of Preliminary Risk Evaluation Data Gaps. November 1999.
- Barr Engineering Company, 2000. West Area Sampling and Analysis Plan, Supplemental West Area Characterization, Joslyn Manufacturing Co. Site, Brooklyn Center, MN July 2000, Revised October 2000.
- Earthtech, 1999. Release Sampling Results for Former Joslyn Manufacturing Company Site. Technical Memorandum No. 1. February 23, 1999.
- Minnesota Pollution Control Agency (MPCA), 1985. Response Order by Consent. Joslyn Manufacturing Co. Site, Brooklyn Center, Minnesota. May 1985.
- Minnesota Pollution Control Agency (MPCA), 1989. Record of Decision (ROD) Joslyn Manufacturing Co. Site, Brooklyn Center, Minnesota. July 1989.
- Minnesota Pollution Control Agency (MPCA), 1999. Human Health Limited Risk Assessment for Closure of the Former Joslyn Manufacturing Co. Superfund Site, Brooklyn Center, Minnesota. March 1999.
- EPA, 1999. National Functional Guidelines for Organic Data Review. EPA 540/R-99/008, October 1999.

Tables

Table 1 Analytical Parameters and Detection Limits

Donomatan	EDA Marka		Detection Limit Wate
Parameter General Chemistry	EPA Method	(mg/kg)	(ug/L)
Total Organic Carbon	9060	0.1	750
pH	150.1	NA	NA
pro-	150.1		
SVOCs			
2-Chloronaphthalene	8270	0.005	0.003
2-Methylnaphthalene	8270	0.005	0.003
Acenaphthene	8270	0.005	0.003
Acenaphthylene	8270	0.005	0.003
Anthracene	8270	0.005	0.003
Benzo(a)anthracene	8270	0.005	0.003
Benzo(a)pyrene	8270	10.005	0.003
Benzo(b)fluoranthene	8270	0.005	0.003
Benzo(g,h,i)perylene	8270	0.005	0.003
Benzo(k)fluoranthene	8270	0.005	0.003
Chrysene	8270	0.005	0.003
Dibenz(a,h)anthracene	8270	0.005	0.003
Fluoranthene	8270	0.005	0.003
Fluorene	8270	0.005	0.003
Indeno(1,2,3-cd)pyrene	8270	0.005	0.003
Naphthalene	8270	0.005	0.003
Pentachlorophenol	8270	0.005	less)
Phenanthrene	8270		0.003
Pyrene	8270		0.003
lyrene	6270	0.005	0.003
Dioxin/Furans		ng/kg	pg/L
2,3,7,8-TCDD	8290	1.0	12
1,2,3,7,8-Dioxin penta	8290		10
1,2,3,4,7,8-Dioxin, hexa	8290	1.0	15
1,2,3,6,7,8-Dioxin, hexa	8290	1	18
1,2,3,7,8,9-Dioxin, hexa	8290	a lot of a second	16
1,2,3,4,6,7,8-Dioxin, hepta	8290	1.11.2	10
Dioxin octa	8290	to an an an and the second sec	4
2.3.7.8-TCDF	8290	And the second sec	8
1,2,3,7,8-Dibenzofuran, penta	8290	Carteria) a	8
2,3,4,7,8-Dibenzofuran, penta	8290		8
1,2,3,4,7,8-Dibenzofuran, hexa	8290		
,2,3,6,7,8-Dibenzofuran, hexa	8290	the second se	7
,2,3,7,8,9-Dibenzofuran, hexa	8290	the second se	7
2,3,4,6,7,8-Dibenzofuran, hexa			7
	8290		7
,2,3,4,6,7,8-Dibenzofuran, hepta	8290	And a second sec	14
,2,3,4,7,8,9-Dibenzofuran, hepta	8290		14
Dibenzofuran octa	8290	Contraction of the second seco	4
Fotal TCDD	8290		13
Fotal PeCDD	8290	a subarrente constant a succession of the second se	10
Total HXCDD	8290		18
fotal HpCDD	8290	C-0.6-	11
otal TCDF	8290	and a second sec	9
fotal PeCDF	8290		8
Fotal HxCDF	8290		8
Fotal HpCDF	8290	5.0	15

-

 Table 2

 Analytical Results: Surficial Soil Samples

Location	B(a)P	Toxic	WA-1	WA-1	WA-2	WA-2	WA-3	WA-3	6WA-3 TO
Date	Potency	Equivalency	12/4/98	10/6/00	12/4/98	10/6/00	12/4/98	10/6/00	2/17/99
Lab	Factor	Factor	Legend	CAS	Legend	CAS	Legend	CAS	Legend
Dup									1
List 1 PAHs, mg/kg									
Benzo(a)anthracene	0.1		1.8	1	< 0.33		0.44	0.14	<1.8
Chrysene	0.001		2.6		0.34		and the second second second		
Benzo(b)fluoranthene	0.1		7.2		0.34		1.0	0.33	<1.8
Benzo(k)fluoranthene	0.01	1	2.1			H.		0.48	<1.8
I THE REPORT OF A DESCRIPTION OF A DESCR	1.01		the state of the s		0.34		0.76	0.28	1.9
Benzo(a)pyrene	1 0.01		2.8		0.36		< 0.33	0.17	<1.8
Indeno(1,2,3-cd)pyrene	0.01		0.65		< 0.33		< 0.33	0.24	<1.8
Dibenz(a,h)anthracene	1		< 0.33		<0.33		< 0.33	0.054	<1.8
B(a)P Equivalent			3.73		0.45		0.29	0.29	0.02
List 2 PAHs, mg/kg						1		1	
Acenaphthene			<0.33		< 0.33		< 0.33	<0.005	2.6
Anthracene			0.56		< 0.33		1.3	0.11	<1.8
Fluoranthene			4.1		< 0.33		< 0.33	0.2 b	<1.8
Fluorene			< 0.33		< 0.33	11e.	< 0.33	<0.005	<1.8
Naphthalene			<0.33		< 0.33		< 0.33	0.012	1.7 j
Pyrene			5.1		0.41	t a (6.1	0.33	<1.8
Pentachlorophenol, mg/kg			4.2	-	2.3		000	20	6.6
remacinor opnenoi, mg/kg		2	4.2		2.3		880	39	55
Dioxins, ng/kg	· · · · ·						1		
2,3,7,8-TCDD		1	7.8		6.5			9.61	-
1,2,3,7,8-Dioxin penta		1	63.4		51.7			256	
1,2,3,4,7,8-Dioxin, hexa		0.1	177		218			561	
1,2,3,6,7,8-Dioxin, hexa		0.1	1280		1000			10500	
1,2,3,7,8,9-Dioxin, hexa		0.1	502		478			1920	
1,2,3,4,6,7,8-Dioxin, hepta		0.01	32550 e		19920 e		1.	251000	
Dioxin octa		0.0001	267630 e		237280 e			465000	1
				h				1	1
Furans, ng/kg				[ļ			1	
2,3,7,8-TCDF		0.1	42.5	**	28.3		••	8.31	
1,2,3,7,8-Dibenzofuran, penta		0.05	164		103		••	59.2	
2,3,4,7,8-Dibenzofuran, penta		0.5	183		105			145	l
1,2,3,4,7,8-Dibenzofuran, hexa		0.1	1170		793			3050	
1,2,3,6,7,8-Dibenzofuran, hexa		0.1	341		214			1770	
2,3,4,6,7,8-Dibenzofuran, hexa		0.1	514		307	l		1440	
1,2,3,7,8,9-Dibenzofuran, hexa		0.1	58.9		44.4 pr			286	
1,2,3,4,6,7,8-Dibenzofuran, hepta		0,01	9640 e		8500 e			101000	
1,2,3,4,7,8,9-Dibenzofuran, hepta		0.01	1110		686			7300	
Dibenzofuran octa		0.0001	41080 qe		39420 e			618000	3
					Ling March		-		
TCDD Equivalent			1043.31		742.85			5995.90	-
		1							
Carbon, total organic, %				4.97		1.31	22	2.90	
oH, standard units				7.85		7.99		7.43	

1

-

 Table 2

 Analytical Results: Surficial Soil Samples

Location Date	B(a)P Potency	Toxic Equivalency	7WA-3 TOP 2/17/99	8WA-3 TOP 2/17/99	WA-4 12/4/98	WA-5 12/4/98	WA-6 TOP 2/17/99	WA-6MIE 10/6/00
Lab	Factor	Factor	Legend	Legend	Legend			
Dup	Factor	Factor	Legena	Legend	Legend	Legend	Legend	ALTA
D'ul	· · · · · · · · · · · · · · · · · · ·	1						
List 1 PAHs, mg/kg		1	2		2	1	T	
Benzo(a)anthracene	0.1	1	<5.1	<0.66	< 0.33	< 0.33	<3.9	
Chrysene	0.001	1	<5.1	<0.66	0.41	< 0.33	3.1 j	
Benzo(b)fluoranthene	0.1	1	<5.1	< 0.66	0.78	< 0.33	<3.9	}
Benzo(k)fluoranthene	0.01	1	5.4	1.3	< 0.33	<0.33	4.0	
Benzo(a)pyrene	1	1	<5.1	<0.66	0.42	<0.33	<3.9	
Indeno(1,2,3-cd)pyrene	0.01	1	<5.1	<0.66	< 0.33	< 0.33	<3.9	1
Dibenz(a,h)anthracene	1		<5.1	<0.66	< 0.33	< 0.33	<3.9	
		1	1		-	1		
B(a)P Equivalent		1	0.05	0.01	0.50	ND	0.04	1
List 2 PAHs, mg/kg			1	1		1	1	1
Acenaphthene		1	<5.1	<0.66	< 0.33	< 0.33	<3.9	
Anthracene			<5.1	<0.66	< 0.33	< 0.33	<3.9	
Fluoranthene		1	<5.1	<0.66	<0.33	< 0.33	3.4 j	
Fluorene		1	<5.1	<0.66	< 0.33	< 0.33	<3.9	
Naphthalene			<5.1	1.1	< 0.33	< 0.33	3.5 j	
Pyrene			<5.1	<0.66	< 0.33	< 0.33	2.1 j	
				10.00	10.55	-0.55	2.1]	
Pentachlorophenol, mg/kg			30	20	< 0.33	< 0.33	49	
renaremon opinentos, mg/kg			50	20	~0.55	~0.55	49	
Dioxins, ng/kg		1	1. 1.		1			
2,3,7,8-TCDD		1			<0.1	0.56 emj		1100
1,2,3,7,8-Dioxin penta		1	-	**	0.44 emj	4.2 j		20000
1,2,3,4,7,8-Dioxin, hexa		0.1	l		1.6 j	12.1		144000
1,2,3,6,7,8-Dioxin, hexa		0.1		Jan - series -	5.0	45.1	· · · ·	
1,2,3,7,8,9-Dioxin, hexa	······	0.1		-	and the second s	33.3		168000 e
1,2,3,4,6,7,8-Dioxin, hepta	·	0.01			3.9 j	and the second second second	**	96900
Dioxin octa		0.0001	-	-)	125	1310		6540000 e
ם מושים משליח האודים		0.0001			968	11330 e	1	52000000
Furans, ng/kg			1					
2,3,7,8-TCDF		0.1		1	0.92 j	1.7 emj	1	1340
1,2,3,7,8-Dibenzofuran, penta		0.05	-	1	0.56 j	3.8 j	1	8600
2,3,4,7,8-Dibenzofuran, penta		0.5			0.70 j	5.1		16800
1,2,3,4,7,8-Dibenzofuran, hexa	-	0.1		1	3.7 j	33.0		62500
1,2,3,6,7,8-Dibenzofuran, hexa		0.1			1.3 j	10.0	· · · · · · · · · · · · · · · · · · ·	17500
2,3,4,6,7,8-Dibenzofuran, hexa		0.1		-	2.0 emj	16.2	1	34900
1,2,3,7,8,9-Dibenzofuran, hexa		0.1			<0.06	2.1 prj		23600
1,2,3,4,6,7,8-Dibenzofuran, hepta		0.01			40.1	357		1210000 e
1,2,3,4,7,8,9-Dibenzofuran, hepta		0.01		-	2.2 j	24.1		79700
Dibenzofuran octa		0.0001		-	111	961		the second se
		510001			1	201		4840000 e
TCDD Equivalent			**	••	4.44	40.99		168785
Carbon, total organic, %								26
oH, standard units				2		1		

١.,

-

 Table 2

 Analytical Results: Surficial Soil Samples

Location Date	B(a)P Potency	Toxic Equivalency	WA-6MID 10/6/00	WA-6MID 10/6/00	WA-6N 10/6/00	WA-6S 10/6/00	WA-6S 10/6/00	WA-6S 10/6/00	WA-7
Lab	Factor	Factor	STL	3		-	1. The Part of the		2/17/99
Dup	Factor	Factor	SIL	CAS	CAS	ALTA	STL	CAS	Legend
List 1 PAHs, mg/kg					1	1			
Benzo(a)anthracene	0.1		-	1.4	0.22		**	0.17	<0.66
Chrysene	0.001			2.7	0.31			0.48	<0.66
Benzo(b)fluoranthene	0.1	1	175	6.1	0.6			0.94	<0.66
Benzo(k)fluoranthene	0.01			2.7	0.24	194		0.43	0.81
Benzo(a)pyrene	1		1.55	2.3	0.24			0.56	<0.66
Indeno(1,2,3-cd)pyrene	0.01		177	11	1.1		-	0.71	< 0.66
Dibenz(a,h)anthracene	1			0.77	0.094			0.16	<0.66
			1		i			1	1
B(a)P Equivalent		1		3.96	0.43		age - Auron	0.84	0.01
List 2 PAHs, mg/kg								1	
Acenaphthene				0.063	0.048		-	< 0.05	<0.66
Anthracene				3.1	0.44	122		0.38	<0.66
Fluoranthene				3.6	0.55			0.29	< 0.66
Fluorene				0.065	0.055			< 0.05	<0.66
Naphthalene				0.2	< 0.005		1	0.061	0.70
Pyrene			1	3.6	0.48			0.49	<0.66
			1	510	0.10		1974 - 19 A.	0.47	<0.00
Pentachlorophenol, mg/kg	4(+ an			120 e	0.72		-	120	1.1
Dioxins, ng/kg					1			1	
2,3,7,8-TCDD		1	2000	1330	7.18	262	430	466	
1,2,3,7,8-Dioxin penta		1	29000	14100	61.6	5880	430 8000 e	5760	
1,2,3,4,7,8-Dioxin, hexa		0.1	180000	79600	233	22900	26000	29700	**
1,2,3,6,7,8-Dioxin, hexa		0.1	210000	105000	627	95300	110000		
1,2,3,7,8,9-Dioxin, hexa		0.1	140000	60400	328	35900	7	112000	
1,2,3,4,6,7,8-Dioxin, hepta		0.01	4400000 ej	430000	16400	and the second s	28000	31900	
Dioxin octa		0.001		2030000		2930000 e	2300000 e	1870000	
		0.0001	7000000 ej	2030000	117000	23500000 e	4900000 ej	1800000	
Furans, ng/kg			-	1		the states	-	-	
2,3,7,8-TCDF		0.1	1300 e	1120	4.75	124	130	114	
1,2,3,7,8-Dibenzofuran, penta	-	0.05	10000	6600	28.8	124	1000	722	-
2,3,4,7,8-Dibenzofuran, penta		0.5	8600	12500	60.8	2290	7.0.527.05012		
1,2,3,4,7,8-Dibenzofuran, hexa		the second s	79000	54300	239		1300	1840	
,2,3,6,7,8-Dibenzofuran, hexa	the second se	0.1	22000		Decoration -	30900	37000 e	30400	••
2,3,4,6,7,8-Dibenzofuran, hexa	the second s	0.1	12000	14200 (1) 17700	101	8490	8900 e	12600 (1)	
,2,3,7,8,9-Dibenzofuran, hexa		0.1			123	13900	5200	13500	
1,2,3,4,6,7,8-Dibenzofuran, hepta		and the second sec	3600	21000	110	3270	500	3730	
,2,3,4,7,8,9-Dibenzofuran, hepta		0.01	1100000 ej	151000	4230	1240000 e	1200000 ej		
Dibenzofuran octa			91000 j	12700	286	65500	88000 j	63500	
Moenzoluran octa		0.0001	3400000 ej	504000	17700	7900000 e	3200000 ej	920000	
TCDD Equivalent	(1		157540	63532	499.83	73905	67393	59763	
	1								
					1		1		
Carbon, total organic, %			17.	24.8	2.51	21.7		21.4	
H, standard units				6.21	7.58				;

-

Table 2 Analytical Results: Surficial Soil Samples

Location	B(a)P	Toxic	WA-8	WA-8
Date	Potency	Equivalency	10/6/00	10/6/00
Lab	Factor	Factor	CAS	CAS
Dup				DUP
List 1 PAHs, mg/kg			1	Г
Benzo(a)anthracene	0.1		0,36	0.26
Chrysene	0.001	1	0.59	0.43
Benzo(b)fluoranthene	0.1	1	0.6	0.45
Benzo(k)fluoranthene	0.01	1	0.41	0.32
Benzo(a)pyrene	1		0.37	0.29
Indeno(1,2,3-cd)pyrene	0.01		0.57	0.42
Dibenz(a,h)anthracene	1		0.091	0.068
			1	
B(a)P Equivalent			0.57	0.44
List 2 PAHs, mg/kg		1		
Acenaphthene		1	0.01	0.007
Anthracene		1.	0.89	0.11
Fluoranthene			0.64	0.46
Fluorene			0,068	0.007
Naphthalene			0.025	0.006
Pyrene		Contraction of the	0.62	0.43
		1	1	1
Pentachlorophenol, mg/kg	·····		0.83	0.71
		1		1
Dioxins, ng/kg				
2,3,7,8-TCDD		1	1.41	2.76
1,2,3,7,8-Dioxin penta		1	15.3	22.1
1,2,3,4,7,8-Dioxin, hexa		0.1	381	72.1
1,2,3,6,7,8-Dioxin, hexa		0.1	495	82.5
1,2,3,7,8,9-Dioxin, hexa		0.1	81.8	98.5
1,2,3,4,6,7,8-Dioxin, hepta		0.01	10100	10400
Dioxin octa		0.0001	120000	102000
				101000
Furans, ng/kg				1
2,3,7,8-TCDF		0.1	9.91	13.3
1,2,3,7,8-Dibenzofuran, penta		0.05	63.2	70.5
2,3,4,7,8-Dibenzofuran, penta		0.5	123	138
1,2,3,4,7,8-Dibenzofuran, hexa		0.1	458	554
1,2,3,6,7,8-Dibenzofuran, hexa		0.1	149	186 (1)
2,3,4,6,7,8-Dibenzofuran, hexa		0.1	1410	206
1,2,3,7,8,9-Dibenzofuran, hexa		0.1	302	197
1,2,3,4,6,7,8-Dibenzofuran, hepta		0.01	4250	4740
1,2,3,4,7,8,9-Dibenzofuran, hepta		0.01	4250	460
Dibenzofuran octa		0.0001	12200	12800
		0.0001	12200	12000
TCDD Equivalent	-		571 12	405.91
ICDD Equivatin			571.13	405.81
				1
Carbon, total organic, %			1.32	1.08
pH, standard units			7.32	¹ 7.28

-

Table 3 Analytical Results: Sediment Samples

Location	WA-7M	WA-70W SOIL
Date	10/6/00	11/2/00
Dup		
List 1 DAILs		
List 1 PAHs, mg/kg	0.11	1.0
Benzo(a)anthracene	0.11	1.9
Chrysene Bonza(b)Successtates	0.19	2.8
Benzo(b)fluoranthene		1.5
Benzo(k)fluoranthene	0.17	1.3
Benzo(a)pyrene	0.14	11
Indeno(1,2,3-cd)pyrene	0.17	0.69
Dibenz(a,h)anthracene	0.025	0.17
B(a)P Equivalent	0.20	1.53
List 2 PAHs, mg/kg	1111	
Acenaphthene	0.006	0.061
Anthracene	0.098	1.1
Fluoranthene	0.27	6.3
Fluorene	0.01	0.17
Naphthalene	0.01	0.071
Pyrene	0.01	5.5
		1
Pentachlorophenol, mg/kg	1.9	2.3
Dioxins, ng/kg		
2,3,7,8-TCDD	21.2	5.29
1,2,3,7,8-Dioxin penta	240	43.8
1,2,3,4,7,8-Dioxin, hexa	902	180
1,2,3,6,7,8-Dioxin, hexa	4480	1360
1,2,3,7,8,9-Dioxin, hexa	2100	406
1,2,3,4,6,7,8-Dioxin, hepta	127000	30000
Dioxin octa	1530000	210000
Furans, ng/kg		1
2,3,7,8-TCDF	80.5	39.8
1,2,3,7,8-Dibenzofuran, penta	360	136
2,3,4,7,8-Dibenzofuran, penta	752	349
1,2,3,4,7,8-Dibenzofuran, hexa	2590	1010
1,2,3,6,7,8-Dibenzofuran, hexa	1050	315
2,3,4,6,7,8-Dibenzofuran, hexa	1350	449
1,2,3,7,8,9-Dibenzofuran, hexa	1090	392
1,2,3,4,6,7,8-Dibenzofuran, hepta	34400	10800
1,2,3,4,7,8,9-Dibenzofuran, hepta	2390	10300
Dibenzofuran octa	22700	34800
	22,00	5 1000
TCDD Equivalent	3812.62	:1088.45
Carbon, total organic, %	36.7	4.28 h
pH, standard units	6.13	7.02

Table 4 Analytical Results: Water Samples

Location	WA-70W WATER
Date	11/2/00
Dup	
List 1 PAHs, ug/L	
Benzo(a)anthracene	0.005
Chrysene	0.009
Benzo(b)fluoranthene	0.007
Benzo(k)fluoranthene	0.004
Benzo(a)pyrene	0.003
Indeno(1,2,3-cd)pyrene	0.005
Dibenz(a,h)anthracene	< 0.003
B(a)P Equivalent	0.004
List 2 PAHs, ug/L	
Acenaphthene	0.02
Anthracene	0.017
Fluoranthene	0.019 b
Fluorene	0.02
Naphthalene	0.027 Ь
Pyrene	0.015 b
Pentachlorophenol, ug/L	<0.50
Dioxins, ng/L	
2,3,7,8-TCDD	<0.00191
1,2,3,7,8-Dioxin penta	<0.00675
1,2,3,4,7,8-Dioxin, hexa	<0.00562
1,2,3,6,7,8-Dioxin, hexa	0.0128 j
1,2,3,7,8,9-Dioxin, hexa	< 0.00541
1,2,3,4,6,7,8-Dioxin, hepta	0.28
Dioxin octa	3.45
Furans, ng/L	
2,3,7,8-TCDF	<0.00417
1,2,3,7,8-Dibenzofuran, penta	< 0.00317
2,3,4,7,8-Dibenzofuran, penta	<0.00298
1,2,3,4,7,8-Dibenzofuran, hexa	0.0136 j
1,2,3,6,7,8-Dibenzofuran, hexa	0.00989 j
2,3,4,6,7,8-Dibenzofuran, hexa	< 0.00501
1,2,3,7,8,9-Dibenzofuran, hexa	<0.00735
1,2,3,4,6,7,8-Dibenzofuran, hepta	0.125
1,2,3,4,7,8,9-Dibenzofuran, hepta	<0.00688
Dibenzofuran octa	0.334
TCDD Equivalent	0.008
Carbon, total organic, %	11.9
oH, standard units	7.30

-

Table 5 Analytical Results: Soil -Water Leach Samples

Location Date	WA-70W LEACH	WA-6MID Leach	WA-6S Leach
Dup	11/2/00	10/6/00	10/6/00
ar u p			
List 1 PAHs, ug/L		1	
Benzo(a)anthracene	0.018		
Chrysene	0.033		
Benzo(b)fluoranthene	0.01		
Benzo(k)fluoranthene	0.006		
Benzo(a)pyrene	0.005	1++-	122
Indeno(1,2,3-cd)pyrene	0.005	1	1
Dibenz(a,h)anthracene	<0.003		
B(a)P Equivalen	0.008	1	
List 2 PAHs, ug/L		1	
Acenaphthene	0.57		
Anthracene	0.22		
Fluoranthene	0.41	HP.	
Fluorene	0.42		
Naphthalene	50		-
Pyrene	0.26		
			T
Pentachlorophenol, ug/L	<0.50		
	(****)	1*	1
Dioxins, ng/L		1	
2,3,7,8-TCDD	< 0.000875	0.0103	<0.00366
1,2,3,7,8-Dioxin penta	< 0.00115	0.132	0.048
1,2,3,4,7,8-Dioxin, hexa	<0.00159	0.687	0.243
1,2,3,6,7,8-Dioxin, hexa	< 0.00172	1.71	1.26
1,2,3,7,8,9-Dioxin, hexa	<0.00155	0.857	0.432
1,2,3,4,6,7,8-Dioxin, hepta	<0.00550	53.700 e	39.600 e
Dioxin octa	0.0302	519.000 e	313.000 e

Furans, ng/L			
2,3,7,8-TCDF	< 0.00118	0.0217	< 0.00445
1,2,3,7,8-Dibenzofuran, penta	<0.00126	0.144	0.018
2,3,4,7,8-Dibenzofuran, penta	< 0.00121	0.26	0.03
1,2,3,4,7,8-Dibenzofuran, hexa	<0.000690	1.1	0.412
1,2,3,6,7,8-Dibenzofuran, hexa	<0.000686	0.674 (1)	1.650 (1)
2,3,4,6,7,8-Dibenzofuran, hexa	<0.000784	0.467	0.189
1,2,3,7,8,9-Dibenzofuran, hexa	< 0.00114	0.426	0.0575
1,2,3,4,6,7,8-Dibenzofuran, hepta	<0.00101	17.900 (1)	23.900 e(1)
1,2,3,4,7,8,9-Dibenzofuran, hepta	<0.00156	1.24	0.843
Dibenzofuran octa	<0.00659	78.600 e	95.300 e
		1	
TCDD Equivalent	0.000003	1.66	1.17
			19722
Carbon, total organic, %	1.8		
oH, standard units	24		

.

