Planning Far into the Future: the Minnesota Water Sustainability Framework

> Deborah Swackhamer University of Minnesota

What is the Framework?

- A 25-year plan to protect, conserve, and enhance the quantity and quality of the state's groundwater and surface water
- An approach to manage the state's water resources that is
 - Sustainable
 - Comprehensive
 - Integrated

Sustainability

Sustainable water use does not harm ecosystems, degrade water quality, or compromise the ability of future generations to meet their own needs. 2009 Minn. Laws. Ch. 172, Art. 2 § 30 at 45-46

Clean Water Fund: Goals

cleiean Watter En Snaggh Water Haealthy Ecosystems Hyblic and the states rity In infrastructure ure

Mandate – to address needs related to:

- Drinking water
- Stormwater
- Agricultural use
- Industrial use
- Surface and groundwater interactions
- Infrastructure
- Interface of water resources with climate change, land use, development, demographics

Identify BMPs for WWTP, DW source protection, pollution prevention, conservation, and water valuation

A Collaborative Approach

UNIVERSITY OF MINNESOTA

- DNR
- MDA
- MDH
- MPCA
- EQB
- BWSR

- WDs
- WMOs
- SWCDs
- NGOs
- Counties & Cities

Approach

Team Members

- Academic: 34
- State Agency: 46
- Federal Agency: 10
- City/Cty/LGU: 16
- WD/WMO/SWCD: 8

- NGO: 15
- Private sector: 20
- Agriculture: 14
- Tribal: 4
- Citizen: 7

Foundational Materials

White Papers:

- Water Use in Minnesota
- Water Supply in Minnesota
- Water Quality in Minnesota

Presentations on:

Climate Change, Demographics, Land Use

Technical Team White Papers

- Policy
- Education
- Valuation
- Agriculture

- Ecosystem Services
- Domestic
- Energy/Manufacturing
- Rec/Cultural/Spiritual

All background papers and presentations available at wrc.umn.edu

Framework

Framed 90 specific needs
Collected under 10 "Big" Issues
Contained in 3 categories of sustainability

Issues/needs

Environmental

- Sustainable water supply
- Cultural eutrophication & conventional impairments
- Contaminants of emerging concern
- Land-water connection
- Ecological & hydrologic integrity
- Water-energy "nexus"

Economic

- Water pricing
- Infrastructure needs

Social

- Citizen engagement
 & education
- •Governance & institutions

Issue Relationships and Drivers

For each Issue:

- Problem statement
- Desired future Minnesota condition
 - Outcomes & Strategies ("what")
 - Actionable tasks ("how")
 - Benchmarks for measuring progress
- Implementation schedule

Problem:

Population growth means more water demand

Problem:

 Studies indicate we may be using more groundwater than is being replaced in Metro

Graphic from DNR/EQB

Desired Minnesota Future:

• Enough water of sufficient quality that is protected for use by all future generations

Strategy 1:

Full knowledge of water balance

 Task: determine flows, storage, recharge rates of major aquifers and develop model of water balance

From USGS Circular 1139

 Task: complete, and update as needed, county geologic atlases

Benchmarks: rate of data collection; atlases complete

Strategy 2:

Water appropriation process that accounts for surface/groundwater interactions and ecological needs

 Task: Base permits on minimum base flow that is protective of ecological needs for given hydrologic regime

From USGS Circular 1139

Implementation Schedule

Problem:

 Approx 40% of Minnesota's waters do not meet water quality standards

Desired MN Future:

 "Land of Unimpaired Waters"

Strategy 1:

- Develop statewide nutrient enrichment management plan that is:
 - implemented at watershed level
 - adaptive
 - addresses all aspects of excess nutrients from all sources
 - includes solids and pesticides

Tasks:

- Make implementation of approved TMDLs mandatory for all sectors, including non-regulated, non-point sources
- Require compliance timelines, effectiveness monitoring, and consequences for failure to comply
- Include allocations and implementation of load reductions in every watershed nutrient enrichment management plan

Tasks, cont:

- Encourage green infrastructure for stormwater using incentives, tax credits, grants
- Strengthen shoreland rules to specifically protect water quality and address sustainability
- Improve regulation and management of SSTS
- Inventory and improve testing of private wells

Benchmarks:

- Declining trends in nutrients, solids, pesticides
- Improved compliance rates of TMDL implementation plans
- Improved compliance rates for SSTS performance
- Declining number of private wells with excess nitrates or pesticides

Strategy 2:

Accelerate improvements in water quality and provide equity in solutions to cultural eutrophication

 Task: Establish farmer-led, performance-based approach to meeting water quality standards in agricultural areas

Benchmarks: adoption rates of BMPs; reduction in loadings; and increase in compliance of allocations

Implementation Schedule: Strategies 1 & 2

Issue: Contaminants of Emerging Concern

Problem: scores of potentially harmful, trace level contaminants are in surface and groundwater; most are not yet regulated

Desired MN Future: a society that has reduced risk from toxic contaminants and microbes

Issue: Contaminants of Emerging Concern

Strategy 1:

Move upstream of hundreds of potentially harmful, trace level contaminants entering from different sources

• Task: Promote green chemistry and manufacturing

Strategy 2:

Manage the CECs already in water

• Task: Multi-pollutant approach

Benchmarks: fewer CECs; reduced concentrations

Issue: Contaminants of Emerging Concern

Implementation Schedule: Strategies 1 & 2

Issue: Land-water connection

Problem: How we use land affects water

Desired MN Future: water resources are managed and protected for all land uses

Issue: Land-water connection

Strategy 1:

Integrate water and land sustainability planning

• Task: Review water impacts in land use permitting processes

Strategy 2:

Increase compliance capacity for current regulations

• Task: Fund enforcement and education

Benchmarks: reduced land use impacts on water; increased compliance at local level

Issue: Ecological and Hydrologic Integrity

Strategy 1:

Protect critical aquatic ecosystems

- Task: Protect priority habitat
- Task: Manage and prevent aquatic invasive species
- Task: Research and implement climate adaptation strategies

Issue: Ecological and Hydrologic Integrity

Strategy 2:

Account for ecological benefits in environmental reviews

• Task: Amend environmental review rules

Strategy 3:

More water is kept on the land where it falls

- Task: Require drainage areas to control local hydrograph
- Task: support further development of Watershed Assessment Tool for flood management

Issue: Water-Energy "Nexus"

Problem: It takes energy to clean water; it takes water to make energy

Desired MN Future: energy and water policy are aligned

Issue: Water-Energy "Nexus"

Strategy 1:

Quantify all water - energy relationships and evaluate energy policy for water sustainability

- Task: Use full-cost accounting to quantify water – energy relationships
- Task: Revise Minnesota energy policy for water sustainability

Benchmark: energy demand does not decrease water availability and water demand does not increase energy production

Issue: Water pricing

Strategy 1:

Incorporate the economic value of ecosystem services provided by water in decisions and assessments

- **Task:** Determine economic value of diminished ecological benefits and incorporate into new pricing structures
- Task: Use funds to further protect source water

Benchmark: indicators of ecosystem services increase in quality

Issue: Public Water Infrastructure

Strategy 1:

Long-term strategy for funding new, expanded, and updated infrastructure and its maintenance

- Task: Understand options for funding
- Task: Implement strategies for funding

Issue: Public Water Infrastructure

Strategy 2:

Incorporate new technologies and adaptive management into public water infrastructure

• Task: Train utility managers in effective management to respond to future challenges in a complex, unpredictable future

Benchmark: contaminant reductions in wastewater and drinking water

Issue: Citizen Engagement & Education

Strategy 1:

Citizens hold a water ethic and act on it

- Task: Educate children through K-12 education and water literacy campaign
- Task: Engage the public, communities and businesses in water conservation and stewardship through multiple efforts and with stable funding

Benchmark: greater adoption of conservation, greater public engagement in local water activities

Issue: Organization & Institutions

Strategy 1:

Align water, land use, energy policies to ensure water sustainability

- **Task:** Review water laws and statutes and revise as needed to incorporate sustainability as a guiding principle
- **Task:** align land, energy, and transportation policies with water sustainability
- Task: Re-establish Legislative Water Commission

Summary: Top 5

Protect and Restore Water Quantity and Quality

- Revise permitting, model water balance
- Strengthen TMDLs implementation and equity
- Address future contaminants
- Address Interconnected Nature of Water
 - Integrate water and land use planning
 - Align water, energy, land, transportation policies for sustainability

Minnesota Water Sustainability Framework

wrc.umn.edu/watersustainabilityframework/