Data Qualifiers and Footnotes

Not analyzed.

j

b

h

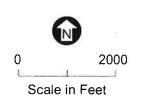
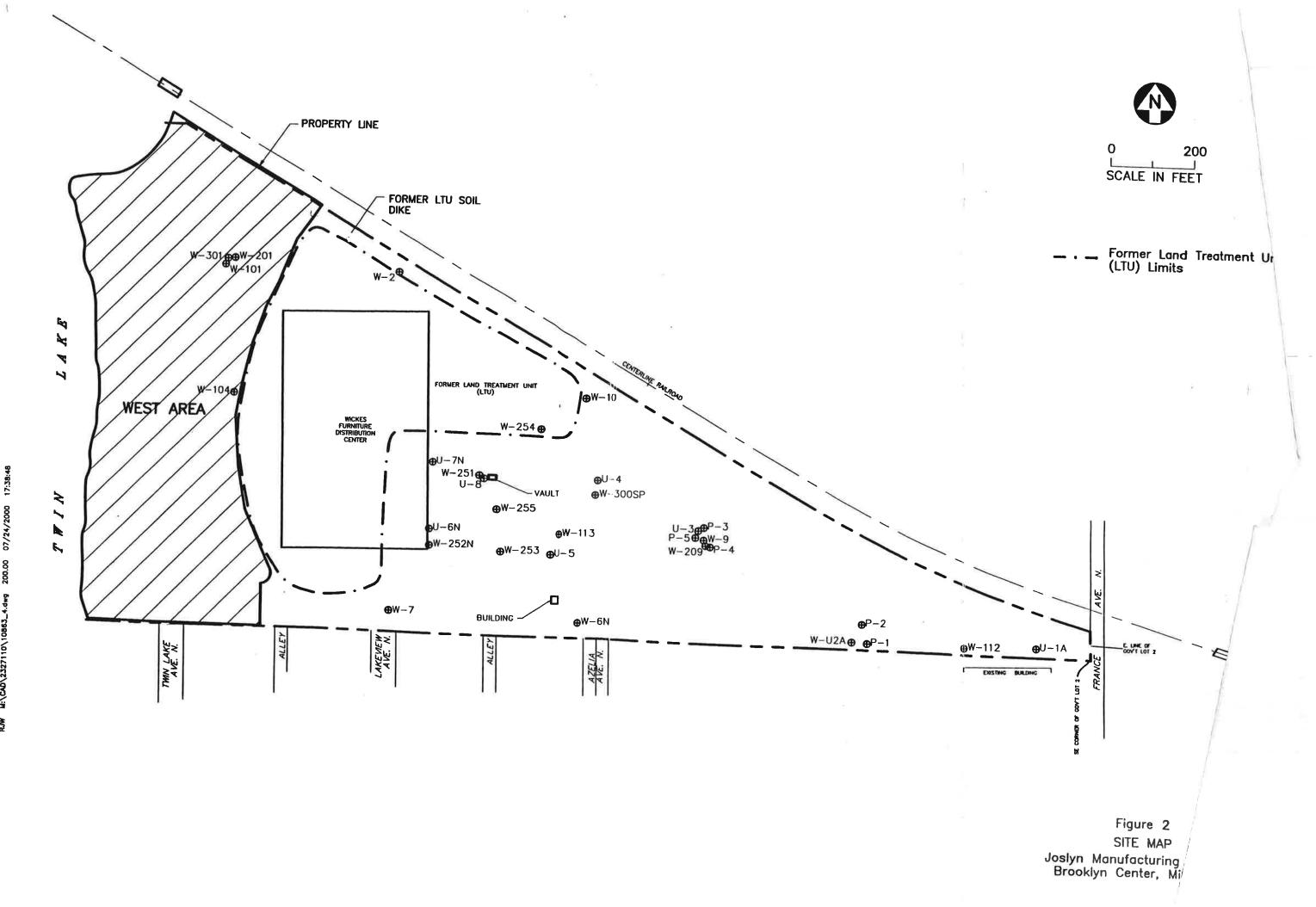
р

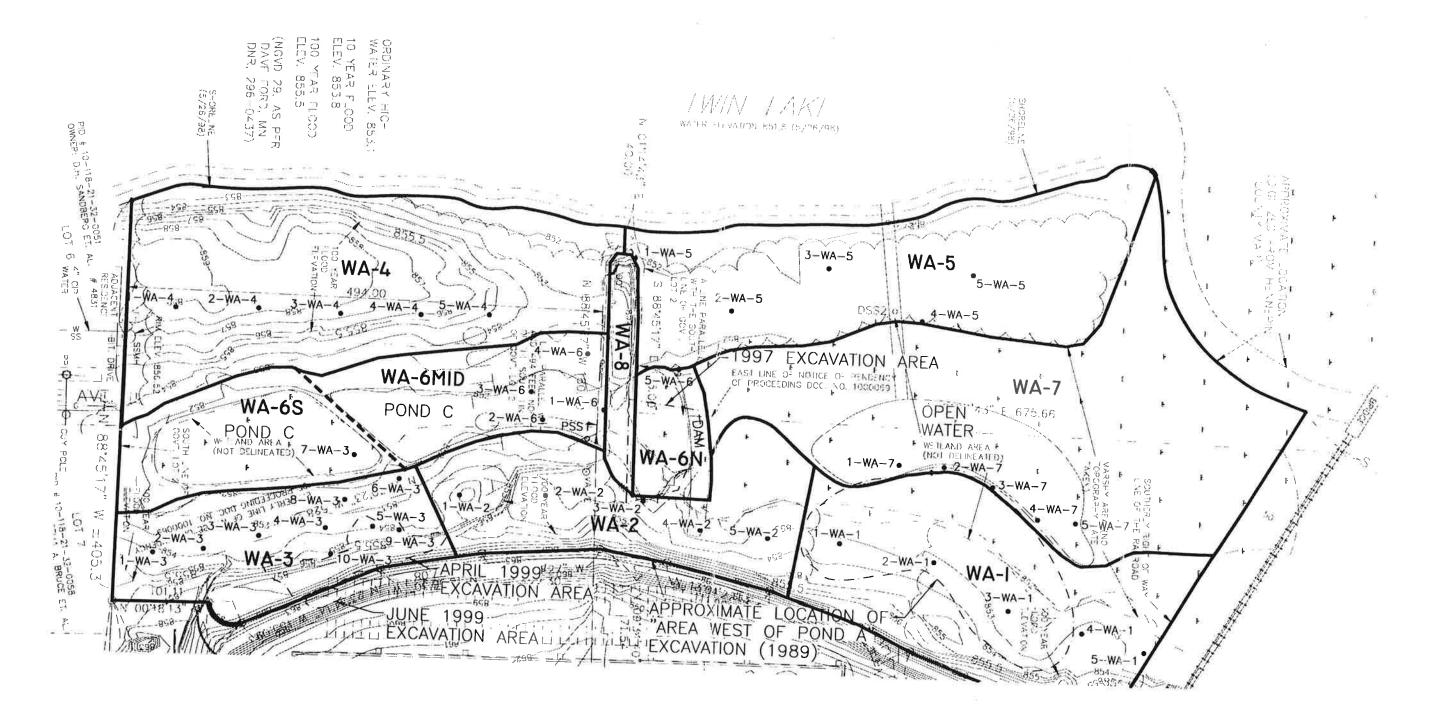
e

- Reported value is less than the stated laboratory quantitation limit and is considered an estimated value.
- Potential false positive based on blank data validation procedure.
- EPA sample extraction or analysis holding time was exceeded.
- Small peak in chromatogram below method detection limit.
- Estimated value, exceeded the instrument calibration range.
- q Quantiative interference.
- pr Poorly resolved peak.
- em Estimated maximum concentration (below PQL).
- (1) Maximum potential concentration

Page 1 of 1 4/30/01 11:26 AM P:\23\27\110\LIMS\8_WA_pahdioxin_022801.xls

Figures	1		
Figures			
	1		
		Figur	es
	1		
	1		
	J		
	1		
	J		
	J		
	U		


Figure 1

SITE LOCATION JOSLYN MANUFACTURING COMPANY Brooklyn Center, Minnesota

P:2327TIU SITE CUR

07/24/2000 17:38:48 200.00 M:\CAD\2327110\10863_4.dwg RJW

\cad\2327110\12745_3.dwg Plot at 100 05/01/2001 Use

PVI N-V CO

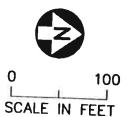
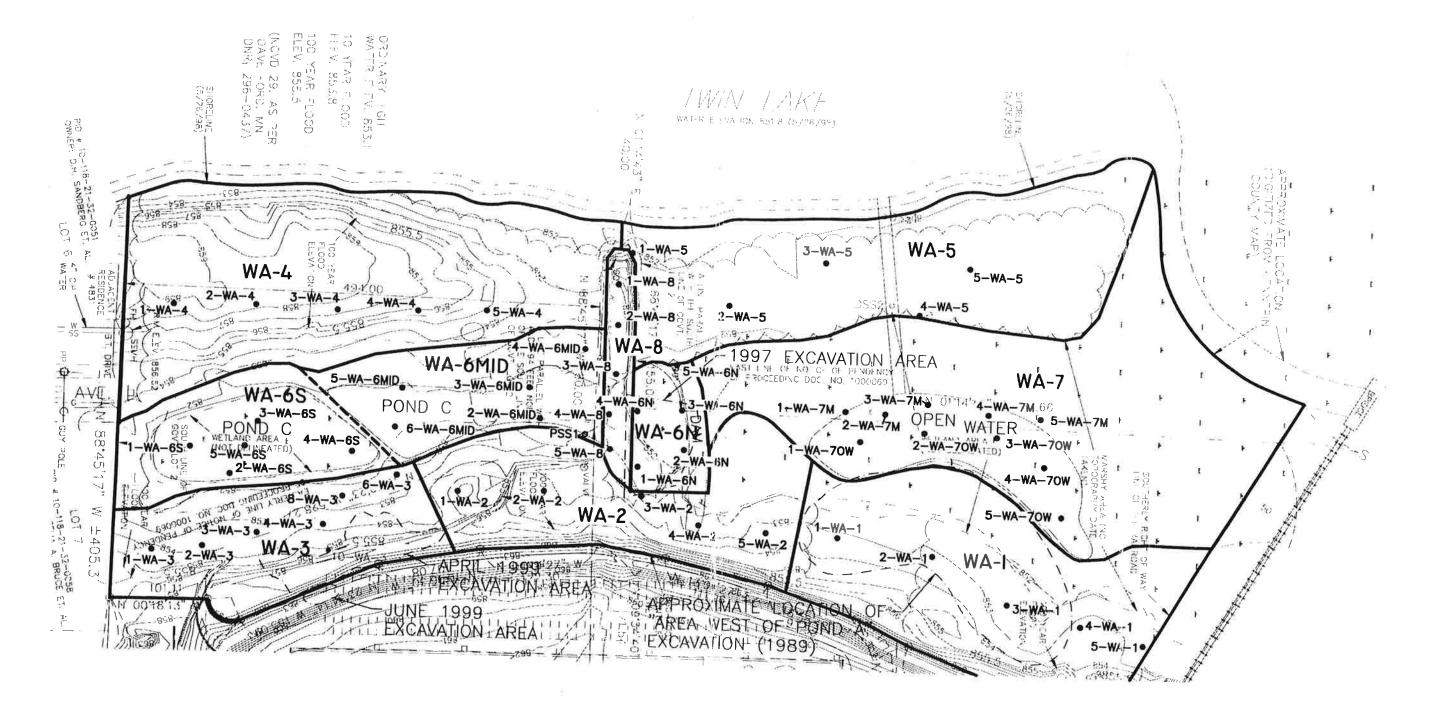



Figure 3 WEST AREA SAMPLING SUBAREAS Joslyn Manufacturing Co. Site Brooklyn Center, Minnesota

M:\CAD\2327110\14682_1.DWG Plat at 100 05/01/2001 08:09:18

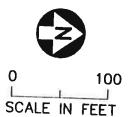


Figure 4 WEST AREA SOIL AND SEDIMENT SAMPLING LOCATIONS Joslyn Manufacturing Co. Site Brooklyn Center, Minnesota

Appendices

Appendix A

Detailed Description of the West Areas-Area/Subarea

Appendix A Detailed Description of Area/Subareas

West Area 1

West Area 1 (WA-1) – This is an upland area on the north end of the eastern edge of the West Area. This is an area that was filled during site operation. In 1989, the "Area West of Pond A" was excavated and backfilled with soil obtained onsite. Sample WA-1 from the 1999 Release sampling characterizes PCP, PAH, and dioxin/furan concentrations in the surficial soils in this area.

West Area 2

West Area 2 (WA-2) – This is an upland area in the central portion of the eastern edge of the West Area. This area was filled during wood treating operations. Sample WA-2, from the 1999 release sampling, characterizes PCP, PAH, and dioxin/furan concentrations in the surficial soils in this area.

West Area 3

West Area 3 (WA-3) – This is an upland area in the southern portion of the eastern edge of the West Area. This area was filled during wood treating operations. Subsequent excavation activities have also been completed in this area.

West Area 4 and West Area 5

West Area 4 (WA-4) and West Area 5 (WA-5) – These areas are along the western edge of the West Area. WA-4 is on the southern end and is largely an upland area. WA-5 is on the northern end and is largely a forested wetland. Neither area appears to have been affected by wood treating activities. The former ice chute is largely within WA-5. However, previous sampling for PCP and PAH in the former ice chute indicated that the ice chute was not impacted by the site. Samples WA-4 and WA-5 from the 1999 release sampling characterize the PCP, PAH, and dioxin/furan concentrations in the surficial soil in these two areas.

West Area 6

West Area 6 (WA-6) – This area approximates the location of Former Pond C and is located in the center of the southern portion of the West Area. Former Pond C received wastewater (steam condensate with lubricating oil contamination from the early 1940s to approximately 1950). During

Appendix B

Laboratory Reports

RECEIVED

EEC 2 8 2000 BARR ENGINEERING CO.

December 20, 2000

Service Request No: K2008629

Marti Harding-Smith Barr Engineering Company 4700 West 77th Street Minneapolis, MN 55435-4803

Re: 23/27-110Y2K461

Dear Marti:

Enclosed are the results of the sample(s) submitted to our laboratory on November 3, 2000. For your reference, these analyses have been assigned our service request number K2008629.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 3358.

Respectfully submitted,

Columbia Analytical Services, Inc.

Lynda A. Huckestein Client Services Manager

LAH/afs

Page 1 of

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

			Analytical Report		
Client: Project: Sample Matrix:	Barr Engineering Cor 23/27-110Y2K461 Soil	npany		Service Request: Date Collected: Date Received:	11/2/00
			Total Solids		
Prep Method: Analysis Method: Test Notes:	NONE 160.3M			Units: Basis:	Percent WET
Sample Name		Lab Code	Date Analyzed	Result	Result Notes
WA-70W Soil		K2008629-002	11/8/00	52.5	
				θ.	

Approved By: ______

-

.

12/21/2000 (Art Date:

Analytical Report

1	Client: Project: Sample Matrix:	Barr Engineering Co.Service Request:23/27-110Y2K461Date Collected:SoilDate Received:Inorganic Parameters						ollected:	NA	
	Sample Name: Lab Code: Test Notes:	Method Blank K2008629-MB							Basis:	Dry
	Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
7	Carbon, Total Organic	PERCENT	ASTM D4129-82M	0.05	0.01	1	NA	12/15/00	ND	

Approved Byer PW2 - MB 12/15/00

Date: 12/15/80

00007

Page No.:

Analytical Report

Client: Project: Sample Matrix:	Barr Engineering 23/27-110Y2K46 Water					Date Co	Request: illected: eceived:	
-1		Inorg	ganic Parameters					
Sample Name: Lab Code: Test Notes:	WA-70W Water I K2008629-003	Leach					Basis:	NA
Analyte	Units	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
	T ()	415 1	0.5	,	NT A	11/17/00	1.0	

0.5

1

NA

11/17/00

1.8

415.1

mg/L (ppm)

Carbon,	Total	Organic	

MMR Approved By: _ 1S22/020597p

11/17/00 Date: ____

08629WET.PW1 - 3 11/17/00

Analytical Report

Client:	Barr Engineering Co.
Project:	23/27-110Y2K461
Sample Matrix:	Water

 Service Request:
 K2008629

 Date Collected:
 11/2/00

 Date Received:
 11/3/00

Pentachlorophenol (PCP)

Prep Method:	EPA 3510B		ug/L (ppb)
Analysis Method:	8151M	Basis:	NA
Test Notes:			

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
WA-70W Water	K2008629-001	0.50	1	11/9/00	11/20/00	ND	
Method Blank	K001109-WB	0.50	1	11/9/00	11/20/00	ND	

Approved By: 1A/052595

in a

M

anti

Date: 11/28/00

01011 Page No.:

Analytical Report

Client: Project: Sample Matrix:	Barr Engineering Co. 23/27-110Y2K461 Soil						Date Co	Request: llected: eceived:	
		Pe	entachloro	phenol	l				
Sample Name: Lab Code: Test Notes:	Method Blank K001116-SB							Units: Basis:	ug/Kg (ppb) Dry
Analyte	Prep Method	Analysis Method	MRL		Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Pentachlorophenol	EPA 3550A	8151M	5.0		1	11/16/00	11/23/00	ND	

Approved By:

08629PHC-ME1 - MB 11/30/00

-

Analytical Report

Client: Project: Sample Matrix: Barr Engineering Co. 23/27-110Y2K461 Soil
 Service Request:
 K2008629

 Date Collected:
 11/2/00

 Date Received:
 11/3/00

Units: ug/Kg (ppb)

Basis: Dry

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code: Test Notes:

Analyte

Naphthalene

WA-70W Soil K2008629-002 D

Prep

Method

EPA 3541

Result Analysis Dilution Date Date Notes Factor Extracted Analyzed Method MRL Result 71 11/14/00 10 12/7/00 SIM 50 11/14/00 CIN / 50 10 12/7/00 120

Taphalaione								
2-Methylnaphthalene	EPA 3541	SIM	50	10	11/14/00	12/7/00	120	
Acenaphthylene	EPA 3541	SIM	50	10	11/14/00	12/7/00	ND	
Acenaphthene	EPA 3541	SIM	50	10	11/14/00	12/7/00	61	
Fluorene	EPA 3541	SIM	50	10	11/14/00	12/7/00	170	
Phenanthrene	EPA 3541	SIM	50	10	11/14/00	12/7/00	680	
Anthracene	EPA 3541	SIM	50	10	11/14/00	12/7/00	1100	
Fluoranthene	EPA 3541	SIM	250	50	11/14/00	12/7/00	6300	
Рутепе	EPA 3541	SIM	250	50	11/14/00	12/7/00	5500	
Benz(a)anthracene	EPA 3541	SIM	50	10	11/14/00	12/7/00	1900	
Chrysene	EPA 3541	SIM	250	50	11/14/00	12/7/00	2800	
Benzo(b)fluoranthene	EPA 3541	SIM	50	10	11/14/00	12/7/00	1500	
Benzo(k)fluoranthene	EPA 3541	SIM	50	10	11/14/00	12/7/00	1300	
Benzo(a)pyrene	EPA 3541	SIM	50	10	11/14/00	12/7/00	1000	
Indeno(1,2,3-cd)pyrene	EPA 3541	SIM	50	10	11/14/00	12/7/00	690	
Dibenz(a,h)anthracene	EPA 3541	SIM	50	10	11/14/00	1 2/7/ 00	170	
Benzo(g,h,i)perylene	EPA 3541	SIM	50	10	11/14/00	1 2/7/ 00	520	
2-Chloronaphthalene	EPA 3541	SIM	5	1	11/14/00	12/9/00	ND	

Carol C. Levines Date: DEC 1 2 2000

Approved By:

4

U1015 Page No.:

Analytical Report

Client: Project: Sample Matrix: Barr Engineering Co. 23/27-110Y2K461 Water
 Service Request:
 K2008629

 Date Collected:
 11/2/00

 Date Received:
 11/3/00

Polynuclear Aromatic Hydrocarbons

Sample Name:WA-70W WaterUnits:ug/L (ppb)Lab Code:K2008629-001Basis:NATest Notes:Test Notes:K2008629-001K2008629-001

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Timatyte						·		
Naphthalene	EPA 3510C	SIM	0.003	1	11/9/00	12/1/00	0.027	В
2-Methylnaphthalene	EPA 3510C	SIM	0.003	1	11/9/00	12/1/00	0.015	В
Acenaphthylene	EPA 3510C	SIM	0.003	1	11/9/00	12/1/00	ND	
Acenaphthene	EPA 3510C	SIM	0.003	1	11/9/00	12/1/00	0.020	
Fluorene	EPA 3510C	SIM	0.003	1	11/9/00	12/1/00	0.020	
Phenanthrene	EPA 3510C	SIM	0.003	1	11/9/00	12/1/00	0.026	В
Anthracene	EPA 3510C	SIM	0.003	1	11/9/00	12/1/00	0.017	
Fluoranthene	EPA 3510C	SIM	0.003	1	11/9/00	12/1/00	0.019	В
Pyrene	EPA 3510C	SIM	0.003	1	11/9/00	12/1/00	0.015	В
Benz(a)anthracene	EPA 3510C	SIM	0.003	1	11/9/00	12/1/00	0.005	
Chrysene	EPA 3510C	SIM	0.003	1	11/9/00	12/1/00	0.009	
Benzo(b)fluoranthene	EPA 3510C	SIM	0.003	1	11/9/00	12/1/00	0.007	
Benzo(k)fluoranthene	EPA 3510C	SIM	0.003	1	11/9/00	12/1/00	0.004	
Benzo(a)pyrene	EPA 3510C	SIM	0.003	1	11/9/00	12/1/00	0.003	
Indeno(1,2,3-cd)pyrene	EPA 3510C	SIM	0.003	1	11/9/00	12/1/00	0.005	
Dibenz(a,h)anthracene	EPA 3510C	SIM	0.003	1	11/9/00	12/1/00	ND	
Benzo(g,h,i)perylene	EPA 3510C	SIM	0.003	1	11/9/00	12/1/00	0.006	
2-Chloronaphthalene	EPA 3510C	SIM	0.04	1	11/9/00	12/18/00	ND	

Carel 1. Louis

Approved By:

1S22/020597p

-

U11017 Page No.:

DEC 1 9 2000

Date:

Analytical Report

Client: Project: Sample Matrix: Barr Engineering Co. 23/27-110Y2K461 Water Service Request: K2008629 Date Collected: NA Date Received: NA

Units: ug/L (ppb)

Basis: NA

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code: Test Notes: Method Blank KWG2005132-3

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Naphthalene	EPA 3510C	SIM	0.003	1	11/9/00	11/30/00	0.008	
2-Methylnaphthalene	EPA 3510C	SIM	0.003	1	11/9/00	11/30/00	0.003	
Acenaphthylene	EPA 3510C	SIM	0.003	1	11/9/00	11/30/00	ND	
Acenaphthene	EPA 3510C	SIM	0.003	1	11/9/00	11/30/00	ND	
Fluorene	EPA 3510C	SIM	0.003	1	11/9/00	11/30/00	ND	
Phenanthrene	EPA 3510C	SIM	0.003	1	11/9/00	11/30/00	0.010	
Anthracene	EPA 3510C	SIM	0.003	1	11/9/00	11/30/00	ND	
Fluoranthene	EPA 3510C	SIM	0.003	1	11/9/00	11/30/00	0.006	
Pyrene	EPA 3510C	SIM	0.003	1	11/9/00	11/30/00	0.004	
Benz(a)anthracene	EPA 3510C	SIM	0.003	1	11/9/00	11/30/00	ND	
Chrysene	EPA 3510C	SIM	0.003	1	11/9/00	11/30/00	ND	
Benzo(b)fluoranthene	EPA 3510C	SIM	0.003	1	11/9/00	11/30/00	ND	
Benzo(k)fluoranthene	EPA 3510C	SIM	0.003	1	11/9/00	11/30/00	ND	
Benzo(a)pyrene	EPA 3510C	SIM	0.003	1	11/9/00	11/30/00	ND	
Indeno(1,2,3-cd)pyrene	EPA 3510C	SIM	0.003	1	11/9/00	11/30/00	ND	
Dibenz(a,h)anthracene	EPA 3510C	SIM	0.003	1	11/9/00	11/30/00	ND	
Benzo(g,h,i)perylene	EPA 3510C	SIM	0.003	1	11/9/00	11/30/00	ND	
2-Chloronaphthalene	EPA 3510C	SIM	0.04	1	11/9/00	12/18/00	ND	

Carol P. Devices

Approved By:

1S22/020597p

UU019 Page No.:

DEC 1 9 2000

Date:

Appendix A Laboratory QC Results

QA/QC Report

1 1	Client: Project: LCS Matrix:	Barr Engineering (23/27-110Y2K461 Soil		aboratory Contro Inorganic	ol Sample Paramete	-	Da Da Dat Da	ice Request: te Collected: te Received: e Extracted: te Analyzed:	NA NA NA	
	Sample Name: Lab Code: Test Notes:	Lab Control Sampl K2008629-LCS	e					Basis:	Dry	
1								CAS Percent Recovery		
	Analyte		Units	Analysis Method	True Value	Result	Percent Recovery	Acceptance Limits		Result Notes
1	pH		pH UNITS	9045C	6.06	5.99	99	85-115		
1	Carbon, Total Org	ganic	PERCENT	TM D4129-8	1.16	1.07	92	85-115		

Approved By:

LCS/52595 08629WET.PW2 - LCS 12/15/00

Date: 12/15/00

00023

QA/QC Report

Client: Project: Sample Matrix:	Barr Engineering (23/27-110Y2K461 Water	Matr	ix Spike		-		Date Dat	ce Request: e Collected: e Received: Extracted: e Analyzed:	11/2/00 11/3/00 NA	
Sample Name: Lab Code: Test Notes:	WA-70W Water K2008629-001MS		ganic Pa	arameter	S			Basis:	NA	
Analyte	Units	Analysis Method	MRL	Spike Level	Sample Result	Spiked Sample Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes	
Carbon, Total Organic	mg/L (ppm)	415.1	1.0	50.0	11.9	64.8	106	85-115		

_ Approved By: ______

แ/เา/ฮ Date:

MS/072898p 08629WET.PW1 - MS 11/17/00

QA/QC Report

Client: Project: Sample Matrix:	Barr Engineering (23/27-110Y2K461 Water			Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	11/2/00 11/3/00 11/9/00
		Surrogate I	Recovery Summary		
		Pentachl	orophenol (PCP)		
Prep Method:	EPA 3510B			Units:	PERCENT
AnalysisMethod:	8151M			Basis:	NA
			Test	Percent Recovery	
Sample Name		Lab Code	Notes	4-Bromo-2,6-dichlorophene	ol
-					
WA-70W Water		K2008629-001		85	
Batch QC		K2008625-002		98	
Batch QC		K2008625-002MS		89	
Batch QC		K2008625-002DMS		95	
Lab Control Sample		K001109-WL		87	
Method Blank		K001109-WB		99	

CAS Acceptance Limits:

40-100

Date: 11/28/00

M Approved By:

Euler

SUR1/052595 08629PHC.ES1 - SUR 11/27/00

QA/QC Report

і П п	Client: Project: Sample Matrix:	Barr Engineerir 23/27-110Y2K4 Water	-								Dat Da Dat	ice Request: te Collected: te Received: e Extracted: te Analyzed:	NA NA 11/9/00	
			Ν	Aatrix S	•	-	e Matrix S ophenol (Po	-	mmary					
÷Υ					1 01		,p.101101 (1							
	Sample Name:	Batch QC										Units:	ug/L (ppb)	
	Lab Code:	K2008625-0021	MS,	K2008	625-0	02DMS						Basis:	NA	
1	Test Notes:													
1										Perc	ent]	Recovery	y	
÷1						_						CAS	Relative	
		Prep	Analysis			e Level	-	-	Result	1.00	D) (0	Acceptance	Percent	Result
	Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
1	Pentachlorophenol (PCP)	EPA 3510B	8151M	0.50	10	10	ND	7.4	8.3	74	83	33-128	11	

Approved By: M Gulu

DMS/052595 08629PHC.ES1 - DMS 11/27/00

11/28/00 _____ Date: ____

01029

QA/QC Report

Client: Project: LCS Matrix:	Barr Engineering 23/27-110Y2K4 Water					Da Da Dat	vice Request: te Collected: te Received: te Extracted: te Analyzed:	NA NA 11/9/00	
			Laboratory Cor						-
			Pentachle	orophenol	(PCP)				
Sample Name:	Lab Control Sam	ple					Units:	ug/L (pj	pb)
Lab Code:	K001109-WL						Basis:	NA	
Test Notes:									
							CAS		
							Percent		
							Recovery		
		Prep	Analysis	True		Percent	Acceptance		Result
		-	•		Dogult		Limits		Notes
Analyte		Method	Method	Value	Result	Recovery	Lining		1101C3
Pentachlorophenol	(PCP)	EPA 3510B	8151M	10	7.1	71	41-115		

m Approved By:

lunter

ш

L.

Date: ______

01031

QA/QC Report

Barr Engineering Co. Client: 23/27-110Y2K461 **Project:** Sample Matrix: Water

Service Request: K2008629 Date Collected: 11/2/00 Date Received: 11/3/00 Date TCLP Performed: 11/9/00 Date Extracted: 11/13/00 Date Analyzed: 11/22/00

Surrogate Recovery Summary Toxicity Characteristic Leaching Procedure (TCLP) **Chlorinated Phenols** EPA Methods 1311 and Modified 8151

Sample Name	Lab Code	4-Bromo-2,6-dichlorophenol
WA-70W Water Leach	K2008629-003	90
WA-70W Water Leach	K2008629-003MS	89
Method Blank	K001109-LB	91

CAS Acceptance Limits: 40-100

Approved By:

TCLPISUR/120594 08629PHC.ME2 - TCLPSUR 11/30/00 En Date: 11/30/00

00033 Page No.:

QA/QC Report

Client: Project: Sample Matrix:	Barr Engineering Co. 23/27-110Y2K461 Soil			Service Request: Date Collected: Date Received: Date Extracted:	11/2/00 11/3/00
				Date Analyzed:	11/21-12/7/00
		-	covery Summary		
]	Polynuclear Aro	matic Hydrocarbons		
Prep Method: Analysis Method:	EPA 3541 SIM	Test	Perc	Basis: ent Rec	overy
Sample Name	Lab Code	Notes	Fluorene-d10	Fluoranthene-d10	Terphenyl-d14
WA-70W Soil	K2008629-002		97	78	104
Batch QC	K2008608-006		70	76	83
Batch QC	K2008608-006MS		74	78	70
Batch QC	K2008608-006DMS		83	86	77
Lab Control Sample	KWG2005214-3		86	87	83
Method Blank	KWG2005214-4		85	80	95

CAS Acceptance Limits:

Carol C. dokumes

37-122

49-118

30-140

i.

Approved By: _____

SUR3/111397p 08629SVM AY1 - SUR 12/12/00 Date: DEC 1 2 2000

U1035 Page No.:

QA/QC Report

Client: Project: LCS Matrix:	Barr Engineering Co. 23/27-110Y2K461 Soil		aboratory Cont Polynuclear Arc	-		Da Da Da Da	vice Request: ate Collected: ate Received: te Extracted: ate Analyzed:	NA NA 11/14/00
Sample Name: Lab Code: Test Notes:	Lab Control Sample KWG2005214-3		·				Units: Basis:	ug/Kg (ppb) Dry
Analyte		rep ethod	Analysis Method	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Acenaphthene Pyrene Benzo(a)pyrene	EPA	x 3541 x 3541 x 3541	SIM SIM SIM	490 490 490	400 470 450	82 96 92	30-116 25-129 29-129	

Carol (. Laines

Date:

QA/QC Report

Client: Project: Sample Matrix:	Barr Engineering Co. 23/27-110Y2K461 Water			Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	11/2/00 11/3/00 11/14/00
		Surrogate Reco	overy Summary	•	
		Polynuclear Arom	atic Hydrocarbons		
Prep Method: Analysis Method: Sample Name	EPA 3510C SIM Lab Code	Test Notes	Perce Nitrobenzene-d5	Units: Basis: n t R e c 2-Fluorobiphenyl	
WA-70W Water Lead Lab Control Sample Lab Control Sample Method Blank	kh K2008629-003 KWG2005204-1 KWG2005204-2 KWG2005204-3		84 87 83 88	72 78 74 72	104 97 94 102

CAS Acceptance Limits:

Cevel C. Leines

36-105

21-98

Date: DEC 1 2 2000

37-126

01039

Page No.:

SUR3/111397p 08629SVM AY3 - SUR 12/12/00

Approved By:

-

QA/QC Report

Client:	Barr Engineering C	Co.						Servi	ce Request:	K2008629	
Project:	23/27-110Y2K461							⁻ Date	Collected:	NA	
LCS Matrix:	Water							Date	e Received:	NA	
								Date	Extracted:	11/14/00	
								Date	Analyzed:	11/30/00	
Sample Name:	Laborate Lab Control Sampl		-	-		ratory C Iydrocar		Sample		ug/L (ppb)	
Lab Code:	KWG2005204-1,		4-2						Basis:		
Test Notes:	111102002011,										
Test Hotes.						I	Perc	ent R	ecovery	7	
Analyte	Prep Method	Analysis Method		Value DLCS		sult DLCS	LCS	DLCS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Acenaphthene Pyrene	EPA 3510C EPA 3510C	SIM SIM	0.33 0.33	0.33 0.33	0.27 0.30	0.24 0.28	82 91	73 85	28-116 32-130	12 7	
1 yrene	111155100	51111	0.55	0.55	0.50	0,20	-1	05	52 150	,	

Approved By:

12

Benzo(a)pyrene

EPA 3510C

SIM

0.33

0.33

0.27

0.26

82

79

47-130

4

U10041 Page No.:

s a ≧

DEC 1 2 2000

Date:

Carol M. Leeines

December 1, 2000

Alta Batch I.D.: 9399

Ms. Lynda Huckestein Columbia Analytical Services 1317 South 13th Avenue Kelso, WA 98626

Dear Ms. Huckestein,

Enclosed are the results for the one aqueous sample and one soil sample received at Alta Analytical Laboratory on November 10, 2000. This work was authorized under your Purchase Order #K2008629. These samples were analyzed using EPA Method 8290 for tetra to octa chlorinated dioxins and furans. A standard turnaround time was requested for this work.

The soil sample contained extremely high levels of dioxins and furans. Results given the "*" qualifier were taken from a diluted extract. This sample also contained chlorinated diphenylethers. These compounds may interfere with chlorinated dibenzofurans. Results given the "D" qualifier should be considered the maximum possible concentration due to possible diphenylether interference.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix. The Appendix contains a copy of the chain-of-custody, a list of data qualifiers and abbreviations, our current certifications and copies of the raw data (if requested).

If you have any questions regarding this report please feel free to contact me.

Sincerely,

William J. Luksemburg President Alta Analytical Laboratory

Alta Analytical Laboratory Inc. 5070 Robert J. Mathews Parkway El Dorado Hills, CA 95762 FAX (916) 933-0940 (916) 933-1640

Sample ID:	<u>WA-70W-WA</u>	ATER			Lab ID:	<u>9399-001</u>	
Project:	General Analy	tical HRMS			QC Set	1,151	
Matrix:	Aqueous	Date Received:	<u>11/10/00</u>		%Solids:	NA	
Sample Amount	: <u>1.004 L</u>	Date Extracted	<u>11/27/00</u>		Units:	pg/L	
^a TEQ (Min-Max)	: <u>11.5 - 21.2</u>						
Compound		Conc.	<u>DL</u> ^b	<u>EMPC</u> ۵	MDL d	<u>Qualifier</u>	
2,3,7,8-TCDD		ND	1.91		0.711		
1,2,3,7,8-PeCDD		ND	6.75		2.53		
1,2,3,4,7,8-HxCD	D	ND	5.62		2.76		
1,2,3,6,7,8-HxCD	D	12.8			1.46	Α	
1,2,3,7,8,9-HxCD	D	ND	5.41		2.49		
1,2,3,4,6,7,8-HpC	CDD	280			2.97		
OCDD		3450			6.93		
2,3,7,8-TCDF		ND	4.17		0.243		
1,2,3,7,8-PeCDF	12	ND	3.17		5.42		
2,3,4,7,8-PeCDF		ND	2.98		4.42		
1,2,3,4,7,8-HxCD	F	13.6			4.24	Α	
1,2,3,6,7,8-HxCD)F	9.89			2.43	Α	
2,3,4,6,7,8-HxCD	F	ND	5.01		3.06		
1,2,3,7,8,9-HxCD	F	ND	7.35		1.80		
1,2,3,4,6,7,8-HpC	CDF	125			2.02		
1,2,3,4,7,8,9-НрС	CDF	ND	6.88		3.62		
OCDF		334			4.39		
Total TCDD		ND	1.91				
Total PeCDD		ND	6.75				
Total HxCDD		68.5				3	
Total HpCDD		535					
Total TCDF		ND	4.17		6		
Total PeCDF		35.8				10 N	
Total HxCDF		178				»» (۵۲) ع	
Total HpCDF		418					
-						insi ini No	

ALTA

20

4

-

				v		
M ethod Blank		Date Extra	acted: <u>11/1</u>	6/00	Lab ID:	<u>MB001</u>
Matrix:	<u>Solid</u>	Sample Ar	nount: <u>10 g</u>		QC Set:	1,127
TEQ (Min-Max	x): <u>0 - 0.353</u>				Units:	pg/g
Compound		Conc.	<u>DL</u> ^b	EMPC ^c	MDL d	Qualifier
2,3,7,8-TCDD		ND	0.0840		0.0889	
1,2,3,7,8-PeCD	D	ND	0.0953		0.262	
1,2,3,4,7,8-HxC		ND	0.239		0.820	
1,2,3,6,7,8-HxC		ND	0.240		0.818	
1,2,3,7,8,9-HxC		ND	0.236		0.528	
1,2,3,4,6,7,8-Hp		ND	0.145		0.347	
OCDD		ND	0.404		2.03	
2,3,7,8-TCDF		ND	0.128		0.0940	
1,2,3,7,8-PeCDI	F	ND	0.213		0.294	
2,3,4,7,8-PeCDI	F	ND	0.181		0.245	
1,2,3,4,7,8-HxC	DF	ND	0.0724		0.270	
1,2,3,6,7,8-HxC	DF	ND	0.0716		0.201	
2,3,4,6,7,8-HxC	DF	ND	0.0751		0.273	
1,2,3,7,8,9-HxC	DF	ND	0.101		0.297	
1,2,3,4,6,7,8-Hp	CDF	ND	0.0936		0.232	
1,2,3,4,7,8,9-Нр	CDF	ND	0.128		0.295	
OCDF		ND	0.438		0.512	
Total TCDD		ND	0.0840			
Total PeCDD		ND	0.0953			
Total HxCDD		ND	0.239			
Total HpCDD		ND	0.145			
Total TCDF		ND	0.128			
Total PeCDF		ND	0.197			
Total HxCDF		ND	0.0789			÷
Total HpCDF		ND	0.109			

е ¹² 1999

OPR RESULTS Lab ID: <u>OPR001</u> Matrix: <u>Solid</u>		eived: <u>NA</u> racted: <u>11/16/00</u> mount: <u>10 g</u>	OC Set: <u>1.127</u> Units: <u>ng/mL</u>
Compound	Spike <u>Conc.</u>	Conc. Found	OPR Limits
2,3,7,8-TCDD	10.0	8.47	7 - 13
1,2,3,7,8-PeCDD	50.0	46.3	35 - 65
1,2,3,4,7,8-HxCDD	50.0	47.9	35 - 65
1,2,3,6,7,8-HxCDD	50.0	48.7	35 - 65
1,2,3,7,8,9-HxCDD	50.0	51.3	35 - 65
1,2,3,4,6,7,8-HpCDD	50.0	50.4	35 - 65
OCDD	100	107	70 - 130
2,3,7,8-TCDF	10.0	10.1	7 - 13
1,2,3,7,8-PeCDF	50.0	51.3	35 - 65
2,3,4,7,8-PeCDF	50.0	53.7	35 - 65
1,2,3,4,7,8-HxCDF	50.0	48.2	35 - 65
1,2,3,6,7,8-HxCDF	50.0	54.6	35 - 65
2,3,4,6,7,8-HxCDF	50.0	54.4	35 - 65
1,2,3,7,8,9-HxCDF	50.0	52.2	35 - 65
1,2,3,4,6,7,8-HpCDF	50.0	51.2	35 - 65
1,2,3,4,7,8,9-HpCDF	50.0	50.1	35 - 65
OCDF	100	103	70 - 130

ų,

Sample ID:	<u>WA-70W-SO</u>	<u>IL</u>			Lab ID: <u>939</u>	99-002
Project:	General Anal	ytical HRMS			OC Set: <u>1,1</u>	<u>27</u>
Matrix:	<u>Soil</u>	Date Received:	11/10/00		%Solids: <u>58.</u>	2
Sample Amount:	: <u>17.71 g</u>	Date Extracted:	<u>11/16/00</u>		Units: pg/	g
^a TEQ (Min-Max)	: <u>1050 - 1050</u>					
<u>Compound</u> 2,3,7,8-TCDD		<u>Conc.</u> 5.29	DL ^b	۵ <u>EMPC</u>	<u>MDL</u> ^d 0.0889	<u>Qualifier</u>
1,2,3,7,8-PeCDD		43.8			0.262	
1,2,3,4,7,8-HxCD	D	180			0.820	
1,2,3,6,7,8-HxCD	D	1360			0.818	
1,2,3,7,8,9-HxCD	D	406			0.528	
1,2,3,4,6,7,8-НрС	CDD	30000			0.347	*
OCDD		210000			2.03	*
2,3,7,8-TCDF		39.8			0.0940	
1,2,3,7,8-PeCDF		136			0.294	
2,3,4,7,8-PeCDF		349			0.245	
1,2,3,4,7,8-HxCD	F	1010			0.270	
1,2,3,6,7,8-HxCD	F	315			0.201	
2,3,4,6,7,8-HxCD	F	449			0.273	
1,2,3,7,8,9-HxCD	F	392			0.297	
1,2,3,4,6,7,8-НрС	DF	10800			0.232	*
1,2,3,4,7,8,9-НрС	DF	1040			0.295	*
OCDF		34800			0.512	*
Total TCDD		264				
Total PeCDD		844		934		
Total HxCDD		7620				
Total HpCDD		53900				*
Total TCDF		706				D
Total PeCDF		3990				D
Total HxCDF		20100			8	D
Total HpCDF		50900				*

Test.

in t

SECTION II.

Method Blank Matrix: <u>Aqueous</u> TEQ (Min-Max): <u>0 - 5.60</u>	Date Extracte Sample Amou		Lab ID: QC Set Units:	<u>MB001</u> <u>1,151</u> pg/L
Compound	Conc.	<u>DL</u> ^b <u>EMPC</u> ^c	$\underline{\mathbf{MDL}}$ d	Qualifier
2,3,7,8-TCDD	ND	1.39	0.711	
1,2,3,7,8-PeCDD	ND	1.74	2.53	
1,2,3,4,7,8-HxCDD	ND	3.75	2.76	
1,2,3,6,7,8-HxCDD	ND	4.15	1.46	
1,2,3,7,8,9-HxCDD	ND	3.70	2.49	
1,2,3,4,6,7,8-HpCDD	ND	2.98	2.97	
OCDD	ND	12.3	6.93	
2,3,7,8-TCDF	ND	2.00	0.243	
1,2,3,7,8-PeCDF	ND	2.09	5.42	
2,3,4,7,8-PeCDF	ND	1.98	4.42	
1,2,3,4,7,8-HxCDF	ND	1.66	4.24	
1,2,3,6,7,8-HxCDF	ND	1.54	2.43	
2,3,4,6,7,8-HxCDF	ND	1.86	3.06	
1,2,3,7,8,9-HxCDF	ND	2.74	1.80	
1,2,3,4,6,7,8-HpCDF	ND	2.13	2.02	
1,2,3,4,7,8,9-HpCDF	ND	3.10	3.62	
OCDF	ND	13.4	4.39	
Total TCDD	ND	1.39		
Total PeCDD	ND	1.74		
Total HxCDD	ND	3.86		
Total HpCDD	ND	2.98		
Total TCDF	ND	2.00		
Total PeCDF	ND	2.04		
Total HxCDF	ND	1.90		
Total HpCDF	ND	2.56		8, 15 18

ALTA

OPR RESULTS Lab ID: <u>OPR001</u> Matrix: <u>Aqueous</u>		ived: <u>NA</u> acted: <u>11/27/00</u> mount: <u>1.000 L</u>	QC Set: <u>1,151</u> Units: <u>ng/mL</u>
Compound	Spike <u>Conc.</u>	Conc. <u>Found</u>	OPR Limits
2,3,7,8-TCDD	10.0	8.74	7 - 13
1,2,3,7,8-PeCDD	50.0	49.5	35 - 65
1,2,3,4,7,8-HxCDD	50.0	54.8	35 - 65
1,2,3,6,7,8-HxCDD	50.0	51.4	35 - 65
1,2,3,7,8,9-HxCDD	50.0	50.5	35 - 65
1,2,3,4,6,7,8-HpCDD	50.0	45.2	35 - 65
OCDD	100	101	70 - 130
2,3,7,8-TCDF	10.0	10.4	7 - 13
1,2,3,7,8-PeCDF	50.0	50.3	35 - 65
2,3,4,7,8-PeCDF	50.0	51.2	35 - 65
1,2,3,4,7,8-HxCDF	50.0	49.0	35 - 65
1,2,3,6,7,8-HxCDF	50.0	51.7	35 - 65
2,3,4,6,7,8-HxCDF	50.0	49.2	35 - 65
1,2,3,7,8,9-HxCDF	50.0	51.7	35 - 65
1,2,3,4,6,7,8-HpCDF	50.0	52.0	35 - 65
1,2,3,4,7,8,9-HpCDF	50.0	53.1	35 - 65
OCDF	100	103	70 - 130

DATA QUALIFIERS & ABBREVIATIONS

Α	The amount detected is below the Method Calibration Limit.
В	This compound was also detected in the blank.
С	The amount detected is less than five times the Method Quantitation Limit.
D	The amount reported is the maximum possible concentration.
E	The detection limit was raised above the Method Quantitation Limit due to chemical interferences.
F	This result has been confirmed on a DB-225 column.
G	This result has been confirmed on a SP-2331 column.
Н	The signal-to-noise ratio is greater than 10:1.
I	Chemical Interference
Conc.	Concentration
D.L.	Detection Limit

- NA Not applicable
- S/N Signal-to-noise
- * See Cover Letter
- ND Not Detected
- MPC Maximum Possible Concentration

Columbia Analytical		CHAIN OF C	USTODY/LABOR	ATORY ANALYSI	CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM
An Employee-Owned Company 1317 S	1317 South 13th Ave. • Kelso, WA 98626 • (360) 577-7222 • (800) 695-7222 • FAX (360) 636-1068	(360) 577-7222 • (800) 695-7222 •	FAX (360) 636-1068 DATE	EPAGE	OF
ECH	/ / # /		ANALYSIS	YSIS REQUESTED	90
PROJECT MANAGER	weld theked	TAINERS		/////	00
	PHONE	3 OF CON	/////	/////	
SAMPLEHS SIGNATUHE					
SAMPLE I.D. DATE	LAB SA TIME LAB SA	SAMPLE 5 MATBIX 2			REMARKS
WH-10W-Wall		207			
1 1 1					
RELINQUISHED BY	RECEIVED BY:	TURNAROUND REQUIREMENTS	10	INVOICE INFORMATION:	SAMPLE RECEIPT:
Printed Name	Printed Name	Standard (10-15 working days) Provide Verbal Preliminary Results	MSD, as required, may be charged as samples) III. Data Validation Report	Bil To	Shipping VIA:Shipping #:Condition:
Firm///////330 Date/Time	Film - 10 - 0 0/ 112 8 Date/Time	Provide FAX preliminary Results Requested Report Date	IV. CLP Deliverable Report		PCSTOCX
RELINQUISHED BY:	RECEIVED BY:	SPECIAL INSTRUCTIONS/COMMENTS:	OMMENTS:		
Signature	Signature	-			
Printed Name	Printed Name				
Firm	Firm				
Date/Time	Date/Time	Jent to	ATTA		
		2			

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

400-05

	SAMPLE LOG-IN CHECKLIST			
AL	TA Project No.: 9399 Client/Protocol No.			
1.	Date Samples Arrived: 11-9-08 Initials: Mrc Location	on:	1R-1	-
2.	Time / Date logged in: 11-10-00/11:79 Initials: 20 Location	on:	n-1	_
3.	Samples Arrived By: (circle) FedEx UPS World Courier Other:			
4.	Shipping Preservation: (circle) Ice / Btue Ice / Dry Ice / None Temp °C		-	
5.	Shipping Container(s) Intact"? If not, describe condition in comment section.	YES K	NO	NA
6.	Shipping Container(s) Custody Seals Present? Intact? If not intact, describe condition in comment section.	X P		
7.	Shipping Documentation Present? (circle) Shipping Label Airbill Tracking Number 17 973 6546147986120	X		
8.	Sample Custody Seal(s) Present? No. of Seals or Seal No Intact? If not intact, describe condition in comment section.		X	X
9.	Sample Container Intact? If no, indicate sample condition in comment section.	X		
10.	Chain of Custody (COC) or other Sample Documentation Present?	X		
11.	COC/Documentation Acceptable? If no, complete COC Anomaly Form.	X		
12.	Shipping Container (circle): ALTA Client, Retain or Return or Di	sposed	1	
13.	Container(s) and/or Bottle(s) Requested?		X	
14.	Sample Control Check In/Out Log Completed? (HRMS Only)	メ		
15.	Drinking Water Sample? (HRMS Only) If yes, Acceptable Preservation? Y or N Preservation Info From? (circle) COC or Sample Container or None Noted			X
16.	Number of Samples Received:			

-

Name: _______(Signature Required for LCMS Only)

Date Samples Reconciled:

Comments:

Section I: Sample Inventory Report Date Received: 11/17/00

<u>Alta Lab. ID</u>

Client Sample ID

9448-001

WA-70N LEACHATE

						2,22,22,23
M ethod Blank		Date Extrac			Lab ID:	<u>MB001</u>
Matrix:	Aqueous	Sample Am	ount: <u>1.000</u>	<u>L</u>	QC Set:	<u>1,151</u>
TEQ (Min-Max	x): <u>0 - 5.60</u>				Units:	pg/L
Compound		Conc.	<u>DL</u> ۵	<u>EMPC</u> °	$\underline{\mathbf{MDL}}^{\mathrm{d}}$	Qualifier
2,3,7,8-TCDD		ND	1.39		0.711	
1,2,3,7,8-PeCD	D	ND	1.74		2.53	
1,2,3,4,7,8-HxC		ND	3.75		2.76	
1,2,3,6,7,8-HxC		ND	4.15		1.46	
1,2,3,7,8,9-HxC		ND	3.70		2.49	
1,2,3,4,6,7,8-H		ND	2.98		2.97	
OCDD		ND	12.3		6.93	
2,3,7,8-TCDF		ND	2.00		0.243	
1,2,3,7,8-PeCD	F	ND	2.09		5.42	
2,3,4,7,8-PeCD	F	ND	1.98		4.42	
1,2,3,4,7,8-HxC	CDF	ND	1.66		4.24	
1,2,3,6,7,8-HxC	CDF	ND	1.54		2.43	
2,3,4,6,7,8-HxC	CDF	ND	1.86		3.06	
1,2,3,7,8,9-HxC	DF	ND	2.74		1.80	
1,2,3,4,6,7,8-Hp	oCDF	ND	2.13		2.02	
1,2,3,4,7,8,9-Hp	oCDF	ND	3.10		3.62	
OCDF		ND	13.4		4.39	
Total TCDD		ND	1.39			927
Total PeCDD		ND	1.74			
Total HxCDD		ND	3.86			
Total HpCDD		ND	2.98			
Total TCDF		ND	2.00			
Total PeCDF		ND	2.04			
Total HxCDF		ND	1.90			
Total HpCDF		ND	2.56			
						5 8 96

		ved: <u>NA</u> cted: <u>11/27/00</u> ount: <u>1.000 L</u>	OC Set: <u>1,151</u> Units: <u>ng/mL</u>
Compound	Spike <u>Conc.</u>	Conc. Found	OPR Limits
2,3,7,8-TCDD	10.0	8.74	7 - 13
1,2,3,7,8-PeCDD	50.0	49.5	35 - 65
1,2,3,4,7,8-HxCDD	50.0	54.8	35 - 65
1,2,3,6,7,8-HxCDD	50.0	51.4	35 - 65
1,2,3,7,8,9-HxCDD	50.0	50.5	35 - 65
1,2,3,4,6,7,8-HpCDD	50.0	45.2	35 - 65
OCDD	100	101	70 - 130
2,3,7,8-TCDF	10.0	10.4	7 - 13
1,2,3,7,8-PeCDF	50.0	50.3	35 - 65
2,3,4,7,8-PeCDF	50.0	51.2	35 - 65
1,2,3,4,7,8-HxCDF	50.0	49.0	35 - 65
1,2,3,6,7,8-HxCDF	50.0	51.7	35 - 65
2,3,4,6,7,8-HxCDF	50.0	49.2	35 - 65
1,2,3,7,8,9-HxCDF	50.0	51.7	35 - 65
1,2,3,4,6,7,8-HpCDF	50.0	52.0	35 - 65
1,2,3,4,7,8,9-HpCDF	50.0	53.1	35 - 65
OCDF	100	103	70 - 130

÷.,

-

ille ve

10

Sample ID:	WA-70N LEA	CHATE				Lab ID:	<u>9448</u>	-001
Project:	General Analy	tical HRMS				QC Set:	1,15	<u>1</u>
Matrix:	Aqueous	Date Recei	ved:	<u>11/17/00</u>		%Solids:	<u>NA</u>	
Sample Amount:	0.950 L	Date Extra	cted:	<u>11/27/00</u>		Units:	<u>pg/L</u>	
^a TEQ (Min-Max)	<u>0.0302 - 3.17</u>							
<u>Compound</u>		<u>Conc.</u> ND		DL ^b 875	۵ <u>EMPC</u>	<u>MDL</u> 0.711	d	<u>Qualifier</u>
2,3,7,8-TCDD						2.53		
1,2,3,7,8-PeCDD		ND		.15		2.55 2.76		
1,2,3,4,7,8-HxCD		ND		.59				
1,2,3,6,7,8-HxCD		ND		.72		1.46		
1,2,3,7,8,9-HxCD		ND		.55		2.49		
1,2,3,4,6,7,8-HpC	CDD	ND	5	.50		2.97		
OCDD		30.2				6.93		Α
2,3,7,8-TCDF		ND	1	.18		0.243		
1,2,3,7,8-PeCDF		ND	1	.26		5.42		
2,3,4,7,8-PeCDF		ND	1	.21		4.42		
1,2,3,4,7,8-HxCD	\mathbf{F}	ND	0.0	590		4.24		
1,2,3,6,7,8-HxCD	F	ND	0.0	686		2.43		
2,3,4,6,7,8-HxCD	F	ND	0.1	784		3.06		
1,2,3,7,8,9-HxCD	F	ND	1	.14		1.80		
1,2,3,4,6,7,8-HpC	CDF	ND	1	.01		2.02		
1,2,3,4,7,8,9-HpC	DF	ND	1	.56	÷:	3.62		
OCDF		ND	6	.59		4.39		
Total TCDD		ND	0.8	375				
Total PeCDD		ND	1	.15				
Total HxCDD		ND	1	.62	8			
Total HpCDD		ND	5	.50				
Total TCDF		ND	1	.18				5
Total PeCDF		ND		.24				ŭ
Total HxCDF		ND		808				
Total HpCDF		ND		.25				
			-					

ALTA

APPENDIX

CURRENT CERTIFICATIONS

Bureau of Reclamation - Mid-Pacific Region — (MP-470, Res-1.10)

Commonwealth of Kentucky — (Certificate No. 90063)

Commonwealth of Virginia

State of Alaska — (Certificate No. OS-00197)

State of Arizona Department of Health Services — (Certificate No. AZ0058)

State of Arkansas Department of Health — (Approval granted through CA certification)

State of Arkansas Department of Pollution Control

State of California — (Certificate No. 1640)

State of Connecticut — (Certificate No. PH-0182)

State of Florida — (Certificate No. 87456)

State of Nevada — (Certificate No. CA413)

State of New York Department of Health — (Certificate No. 11411)

State of North Carolina — (Certification No. 06700)

State of North Dakota Department of Health — (Certificate No. R-078)

State of Oregon

State of Pennsylvania — (Certificate No. 68-490)

State of South Carolina — (Certificate No. 87002001)

State of Tennessee — (Certificate No. 02996)

State of Utah — (Certificate No. E-201)

State of Wisconsin — (Certificate No. 998036160)

State of Wyoming — (Ref: 8ES-LB)

U.S. Army Corps of Engineers

U.S. EPA Region 5

Washington Department of Ecology — (Certification No. C091)

1-17-97

	ANALYSIS REQUESTED				TURNAROUND REQUIREMENTS REPORT REQUIREMENTS INVOICE INFORMATION: 24 hr 48 hr. 5 day -1. Busine Report Standard (10-15 working days) -1. Report (include5 DUP MS P.O.# 2007 K/2)	ride Verbal Preliminary MSU, as required, may be who are valided to the preliminary (includes AII Raw Data) (includes AII Raw Data) Areport Date V. CLP Deliverable Report Report Date Viewer and the second the		Catch il provini Strup's)	the the	ent to ALTA
Columbia Analytical Services 1317 South 13th Ave. • Kelso, WA 98626 • (360) 577-722 • (800) 695-7222 • FAX (360) 636-1068	PROJECT NAME PROJECT MANAGER AGANY ADDRESS COMPANY ADDRESS	SAMPLERS SIGNATURE	t t		BELINQUISHED BY A RECEIVED BY: TUI	Prove Printed Name Prove	RELINQUISHED BY: RECEIVED BY: SP	Signature Printed Name	Firm	Date/Time

Appendix B Chain of Custody Documentation

RECEIVED

FEB 0 5 2001

BARR ENGINEERING CO

January 31, 2001

STL SACRAMENTO PROJECT NUMBER: G1A090202 PO/CONTRACT:

Marti Harding-Smith Barr Engineering Co. 8300 Norman Center Drive Suite 300 Minneapolis, MN 55437-1026

Dear Ms. Harding-Smith,

This report contains the analytical results for the samples received under chain of custody by STL Sacramento on 1/9/01. These samples are associated with your 23/27-110Y01463 project.

All applicable quality control procedures met method-specified acceptance criteria, except as noted on the following page.

If you have any questions, please feel free to call me at (916) 374-4362.

Sincerely,

Diana Brooks Project Manager

STL Sacramento 880 Riverside Parkway West Sacramento, CA 95605-1500

Tel: 916 373 5600 Fax: 916 371 8420 www.stl-inc.com

CASE NARRATIVE

STL SACRAMENTO PROJECT NUMBER G1A090202

SOLID, 8290, Dioxins/Furans, HRGC/HRMS

Due to very high levels seen in sample WA-6MID, the data is reported from two sets of dilutions. The tetra through hexa data is taken for a 50X dilution and the hepta through octa from a 100X dilution.

The 13C-1,2,3,4,6,7,8-HpCDF, 13C-1,2,3,4,6,7,8-HpCDD and 13C-OCDD are out of ratio and therefore the target analytes which are quantitated against these internal standards are flagged with a "JA" qualifier to denote them as estimated. Also all but the 1,2,3,4,7,8,9-HpCDF still exceed the upper calibration limit and are also flagged with an "E" qualifier. The out of ratio internal standards are due to the level of dilution required to analyze this sample. Further dilution is not possible without post spiking the sample and this would not improve the reported results. The non-diluted sample was used to confirm the 2,3,7,8-TCDF and this value exceeded the upper calibration limit and is also flagged with an "E" qualifier.

Sample WA-6S as with sample WA-6MID used the non diluted, a 50X and 100X dilution for reporting results. Tetra through hexa and octa were taken from the non diluted sample, the heptas from the 100X and the octas form the 50X. Again several of the isomers exceeded the upper calibration limit, but are not saturated. These analytes are flagged with an "E" qualifier. The isomers flagged with an "E" in the non-diluted sample are confirmed in the 50X dilution. Also due to the degree of the dilution the 13C-HpCDF and 13C-OCDD are out of ratio and the corresponding native are flagged as estimated with a "JA" qualifier.

There were no other anomalies associated with this project.

-

Distribution: White-Original Accompanies Shipment to Lab; Yellow - Field Copy; Pink - Lab Coordinator

10.

100

.....

-

+

BARR ENGINEERING CO.

Client Sample ID: WA-6MID

Trace Level Organic Compounds

Lot-Sample #...: G1A090202-001 Work Order #...: DTEX41AA Date Sampled...: 01/08/01 Prep Date....: 01/15/01 Prep Batch #...: 1015231 Dilution Factor: 1

Date Received..: 01/09/01 Analysis Date..: 01/22/01 Matrix..... SOLID

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	2000		pg/g	SW846 8290
1,2,3,7,8-PeCDD	29000		pg/g	SW846 8290
1,2,3,4,7,8-HxCDD	180000		pg/g	SW846 8290
1,2,3,6,7,8-HxCDD	210000		pg/g	SW846 8290
1,2,3,7,8,9-HxCDD	140000		pg/g	SW846 8290
1,2,3,4,6,7,8-HpCDD	4400000 E, JA		pg/g	SW846 8290
QCDD	7000000 E,JA		pg/g	SW846 8290
2,3,7,8-TCDF	1300 CON,E		pg/g	SW846 8290
1,2,3,7,8-PeCDF	10000		pg/g	SW846 8290
2,3,4,7,8-PeCDF	8600		pg/g	SW846 8290
1,2,3,4,7,8-HxCDF	79000		pg/g	SW846 8290
1,2,3,6,7,8-HxCDF	22000		pg/g	SW846 8290
2,3,4,6,7,8-HxCDF	12000		pg/g	SW846 8290
1,2,3,7,8,9-HxCDF	3600		pg/g	SWB46 8290
1,2,3,4,6,7,8-HpCDF	1100000 E, JA		pg/g	SW846 8290
1,2,3,4,7,8,9-HpCDF	91000 JA		pg/g	SW846 8290
OCDF	3400000 E,JA		pg/g	SW846 8290
	PERCENT	RECOVERY		,ē
INTERNAL STANDARDS	RECOVERY	LIMITS		
13C-2,3,7,8-TCDD	96	(40 - 135)		
13C-1,2,3,7,8-PeCDD	8 B	(40 - 135)		
13C-1,2,3,6,7,8-HxCDD	90	(40 = 135)		
13C-1,2,3,4,6,7,8-HpCDD	134	(40 - 135)		
13C-OCDD	108	(40 - 135)		
13C-2,3,7,8-TCDF	110	(40 - 135)		

(40 - 135)

(40 = 135)

(40 - 135)

101

92

104

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

E Estimated result. Result concentration exceeds the calibration range.

JA The analyte was positively identified, but the quantitation is an estimate.

CON Confirmation analysis.

13C-1,2,3,7,8-PeCDF

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,4,6,7,8-HpCDF

QC DATA ASSOCIATION SUMMARY

G1A090202

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	<u>ms run#</u>
001	SOLID SOLID	SW846 8290 ASTM D 2216-90		1015231 1016329	1015092 1016183
002	SOLID	SW846 8290 ASTM D 2216-90		1015231 1016329	1015092 1016183

LABORATORY CONTROL SAMPLE DATA REPORT

Trace Level Organic Compounds

Client Lot #: LCS Lot-Sample#:		Work Order #: I	OTMOT1AC	Matrix:	SOLID
Prep Date:	01/15/00	Analysis Date: (01/19/01	9)	
Prep Batch #: Dilution Factor:					

	SPIKE	MEASURED		PERCENT	
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	METHOD
2,3,7,8-TCDD	20.0	20.3	pg/g	101	SW846 8290
1,2,3,7,8-PeCDD	100	112	pg/g	112	SW846 8290
1,2,3,4,7,8-HxCDD	100	102	pg/g	102	SW846 8290
1,2,3,6,7,8-HxCDD	100	105	pg/g	105	SW846 8290
1,2,3,7,8,9-HxCDD	100	104	pg/g	104	SW846 8290
1,2,3,4,6,7,8-HpCDD	100	104	pg/g	104	SW846 8290
CCDD	200	202	pg/g	101	SW846 8290
2,3,7,8-TCDF	20.0	21.0	pg/g	105	SW846 8290
1,2,3,7,8-PeCDF	100	98.3	pg/g	98	SW846 8290
2,3,4,7,8-PeCDF	100	96.6	pg/g	97	SW846 8290
L,2,3,4,7,8-HxCDF	100	102	pg/g	102	SW846 8290
L,2,3,6,7,8-HxCDF	100	103	pg/g	103	SW846 8290
2,3,4,6,7,8-HxCDF	100	116	pg/g	116	SW846 8290
,2,3,7,8,9-HxCDF	100	109	pg/g	109	SW846 8290
,2,3,4,6,7,8-HpCDF	100	96.9	pg/g	97	SW846 8290
,2,3,4,7,8,9-HpCDF	100	101	pg/g	101	SW846 8290
CDF	200	200	pg/g	100	SW846 8290

	PERCENT	RECOVERY
INTERNAL STANDARD	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	93	(40 - 135)
13C-1,2,3,7,8-PeCDD	88	(40 - 135)
13C-1,2,3,6,7,8-HxCDD	90	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDD	97	(40 - 135)
13C-OCDD	112	(40 - 135)
13C-2,3,7,8-TCDF	97	(40 - 135)
13C-1,2,3,7,8-PeCDF	106	(40 - 135)
13C-1,2,3,4,7,8-HxCDF	89	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDF	104	(40 - 135)

NOTE (S) :

-

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

2

20 22 22

-

February 9, 2001

Service Request No: K2100168

Marty Harding-Smith Barr Engineering Company 4700 West 77th Street Minneapolis, MN 55435-4803

RECEIVED

FEB 1 2 2001

BARR ENGINEERING CO.

Re: 23/27-110Y01463

Dear Marty:

Enclosed are the results of the sample(s) submitted to our laboratory on January 9, 2001. For your reference, these analyses have been assigned our service request number K2100168.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please note that the analysis for Dioxins was performed at Alta Analytical Systems.

Please call if you have any questions. My extension is 3358.

Respectfully submitted,

Columbia Analytical Services, Inc.

Lynde thele

Lynda A. Huckestein Client Services Manager

LAH/afs

Page 1 of _ 'W

Inorganic Data Qualifiers

- The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

QA/QC Report

Barr Engineering Co. 23/27-110Y01463 Soil

 Service Request:
 K2100168

 Date Collected:
 10/6/00

 Date Received:
 1/9/01

 Date Extracted:
 NA

 Date Analyzed:
 1/16/01

Units: PERCENT

Basis: Dry

ł

Duplicate Summary Carbon, Total Organic

Sample Name:WA-6md (Soil)Lab Code:K2100168-001DUPTest Notes:

Sample Matrix: Soil

Client:

Project:

Analyte	Prep Method	Analysis Method	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
Carbon, Total Organic	NONE	ASTM D4129-82M	0.05	26.0	25.4	25.7	2	

Modified

immek Approved By:

DUP/020597p 00168WET.PW1 - DUP 1/16/01

M

Date: 1/16/01

044005

QA/QC Report

1	Client: Project: LCS Matrix:	Barr Engineering Co 23/27-110Y01463 Soil) _{el}				Da Da Da	vice Request: te Collected: ate Received: te Extracted: ate Analyzed:	NA NA NA
				Laboratory Control	Sample Su	ımmary			
				Carbon, Tota					
ĩ.	Sample Name:	Lab Control Sample						Units:	PERCENT
]	Lab Code: Test Notes:	K2100168-LCS						Basis:	Dry
]			Prep	Analysis	True		Percent	CAS Percent Recovery Acceptance	Result
k	Analyte		Method	Method	Value	Result	Recovery	Limits	Notes
T	Carbon, Total Orga	nic	NONE	ASTM D4129-82M	1.16	1.11	96	85-115	

Modified

MMR Approved By: (

LCS/020597p 00168WET.PW1 - LCS 1/16/01

М

Date: _//1601__

00007 Page No.:

STANDARD OPERATING PROCEDURE

SAMPLE LOG-IN CHECKLIST

AL	TA Project No.: <u>9737</u> Client/Protocol No. $N(A)$			
1.	Date Samples Arrived: 1-16-01 Initials: M.L. Location	on: W	R-1	
2.	Time / Date logged in: 1-17-01 //UD Initials: Mu Location	on: R-	·í	
3.	Samples Arrived By: (circle) FedEx UPS World Courier Other:	4.¶ 1		
4.	Shipping Preservation: (circle) Ice Blue Ice / Dry Ice / None Temp °C 2			
5.	Shipping Container(s) Intact"? If not, describe condition in comment section.	YES	NO	NA
6.	Shipping Container(s) Custody Seals Present?	X		
	Intact? If not intact, describe condition in comment section.	X		
7.	Shipping Documentation Present? (circle) Shipping Label Airbill Tracking Number 129736596148196231	\times		
8.	Sample Custody Seal(s) Present? No. of Seals or Seal No.		×	
	Intact? If not intact, describe condition in comment section.			X
9.	Sample Container Intact? If no, indicate sample condition in comment section.	\times		
10.	Chain of Custody (COC) or other Sample Documentation Present?	$\left \right\rangle$		
11.	COC/Documentation Acceptable? If no, complete COC Anomaly Form.	Y		
12.	Shipping Container (circle): ALTA Client Retain or Return or Dis	sposed		
13.	Container(s) and/or Bottle(s) Requested?		\times	
14.	Drinking Water Sample? (HRMS Only)If yes, Acceptable Preservation? Y or NPreservation Info From? (circle)COCorSample ContainerOrNone Noted			X
15.	Number of Samples Received: $\mathcal{N}(\mathcal{A})$			

Name:

(Signature Required for LCMS Only)

Date Samples Reconciled:

Comments:

Attachment 10.B.2

ALTA Analytical Laboratory 5070 Robert J. Mathews Parkway El Dorado Hills, CA 95762

SOP# CH10B_R13, Page 4 of 6

Matrix: Solid QC Batch No.: 1328 Lab Sample: 0-OPR001 Sample Size: I Date Extracted: 29-Jan-01 Date Analyzed DB-5: 31-Jan-01 Sample Size: I Date Extracted: 29-Jan-01 Date Analyzed DB-5: 31-Jan-01 Analyte Spike Conc Conc. (ng/mL) <u>OPR Limits</u> Labbeled Standard 9 2,3,7,8-FCDD 10.0 10.2 7 - 13 IS-1,2,3,7,8-FCDD 8 1,2,3,4,7,8-HxCDD 50.0 56.0 35 - 65 13C-1,2,3,4,7,8-HxCDD 8 1,2,3,4,7,8-HxCDD 50.0 51.1 35 - 65 13C-1,2,3,4,7,8-HxCDD 8 1,2,3,4,7,8-HxCDD 50.0 52.3 35 - 65 13C-1,2,3,4,7,8-HxCDD 8 1,2,3,4,7,8-HxCDD 50.0 53.2 35 - 65 13C-1,2,3,4,7,8-HxCDD 8 1,2,3,4,6,7,8-HxCDF 50.0 53.2 35 - 65 13C-1,2,3,4,7,8-HxCDF 1 1,2,3,4,7,8-HxCDF 50.0 53.2,3,7,8-TCDF 1 1 2,2,3,4,7,8-HxCDF 1 <t< th=""><th>OPR Results</th><th></th><th></th><th></th><th></th><th></th><th></th><th>EPA METHOD 8290</th></t<>	OPR Results							EPA METHOD 8290
Size: I Date Extracted: 29-Jan-01 Date Analyzed DB-5; e Spike Conc Conc. (ng/mL) OPR Limits Labeled Standard -TCDD 10.0 10.2 7 - 13 IS 13C-1,2,3,7,8-HCD 7,8-HxCDD 50.0 56.0 35 - 65 13C-1,2,3,7,8-HCD 7,8-HxCDD 50.0 54.1 35 - 65 13C-1,2,3,7,8-HCD 7,8-HxCDD 50.0 54.1 35 - 65 13C-1,2,3,7,8-HCD 8,9-HxCDD 50.0 53.3 35 - 65 13C-1,2,3,7,8-HCD 8,9-HxCDD 50.0 53.3 35 - 65 13C-1,2,3,7,8-HCD 8,9-HxCDD 50.0 53.3 35 - 65 13C-1,2,3,7,8-HCD 6,7,8-HyCDD 50.0 53.3 35 - 65 13C-1,2,3,7,8-HCD 8,9-HxCDF 50.0 53.2 35 - 65 13C-1,2,3,4,6,7,8-HX 8,8-PCDF 50.0 53.2 65 13C-1,2,3,4,6,7,8-HX 8,9-HxCDF 50.0 53.2 55 - 65 13C-1,2,3,4,6,7,8-HX 7,8-HxCDF 50.0			QC Batch No.:	1328	Lab Sample:	0-OPR0	01	
e Spike Conc Conc. (ng/mL) OPR Limits 1 -TCDD 10.0 10.2 7 - 13 15 1 3. FeCDD 50.0 56.0 35 - 65 1			Date Extracted:	29-Jan-01	Date Analyzed DE			Date Analyzed DB-225: NA
TCDD 10.0 10.2 7-13 15 1 \$ePeCDD 50.0 54.1 35 - 65 1 1 7,8-HxCDD 50.0 54.1 35 - 65 1 1 7,8-HxCDD 50.0 54.1 35 - 65 1 1 7,8-HxCDD 50.0 53.5 35 - 65 1 1 7,8-HxCDD 50.0 53.5 35 - 65 1 1 6,7,8-HpCDD 50.0 57.7 35 - 65 1 1 6,7,8-HpCDD 50.0 57.7 35 - 65 1 1 6,7,8-HpCDD 50.0 58.2 35 - 65 1 1 8.PeCDF 10.0 11.2 7 - 13 1 1 8.PeCDF 50.0 58.2 35 - 65 1 35 - 65 1 7,8-HxCDF 50.0 57.8 35 - 65 35 - 65 1 1 7,8-HxCDF 50.0 57.3 35 - 65 1 1 1		ke Conc	Conc. (ng/mL)	OPR Limits	Labeled Stand	lard	%R	TCL-UCL
8-PeCDD 50.0 56.0 35 - 65 7,8-HxCDD 50.0 54.1 35 - 65 7,8-HxCDD 50.0 52.3 35 - 65 8,9-HxCDD 50.0 52.3 35 - 65 8,9-HxCDD 50.0 52.3 35 - 65 6,7,8-HpCDD 50.0 57.7 35 - 65 100 110 110 70 - 130 -TCDF 10.0 11.2 7 - 13 -TCDF 10.0 11.2 7 - 13 -TCDF 50.0 58.4 35 - 65 7,8-HxCDF 50.0 58.4 35 - 65 7,8-HxCDF 50.0 57.8 35 - 65 7,8-HxCDF 50.0 57.8 35 - 65 7,8-HxCDF 50.0 57.6 35 - 65 7,8-HxCDF 50.0 57.6 35 - 65 7,8-HxCDF 50.0 57.8 35 - 65 7,8-HxCDF 50.0 57.6 35 - 65 7,8-HxCDF 50.0 57.6 35 - 65 8,9-HxCDF 50.0 57.6 35 - 65 7,8		10.0	10.2	7 - 13		CDD	87.9	40 - 135
7,8-HxCDD 50.0 54.1 35-65 5 7,3-HxCDD 50.0 52.3 35-65 1 8,9-HxCDD 50.0 53.5 35-65 1 8,9-HxCDD 50.0 53.5 35-65 1 8,9-HxCDD 50.0 57.7 35-65 1 6,7,8-HpCDD 50.0 57.7 35-65 1 100 110 11.2 70-130 1 -TCDF 10.0 11.2 7-13 1 8-PeCDF 50.0 58.2 35-65 1 8-PeCDF 50.0 58.4 35-65 1 7,8-HxCDF 50.0 57.8 35-65 1 7,8-HxCDF 50.0 57.6 35-65 1 7,8-HxCDF 50.0 57.6 35-65 1 7,8-HxCDF 50.0 57.6 35-65 1 8,9-HxCDF 50.0 57.6 35-65 1 8,9-HxCDF 50.0 57.6 35-65 1 7,8,9-HpCDF 50.0 57.6 35-65 <td></td> <td>50.0</td> <td>56.0</td> <td>35 - 65</td> <td>13C-1,2,3,7,8-</td> <td>PeCDD</td> <td>119</td> <td>40 - 135</td>		50.0	56.0	35 - 65	13C-1,2,3,7,8-	PeCDD	119	40 - 135
7,8-HxCDD 50.0 52.3 35 - 65 5 8,9-HxCDD 50.0 53.5 35 - 65 5 6,7,8-HpCDD 50.0 57.7 35 - 65 1 100 110 110 70 - 130 1 -TCDF 10.0 11.2 7 - 13 1 -TCDF 10.0 11.2 7 - 13 1 8-PeCDF 50.0 58.2 35 - 65 1 8.PeCDF 50.0 58.4 35 - 65 1 7,8-HxCDF 50.0 58.4 35 - 65 1 7,8-HxCDF 50.0 57.8 35 - 65 1 7,8-HxCDF 50.0 57.8 35 - 65 1 7,8-HxCDF 50.0 57.8 35 - 65 1 7,8-HxCDF 50.0 57.6 35 - 65 1 7,8-HxCDF 50.0 57.6 35 - 65 1 8,9-HxCDF 50.0 57.6 35 - 65 1 6,7,8-HpCDF 50.0 57.6 35 - 65 1 7,8,9-HpCDF 50.0 5		50.0	54.1	35 - 65	13C-1,2,3,4,7,8	8-HxCDD	98.9	40 - 135
8,9-HxCDD 50.0 53.5 35 - 65 35 - 65 (6,7,8-HpCDD 50.0 57.7 35 - 65 1 -TCDF 100 110 70 - 130 1 -TCDF 10.0 11.2 7 - 13 1 & PeCDF 50.0 58.2 35 - 65 1 8.PeCDF 50.0 58.4 35 - 65 1 7,8-HxCDF 50.0 58.4 35 - 65 1 7,8-HxCDF 50.0 57.8 35 - 65 1 7,8-HxCDF 50.0 57.8 35 - 65 1 7,8-HxCDF 50.0 57.6 35 - 65 1 7,8-HxCDF 50.0 57.6 35 - 65 1 7,8-HxCDF 50.0 57.6 35 - 65 1 8,9-HxCDF 50.0 57.6 35 - 65 1 6,7,8-HpCDF 50.0 57.6 35 - 65 1 7,8,9-HpCDF 50.0 57.1 35 - 65 1 7,8,9-HpCDF 50.0 57.1 35 - 65 1 7,8,9-HpCDF 50.		50.0	52.3	35 - 65	13C-1,2,3,6,7,	8-HxCDD	84.6	40 - 135
6,7,8-HpCDD 50.0 57.7 35 - 65 100 110 70 - 130 -TCDF 10.0 11.2 7 - 13 -TCDF 10.0 11.2 7 - 13 &-PeCDF 50.0 58.2 35 - 65 &-PeCDF 50.0 58.4 35 - 65 ,7,8-HxCDF 50.0 58.4 35 - 65 ,7,8-HxCDF 50.0 57.8 35 - 65 ,7,8-HxCDF 50.0 57.8 35 - 65 ,7,8-HxCDF 50.0 57.0 35 - 65 ,7,8-HxCDF 50.0 57.10 35 - 65 ,7,8-HxCDF 50.0 57.10 35 - 65 ,7,8-HxCDF 50.0 57.10 35 - 65 ,7,8-HxCDF 50.0 57.1 35 - 65 ,7,8-HxCDF 50.0 57.1 35 - 65 ,7,8-HxCDF 50.0 57.1 35 - 65 ,7,8-HyCDF 50.0 57.1 35 - 65 ,7,8,9-HpCDF 50.0 57.1 35 - 65 ,7,8,9-HpCDF 50.0 57.1 35 - 65		50.0	53.5	35 - 65	13C-1,2,3,4,6,	7,8-HpCDD	102	40 - 135
100 110 70 - 130 -TCDF 10.0 11.2 7 - 13 &-PeCDF 50.0 58.2 35 - 65 &-PeCDF 50.0 58.4 35 - 65 , 8-PeCDF 50.0 58.4 35 - 65 , 7, 8-HxCDF 50.0 58.4 35 - 65 , 7, 8-HxCDF 50.0 57.8 35 - 65 , 7, 8-HxCDF 50.0 57.8 35 - 65 , 7, 8-HxCDF 50.0 57.8 35 - 65 , 7, 8-HxCDF 50.0 57.6 35 - 65 , 7, 8-HxCDF 50.0 57.6 35 - 65 , 7, 8-HxCDF 50.0 57.6 35 - 65 , 7, 8-HxCDF 50.0 57.1 35 - 65 , 7, 8-HxCDF 50.0 57.6 35 - 65 , 7, 8-HxCDF 50.0 57.1 35 - 65 , 7, 8, 9-HpCDF 50.0 57.1 35 - 65 , 7, 8, 9-HpCDF 50.0 57.1 35 - 65 , 7, 8, 9-HpCDF 50.0 57.1 35 - 65 , 7, 8, 9-HpCDF 50.0 57.1 35 - 65		50.0	57.7	35 - 65	13C-OCDD		80.4	40 - 135
-TCDF 10.0 11.2 7 - 13 .8-PeCDF 50.0 58.2 35 - 65 .8-PeCDF 50.0 58.4 35 - 65 .7.8-HxCDF 50.0 58.4 35 - 65 .7,8-HxCDF 50.0 57.8 35 - 65 .7,8-HxCDF 50.0 57.8 35 - 65 .7,8-HxCDF 50.0 57.0 35 - 65 .7,8-HxCDF 50.0 57.1 35 - 65 .7,8,9-HpCDF 50.0 57.1 35 - 65 .7,8,9-HpCDF 50.0 57.1 35 - 65 .7,8,9-HpCDF 50.0 57.1 35 - 65	DCDD	100	110	70 - 130	13C-2,3,7,8-T0	CDF	86.8	40 - 135
8-PeCDF 50.0 58.2 35 - 65 (8-PeCDF 50.0 58.4 35 - 65 (7,8-HxCDF 50.0 58.4 35 - 65 (7,8-HxCDF 50.0 57.8 35 - 65 (7,8-HxCDF 50.0 57.8 35 - 65 (7,8-HxCDF 50.0 57.0 35 - 65 (7,8-HxCDF 50.0 57.0 35 - 65 (6,7,8-HpCDF 50.0 57.6 35 - 65 (6,7,8-HpCDF 50.0 57.1 35 - 65 (7,8,9-HpCDF 50.0 57.1 35 - 65		10.0	11.2	7 - 13	13C-1,2,3,7,8-	PeCDF	106	40 - 135
8-PeCDF 50.0 58.4 35 - 65 7,8-HxCDF 50.0 55.5 35 - 65 7,8-HxCDF 50.0 57.8 35 - 65 7,8-HxCDF 50.0 57.8 35 - 65 7,8-HxCDF 50.0 57.0 35 - 65 8,9-HxCDF 50.0 57.0 35 - 65 8,9-HxCDF 50.0 57.6 35 - 65 6,7,8-HpCDF 50.0 57.6 35 - 65 7,8,9-HpCDF 50.0 57.1 35 - 65 7,8,9-HpCDF 50.0 57.1 35 - 65 7,8,9-HpCDF 50.0 57.1 35 - 65		50.0	58.2	35 - 65	13C-2,3,4,7,8-	PeCDF	113	40 - 135
7,8-HxCDF 50.0 55.5 35 - 65 7,8-HxCDF 50.0 57.8 35 - 65 7,8-HxCDF 50.0 57.8 35 - 65 7,8-HxCDF 50.0 57.0 35 - 65 8,9-HxCDF 50.0 57.6 35 - 65 8,9-HxCDF 50.0 57.6 35 - 65 6,7,8-HpCDF 50.0 56.9 35 - 65 7,8,9-HpCDF 50.0 57.1 35 - 65 7,8,9-HpCDF 50.0 57.1 35 - 65 7,8,9-HpCDF 50.0 57.1 35 - 65		50.0	58.4	35 - 65	13C-1,2,3,4,7,	8-HxCDF	109	40 - 135
7,8-HxCDF 50.0 57.8 35 - 65 7,8-HxCDF 50.0 57.0 35 - 65 8,9-HxCDF 50.0 57.6 35 - 65 6,7,8-HpCDF 50.0 57.6 35 - 65 7,8,9-HpCDF 50.0 57.1 35 - 65 100 107 70 - 130 CRS		50.0	55.5	35 - 65	13C-1,2,3,6,7,	8-HxCDF	92.4	40 - 135
7,8-HxCDF 50.0 57.0 35 - 65 ,8,9-HxCDF 50.0 57.6 35 - 65 ,6,7,8-HpCDF 50.0 56.9 35 - 65 ,7,8,9-HpCDF 50.0 57.1 35 - 65 100 107 70 - 130 CRS		50.0	57.8	35 - 65	13C-2,3,4,6,7,	8-HxCDF	9.66	40 - 135
8,9-HxCDF 50.0 57.6 35 - 65 ,6,7,8-HpCDF 50.0 56.9 35 - 65 ,7,8,9-HpCDF 50.0 57.1 35 - 65 100 107 70 - 130 CRS		50.0	57.0	35 - 65	13C-1,2,3,7,8,	9-HxCDF	113	40 - 135
(6,7,8-HpCDF 50.0 56.9 35 - 65 35 - 65 ,7,8,9-HpCDF 50.0 57.1 35 - 65 70 - 130 CRS		50.0	57.6	35 - 65	13C-1,2,3,4,6,	7,8-HpCDF	106	40 - 135
7,8,9-HpCDF 50.0 57.1 35 - 65 100 107 70 - 130		50.0	56.9	35 - 65	13C-1,2,3,4,7,	8,9-HpCDF	122	40 - 135
100 107 70 - 130		50.0	57.1	35 - 65	13C-OCDF		86.0	40 - 135
	DCDF	100	107	70 - 130	CRS 37Cl-2,3,7,8-T	CDD	83.3	40 - 135

ITOHO

ba

SECTION II.

Client Data Columbia Analytical Services Name: Columbia Analytical Services Project: N/A Date Collected: 6-Oct-00 Date Collected: 0-Oct-00 Date Collected: 0-Oct-00 Date Collected: 5-000 1,2,3,7,8-PECDD 5880 1,2,3,4,6,7,8-HxCDD 55900 1,2,3,4,6,7,8-HxCDD 2930000 1,2,3,4,6,7,8-HxCDF 293000 1,2,3,4,6,7,8-HxCDF 893 2,3,4,6,7,8-HxCDF 893 2,3,4,6,7,8-HxCDF 30900 1,2,3,4,6,7,8-HxCDF 32700 1,2,3,4,6,7,8-HxCDF 32900 1,2,3,4,6,7,8-HxCDF 32900 1,2,3,4,6,7,8-HxCDF 32900 1,2,3,4,6,7,8-HxCDF 32900 1,2,3,4,6,7,8-HxCDF 32900 1,2,3,4,6,7,8-HxCDF 3270	With With With With With With With With	Soil				
Columbia Analytical Services N/A N/A Since Conc. (pg/g) DL a 262 DL 25300 CDD 35900 HPCDD 23500000 124 23500000 CDF 893 DF 893 DF 893 OCDF 33900 CDF 33900 CDF 33900 CDF 3270 HPCDF 124000 CDF 3270 HPCDF 124000 CDF 3270 HPCDF 1240000 HPCDF 124000 HPCDF 124000 HPCDF 1240000 HPCDF 1240000 HPCDF 1240000 HPCDF 1240000<		Soil	Laboratory Data			5.2
N/A Li 6-Oct-00 Lonc. (pg/g) DL ^a Conc. (pg/g) DL ^a 262 DD 5880 CDD 55800 CDD 253000 CDD 2530000 CDD 2530000 CDD 2530000 CDD 2930000 CDD 2930000 CDF 893 DF 2290 CDF 893 CDF 13900 CDF 893 CDF 13900 CDF 13900 CDF 13900 CDF 65500 PpCDF 124000 PpCDF 124000 CDF 65500 PpCDF 65500 PpCDF 65500				9737-002	Date Received:	16-Jan-01
t; 6-Oct-00 Conc. (pg/g) DL ^a 262 DD 5880 280 CDD 55300 CDD 253000 CDD 2530000 CDD 2530000 124 124 53500000 CDF 893 DF 2290 CDF 893 DF 2290 CDF 893 DF 2290 CDF 30900 CDF 13900 CDF 13900 CDF 13900 CDF 5500 HCDF 124000 CDF 5500 CDF 5500 CDF 5500 CDF 5500	%Solids: MDL 0.0889 0.262 0.820	5.21 g	QC Batch No.: 1328	~	Date Extracted:	29-Jan-01
Conc. (pg/g) DL ^a 262 262 DD 5880 DD 5880 CDD 5880 CDD 55800 CDD 35900 HpCDD 2930000 235500000 233500000 CDF 29300000 CDF 893 DF 893 CDF 30900 CDF 30900 CDF 3270 HpCDF 124000 CDF 33700 OCDF 3690 CDF 30900 CDF 3270 HpCDF 1240000 HpCDF 65500 HpCDF 65500	MDL 0.0889 0.262 0.820	32.0	Date Analyzed DB-5: 31	31-Jan-01	Date Analyzed DB-225: 1-Feb-01	225: 1-Feb-01
DD DF DF DF DF DF DF DD DF DF DF DD DF DD DF DD DF DD DF DD DF DD DF DD DD	0.0889 0.262 0.820	Qualifiers	Labeled Standard	%R	K LCL-UCL ^d	Qualifiers
8-PeCDD 7,8-HxCDD 8,9-HxCDD 6,7,8-HpCDD 6,7,8-HpCDD 6,7,8-HpCDF 7,8-HxCDF 7,8-HxCDF 7,8-HxCDF 7,8-HxCDF 6,7,8-HpCDF 6,7,8-HpCDF 7,8,9-HpCDF	0.262 0.820		<u>IS</u> 13C-2,3,7,8-TCDD	85.6	6 40 - 135	
7,8-HxCDD 7,8-HxCDD 8,9-HxCDD 6,7,8-HpCDD 6,7,8-HpCDD 8-PeCDF 7,8-HxCDF 7,8-HxCDF 7,8-HxCDF 8,9-HxCDF 8,9-HpCDF 7,8,9-HpCDF	0.820		13C-1,2,3,7,8-PeCDD	123	40 - 135	
7,8-H×CDD 8,9-H×CDD 6,7,8-HpCDD 6,7,8-HpCDD 8-PeCDF 7,8-H×CDF 7,8-H×CDF 7,8-H×CDF 7,8-H×CDF 7,8-H×CDF 7,8-9-HpCDF 7,8,9-HpCDF	010 0		13C-1,2,3,4,7,8-HxCDD	D 99.4	4 40 - 135	
8,9-HxCDD 6,7,8-HpCDD 7,8-PeCDF 7,8-HxCDF 7,8-HxCDF 7,8-HxCDF 7,8-HxCDF 6,7,8-HpCDF 6,7,8-HpCDF 7,8,9-HpCDF	0.818		13C-1,2,3,6,7,8-HxCDD	D 96.9	9 40 - 135	
6,7,8-HpCDD TCDF 8-PeCDF 8-PeCDF 7,8-HxCDF 7,8-HxCDF 8,9-HxCDF 6,7,8-HpCDF 7,8,9-HpCDF	0.528	*	13C-1,2,3,4,6,7,8-HpCDD	CDD 88.7	7 40 = 135	
TCDF 8-PeCDF 8-PeCDF 7,8-HxCDF 7,8-HxCDF 7,8-HxCDF 8,9-HxCDF 6,7,8-HpCDF 7,8,9-HpCDF	0.347	E,B	13C-OCDD	93.0	0 40 - 135	
DF DF CCDF HpCDF HpCDF	2.03	E,B	13C-2,3,7,8-TCDF	80.1	1 40 - 135	
	0.0940		13C-1,2,3,7,8-PeCDF	102	40 - 135	
E E	0.294		13C-2,3,4,7,8-PeCDF	114	40 = 135	
F F	0.245		13C-1,2,3,4,7,8-HxCDF	JF 117	40 - 135	
E E	0.270	В	13C-1,2,3,6,7,8-HxCDF	JF 99.1	1 40 - 135	
<u>н</u> н	0.201	В	13C-2,3,4,6,7,8-HxCDF	JF 102	40 = 135	
8,9-HxCDF 6,7,8-HpCDF 7,8,9-HpCDF	0.273	В	13C-1,2,3,7,8,9-HxCDF	JF 108	40 - 135	
6,7,8-HpCDF 7,8,9-HpCDF	0.297	В	13C-1,2,3,4,6,7,8-HpCDF	CDF 103	40 - 135	
7,8,9-HpCDF	0.232	ப *	13C-1,2,3,4,7,8,9-HpCDF	CDF 132	40 = 135	
	0.295	*	13C-OCDF	88.8	8 40 - 135	
	0.512	E,B	CRS 37CI-2,3,7,8-TCDD	81.0	0 40 - 135	
I UTAIS			TEQ Data ^e			
Total TCDD 7890			TEQ (Min-Max): 99200 - 99200	9200		
Total PeCDD 62000						
Total HxCDD 531000			a. Sample specific estimated detection limit.	ion limit.		
Total HpCDD 5240000		В	b. Estimated maximum possible concentration.	ncentration.		
Total TCDF 7450		D	c. Method detection limit.			
Total PeCDF 53400 53400		D	d. Lower control limit - upper control limit.	rol limit.		
Total HxCDF 1060000		D	e. Toxic Equivalent Quotient (TEQ) based on International Toxic Equivalent Factors (ITEF).) based on Int	ternational Toxic Equivaler	It Factors (ITEF)
Total HpCDF 5940000		В				

ST000

-

-

.

1

1

.

-

ALTA

Matrix: Aqueous		QC Batch No.:	1293	Lab Sample:	ple: 0-OPR001	01	54 10 1888 189 189	
Sample Size: 1.000 L		Date Extracted:	18-Jan-01	Date Ana	Date Analyzed DB-5; 21-Jan-01		Date Analyzed DB-225:	NA
Analyte	Spike Conc	Conc. (pg/L)	OPR Limits	Labe	Labeled Standard	%R	TCT-NCT	
2,3,7,8-TCDD	10.0	7.40	7 - 13	IS 13C-:	13C-2,3,7,8-TCDD	83.1	40 - 135	
1,2,3,7,8-PeCDD	50.0	53.3	35 - 65	13C-1	13C-1,2,3,7,8-PeCDD	85.2	40 - 135	
1,2,3,4,7,8-HxCDD	50.0	56.0	35 - 65	13C-1	13C-1,2,3,4,7,8-HxCDD	90.7	40 - 135	
1,2,3,6,7,8-HxCDD	50.0	56.5	35 - 65	13C-	13C-1,2,3,6,7,8-HxCDD	81.2	40 - 135	
1,2,3,7,8,9-HxCDD	50.0	56.9	35 - 65	13C-	13C-1,2,3,4,6,7,8-HpCDD	74.6	40 - 135	
1,2,3,4,6,7,8-HpCDD	50.0	56.6	35 - 65	13C-0	13C-OCDD	71.1	40 - 135	
OCDD	100	116	70 - 130	13C-5	13C-2,3,7,8-TCDF	81.6	40 - 135	
2,3,7,8-TCDF	10.0	₃ 11.3	👌 - 13	130-	13C-1,2,3,7,8-PeCDF	76.3	40 - 135	
1,2,3,7,8-PeCDF	50.0	60.2	35 - 65	13C-:	13C-2,3,4,7,8-PeCDF	0.77	40 - 135	
2,3,4,7,8-PeCDF	50.0	58.8	35 - 65	13C-	13C-1,2,3,4,7,8-HxCDF	98.0	40 - 135	
1,2,3,4,7,8-HxCDF	50.0	55.6	35 - 65	13C-	13C-1,2,3,6,7,8-HxCDF	0.06	40 - 135	
1,2,3,6,7,8-HxCDF	50.0	58.6	35 - 65	13C-:	13C-2,3,4,6,7,8-HxCDF	88.2	40 - 135	
2,3,4,6,7,8-HxCDF	50.0	60.0	35 - 65	13C-	13C-1,2,3,7,8,9-HxCDF	91.4	40 - 135	
1,2,3,7,8,9-HxCDF	50.0	58.0	35 - 65	13C-	13C-1,2,3,4,6,7,8-HpCDF	89.4	40 - 135	
1,2,3,4,6,7,8-HpCDF	50.0	54.0	35 - 65	13C-	13C-1,2,3,4,7,8,9-HpCDF	83.1	40 - 135	
1,2,3,4,7,8,9-HpCDF	50.0	56.1	35 - 65	13C-	[3C-OCDF	76.0	40 - 135	
OCDF	100	101	70 - 130	CRS 37CI	37CI-2.3,7,8-TCDD	89.6	40 - 135	

4

sous E E E E E E E E E E E E E E E E E E E	Client Data			Sample Data		Laboratory Data	×		2 2	
N/A Sample Size: 0.895 L 0.487 1 $t: 6.0ct.00$ ∞ Solids: 0.487 0.487 1 DD Allow DL ^a EMPC ^b MDL ^c Qualifiers 0.487 0 ND 3.66 0.711 0.487 0.487 1 0 ND 3.66 0.711 0.487 1 0 48.0 2.33 0.711 1 0 243 2.766 0.711 1 0 1260 1.46 2.33 0.763 $B.E$ 0.000 4.45 0.243 $B.E$ 0.243 0.766 0.18 1.80 5.42 0.243 0.766 0.766 0.701 1.80 5.42 0.243 0.766 0.766 0.702 0.8300 0.743 0.766 0.766 0.743 0.701 1.80 0.743 0.766 0.763 <		Analytical Serv	ices	Matrix:	Aqueous	Lab Sample:	9737-004	Date	Date Received:	16-Jan-01
	llected:			Sample Size: %Solids:	0.895 L 0.487	QC Batch No.: Date Analyzed DB-5;	1293 : 22-Jan-01	Date Date	Date Extracted: 18 Date Analyzed DB-225: NA	18-Jan-01 5: NA
ND 3.66 0.711 D 48.0 3.66 0.711 DD 48.0 2.53 2.76 CDD 243 2.76 2.76 ACDD 1260 1.46 2.53 CDD 243 2.76 2.76 ACDD 13600 1.46 2.73 ACDD 313000 6.93 B.E ACDD 313000 6.93 B.E ACDD 30.0 2.43 D ACDF 412 2.43 D CDF 412 4.24 D ACDF 18.0 5.42 D ACDF 18.0 5.43 D ACDF 18.0 4.24 D ACDF 18.0 2.43 D ACDF 23900 2.43 D ACDF 5300 4.39 B.E ACDF 5300 4.39 B.E ACDF 5300 2.				MDL	Qualifiers	Labeled Standard	ard	%R	LCL-UCL ^d C	Qualifiers
DD 48.0 2.53 CDD 243 2.76 CDD 1260 1.46 CDD 39500 2.97 B.E 412 2.49 8.E hCDD 39600 2.97 B.E 313000 39600 2.97 B.E 7 8.0 2.49 8.E 7 8.0 2.49 8.E 913000 4.45 0.243 8.E 7 30.0 4.45 0.243 7 30.0 4.45 0.243 7 30.0 4.45 0.243 7 412 4.24 1.80 7 412 4.24 1.80 7 412 4.24 1.80 7 412 4.24 1.80 7 412 4.24 1.80 7 180 2.43 1.80 7 180 2.43 1.80 7 180 2.43 1.80 7 180 2.43 1.80 7 180 2.62 1.80 8 3.06 4.39 1.80 9 9 2.4300 2.43		States of the	語の語という	0.711	ちあんで	IS 13C-2,3,7,8-TCDD	CDD	68.5	40 - 135	the start of the
CDD 243 2.76 CDD 1260 146 CDD 39600 146 ApCDD 39600 2.97 B,E 313000 6.93 B,E B,E ApCDD 39600 2.97 B,E ApCDD 39600 2.93 B,E ApCDF 18.0 4.45 0.243 DF 18.0 4.45 0.243 DF 18.0 4.45 0.243 DF 18.0 2.42 D CDF 180 4.42 D CDF 180 2.43 D ApCDF 23900 2.43 D ApCDF 23900 2.43 D ApCDF 23900 2.43 D 30.4 57.5 1.80 3.62 ApCDF 23900 2.43 D 30.4 23300 2.43 D 542 23000 2.43 D </td <td>DD</td> <td>0</td> <td></td> <td>2.53</td> <td></td> <td>13C-1,2,3,7,8-PeCDD</td> <td>PeCDD</td> <td>75.4</td> <td>40 - 135</td> <td></td>	DD	0		2.53		13C-1,2,3,7,8-PeCDD	PeCDD	75.4	40 - 135	
CDD 1260 146 CDD 39600 2.49 39600 39600 2.97 8,E 313000 313000 6.93 8,E 313000 5.42 6.93 8,E 0F 18.0 6.43 8,E 0F 30.0 4.45 0.243 8,E 0F 30.0 4.45 0.243 8,E 0F 30.0 4.45 0.243 0.243 0F 18.0 2.42 0.243 0.243 0F 412 4.24 1.80 1.42 0CDF 57.5 1.80 2.43 D 4pCDF 57.5 1.80 2.43 D 4pCDF 57.5 1.80 2.43 D 4pCDF 843 3.06 4.24 D 30.4 57.5 1.80 2.43 D 5400 5.3500 2.362 D D 54100 6470 600 4.39 D 6470 69100 3490 <t< td=""><td></td><td>1</td><td></td><td>2.76</td><td></td><td>13C-1,2,3,4,7,8-HxCDD</td><td>3-HxCDD</td><td>80.1</td><td>40 - 135</td><td>新学校にお</td></t<>		1		2.76		13C-1,2,3,4,7,8-HxCDD	3-HxCDD	80.1	40 - 135	新学校にお
KCDD 432 2.49 HpCDD 39600 2.97 B,E 313000 6.93 B,E B,E ND 4.45 0.243 B,E DF 18.0 5.42 B,E ND 4.45 0.243 B,E DF 18.0 5.42 0.243 DF 30.0 4.45 0.243 CDF 412 4.24 1.80 CDF 189 3.06 2.43 D CDF 57.5 1.80 2.43 D CDF 57.5 1.80 3.06 D HpCDF 23900 2.43 D 2.02 ApCDF 843 3.06 2.02 D,E 30.4 600 4.39 B,E 6.00 60100 255 262 D 2.43 3490 3490 D 2.430 D 88200 3490 D D D <td></td> <td>50</td> <td></td> <td>1.46</td> <td></td> <td>13C-1,2,3,6,7,8-HxCDD</td> <td>3-HxCDD</td> <td>73.1</td> <td>40 - 135</td> <td></td>		50		1.46		13C-1,2,3,6,7,8-HxCDD	3-HxCDD	73.1	40 - 135	
HpCDD 39600 2.97 B,E 313000 6.93 B,E ND 4.45 0.243 DF 18.0 5.42 DF 30.0 4.45 DF 30.0 5.42 DF 30.0 4.45 CDF 412 4.42 CDF 18.0 2.43 CDF 180 2.43 CDF 189 3.06 CDF 180 2.43 CDF 23900 2.43 D 2.43 D A 1.80 3.06 A 2.43 D A 2.4300 A A 2.4300 D <t< td=""><td></td><td></td><td></td><td>2.49</td><td></td><td>13C-1,2,3,4,6,7,8-HpCDD</td><td>7,8-HpCDD</td><td>68.8</td><td>40 - 135</td><td></td></t<>				2.49		13C-1,2,3,4,6,7,8-HpCDD	7,8-HpCDD	68.8	40 - 135	
313000 693 B,E ND 4.45 0.243 B,E DF 18.0 5.42 0.243 DF 30.00 4.45 0.243 DF 30.0 4.45 0.243 DF 30.0 4.45 0.243 CDF 18.0 5.42 A12 4.24 CDF 10 A12 4.24 CDF 57.5 HPCDF 23900 ApCDF 23900 ApCDF 30.4 ApCDF 843 30.4 30.4 600 4.39 6100 55300 255 262 30.4 262 601 3490 63100 3490 88200 243		200		2.97	B,E	13C-0CDD		74.8	40 - 135	
ND 4.45 0.243 DF 18.0 5.42 DF 30.0 4.42 CDF 412 4.24 CDF 1650 2.43 CDF 189 3.06 CDF 189 3.06 CDF 23900 2.43 HpCDF 23900 2.43 ApCDF 27.5 1.80 HpCDF 23900 4.39 B, H 3.62 0, H 4pCDF 843 3.62 ApCDF 23900 4.39 B, H 3.62 0, H 30.4 3.62 0, H 600 4.39 B, H 600 3.490 0 2430 3.490 0 2430 3.490 0 2430 3.490 0		1000		6.93	B,E	13C-2,3,7,8-TCDF	CDF	66.8	40 - 135	
DF 18.0 5.42 DF 30.0 4.42 CDF 412 4.24 CDF 1650 2.43 D CDF 189 3.06 CDF 23900 2.02 D,E 4.23 D,E 4.24 57.5 1.80 4.29 6.00 6.00 6.00 6.10 6.00 6.10 7.10				0.243		13C-1,2,3,7,8-PeCDF	PeCDF	66.3	40 - 135	
DF 30.0 CDF 412 4.42 CDF 1650 2.43 D CDF 189 3.06 CDF 57.5 11.80 PpCDF 23900 2.02 D,E 3.62 D,E 3.63 D,E 3.64 D 69100 6910 691		0		5.42		13C-2,3,4,7,8-PeCDF	PeCDF	65.1	40 - 135	
CDF 412 4.24 CDF 1650 2.43 D CDF 189 3.06 2.43 D CDF 23900 2.02 D,E 1.80 HpCDF 57.5 1.80 2.02 D,E 30.4 3.62 3.62 B,E 1.80 600 4.33 3.62 D,E 2.02 D,E 30.4 5300 4.39 B,E D 2.62 D 30.4 600 6470 600 2.62 D D 2.62 D D 30.4 5300 3490 0 0 D <td></td> <td>0</td> <td></td> <td>4.42</td> <td></td> <td>13C-1,2,3,4,7,8-HxCDF</td> <td>8-HxCDF</td> <td>94.9</td> <td>40 - 135</td> <td></td>		0		4.42		13C-1,2,3,4,7,8-HxCDF	8-HxCDF	94.9	40 - 135	
CDF 1650 2.43 D CDF 189 3.06 3.06 CDF 57.5 1.80 3.06 HPCDF 57.5 1.80 2.02 D,E HPCDF 843 3.62 D,E 5.75 0,E HPCDF 843 3.62 0,E 5.02 D,E 30.4 600 4.39 B,E 6 0 600 600 3490 262 D 255 D 24300 24300 3490 0 D D D 8x200 3490 3490 D D D D 8x200 24300 3490 D D D D D 8x200 3490 262 D D D D D D				4.24		13C-1,2,3,6,7,8-HxCDF	8-HxCDF	73.5	40 - 135	
CDF 189 3.06 HpCDF 57.5 1.80 2000 2.02 D,E HpCDF 23900 2.02 D,E 30.4 3.62 B,E B,E 600 4.39 B,E B,E 600 6470 262 D 6470 3490 3490 D 84300 3490 D D		0		2.43	D	13C-2,3,4,6,7,8-HxCDF	8-HxCDF	81.0	40 - 135	
CDF 57.5 1.80 HCDF 23900 2.02 D,E 2362 D,E 362 3.62 95300 4.39 B,E 30.4 4.39 B,E 30.4 600 6470 6470 6470 6470 6470 6470 555 262 D 3490 D 3400 D				3.06		13C-1,2,3,7,8,9-HxCDF	9-HxCDF	80.0	40 - 135	
IpCDF 23900 2.02 D,E IpCDF 843 3.62 3.62 95300 4.39 B,E 30.4 4.39 B,E 600 4.39 B,E 610 262 D 6470 3490 3490 255 262 D 24300 3490 D 8x200 3490 D		5		1.80		13C-1,2,3,4,6,7,8-HpCDF	7,8-HpCDF	79.3	40 - 135	
HpCDF 843 3.62 95300 4.39 B,E 30.4 4.39 B,E 600 600 600 600 6470 0 69100 262 D 255 262 D 3490 3490 D 8x200 3490 D		00		2.02	D,E	13C-1,2,3,4,7,8,9-HpCDF	8,9-HpCDF	75.1	40 - 135	
95300 4.39 B.E 30.4 4.39 B.E 600 6470 6470 69100 69100 525 262 D 3490 D 3490 D 88200				3.62		13C-OCDF		74.6	40 - 135	
30.4 600 6470 6470 69100 255 262 D 3490 D 24300 88200		00	1. N. N.	4.39	B,E	CRS 37CI-2,3,7,8-TCDD	CDD	83.6	40 - 135	A. 11 44
30.4 600 6470 69100 255 262 D 3490 D 24300 3490 D 88200 D			*			TEQ Data ^e			-	
600 6470 69100 255 262 D 3490 3490 D 24300 D 88200	2 P C	4				TEQ (Min-Max): 1520 - 1520	520 - 1520			
6470 69100 255 262 D 3490 3490 D 24300 3490 D 88200 D										
69100 255 262 D 3490 3490 D 24300 D 88200 D		0,				a. Sample specific estimated detection limit.	ted detection limit			
255 262 D 3490 3490 D F 24300 D R \$\$200 D		00				b. Estimated maximum possible concentration.	ssible concentrat	ion.		
3490 3490 D 24300 D 88200 D		15	262		D	c. Method detection limit.	6			
24300 D 88200		00	3490		D	d. Lower control limit - upper control limit.	pper control limit.			
88200		800			D	e. Toxic Equivalent Quotient (TEQ) based on International Toxic Equivalent Factors (ITEF).	ent (TEQ) based (on Internation	nal Toxic Equivalent F.	actors (ITEF).
00700	1 45 X	000			D			-		

61000

ALTA

-

2

Approved By: Robert S. Mitzel 05-Feb-2001 14:34

Analyst: JMH

CURRENT CERTIFICATIONS

Bureau of Reclamation — Mid-Pacific Region — (MP-470, Res-1.10) Commonwealth of Kentucky — (Certificate No. 90063) Commonwealth of Virginia --- (Certificate No. 00013) Department of the Navy State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197) State of Arkansas, Department of Health --- (Approval granted through CA certification) State of Arkansas, Department of Environmental Quality State of California — (Certificate No. 1640) State of Connecticut — (Certificate No. PH-0182) State of Florida — (Certificate No. 87456) State of Louisiana, Department of Health and Hospitals --- (Certificate No. LA000014) State of Louisiana, Department of Environmental Quality State of Mississippi — (Approval granted through CA certification) State of Nevada --- (Certificate No. CA413) State of New York, Department of Health — (Certificate No. 11411) State of North Carolina — (Certification No. 06700) State of North Dakota, Department of Health — (Certificate No. R-078) State of Oregon – (Certificate No. CA413) State of Pennsylvania --- (Certificate No. 68-490) State of South Carolina — (Certificate No. 87002001) State of Tennessee — (Certificate No. 02996) State of Texas --- (Certificate No. TX247-1000A State of Utah — (Certificate No. E-201) State of Washington – (Certification No. C091) State of Wisconsin — (Certificate No. 998036160) State of Wyoming --- (USEPA Region 8 Ref: 8TMS-Q) **U.S. Army Corps of Engineers U.S. EPA Region 5**

Andlytical Services ^{III} PROJECT NAME	CHAIN OF CUS IODY1 1317 South 13th Ave. • Kelso, WA 98626 • (360) 577-7222 • (800) 695-7222 • FAX (360) 636-1068	CHAIN OF C (360) 577-7222 • (800) 695-7222 •	CUSTODY/LABUI	BURATORY ANALYSIN DATE / 0/ PAGE	s ReaUEs1 ⁻ FO
PROJECT MANAGER	1 10. Box 9 10.0. Box 9 2 120 NA 980	DF CONTRINERS			0110
SAMPLERS SIGNATURE SAMPLE I.D. U.A - Cond(Sai) 10/6	TIME LAB	SAMPLE MATRIX MATRIX			REMARKS
Sail) Kerchite)		echert /			
RELINQUISHED BY:	RECEIVED BY:		œ	INVOICE INFORMATION:	SAMPLE RECEIPT:
Bowert Bowert	Signature Signature Printed Name H. c. 777 Firm Date/Time	24 hr 24 hr 5 day Standard (10-15 working days) Provide Verbal Preliminary Results Provide FAX preliminary Results Requested Report Date	I. Houtine Report I. Report (includes DUP.MS. MSD, as required, may be charged as samples) ill. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report	P.O.# 2 100168	Shipping VIA: Shipping #: Condition: Lab No: K21 / OU1/68
RELINQUISHED BY: ture	RECEIVED BY: Signature	SPECIAL INSTRUCTIONS/COMMENTS	IS/COMMENTS: OC de (MB+	(57)	
	Printed Name Firm	- 21 day	TRT		
	Date/Time	t at the	94774		
		DISTRIBUTION: WHITE - return to originator;	YELLOW - lab;	PINK - retained by originator	400-05

-Ľ 5

	Project Manager: $D \in R$ Project Contract: $W - d S U M s_{oN}$ Laboratory: Laboratory:	して Remarks/ Analysis Required:	(TOC D. UXIN/FURN	A A	YTOTAL AND WATCH	8250											UN	La. 1/2961 Jules	Date Time	
	Tlass	Lugols, An Formalin, (Total No. C		5													ľ		Received by:	A :- D:!! NL
Containers/Preservative	0' IF Class (H ₂ SO,)	Whirlpak/F Total Phene (HCL)/DRG																Date Time	1	
Number of Contai	(*) 5553 (H ³ SO [*]) H ³ SO [*])) zinsituv															W VV	IN ANI		Frn 1 Samilor
2	le Organic	Semivolati Total Meta Dissolved General (U	~	7														Relinquished By:	Relinquished By:	Samules O Air Ereight O Fed Fyn
	Zanic (Pres.) ganic (Pres.)	Comp. Comp. QC Volatile Or			-													Reling	Reling	Samulee
Custody	× 480	Ction Matri		10/4/a X																
Chain of Custody	BARR Minneapolity, 1 (612) 832-260 Project Number 23 1 2 1 2 1 2 1 - 1	Identification Date	1. WA - band 1. 140.	W-65		5.	6.	7.	.8	9.	10.	11,	12.	13.	14.	15.	16.	Same By:	Remarks	

Distribution: White-Original Accompanies Shipment to Lab; Yellow - Field Copy; Pink - Lab Coordinator

December 5, 2000

Service Request No: K2008014

Marti Harding-Smith Barr Engineering Company 4700 West 77th Street Minneapolis, MN 55435-4803

RECEIVED

Re: 23/27-110Y2K461

Dear Marti:

Enclosed are the results of the sample(s) submitted to our laboratory on October 11, 2000. For your reference, these analyses have been assigned our service request number K2008014.

Please note that the dioxin analysis will be reported under separate cover with our service request K2008016.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 3358.

Respectfully submitted,

Columbia Analytical Services, Inc.

of the

Lynda A. Huckestein Client Services Manager

LAH/gep

Page 1 of ______

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Analytical Report

Client: Barr Engineering Co. 23/27-110Y2K461 **Project:**

Sample Matrix:

Soil

Service Request: K2008014 Date Collected: 10/6/00 **Date Received: 10/11/00**

Total Solids

Prep Method: Analysis Method: Test Notes:	NONE 160.3M				Units: D Basis: D	PERCENT Wet	
			Date			Result	1
Sample Name		Lab Code	Analyzed	Result		Notes	
WA-3		K2008014-003	10/12/00	87.3			
WA-6N		K2008014-004	10/12/00	77.0			
WA-ON		K2008014-005	10/12/00	30.9			

WA-3	K2008014-003	10/12/00	87.3
WA-6N	K2008014-004	10/12/00	77.0
WA-6Mid	K2008014-005	10/12/00	30.9
WA-6S	K2008014-006	10/12/00	33.5
WA-7M	K2008014-007	10/12/00	12.8
WA-8	K2008014-008	10/12/00	88.4
Blind Dup	K2008014-009	10/12/00	90.1

Approved By: _____

TSOLIDS_XLT_Sample/01071998a

08014TS.AB1 - 009 10/17/00

Date: 1-/12(...

Page No.: 00005

Analytical Report

Client:Barr Engineering Co.Project:23/27-110Y2K461Sample Matrix:Soil

 Service Request:
 K2008014

 Date Collected:
 10/6/00

 Date Received:
 10/11/00

Carbon, Total Organic

Prep Method: NONE Analysis Method: ASTM D4129-82M Test Notes:

			Dilution	Date	Date		Result
Sample Name	Lab Code	MRL	Factor	Extracted	Analyzed	Result	Notes
WA-1	K2008014-001	0.05	1	NA	10/25/00	4.97	
WA-2	K2008014-002	0.05	1	NA	10/25/00	1.31	
WA-3	K2008014-003	0.05	1	NA	10/25/00	2.90	
WA-6N	K2008014-004	0.05	1	NA	10/25/00	2.51	
WA-6Mid	K2008014-005	0.05	1	NA	10/25/00	24.8	
WA-6S	K2008014-006	0.05	1	NA	10/25/00	21.4	
WA-7M	K2008014-007	0.05	1	NA	10/25/00	36.7	
WA-8	K2008014-008	0.05	1	NA	10/25/00	1.32	
Blind Dup	K2008014-009	0.05	1	NA	10/25/00	1.08	
Method Blank	K2008014-MB	0.05	1	NA	10/25/00	ND	

Modified.

Approved By: _______

.

Μ

08014WET.PW1 - Sample 10/30/00

Units: PERCENT Basis: Dry

MANH)07

Analytical Report

Client: Project: Sample Matrix: Barr Engineering Co. 23/27-110Y2K461 Soil

Service Request: K2008014 Date Collected: 10/6/00 Date Received: 10/11/00

Base Neutral/Acid Semivolatile Organic Compounds

Sample Name: Lab Code: Test Notes:

WA-6N K2008014-004 Units: ug/Kg (ppb) Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Naphthalene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	ND	
2-Methylnaphthalene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	ND	
Acenaphthylene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	53	
Acenaphthene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	48	
Fluorene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	55	
Phenanthrene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	160	
Anthracene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	440	
Fluoranthene	EPA 3550B	SIM	25	5	10/18/00	11/27/00	550	
Pyrene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	480	
Benz(a)anthracene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	220	
Chrysene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	310	
Benzo(b)fluoranthene	EPA 3550B	SIM	25	5	10/18/00	11/27/00	600	
Benzo(k)fluoranthene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	240	
Benzo(a)pyrene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	240	
Indeno(1,2,3-cd)pyrene	EPA 3550B	SIM	25	5	10/18/00	11/27/00	1100	
Dibenz(a,h)anthracene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	94	
Benzo(g,h,i)perylene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	490	
2-Chloronaphthalene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	ND	
Pentachlorophenol	EPA 3550B	SIM	250	5	10/18/00	11/27/00	720	

VAY

Approved I	By:
1S22/020597p	

1

011009

NOV 3 0 2000

Date:

Analytical Report

Client: Project: Sample Matrix:

Barr Engineering Co. 23/27-110Y2K461 Soil

Service Request: K2008014 Date Collected: 10/6/00 Date Received: 10/11/00

Units: ug/Kg (ppb)

Basis: Dry

Base Neutral/Acid Semivolatile Organic Compounds

Sample Name: Lab Code: Test Notes:

WA-6S K2008014-006

Date Result Dilution Date Prep Analysis Factor Extracted Analyzed Result Notes Method Method MRL Analyte 10 10/18/00 11/24/00 61 EPA 3550B SIM 50 Naphthalene 10 10/18/00 11/24/00 110 SIM 50 EPA 3550B 2-Methylnaphthalene 10 10/18/00 11/24/00 130 EPA 3550B SIM 50 Acenaphthylene 10 10/18/00 11/24/00 ND SIM 50 EPA 3550B Acenaphthene ND 50 10 10/18/00 11/24/00 EPA 3550B SIM Fluorene 140 SIM 50 10 10/18/00 11/24/00 EPA 3550B Phenanthrene 380 10 10/18/00 11/24/00 SIM 50 EPA 3550B Anthracene 290 10 10/18/00 11/24/00 SIM 50 EPA 3550B Fluoranthene 490 10 10/18/00 11/24/00 EPA 3550B SIM 50 Pyrene 11/24/00 170 SIM 50 10 10/18/00 Benz(a)anthracene EPA 3550B 10 10/18/00 11/24/00 480 SIM 50 Chrysene EPA 3550B 940 SIM 50 10 10/18/00 11/24/00 EPA 3550B Benzo(b)fluoranthene 430 10 10/18/00 11/24/00 SIM 50 Benzo(k)fluoranthene EPA 3550B 560 SIM 50 10 10/18/00 11/24/00 EPA 3550B Benzo(a)pyrene SIM 50 10 10/18/00 11/24/00 710 Indeno(1,2,3-cd)pyrene EPA 3550B 11/24/00 160 SIM 50 10 10/18/00 Dibenz(a,h)anthracene EPA 3550B 10 10/18/00 11/24/00 380 SIM 50 EPA 3550B Benzo(g,h,i)perylene ND 50 10 10/18/00 11/24/00 EPA 3550B SIM 2-Chloronaphthalene SIM 75000 250 10/18/00 11/27/00 120000 Pentachlorophenol EPA 3550B

			NOV 3 0 200	0
Approved By:	Unit	Date:		
1 S22/020597p				

Page No .:

Analytical Report

Client: Project: Sample Matrix: Barr Engineering Co. 23/27-110Y2K461 Soil
 Service Request:
 K2008014

 Date Collected:
 10/6/00

 Date Received:
 10/11/00

Units: ug/Kg (ppb)

Basis: Dry

Base Neutral/Acid Semivolatile Organic Compounds

Sample Name: Lab Code: Test Notes: WA-8 K2008014-008

Prep

Analysis

Dilution Date Date Result Factor Extracted Analyzed Result Notes

3)	Analyte	Method	Method	MRL	Factor	Extracted	Analyzed	Result	Notes
Ľ									
L	Naphthalene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	25	
5	2-Methylnaphthalene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	33	
	Acenaphthylene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	32	
L	Acenaphthene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	10	
1	Fluorene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	68	
	Phenanthrene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	230	
L	Anthracene	EPA 3550B	SIM	25	5	10/18/00	11/27/00	890	
I.	Fluoranthene	EPA 3550B	SIM	25	5	10/18/00	11/27/00	640	
	Pyrene	EPA 3550B	SIM	25	5	10/18/00	11/27/00	620	
1	Benz(a)anthracene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	360	
Į.	Chrysene	EPA 3550B	SIM	25	5	10/18/00	11/27/00	590	
	Benzo(b)fluoranthene	EPA 3550B	SIM	25	5	10/18/00	11/27/00	600	
Ŀ	Benzo(k)fluoranthene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	410	
	Benzo(a)pyrene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	370	
	Indeno(1,2,3-cd)pyrene	EPA 3550B	SIM	25	5	10/18/00	11/27/00	570	
1	Dibenz(a,h)anthracene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	91	
	Benzo(g,h,i)perylene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	320	
	2-Chloronaphthalene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	ND	
Ï.	Pentachlorophenol	EPA 3550B	SIM	500	5	10/18/00	11/27/00	830	
	-								

LAX

Date: _

-

NOV 3 0 2000

Analytical Report

Client: Project: Sample Matrix:

-

Barr Engineering Co. 23/27-110Y2K461 Soil Service Request: K2008014 Date Collected: NA Date Received: NA

Base Neutral/Acid Semivolatile Organic Compounds

Sample Name: Lab Code: Test Notes: Method Blank KWG2004723-7 Units: ug/Kg (ppb) Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Analyte	Method		1.22	2		· J		
Naphthalene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	ND	
2-Methylnaphthalene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	ND	
Acenaphthylene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	ND	
Acenaphthene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	ND	
Fluorene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	ND	
Phenanthrene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	ND	
Anthracene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	ND	
Fluoranthene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	13	
Pyrene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	10	
Benz(a)anthracene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	ND	
Chrysene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	ND	
Benzo(b)fluoranthene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	ND	
Benzo(k)fluoranthene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	ND	
Benzo(a)pyrene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	ND	
Indeno(1,2,3-cd)pyrene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	ND	
Dibenz(a,h)anthracene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	ND	
Benzo(g,h,i)perylene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	ND	
2-Chloronaphthalene	EPA 3550B	SIM	5	1	10/18/00	11/24/00	ND	
Pentachlorophenol	EPA 3550B	SIM	300	1	10/18/00	11/24/00	ND	

1

LAST

Date: NOV 3 0 2000

			QA/QC Re	eport				
Client: Project: Sample Matrix:	Barr Engineering 23/27-110Y2K4 Soil					Date	ce Request: Collected: e Received:	10/6/00
			Duplicate Su	mmary				
			Total Sol	lids				
Prep Method: Analysis Method:	NONE 160.3M						Units: Basis:	PERCENT Wet
Test Notes:		Lab Code	Date Analyzed	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
Sample Name			-			Ū.	2	1.0000
WA-3		K2008014-003DUP	10/12/00	87.3	85.4	86.4	2	

In Approved By:

TSOLIDS.XLT_DUP/09291998a

22

08014TS.AB1 - DUP 10/17/00

_ Date: _1912/---

11月777

QA/QC Report

]	Client: Project: LCS Matrix:	Barr Engineering Co. 23/27-110Y2K461 Soil	Lab	oratory Contr	ol Sample	Summary	Da Da	vice Request: ate Collected: ate Received: te Extracted: ate Analyzed:	NA NA NA
ð					pН				
1	Sample Name:	Lab Control Sample						Units:	pH UNITS
1	Lab Code: Test Notes:	K2008014-LCS						Basis:	NA
								CAS Percent Recovery	
			Prep	Analysis	True		Percent	Acceptance	Result
ļ	Analyte		Method	Method	Value	Result	Recovery	Limits	Notes
1	pН		NONE	150_1	6.06	6.05	100	85-115	

Approved By: <u>IIIIII K</u>

LCS/020597p 08014WET PW2 - LCS 10/30/00

Date: 10/30/00

Page No.:

OA	/0C	Report

Т										
ì	Client:	Barr Engin	eering Co.					Servi	ce Request:	K2008014
1	Project:	23/27-110	Y2K461					Date	e Collected:	10/6/00
	Sample Matrix:	Soil						Dat	e Received:	10/11/00
								Date	Extracted:	NA
ï								Date	e Analyzed:	10/25/00
				-	pike Sum c Parame					
1	Sample Name:	WA-7M							Units:	PERCENT
1	Lab Code:	K2008014-	007MS						Basis:	
ù.	Test Notes:									2
							Spiked		CAS Percent Recovery	
1		Prep	Analysis		Spike	Sample	Sample	Percent	Acceptance	Result
l	Analyte	Method	Method	MRL	Level	Result	Result	Recovery	Limits	Notes
Ĩ	Carbon, Total Organic	NONE	TM D4129-8	0.05	110	36.7	139	93	75-125	

Approved By: ______

MS/020597p 08014WET.PW1 - MS 10/30/00

Page No.: () () () 21

QA/QC Report

Client: Project: Sample Matrix:	Barr Engineering Co. 23/27-110Y2K461 Soil	Surrogate Recove	•	Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	10/6/00 10/11/00 10/18/00
	Base Neur	tral/Acid Semivola	tile Organic Compou	inds	
Prep Method: Analysis Method:	EPA 3550B SIM			Units: Basis:	PERCENT NA
		Test	Perc	ent Rec	overy
Sample Name	Lab Code	Notes	2-Fluorobiphenyl	2,4,6-Tribromophenol	Terphenyl-d14
WA-3	K2008014-003		73	85	117
WA-6N	K2008014-004		64	96	125
WA-6Mid	K2008014-005		42	48	77
WA-6S	K2008014-006		63	76	95
WA-7M	K2008014-007		43	58	82
WA-8	K2008014-008		71	83	122
Blind Dup	K2008014-009		68	81	118
-			70	00	120

CAS Acceptance Limits:

K2008014-008MS

KWG2004723-5

KWG2004723-7

K2008014-008DMS

32-102

76

71

78

66

20-140

44-127

120

112

131 *

161 *

Approved By: _

SUR3/111397p 08014SVM.AY1 - SUR 11/30/00

Date:

in

NOV 3 0 2000

90

82

83

43

Lab Control Sample Method Blank

WA-8

WA-8

QA/QC Report

Client: Project: LCS Matrix:	Barr Engineering (23/27-110Y2K461 Soil				1- 0	Da Da Da	vice Request: ate Collected: ate Received: te Extracted: ate Analyzed:	NA NA 10/18/00
			aboratory Con	-				
Sample Name: Lab Code: Test Notes:	Lab Control Samp KWG2004723-5		tral/Acid Sem	uvolatile C	Irganic Co	mpounas	Units: Basis:	ug/Kg (ppb) Dry
Analyte		Prep Method	Analysis Method	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Analyte		Methou	Mictilou	value	Ittguit	Accovery		
Acenaphthene		EPA 3550B	SIM	240	180	75	29- 109	
Pyrene		EPA 3550B	SIM	240	190	79	39-149	
Pentachlorophenol		EPA 3550B	SIM	240	170	71	10-120	

unt

2

Approved By:

Date: _

Columbia Analytical Services Inc. Cooler Receipt And Preservation Form

- Project/Clie		
Cooler recei	ived on 10.11.00 and opened on 10.11.00 by US	-
1.	Were custody seals on outside of cooler? If yes, how many and where?FFONT	TE NO
2.	Were seals intact and signature & date correct?	ES NO
3.	COC #	
	Temperature of cooler(s) upon receipt:	
	Temperature Blank:	
4.	Were custody papers properly filled out (ink, signed, etc.)?	(TES)NO
5.	Type of packing material present Card buard buy, bubble wrap	6
6.	Did all bottles arrive in good condition (unbroken)?	YES NO
7.	Were all bottle labels complete (i.e. analysis, preservation, etc.)?	YES
8.	Did all bottle labels and tags agree with custody papers?	YESNO
<i>9</i> .	Were the correct types of bottles used for the tests indicated?	YES NO
10.	Were all of the preserved bottles received at the lab with the appropriate pH?	-YES NO-
11.	Were VOA vials checked for absence of air bubbles, and if present, noted below?	YES NO
12. Explain any	Did the bottles originate from CAS/K or a branch laboratory? discrepancies RECI Sample for WA-TM NO ID ON lat	TES NO
WITE	n on tia	

Samples that required preservation or received out of temperature:										
Sample ID	Reagent	Volume	Lot Number	Bottle Type	Rec'd out of Temperature	Initials				
all samples				402.	X	LS				
				- 16 <u>-</u> 3						
				-						

Ζ,

00027

Fed Ex

CRFREV.DOC8/7/00

November 13, 2000

Service Request No: K2008016

Marti Harding-Smith Barr Engineering Company 4700 West 77th Street Minneapolis, MN 55435-4803

RECEIVED

NOV 1 0 2000

Re: 23/27-110Y2K461

Dear Marti:

Enclosed are the results of the sample(s) submitted to our laboratory on October 11, 2000. For your reference, these analyses have been assigned our service request number K2008016.

Please note that the analysis for Dioxins was performed at Alta Analytical.

Please call if you have any questions. My extension is 3358.

Respectfully submitted,

Columbia Analytical Services, Inc.

dyna the hot

Lynda A. Huckestein Client Services Manager

LAH/cb

Page 1 of

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.

X See case narrative.

- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Section I: Sample Inventory Report Date Received: 10/13/00

<u>Alta Lab. ID</u>	<u>Client Sample ID</u>
9240-001	WA-3
9240-002	WA-6N
9240-003	WA-6MID
9240-004	WA-6S
9240-005	WA-7M
9240-006	WA-8
9240-007	Blind Dupe

÷

L,

M ethod Blank	Method Blank Date Extracted: <u>10/21/00</u> Lab ID: <u>MB001</u>							
Method blank Matrix:	Salid		mount: <u>10/21/</u>	00	QC Set:	<u>1,045</u>		
	Solid	Sample A	1000000: <u>10 g</u>		Units:			
TEQ (Min-Max): 0.140 - 0.580				Units:	pg/g		
<u>Compound</u>		Conc.	DL ^b	<u>EMPC</u> ^c	$\underline{\mathbf{MDL}}^{d}$	Qualifier		
2,3,7,8-TCDD		ND	0.140		0.0889			
1,2,3,7,8-PeCDI)	ND	0.156		0.262			
1,2,3,4,7,8-HxC	DD a	ND	0.344		0.820			
1,2,3,6,7,8-HxCl	DD	ND	0.346		0.818			
1,2,3,7,8,9-HxCl	DD	ND	0.322		0.528			
1,2,3,4,6,7,8-Hp	CDD	5.86			0.347			
OCDD		63.8			2.03			
2,3,7,8-TCDF		ND	0.175		0.0940			
1,2,3,7,8-PeCDF		ND	0.124		0.294			
2,3,4,7,8-PeCDF		ND	0.127		0.245			
1,2,3,4,7,8-HxCl	DF	ND	0.0737		0.270			
1,2,3,6,7,8-HxCl	OF	ND	0.0679		0.201			
2,3,4,6,7,8-HxCl	DF	ND	0.0875		0.273			
1,2,3,7,8,9-HxCl	DF	ND	0.119		0.297			
1,2,3,4,6,7,8-Hp	CDF	1.06			0.232	Α		
1,2,3,4,7,8,9-Нр	CDF	ND	0.556		0.295			
OCDF		6.51			0.512	Α		
Total TCDD		ND	0.140					
Total PeCDD		ND	0.156					
Total HxCDD		1.85		1.85				
Total HpCDD		17.0		17.0				
Total TCDF		ND	0.175					
Total PeCDF		ND	0.126	1:				
Total HxCDF		ND		0.406				
Total HpCDF		4.18		4.18				

OPR RESULTS Lab ID: <u>OPR001</u> Matrix: <u>Solid</u>	Date Recei Date Extra Sample An	OC Set: <u>1.045</u> Units: <u>ng/mL</u>	
	Spike	Conc.	
<u>Compound</u>	<u>Conc.</u>	Found	OPR Limits
2,3,7,8-TCDD	10.0	8.25	7 - 13
1,2,3,7,8-PeCDD	50.0	46.6	35 - 65
1,2,3,4,7,8-HxCDD	50.0	44.4	35 - 65
1,2,3,6,7,8-HxCDD	50.0	50.3	35 - 65
1,2,3,7,8,9-HxCDD	50.0	46.7	35 - 65
1,2,3,4,6,7,8-HpCDD	50.0	45.4	35 - 65
OCDD	100	116	70 - 130
2,3,7,8-TCDF	10.0	9.40	7 - 13
1,2,3,7,8-PeCDF	50.0	47.6	35 - 65
2,3,4,7,8-PeCDF	50.0	47.6	35 - 65
1,2,3,4,7,8-HxCDF	50.0	48.4	35 - 65
1,2,3,6,7,8-HxCDF	50.0	47.9	35 - 65
2,3,4,6,7,8-HxCDF	50.0	48.9	35 - 65
1,2,3,7,8,9-HxCDF	50.0	49.7	35 - 65
1,2,3,4,6,7,8-HpCDF	50.0	50.8	35 - 65
1,2,3,4,7,8,9-HpCDF	50.0	50.8	35 - 65
OCDF	100	99.6	70 - 130

à

Sample ID:	<u>WA-6N</u>				Lab ID: QC Set:	<u>9240-0</u>	002
Project: Matrix:	<u>K2008016</u> <u>Soil</u>	Date Received:	<u>10/13/00</u>		%Solids:	<u>1,045</u> 78 1	
Sample Amount:		Date Extracted:	<u>10/13/00</u> 10/21/00		Units:	<u>pg/g</u>	
^a TEQ (Min-Max)	_	Date Extracteu.	10/21/00		emits.	PEE	
	• <u>570 - 570</u>		•		MDI	d	
<u>Compound</u>		Conc.	DL ^b	<u>EMPC</u> ۵	MDL		Qualifier
2,3,7,8-TCDD		7.18			0.0889		
1,2,3,7,8-PeCDD	_	61.6			0.262		
1,2,3,4,7,8-HxCD		233			0.820		
1,2,3,6,7,8-HxCD		627			0.818		
1,2,3,7,8,9-HxCD		328			0.528		
1,2,3,4,6,7,8-НрС	CDD	16400			0.347		В
OCDD		117000			2.03		*,B
2,3,7,8-TCDF		4.75			0.0940		
1,2,3,7,8-PeCDF		28.8			0.294		
2,3,4,7,8-PeCDF		60.8			0.245		
1,2,3,4,7,8-HxCD	F	239			0.270		
1,2,3,6,7,8-HxCD	F	101			0.201		
2,3,4,6,7,8-HxCD	F	123			0.273		
1,2,3,7,8,9-HxCD	F	110			0.297		
1,2,3,4,6,7,8-НрС	DF	4230			0.232		В
1,2,3,4,7,8,9-НрС	DF	286			0.295		
OCDF		17700			0.512		В
Total TCDD		210					
Total PeCDD		1010					
Total HxCDD		8490					В
Total HpCDD		47100					В
Total TCDF		89.4					D
Total PeCDF		672					D
Total HxCDF		5550					D
Total HpCDF		19400					B,D
							16611

Sample ID: Project: Matrix: Sample Amount: ^a TEQ (Min-Max)	-	Date Received: Date Extracted:			Lab ID: OC Set: %Solids: Units:	9240-0 1,045 11.2 pg/g	<u>05</u>
Compound		Conc.	$\underline{\mathbf{DL}}^{b}$	۶ <u>EMPC</u>	MDL d	9	Qualifier
2,3,7,8-TCDD		21.2			0.0889		
1,2,3,7,8-PeCDD		240			0.262		
1,2,3,4,7,8-HxCD		902			0.820		
1,2,3,6,7,8-HxCD		4480			0.818		
1,2,3,7,8,9-HxCD		2100			0.528		
1,2,3,4,6,7,8-HpC	CDD	127000			0.347		*,B
OCDD		1530000			2.03		*,B
2,3,7,8-TCDF		80.5			0.0940		
1,2,3,7,8-PeCDF		360			0.294		
2,3,4,7,8-PeCDF		752			0.245		
1,2,3,4,7,8-HxCD		2590			0.270		
1,2,3,6,7,8-HxCD		1050			0.201		
2,3,4,6,7,8-HxCD)F	1350			0.273		
1,2,3,7,8,9-HxCD	F	1090			0.297		
1,2,3,4,6,7,8-HpC	CDF	34400			0.232		*,B
1,2,3,4,7,8,9-НрС	CDF	2390			0.295		*
OCDF		227000			0.512		*,B
Total TCDD		559					
Total PeCDD		2560					
Total HxCDD		25400		×			В
Total HpCDD		239000					*
Total TCDF		1020			а		D
Total PeCDF		7910					D
Total HxCDF		47600					D,B
Total HpCDF		161000					*,B,D
-							

P N S	Sample ID: Project: Matrix: Sample Amount: FEQ (Min-Max):		Date Received: Date Extracted:	<u>10/13/00</u> <u>10/21/00</u>		Lab ID: OC Set: %Solids: Units:	<u>9240-</u> 1.045 89.0 pg/g	
	Compound		Conc.	DL ^b	۵ <u>EMPC</u>	MDL ^c	L	<u>Qualifier</u>
	2,3,7,8-TCDD		1.41			0.0889		
	,2,3,7,8-PeCDD		15.3			0.262		
	,2,3,4,7,8-HxCD		381			0.820		
	,2,3,6,7,8-HxCD		495			0.818		
1	,2,3,7,8,9-HxCD	D	81.8			0.528		
1	,2,3,4,6,7,8-HpC	DD	10100			0.347		В
C	OCDD		120000			2.03		*,B
	2,3,7,8-TCDF		9.91			0.0940		
1	,2,3,7,8-PeCDF		63.2			0.294		
2	,3,4,7,8-PeCDF		123			0.245		
1	,2,3,4,7,8-HxCD	F	458			0.270		
1	,2,3,6,7,8-HxCD	F	149			0.201		
2	,3,4,6,7,8-HxCD	F	1410			0.273		
1	,2,3,7,8,9-HxCD	F	302			0.297		
1	,2,3,4,6,7,8-HpC	DF	4250			0.232		В
1	,2,3,4,7,8,9-HpC	DF	437			0.295		
C	OCDF		12200			0.512		В
T	Total TCDD		36.1					
Т	Total PeCDD		177					
T	otal HxCDD		2760					
Т	otal HpCDD		26400					
Т	Total TCDF		56.3					
T	otal PeCDF		790					D
Т	otal HxCDF		9000					B,D
T	otal HpCDF		17700					B,D

.....

P?

Sample ID: Project: Matrix: Sample Amount ^a TEQ (Min-Max)		Date Received: Date Extracted:	<u>10/13/00</u> <u>10/21/00</u>		Lab ID: OC Set: %Solids: Units:	9240- 1,045 88.5 pg/g	
<u>Compound</u>		Conc.	DL ^b	<u>EMPC</u> ۵	MDL '	1	<u>Qualifier</u>
2,3,7,8-TCDD		9.61			0.0889		
1,2,3,7,8-PeCDD		256			0.262		
1,2,3,4,7,8-HxCI		561			0.820		
1,2,3,6,7,8-HxCI		10500			0.818		
1,2,3,7,8,9-HxCE		1920			0.528		
1,2,3,4,6,7,8-HpC	CDD	251000			0.347		*,B
OCDD		465000			2.03		* , B
2,3,7,8-TCDF		8.31			0.0940		
1,2,3,7,8-PeCDF		59.2			0.294		
2,3,4,7,8-PeCDF		145			0.245		
1,2,3,4,7,8-HxCD)F	3050			0.270		
1,2,3,6,7,8-HxCD	F	1770			0.201		
2,3,4,6,7,8-HxCD	F	1440			0.273		
1,2,3,7,8,9-HxCD	F	286			0.297		
1,2,3,4,6,7,8-НрС	CDF	101000			0.232		*,B
1,2,3,4,7,8,9-HpC	CDF	7300		÷.	0.295		*
OCDF		618000			0.512		*,В
Total TCDD		92.7		92.9			
Total PeCDD		881					
Total HxCDD		28200					В
Total HpCDD		361000					*
Total TCDF		394					D
Total PeCDF		5730					D
Total HxCDF	ŵ.	131000					*
Total HpCDF		599000					*

Method Blank	Date Extracted		<u>0</u>	Lab ID:	<u>MB001</u>
Matrix: Solid	Sample Amou	nt: <u>2 g</u>		QC Set:	<u>1.079</u>
TEQ (Min-Max): <u>0.0791 - 17.1</u>				Units:	<u>pg/g</u>
Compound	Conc.	<u>DL</u> ^b	<u>EMPC</u> ℃	MDL d	Qualifier
2,3,7,8-TCDD	ND	3.73		0.0889	
1,2,3,7,8-PeCDD	ND	6.06		0.262	
1,2,3,4,7,8-HxCDD	ND	13.1		0.820	
1,2,3,6,7,8-HxCDD	ND	14.4		0.818	
1,2,3,7,8,9-HxCDD	ND	12.9		0.528	
1,2,3,4,6,7,8-HpCDD	ND	14.8		0.347	
OCDD	79.1			2.03	Α
2,3,7,8-TCDF	ND	6.41		0.0940	
1,2,3,7,8-PeCDF	ND	6.83		0.294	
2,3,4,7,8-PeCDF	ND	6.54		0.245	
1,2,3,4,7,8-HxCDF	ND	3.74	5	0.270	
1,2,3,6,7,8-HxCDF	ND	3.19		0.201	
2,3,4,6,7,8-HxCDF	ND	3.96		0.273	
1,2,3,7,8,9-HxCDF	ND	5.41		0.297	
1,2,3,4,6,7,8-HpCDF	ND	6.64		0.232	
1,2,3,4,7,8,9-HpCDF	ND	8.84		0.295	
OCDF	ND	31.5		0.512	
Total TCDD	ND	3.73			
Total PeCDD	ND	6.06			
Total HxCDD	ND	13.5			
Total HpCDD	ND	14.8			
Total TCDF	ND	6.41			
Total PeCDF	ND	6.68	2		
Total HxCDF	ND	3.97			
Total HpCDF	ND	7.67			

ALTA

OPR RESULTS Lab ID: <u>OPR001</u> Matrix: <u>Solid</u>	Date Rece Date Extra Sample Ar	OC Set: <u>1.079</u> Units: <u>ng/mL</u>	
Compound	Spike <u>Conc.</u>	Conc. Found	OPR Limits
2,3,7,8-TCDD	10.0	8.69	7 - 13
1,2,3,7,8-PeCDD	50.0	48.7	35 - 65
1,2,3,4,7,8-HxCDD	50.0	47.6	35 - 65
1,2,3,6,7,8-HxCDD	50.0	49.3	35 - 65
1,2,3,7,8,9-HxCDD	50.0	48.7	35 - 65
1,2,3,4,6,7,8-HpCDD	50.0	41.9	35 - 65
OCDD	100	94.4	70 - 130
2,3,7,8-TCDF	10.0	9.41	7 - 13
1,2,3,7,8-PeCDF	50.0	45.2	35 - 65
2,3,4,7,8-PeCDF	50.0	45.3	35 - 65
1,2,3,4,7,8-HxCDF	50.0	47.0	35 - 65
1,2,3,6,7,8-HxCDF	50.0	47.4	35 - 65
2,3,4,6,7,8-HxCDF	50.0	44.8	35 - 65
1,2,3,7,8,9-HxCDF	50.0	49.7	35 - 65
1,2,3,4,6,7,8-HpCDF	50.0	48.6	35 - 65
1,2,3,4,7,8,9-HpCDF	50.0	50.5	35 - 65
OCDF	100	95.0	70 - 130

.

i.

Sample ID:	<u>WA-6MID</u>				Lab ID:	<u>9240-003</u>
Project:	<u>K2008016</u>				QC Set:	<u>1,079</u>
Matrix:	<u>Soil</u>	Date Received:	<u>10/13/00</u>		%Solids:	<u>33.3</u>
Sample Amount:		Date Extracted:	<u>11/1/00</u>		Units:	<u>pg/g</u>
^a TEQ (Min-Max)	: <u>58800 - 58800</u>	<u>0</u>				
Compound		<u>Conc.</u>	DL ^b	۶ <u>EMPC</u>	\underline{MDL} d	Qualifier
2,3,7,8-TCDD		1330			0.0889	
1,2,3,7,8-PeCDD		14100			0.262	
1,2,3,4,7,8-HxCD	D	79600			0.820	
1,2,3,6,7,8-HxCD	D	105000			0.818	
1,2,3,7,8,9-HxCD	D	60400			0.528	
1,2,3,4,6,7,8-HpC	CDD	430000			0.347	*
OCDD		2030000			2.03	*,В
2,3,7,8-TCDF		1120			0.0940	
1,2,3,7,8-PeCDF		6600			0.294	
2,3,4,7,8-PeCDF		12500			0.245	
1,2,3,4,7,8-HxCD	\mathbf{F}	54300			0.270	
1,2,3,6,7,8-HxCD	F	14200			0.201	D
2,3,4,6,7,8-HxCD	F	17700			0.273	
1,2,3,7,8,9-HxCD	F	21000			0.297	
1,2,3,4,6,7,8-HpC	CDF	151000			0.232	*
1,2,3,4,7,8,9-HpC	CDF	12700			0.295	*
OCDF		504000			0.512	*
Total TCDD		35000				
Total PeCDD		211000				
Total HxCDD		1630000				
Total HpCDD		1160000				*
Total TCDF		9880				D
Total PeCDF		92800				D
Total HxCDF		917000				D
Total HpCDF		786000				*

.

Sample ID: Project: Matrix: Sample Amount: ^a TEQ (Min-Max)	-	Date Received: Date Extracted: <u>0</u>	<u>10/13/00</u> <u>11/1/00</u>		QC Set: %Solids:	9240-004 1,079 27.9 pg/g
<u>Compound</u>		Conc.	DL ^b	۵ <u>EMPC</u>	MDL ^d	Qualifier
2,3,7,8-TCDD		466			0.0889	
1,2,3,7,8-PeCDD		5760			0.262	
1,2,3,4,7,8-HxCD		29700			0.820	
1,2,3,6,7,8-HxCD		112000			0.818	
1,2,3,7,8,9-HxCD		31900			0.528	
1,2,3,4,6,7,8-HpC	CDD	1870000			0.347	
OCDD		1800000			2.03	*,B
2,3,7,8-TCDF		114			0.0940	
1,2,3,7,8-PeCDF		722			0.294	
2,3,4,7,8-PeCDF		1840			0.245	
1,2,3,4,7,8-HxCD	F	30400			0.270	
1,2,3,6,7,8-HxCD	F	12600			0.201	D
2,3,4,6,7,8-HxCD	F	13500			0.273	
1,2,3,7,8,9-HxCD	F	3730			0.297	
1,2,3,4,6,7,8-HpC	CDF	958000			0.232	
1,2,3,4,7,8,9-НрС	CDF	63500		9	0.295	
OCDF		920000			0.512	*
Total TCDD		11800				
Total PeCDD		63100				
Total HxCDD		569000		÷.		
Total HpCDD		3020000				
Total TCDF		6690				D
Total PeCDF		61900				D
Total HxCDF		975000				D
Total HpCDF		6000000				D
Total Hbopt		~~~~~				

Method Blank		Date Extra	cted: <u>11/1/0</u>	0	Lab ID:	<u>MB001</u>
Matrix:	<u>Solid</u>	Sample An	10 g		QC Set:	<u>1,080</u>
TEQ (Min-Max	:): <u>0.00265 - 0.</u> :	<u>559</u>			Units:	pg/g
		Como	DI b	<u>EMPC</u> ℃	MDL d	Qualifiar
<u>Compound</u>		<u>Conc.</u>	<u>DL</u> ^b	<u>EMPC</u> *		Qualifier
2,3,7,8-TCDD		ND	0.120		0.0889	
1,2,3,7,8-PeCDI		ND	0.195		0.262	
1,2,3,4,7,8-HxC		ND	0.375		0.820	
1,2,3,6,7,8-HxC		ND	0.401	2	0.818	
1,2,3,7,8,9-HxC		ND	0.364		0.528	
1,2,3,4,6,7,8-Нр	CDD	ND	0.511		0.347	
OCDD		2.65	0.007		2.03	Α
2,3,7,8-TCDF		ND	0.336		0.0940	
1,2,3,7,8-PeCDF		ND	0.197		0.294	
2,3,4,7,8-PeCDF		ND	0.196		0.245	
1,2,3,4,7,8-HxC		ND	0.171		0.270	
1,2,3,6,7,8-HxC		ND	0.135		0.201	
2,3,4,6,7,8-HxC		ND	0.188		0.273	
1,2,3,7,8,9-HxC		ND	0.227		0.297	
1,2,3,4,6,7,8-Нр		ND	0.216		= 0.232	
1,2,3,4,7,8,9-Нр	CDF	ND	0.303		0.295	
OCDF		ND	1.25		0.512	
Total TCDD		ND	0.120			
Total PeCDD		ND	0.195			
Total HxCDD		ND	0.379			
Total HpCDD		ND	0.511			
Total TCDF		ND	0.336			
Total PeCDF		ND	0.197			
Total HxCDF		ND	0.176			
Total HpCDF		ND	0.256			

OPR RESULTS Lab ID: <u>OPR001</u> Matrix: <u>Solid</u>		ved: <u>NA</u> acted: <u>11/1/00</u> nount: <u>10 g</u>	QC Set: <u>1.080</u> Units: <u>ng/mL</u>
<u>Compound</u>	Spike <u>Conc.</u>	Conc. Found	OPR Limits
2,3,7,8-TCDD	10.0	9.08	7 - 13
1,2,3,7,8-PeCDD	50.0	48.5	35 - 65
1,2,3,4,7,8-HxCDD	50.0	51.7	35 - 65
1,2,3,6,7,8-HxCDD	50.0	49.6	35 - 65
1,2,3,7,8,9-HxCDD	50.0	50.3	35 - 65
1,2,3,4,6,7,8-HpCDD	50.0	45.2	35 - 65
OCDD	100	93.6	70 - 130
2,3,7,8-TCDF	10.0	9.76	7 - 13
1,2,3,7,8-PeCDF	50.0	46.0	35 - 65
2,3,4,7,8-PeCDF	50.0	46.4	35 - 65
1,2,3,4,7,8-HxCDF	50.0	47.8	35 - 65
1,2,3,6,7,8-HxCDF	50.0	47.4	35 - 65
2,3,4,6,7,8-HxCDF	50.0	47.6	35 - 65
1,2,3,7,8,9-HxCDF	50.0	53.1	35 - 65
1,2,3,4,6,7,8-HpCDF	50.0	49.7	35 - 65
1,2,3,4,7,8,9-HpCDF	50.0	50.2	35 - 65
OCDF	100	99.9	70 - 130

1

2

.

81

1

Sample ID: Project: Matrix: Sample Amount:	<u>Blind Dupe</u> <u>K2008016</u> <u>Soil</u> <u>5.62 g</u>	Date Received: Date Extracted:	<u>10/13/00</u> <u>11/1/00</u>		Lab ID: 924 QC Set: 1.08 %Solids: 90.7 Units: pg/g	
Compound		<u>Conc.</u> 2.76	DL ^b	۵ <u>EMPC</u>	MDL ^d	Qualifier
2,3,7,8-TCDD					0.262	
1,2,3,7,8-PeCDD	D	22.1				
1,2,3,4,7,8-HxCD		72.1			0.820	
1,2,3,6,7,8-HxCD		82.5			0.818	
1,2,3,7,8,9-HxCD		98.5			0.528	
1,2,3,4,6,7,8-НрС	DD	10400			0.347	
OCDD		102000			2.03	
2,3,7,8-TCDF		13.3			0.0940	
1,2,3,7,8-PeCDF		70.5			0.294	
2,3,4,7,8-PeCDF	T	138			0.245	
1,2,3,4,7,8-HxCD		554			0.270	D
1,2,3,6,7,8-HxCD		186			0.201	D
2,3,4,6,7,8-HxCD		206			0.273	
1,2,3,7,8,9-HxCD		197			0.297	
1,2,3,4,6,7,8-HpC		4740			0.232	
1,2,3,4,7,8,9-НрС	DF	460			0.295	
OCDF		12800			0.512	
Total TCDD		32.5		42.5		
Total PeCDD		194	35			
Total HxCDD		2610		Ω.		
Total HpCDD		24100				
Total TCDF		82.1				D
Total PeCDF		1060		9		D
Total HxCDF		8000				D
Total HpCDF		19800				D

APPENDIX

CURRENT CERTIFICATIONS

Bureau of Reclamation-Mid-Pacific Region---(MP-470, Res-1.10) Commonwealth of Kentucky---(Certificate No. 90063) **Commonwealth of Virginia**---(Certificate No. 00013) State of Alaska, Department of Environmental Conservation---(Certificate No. OS-00197) State of Arkansas, Department of Health---(Approval granted through CA certification) State of Arkansas, Department of Environmental Quality---State of California---(Certificate No. 1640) State of Connecticut---(Certificate No. PH-0182) State of Florida---(Certificate No. 87456) State of Louisiana---(Certificate No. 98-33) State of Mississippi---(Approval granted through CA certification) State of Nevada---(Certificate No. CA413) State of New York, Department of Health----(Certificate No. 11411) State of North Carolina---(Certificate No. 06700) State of North Dakota, Department of Health---(Certificate No. R-078) State of Oregon----State of Pennsylvania---(Certificate No. 68-490) State of South Carolina---(Certificate No. 87002001) State of Texas — (Certificate No. TX247-2000A) State of Tennessee---(Certificate No. 02996) State of Utah---(Certificate No. E-201) State of Washington, Department of Ecology---(Certification No. C091) State of Wisconsin---(Certificate No. 998036160) State of Wyoming---(Ref: 8ES-LB) **U.S. Army Corps of Engineers U.S. 5 EPA Region** May 2000

Table 3

Summary of Sampling and Analysis

West Area

Area Designation		Analysis	Comments
WA-1	1WA-1	TOC, pH	Sample subsample location as 1999
	2WA-1		Release Sampling
95) -	3WA-1		1 3
	4WA-1	24 A.	
	5WA-1		
WA-2	1WA-2	ТОС, рН	Sample subsample location as 1999
	2WA-2		Release Sampling
	3WA-2		
	4WA-2		
	5WA-2	-	
WA-3	1WA-3	PCP, PAHs,	Sample subsample location as 1999
	2WA-3	Dioxin/Furan, TOC, pH	Release Sampling plus two locations
	3WA-3		corresponding to previous point
	4WA-4		samples.
	5WA-3	1	
	6WA-3		
	7WA-3	1	S
WA-6			
WA-6N	1WA-6N	PCP, PAHs,	
	2WA-6N	Dioxin/Furan, TOC, pH	
	3WA-6N		
	4WA-6N		
	5WA-6N		
WA-6Mid	1WA-6Mid	PCP, PAHs,	
tive onlig	2WA-6Mid		
	3WA-6Mid	Dioxin/Furan, TOC, pH	WC
	4WA-6Mid	1	
		1	
	5WA-6Mid	1	
WA-6S	6WA-6Mid		
VV-02	1WA-6S	PCP, PAHs,	
	2WA-6S	Dioxin/Furan, TOC, pH	
	3WA-6S		
VA-7	4WA-6S		
WA-7	114/ 4 7		. tini
VV ~~/	1WA-7	PCP, PAHs, Dioxin/	Sample to be split and analyzed be
	2WA-7	Furan, TOC, pH	water leach and standard analysis.
	3WA-7		Surface water sample will be collected
	4WA-7		from open water in this area.
	5WA-7		
WA7-M	1WA7-M	PCP, PAHs,	Sample to be split and analyzed be
	2WA7-M	Dioxin/Furan, TOC, pH	water, leach and standard analysis
2	3WA7-M		LAND, DOF 10/10/0
	4WA7-M	5	1 - WF 10/10/0

00037

Analytical ServiceS ^{III} 1317 S	CH 1317 South 13th Ave. • Kelso, WA 98626 • (360) 577-7222	CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM (360) 577-722 • FAX (360) 636-1068 DATE DATE OF	ORM
PROJECT NAME		ANALYSIS REQUESTED	
PROJECT MANAGER A	udA thickest	teen E / 2 / / / / / / / / / / / / / / / / /	
		>	
SAMPI FRS SIGNATLIRE	PHONE		
SAMPLE	TIME LAB SA		RKS
m	<u>.</u>		
MIA-6N			
MIA-6 mil			
WH-65			
WH-7M			
WA-6			
Blind Ing			
>			
1001			
REKNOUISHED BY	RECEIVED BY:	S REPORT REQUIREMENTS INVOICE INFORMATION: I. Routine Apport . H. Report (Includes DUP.MS. D.O. 1700 F711 C Chinesed VIA	
Printed Name of 17 A	Printed Name	o (10-15 working days) MSD, as required, may be bill To bill T	
Fim JU/17/07 200	H UTA Film // 2/00 /100	Ensuits Ensuits In: Lotal Yanuarun Insport (includes All Raw Data) Erovide FAX preliminary Results IV. CLP Deliverable Report IV. CLP Deliverable Report	+++
Date/Time	Time	Requested Report Date Lab No: 1 2000	116
RELINQUISHED BY:	RECEIVED BY:	SPECIAL INSTRUCTIONS/COMMENTS:	
Signature	Signature	- deve	
Pri Geo t Name	Printed Name		
Firm	Firm		
Date/Time	Date/Time	ALTA ALTA	
		Diettelei itzione. Willitte seiven is originator. VELLOW Jah. DINK - retained hu originator	400-05

				f			-		6						
Chain o	Chain of Custody						Number of	Contai	of Containers/Preservative	eserval		-		-	2
BARR Minneapol (612) 832-	4700 West 77th Street Minneapolis, MN 55435-4803 (612) 832-2600			e 17d -			(*			3				STS	Project Contract:
Project Number 2,3,1,2,7,-,1,1,0,7,2,K,7,6	1,1,0,1,1	K 76	qnU) oim	Organic Organic	etals (HNO ₃)	oH, Asc.	OS ^z H) əs		cteria (H ₂ SO,)			SSB		Containe	Ward Sunansons
Nº 13	13180 N	Matrix Type	Orga	र्वाग्रेह	M Þ	eN)	Grea				qury	ם, Gl		10 .o	CAS
Sample Identification	Collection Date Time	4045	Volatile Volatile	lovims2	Dissolve	Cyanide	Nutrient Oil and TOC (H	эрціuZ	Dioxin Whirlpa Total Ph		, sloguJ	Formali		Total N	Rcmarks/ Analysis Required:
1. WA-7	10/4/00	X X					~		•					2	TOC, PH
WA-2	10/4/00	XXXX			_		2						-	2	TOC, DH
WA-3	10/10/00	X X		4						_				2	TOC, PH, PLP, PAHS
4. WA-6N	10/ulov	X X												2	TOG, PH, PCP, PAHS
-1	10/10 pc	X X		1										2	TOC, PH, PLP, PAHS Dipxin/Furan
6. WA-65	10/alas	X X		1									-	2	TOL, PH, PUP, PAHS TD. OxIMI FU PAN
7. WA-7M	10/100	X X		R					20					Ch.	TOC. DH. PCP. PAHS
8. WA-B	t) tales	XXXX		1					1					. 7	THE PH, PLP, PAHS
â	10/ac	XX	_	1										2	TOC PH, PLP, PAHS
11.				_		_							-	-	
12.													-		
14.															
15.															
16.														0	
Sampled By:) A	t VIIIIII		Reli	Relinquished By		-	we was	T	Date	1	Time	Receiv	Received by		Hail A Wate Time
Remarks:	\		Sample	Samples UA Freight	r Freight	Detted	🖽ed. Exp. 🛛 Sampler	pler				Air	Air Bill Number:	mber	
			Č												

Appendix C

RPD Calculations

1

0

Table C-2 RPDs for Laboratory Split Samples West Area Investigation

	WA-6MID 10/6/00	WA-6MID 10/6/00	RPD	WA-6S 10/6/00	WA-6S 10/6/00	RPD
	Sample #2	Sample #3		Sample #1	Sample #2	
List 1 PAHs, mg/kg						1
Benzo(a)anthracene	(Y44:	1	0.17	1	1
Chrysene			1	0.48		
Benzo(b)fluoranthene			1	0.94		1.
Benzo(k)fluoranthene			1	0.43	-	1
Вепго(а)ругепе				0.56		1
Indeno(1,2,3-cd)pyrene			-	0.71		
Dibenz(a,h)anthracene			1	0.16	1	
B(a)P Equivalent				0.84		
List 2 PAHs, mg/kg				0.04		
Acenaphthene				< 0.05		
Anthracene			-	0.38	-	
Fluoranthene				0.38		
Fluorene			+	<0.05	18	
Naphthalene			4	0.061	1	
Pyrene		-		0.081		
ryrene				0,49		
Pentachlorophenol, mg/kg		-		120		
r entactitor opnenoi, ing/kg				120		1
Dioxins, ug/kg			-			
2,3,7,8-TCDD	1.1	2.0	58.1	0.466	0.262	56.0
1,2,3,7,8-PeCDD	20	29	36.7	5.76	5.88	2.1
1,2,3,4,7,8-HxCDD	144	180	22.2	29.7	22.9	25.9
1,2,3,6,7,8-HxCDD	168	210	22.2	112	95.3	16.1
1,2,3,7,8,9-HxCDD	96.9	140	36.4	31.9	35.9	11.8
1,2,3,4,6,7,8-HpCDD	6540	4400	39.1	1870	:2930	44.2
OCDD	52000	7000	152.5	1800	23500	171.5
Furans, ug/kg		1				
2,3,7,8-TCDF	1.34	1.3	3.0	0.114	0.124	8.4
1,2,3,7,8-PeCDF	8.6	10	15.1	0.722	0.893	21,2
2,3,4,7,8-PeCDF	16.8	8.6	64.6	1.84	2.29	21.8
1,2,3,4,7,8-HxCDF	62.5	79	23.3	30.4	30,9	1.6
1,2,3,6,7,8-HxCDF	17.5	22	22.8	12.6	8.49	39.0
2,3,4,6,7,8-HxCDF	34.9	12	97.7	13.5	13.9	2.9
1,2,3,7,8,9-HxCDF	23.6	3.6	147.1	3.73	3.27	13.1
1,2,3,4,6,7,8-HpCDF	1210	1100	9.5	958	1240	25.7
1,2,3,4,7,8,9-HpCDF	79.7	91	13.2	63.5	65.5	3.1
OCDF	4840	3400	35.0	920	7900	158.3
FCDD Equivalent:	168.785	160.78	4.9	59.7635	73.90505	21.2
					1	1
Organic Carbon, Total, %	26			21.4	21.7	1.4
oH, standard units				6.01	1	1

100